
Unsupervised Mode Detection in Cyber-Physical
Systems using Variable Order Markov Models

Barış Gün Sürmeli, Feyza Eksen, Bilal Dinç, Peter Schüller, Borahan Tümer
Faculty of Engineering, Marmara University

İstanbul, Turkey

Abstract—Sequential data generated from various sources in
a multi-mode industrial production system provides valuable
information on the current mode of the system and enables one
to build a model for each individual operating mode. Using these
models in a multi-mode system, one may distinguish modes of
the system and, furthermore, detect whether the current mode
is a (normal or faulty) mode known from historical data, or a
new mode. In this work, we model each individual mode by a
probabilistic suffix tree (PST) used to implement variable order
Markov models (VOMMs) and propose a novel unsupervised PST
matching algorithm that compares the tree models by a matching
cost once they are constructed. The matching cost we define
comprises of a subsequence dissimilarity cost and a probability
cost. Our tree matching method enables to compare two PSTs
in linear time by one concurrent top-down pass. We use this
matching cost as a similarity measure for k-medoid clustering
and cluster PSTs obtained from system modes according to their
matching costs. The overall approach yields promising results
for unsupervised identification of modes on data obtained from
of a physical factory demonstrator. Notably we can distinguish
modes on two levels of granularity, both corresponding to human
expert labels, with a RAND score of up to 73 % compared to a
baseline of at most 42 %.

I. INTRODUCTION

A production line in an industrial plant operates in multiple
modes, interpretable as normal (regular production), break
(switching to the production of another product type), or
anomalous (the operation deviates from its normal flow, mani-
festing a potential problem). Data generated by various sources
such as sensors planted in the system under analysis provide
valuable information on the current state of the system. Both
normal and anomalous modes are characterized by significant
structures (i.e., sequences of states) that show up in some
specific sequential and/or cyclic order as a symptom of the
specific nature of the relevant mode. The occurrence and/or
order of these structures reveal the temporal dependence of
states of the system which form a basis for the relevant
mode. As an example, consider a car plant that produces
automobiles with automatic versus manual gear shift, and
convertible versus standard roof, and combinations thereof.

With the rise of the smart industrial plant systems, self-
diagnosis tasks such as anomaly detection and root cause
analysis became new challenges. As the prerequisite, the
operating modes of the system have to be detected and
distinguished in a robust fashion. Maintaining manual models
for this task is cumbersome and expensive, therefore we here
present an unsupervised approach for distinguishing operating
modes based on data streams of an industrial system.

To that end we use Markov models which are a standard tool
for characterizing system behaviors. Standard Markov models
of fixed order either overgeneralize or overfit if the system
shows behavior that does not truly correspond with the chosen
order of the model. To overcome this issue, we use Variable
order Markov models (VOMMs) that can represent temporal
dependence of variably long structures and can be learned
without any initial knowledge of the system required. VOMMs
are mainly used in biological signal processing, where state-
of-the-art methods train a VOMM and then ‘run’ it on a test
sequence to classify if the sequence matches the VOMM. In
this work we follow a different approach: we train multiple
VOMMs and compairing their internal representation, which
is a Probability Suffix Tree (PST).

We propose a novel unsupervised PST matching algorithm
that, using a matching cost calculation, compares the tree
models of the sequences once they are constructed. Matching
cost is composed of two components: dissimilarity cost and
probability cost. They reflect the extent of dissimilarity, in
respective order, of the subsequences of nodes matched and
that of the probability vector attached to the nodes matched
among the two PSTs. Existing tree matching algorithms like
Flexible Tree Matching [1] are generic but intractable. We
make use of inherent structure and meaning of PSTs and
propose a novel tree matching scheme that compares two PSTs
in linear time by one concurrent top-down pass.

We perform experimental results on data produced by a
physical factory demonstrator, and evaluate our method in
comparison with a semi-naive baseline. We apply k-medoids
clustering [2] to cluster PSTs with respect to their distances
(matching costs). Results show that our unsupervised method
is able to identify system modes on two levels of granularity,
corresponding to two levels of mode labels produced by human
experts. Score for mode identification is significantly above a
baseline method.

In Section II, we summarize VOMMs and PSTs, Related
work is discussed in Section III. In Section IV we discuss
how PST models are learned, how matching cost between pairs
of PSTs are calculated, and how we perform clustering using
this distance measure. Section V presents our experiments and
discuss the results. We conclude the paper in Section VI.

II. PRELIMINARIES

A Markov Model is used to model stochastic processes
where future states are assumed to depend only on the current

state of the system. This definition is extended to define nth-
order Markov models where the future states are assumed to
depend on n previous states from the current state [3].

A. Variable Order Markov Model (VOMM)

An extension of Markov models are Variable Order Markov
Models where the conditioning order may vary from state
to state [4]. This variation depends on the significance of
the information extracted from the observations. As long as
an observation occurs in the data significantly many times
the information about it is more probable to be kept in the
model. With this property, VOMMs are realistic models that
can represent natural processes, such as the behavior of a
production plant. Their concise and adaptive representation,
ability to work with no prior knowledge about the system and
considerably small amount of memory requirement compared
to models such as HMMs are another appealing properties of
VOMMs.

B. Probabilistic Suffix Tree (PST)

One convenient way to implement VOMMs are PSTs [5, 6],
which are based on Suffix Trees (STs). Fig. 1 (left) shows an
example of a ST. STs contain all suffixes of a given input
sequence where traversing from root to each leaf yields a
specific suffix. A non-leaf node in a ST exists which contains a
sub-sequence only and only if two different possible characters
follows that sub-sequence at least once in the input sequence.

Probabilistic Suffix Trees are a probabilistic abstraction
of STs, where nodes of the ST are pruned with respect to
two parameters: the minimum number t of occurrences of
the subsequence of the node within the sequence, and the
maximum length L of any subsequence of a node allowed
in the tree. Intuitively, t prunes suffixes with fewer witnesses
from the tree, and L limits the level of detail represented in
the tree. In addition to representing suffixes, PSTs represent
the structure and importance of represented suffixes by storing
probability information for each node: the probability vector
at a node contains the probabilities of occurrence of each
character after the subsequence that the node represents. Fig. 1
(right) shows an example PST and the sequence it represents.

III. RELATED WORK

Techniques for clustering and anomaly detection, in par-
ticular methods using Markovian techniques and kernel-based
methods which employ pairwise dissimilarities, are surveyed
in [7]. Performance benefits of VOMMs over Hidden Markov
Models with same predictive power were shown in [8].
VOMMs have been extensively used for classification and
prediction [8, 9, 10]. A common implementation technique
are Probabilistic Suffix Trees (PSTs) [5, 6] which can be
constructed in linear time [11, 12]. PSTs have been used in
various applications such as protein prediction and classifica-
tion [8, 9, 11, 12] and outlier detection [13].

Unsupervised methods in industrial signal processing em-
ployed Probabilistic Automata [14, 15] and used PSTs for
anomaly detection [16], however VOMMs and PSTs are

mainly used in bioinformatics. State-of-the-art methods for
classification of input streams using PSTs simulate a run
of the test sequences on PST models learned in a training
phase to decide which class the sequences belong to. A
method that directly works on (non-probabilistic) suffix trees
by representing them as a vector space document model, and
comparing them for clustering, was introduced in [17].

An alternative method to the tree matching we introduce
here is Flexible Tree Matching (FTM), which is a generic
method for matching trees while taking into account similar-
ities of the nodes in different places [1]. FTM is intractable
(NP-complete), moreover it is not beneficial for our goal of
comparing PSTs, because it matches trees on various node
depths. For comparing PSTs, there are hard constraints which
comparisons are meaningful (i.e., we compare only nodes
representing a sub- or supersequence of the node in the other
tree). Also, PST child nodes are sorted wrt. their represented
subsequence, which is a property not used by FTM.

IV. PST LEARNING, MATCHING, & CLUSTERING

We next describe our approach for unsupervised mode
detection with VOMMs. Section IV-A describes how we first
construct PSTs for distinct sections of industrial system data,
Section IV-B provides our novel method for computing match-
ing cost between pairs of PSTs, and Section IV-C describes
how we use this matching cost to cluster the data sequences
and to detect equal and similar modes of the system.

To reduce the scope of this task, we assume data streams
are already split into relevant sections of interest. We call
these sections ‘regimes’. Regime detection can be done by
supervised or by unsupervised methods, for example using
changepoint detection [18].

A. PST Learning
PSTs are constructed with the adaptive PST construction

algorithm proposed in [12], which is one of the most efficient
PST construction algorithms, takes linear time with respect to
the length of the sequence, makes use of Context Trees [6],
and the WOTD Lazy Suffix Tree construction algorithm [19].
Different from [12] we here perform only Support Pruning and
do not use Similarity Pruning, since the former is sufficient
for obtaining reasonably small models and because using
only one kind of pruning keeps the approach more simple.
The PST construction algorithm in [12] adds auxiliary nodes
and Reverse Suffix Links [11] to the PST to be able to run
the VOMM on new input sequences, moreover probability
values are smoothened to prevent the model to assign zero
probabilities to input sequences. For the purpose of our work,
we exclude all these components because we do not run the
tree model on new data sequences to verify how well they
match. Instead, our method directly operates on PSTs and
considers missing nodes in the distance measure that is defined
in the following.

B. PST Matching
We next formalize our distance measure for comparing two

PSTs. We combine two kinds of matching cost:

Root

A

A

AB

B

AC

C

ACC$

C$

B

B

BAC

AC

BBAC

BAC

C

C

CBBACC$

BBACC$

CC$

C$

C$

$

$

$

Root(0.33,0.33,0.26,0.06)

A

(0,0.4,0.6,0)

AB

(0.5,0.5,0,0)

AC

(0.33,0.33,0.33,0)

B(0.6,0.4,0,0)

BAC

(0.33,0.33,0.33,0)

BBA

(0,0,1,0)

C

(0.25,0.25,0.25,0.25)

Fig. 1: Example Suffix Tree (left) and Probabilistic Suffix Tree (PST) (right) of the sequence ‘ABACABBACBBACC$’. PST
is created with pruning parameters t = 2 and L = 3. Probability vectors represent next symbol probabilities for the sequence
of symbols (A,B,C, $) where $ indicates end-of-sequence.

(1) Probability Cost: The effect of differences between the
probability information of the matched nodes which has
the same subsequence, and

(2) Dissimilarity Cost: The effect of dissimilarity between the
subsequences of the matched nodes.

Given trees T1 and T2 which are models of the sequences
of A and B, respectively, we define the set {A1, A2, . . . , AN}
of subsequences appearing in nodes of T1, and similarly the
set {B1, B2, . . . , BM} of subsequences in nodes of T2. Then
the distance measure (matching cost) is defined as:

CT1,T2 =

N∑
i

M∑
j

xijωij(dijI/Lij + (1− I)δijεij/2). (1)

This matching cost is calculated over all pairwise matchings
of substrings of both trees.

Components of the above formula are as follows.
[xij] Activator Component xij ∈ {0, 1} is 1 only if Ai is
the closest node to Bj in the other tree with respect to length
of their subsequence, where the shorter node is a prefix of the
longer one.
[wij] Match Weighting Component wij is the average of
occurrence probabilities of the subsequences that the nodes
represent:

wij = (P (Ai) + P (Bj))/2. (2)

Each match among the nodes of two trees is multiplied by
wij with the aim of weighting the contribution of the cost
proportional to the importance of the corresponding nodes.
[I] Cost Type Weighting Component I , 0≤ I ≤ 1, allows for
scaling between two types of matching costs: Dissimilarity &
Probability (see below ‘Raw Cost’). The closer I is to 1, the
higher the contribution of dissimilarity cost to the total cost.
[dij] Length Difference Component dij between the context
of nodes i and j is defined as follows:

dij = abs(| Ai | − | Bi |) (3)

where |X| indicates the length of the sequence X .

R

A

AA

AAB

B

BA

R

A

AA

B

BB

BBA

Fig. 2: PST Matching Example: All matchings which have
non-zero probability of doing non-zero contribution to the total
matching cost are shown.

[δij] Probability Vector Distance Component δij is the sum
of the absolute values of the differences for each dimension
in the probability vector of two nodes given the alphabet size
S for the modeled sequences:

δij =
S∑
k

| (
−−→
PAi

)k − (
−−→
PBj

)k | (4)

[εij] Cost Type Component εij ∈ {0, 1} is 1 only if Ai = Bj .
When 0, probability vector distance cannot contribute to
cost because the compared nodes are not identical, i.e., a
comparison would be meaningless.
[Lij resp. /2] Normalization. To normalize both cost types
to stay within [0, 1], dissimilarity cost is divided by the length
of the longer subsequence Lij = max(|Ai|, |Bj |), while the
probability cost is divided by 2.

Raw Cost: The factor (dijI/Lij + (1− I)εijδij/2), in (1) is
called raw (unweighted) cost, which consists of dissimilarity
cost dijI/Lij and probability cost (1− I)δijεij/2.

By using structural properties of PSTs we can compute
CT1 ,T2 in a single parallel traversal over T1 and T2 which
is linear in time N +M .

C. PST Clustering

Using the PST matching cost CT1,T2
formulated above,

each pair of tree models is compared, a dissimilarity matrix
is constructed with the calculated cost values. Based on this
dissimilarity matrix, we apply k-medoids clustering to the PST
models to classify the behavior of the system in each regime
using Partitioning Around Medoids algorithm [2] which en-
sures optimal selection of medoids. K-medoids chooses data
points as centers (medoids or exemplars) and minimizes an
arbitrary metrics of distances between these centers and points
assigned to clusters. A medoid can be defined as the object of
a cluster whose average dissimilarity to all the objects in the
cluster is minimal, i.e., it is a most centrally located point in
the cluster.

As a result of clustering, we obtain information which PSTs,
i.e., which regimes of the system data stream, belong to the
same cluster. Regimes that are assigned the same cluster are
predicted to originate from the same system mode.

Identifying similar or novel system modes in such an unsu-
pervised way is useful for detecting and classifying system
problems or system reconfigurations without the need for
building a model of the system.

V. EXPERIMENTAL EVALUATION

A. Lego Demonstrator Data

To evaluate our tree matching algorithm we use data gen-
erated by a model factory production line created from Lego.

The Lego Demonstrator is shown in Fig. 3. A Lego piece is
carried from its initial position in the magazine to the conveyor
belt and placed on one of the two sticks. During this process,
aligning the piece correctly is an important concern. To achieve
this, the piece undergoes several mechanical manipulation
steps using a pushing device and a robotic arm. If one of
the steps is not performed successfully the product to be
constructed is considered faulty.

One run of the demonstrator uses six input lego pieces to
produces two products on the two sticks on the conveyor belt,
by stacking three of the incoming pieces to the first stick
and the other three incoming pieces to the second stick on
the conveyor belt. Input pieces are processed sequentially. To
simulate product variation in the system, the order of sticks
that are used for placing the input piece is varied. For example,
if we name one of the sticks as 1 and the other one as 2, one
run may have the stick sequence 1→1→2→1→2→2 to place
all six pieces.

This setup produces a sensor and actuator data sequence
similar to a real industrial plant. Concretely we obtain a
log consisting of voltage and current values for two control
units (Lego Bricks), sensor output one touch sensor used for
stick alignment, moreover motor information (speed, angle,
and motor command) for five motors. Overall this yields 20
signals that are logged each 250 ms: 2 real, 12 integer, and
6 binary signals. The data used in experiments in this paper
was obtained from 40 runs. Each run moves 6 Lego pieces
and produces 2 products. In total our dataset contains a data

Pusher Magazine Arm Conveyor

Stick1Stick1
Stick2Stick2

Fig. 3: Lego Demonstrator Photo

sequence of 37341 vectors of size 20 including a timestamp.
8 runs showed anomalous behavior which occurred naturally
during physical simulation, i.e., without external provocation.

Labels. To facilitate verification methods in machine learn-
ing and potentially supervised methods, we annotate several
aspects of the data obtained from the demonstrator. We log
production sequences (i.e., the order of sticks). For each run
we create a manual label about the quality of the product, i.e.,
if there was a fault. We also classify that fault according to its
root cause, for example ‘failed while placing on stick’ or ‘piece
stuck in magazine’. In our dataset, we use two distinct product
types where the underlying sequence is 1→1→1→2→2→2
and 2→2→2→1→1→1, respectively, and we performed 20
runs for each product type. One type of anomaly occurred 6
times for the first product type, and another type of anomaly
occurred once for each product type. Moreover we produce
labels about internal states of the demonstrator control pro-
gram in two levels of granularity: a high-level label that
distinguishes 5 states, and a low-level label with 12 distinct
states.

B. Preprocessing

Since the sampling rate in the system is high compared with
the rate of change in the system, we perform downsampling on
the data and use only each fifth data sample, i.e., we process
data as if it was measured all 1.25 sec.

VOMMs require a sequence over a discrete alphabet as
input, therefore we perform discretization of the data sequence:
first we perform dimensionality reduction with Principal Com-
ponent Analysis (PCA) and then Hierarchical Clustering [20]
which showed consistent results for different runs with the
same instances in preliminary experiments.

C. Baseline

We have implemented a simple baseline metric for defining
a distance between two regimes. Each regime is represented
by a vector where the frequency information for each character
is stored. The euclidean distance between these vectors is
calculated to retrieve the dissimilarity matrix that contains the
distances between each vector. This distance matrix has the
same shape as the result of PST Matching and we compare
clustering using PST Matching with clustering based on the
baseline distance metric.

TABLE I: Results of experimental evaluation for parameters explained in V-D. Adjusted RAND index is used for scoring
clusters created with a distance measure based on PST Matching and clusters created with a generic distance baseline (V-C).

VOMM Matching Method Baseline

t = 1 2 3 4 –

mk label set d k L = 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 –

2

P

0,75 4 1,00 0,08 1,00 1,00 1,00 0,08 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 -0,02 1,00
11 0,48 0,19 0,03 0,03 0,03 0,48 0,08 0,08 0,48 0,48 0,48 0,08 0,48 0,48 0,48 0,48 0,08 0,48 0,48 0,48 0,48

0,8 4 0,63 0,08 1,00 1,00 1,00 0,08 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,18 0,34
11 0,08 0,41 0,35 0,02 0,05 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08

0,85 4 0,41 0,08 0,15 1,00 0,90 0,08 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,18 0,41
11 0,08 0,24 0,02 0,02 0,02 0,55 0,48 0,48 0,48 0,48 1,00 0,48 0,48 0,48 0,48 1,00 0,48 0,48 0,48 0,48 1,00

Q

0,75 4 0,06 0,32 0,06 0,06 0,06 0,32 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 -0,05 0,06
11 0,09 0,17 0,13 0,13 0,13 0,09 0,05 0,05 0,09 0,09 0,09 0,05 0,09 0,09 0,09 0,09 0,05 0,09 0,09 0,09 0,09

0,8 4 0,01 0,32 0,06 0,06 0,06 0,32 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,01 0,03
11 0,05 0,12 0,07 0,18 0,09 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05

0,85 4 -0,02 0,32 0,35 0,06 0,04 0,32 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,01 -0,02
11 0,05 0,13 0,18 0,18 0,18 0,06 0,09 0,09 0,09 0,09 0,06 0,09 0,09 0,09 0,09 0,06 0,09 0,09 0,09 0,09 0,06

4

P+Q

0,75 4 0,48 0,43 0,44 0,64 0,61 0,50 0,44 0,44 0,59 0,43 0,47 0,40 0,43 0,57 0,30 0,47 0,41 0,41 0,36 0,24 0,41
11 0,60 0,58 0,42 0,32 0,06 0,60 0,59 0,36 0,37 0,38 0,59 0,57 0,64 0,36 0,59 0,59 0,57 0,55 0,36 0,59 0,36

0,8 4 0,40 0,19 0,61 0,61 0,61 0,55 0,44 0,61 0,58 0,42 0,40 0,40 0,40 0,58 0,37 0,40 0,41 0,40 0,37 0,24 0,36
11 0,60 0,39 0,24 0,10 0,07 0,60 0,61 0,59 0,59 0,60 0,38 0,43 0,41 0,58 0,58 0,38 0,43 0,45 0,59 0,59 0,37

0,85 4 0,32 0,19 0,42 0,37 0,37 0,39 0,44 0,66 0,40 0,37 0,36 0,37 0,41 0,40 0,36 0,36 0,37 0,41 0,36 0,10 0,38
11 0,47 0,23 0,07 0,08 0,08 0,61 0,36 0,44 0,41 0,38 0,37 0,39 0,38 0,44 0,41 0,59 0,39 0,41 0,57 0,36 0,36

P+F

0,75 4 0,55 0,48 0,48 0,70 0,67 0,56 0,48 0,48 0,67 0,48 0,52 0,44 0,48 0,64 0,35 0,52 0,45 0,45 0,40 0,27 0,39
11 0,69 0,66 0,35 0,25 0,07 0,69 0,67 0,40 0,41 0,44 0,67 0,66 0,63 0,40 0,66 0,67 0,66 0,63 0,41 0,66 0,42

0,8 4 0,42 0,19 0,67 0,67 0,67 0,51 0,48 0,67 0,64 0,47 0,42 0,44 0,44 0,64 0,41 0,42 0,45 0,44 0,41 0,28 0,34
11 0,69 0,46 0,23 0,07 0,06 0,69 0,69 0,68 0,68 0,68 0,41 0,50 0,43 0,67 0,67 0,41 0,50 0,52 0,66 0,67 0,41

0,85 4 0,30 0,19 0,46 0,40 0,40 0,41 0,48 0,73 0,43 0,41 0,38 0,41 0,45 0,42 0,38 0,38 0,41 0,45 0,40 0,04 0,35
11 0,45 0,21 0,06 0,07 0,07 0,67 0,41 0,46 0,43 0,41 0,41 0,46 0,41 0,46 0,43 0,68 0,46 0,43 0,57 0,40 0,40

D. Setup
To configure preprocessing, pruning of PST learning, and

PST matching and clustering, we use the following parameters.
d The number of dimensions of PCA is adjusted such that

the resulting components explain a percentage of the
variance of the original data that is closest to d.

k Number of classes for Hierarchical Clustering.
t Minimum support parameter, see II-B.
L Maximum subsequence length parameter, see also II-B.
I Dissimilarity and probability cost ratio, see IV-B.

mk Parameter k for k-medoids clustering, see IV-C.
Evaluations are done by comparing result cluster solutions

with four different gold label sets using Adjusted RAND
index. Gold labels contain product type P, product quality Q,
and type of failure F. For two-cluster solutions (mk =2) we
evaluate against the following gold labels:

P: the sequence used to produce the product (2 classes),
Q: the quality of the product (2 classes: good or faulty).

For mk > 2 we evaluate against the following gold labels:
P+Q: product type and quality (4 classes),
P+F: product type and failure type (5 classes).

Note that one of the two failure types only occurred with one
product type, so P+F has 5 classes, not 6.

This way we measure to which extent our method separates
different types of behavior, where behavior includes regular
and failure behavior.

We perform experimental runs for all combinations of the
following parameter values: d ∈ {0.75, 0.80, 0.85, 0.90, 0.95},
k ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12}, t ∈ {1, 2, 3, 4, 5, 6, 7, 8,
9}, L ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, I ∈ {0.3, 0.4, 0.5, 0.6,
0.7}, and mk ∈ {2, 4, 5, 6, 7}.
E. Results and Discussion

Table I shows RAND index values for those parts of
the configuration space that show promising and interesting

results. In particular we show results only for parameters
d≤ 0.85, k∈{4, 11} t≤ 4, L≤ 5, and I =0.5, because other
values yield worse results.
P and Q. For these gold cluster labels which contain two
classes, best results were naturally obtained with mk =2
and we omit other results. With alphabet size k=4, PST
Matching produces a perfect clustering for product types (label
set P). The baseline also achieves perfect clustering for two
of six preprocessing configurations. Both our method and
the baseline fail in distinguishing normal from anomalous
production cycles (label set Q), which can be explained by
large data sequence variations due to product configuration
and small variations due to failures.
P+Q and P+F. For these gold cluster labels which contain
four and five classes, respectively (see V-D), best results were
obtained with mk =4. Best results are here obtained with a
combination of d=0.8 and k=11, which are both prepro-
cessing parameters. Here, a larger symbol alphabet seems to
be beneficial for mode detection (as opposed to label sets P
and Q). The baseline has a significantly worse performance of
at most 0.41 and 0.42 RAND score, compared with our PST
Matching distance metric that achieves a score of 0.66 and
0.73 for label sets P+Q and P+F, respectively.
Discussion. About parameters of our experimental setup we
can say the following. Parameter d permits a certain amount of
noise suppression already while discretizing the input (fewer
dimensions mean less noise), L adjusts the level of detail
of sequences that are added to the PST (higher L means
more detail, potentially overfitting), and t prunes away rarely
seen sequences in the PST (higher t means more pruning).
Regarding pruning, we see results consistent with [4] where
it is shown that t=2 makes PSTs a consistent estimator and
is the recommended setting for pruning: t=1 does not prune
away noise and maintains all subsequences with only a single
witness in the data, while t=3 may cause loss of significant

information. Alphabet size k provides best results with values
4 and 11. These numbers are related in an interesting way
with the numbers of states created with manual labels within
the state machine of the demonstrator (5 coarse-grained and
12 fine-grained states, respectively).

Clustering gives the best results around I =0.5 which
balances equally between probability and dissimilarity cost.

Although label set P+F has 5 classes, clustering with mk =4
yields best results, which is probably due to imbalance in the
dataset (many good runs, few failed runs).

The baseline is clearly outperformed in all but the simplest
case where just the type of product needs to be distinguished
(label set P). This shows the capacity of our method to capture
complex behavior.

VI. CONCLUSION

We introduced a method for unsupervised clustering based
on PSTs that have been learned from system output. The
method identifies system modes significantly better than a
semi-naive baseline.

The number of target clusters mk for our method should be
close to or a bit below the number of expected distinct modes
of the system. The same is true for the number of alphabet
symbols k that is produced during discretization. Several levels
of abstraction provide high accuracy if the number of clusters
is (close to) correct: in our experiments we can predict a
binary signal very well with mk =2, moreover we can predict
5 classes of product type and failure type with good RAND
index using mk =4 and k ∈ {4, 11}. These parameters are
related to the properties of the physical system from which
we obtained this data: the system has 5 or 12 internal states,
depending on level of granularity of annotation.

Regarding other parameters, I =0.5, d=0.8, t=2, and
L=3 are parameter values that promise good results. In
practice, these values need to be adjusted experimentally.

In summary we conclude that unsupervised clustering for
mode detection is bound to make mistakes, but with our
method of representing system outputs in an abstract way
using PSTs it has a much better chance of distinguishing true
modes of the system, and experiments show that this works
on multiple levels of granularity.

ACKNOWLEDGEMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 678867.

REFERENCES

[1] R Kumar, J O Talton, S Ahmad, T Roughgarden, and
S R Klemmer. Flexible tree matching. In Proc. IJCAI,
pages 2674–2679, 2011.

[2] L Kaufman and P J Rousseeuw. Partitioning around
medoids. In Finding groups in data: an introduction to
cluster analysis. Wiley Online Library, 1990.

[3] E Alpaydin. Introduction to Machine Learning. MIT
Press, 2014.

[4] P Bühlmann, A J Wyner, et al. Variable length markov
chains. The Annals of Statistics, 27(2):480–513, 1999.

[5] D Ron, Y Singer, and N Tishby. Learning probabilistic
automata with variable memory length. In Proc. Com-
putational Learning Theory, pages 35–46, 1994.

[6] J Rissanen. A universal data compression system.
IEEE Transactions on Information Theory, 29(5):656–
664, 1983.

[7] V Chandola, A Banerjee, and V Kumar. Anomaly detec-
tion for discrete sequences: A survey. IEEE Transactions
on Knowledge and Data Engineering, 24(5):823–839,
2012.

[8] G Bejerano and G Yona. Variations on probabilistic
suffix trees: statistical modeling and prediction of protein
families. Bioinformatics, 17(1):23–43, 2001.

[9] R Begleiter, R El-Yaniv, and G Yona. On prediction
using variable order markov models. Journal of Artificial
Intelligence Research, 22:385–421, 2004.

[10] H Oğul and E Ü Mumcuoğlu. SVM-based detection
of distant protein structural relationships using pairwise
probabilistic suffix trees. Computational Biology and
Chemistry, 30(4):292–299, 2006.

[11] A Apostolico and G Bejerano. Optimal amnesic proba-
bilistic automata or how to learn and classify proteins in
linear time and space. Journal of Computational Biology,
7(3-4):381–393, 2000.

[12] M H Schulz, D Weese, T Rausch, A Döring, K Reinert,
and M Vingron. Fast and adaptive variable order markov
chain construction. In International Workshop on Algo-
rithms in Bioinformatics, pages 306–317, 2008.

[13] P Sun, S Chawla, and B Arunasalam. Mining for outliers
in sequential databases. In Proc. SIAM International
Conference on Data Mining, pages 94–105, 2006.

[14] O Niggemann, B Stein, A Vodencarevic, A Maier, and
H K Büning. Learning behavior models for hybrid timed
systems. In AAAI, pages 1083–1090, 2012.

[15] O Niggemann, A Vodencarevic, A Maier, S Windmann,
and H K Büning. A learning anomaly detection algorithm
for hybrid manufacturing systems. In International
Workshop on Principles of Diagnosis, 2013.

[16] M Yoon and G F Ciocarlie. Communication pattern
monitoring: Improving the utility of anomaly detection
for industrial control systems. In NDSS Workshop on
Security of Emerging Networking Technologies, 2014.

[17] H Chim and X Deng. A new suffix tree similarity
measure for document clustering. In Proc. WWW, pages
121–130, 2007.

[18] S Liu, M Yamada, N Collier, and M Sugiyama. Change-
Point Detection in Time-Series Data by Direct Density-
Ratio Estimation. Neural Networks, 43:72–83, 2013.

[19] R Giegerich, S Kurtz, and J Stoye. Efficient imple-
mentation of lazy suffix trees. Software: Practice and
Experience, 33(11):1035–1049, 2003.

[20] L Rokach and O Maimon. Clustering methods. In Data
Mining and Knowledge Discovery Handbook. Springer,
2005.

