
A Reliable Weighted Feature Selection for Auto Medical 

Diagnosis 

 
Golnaz Sahebi 

Department of Future Technologies 

University of Turku, Finland 

golnaz.sahebi@utu.fi 

Amin Majd 
Department of Information Technology 

Abo Akademi University, Finland 

amin.majd@abo.fi 

Masoumeh Ebrahimi 
KTH Royal Institute of Technology, 

Sweden;  

University of Turku, Finland 

masebr@kth.se 

Juha Plosila 
Department of Future Technologies 

University of Turku, Finland 

juplos@utu.fi 

Hannu Tenhunen 
KTH Royal Institute of Technology, Sweden; 

University of Turku, Finland  

hannu@kth.se 

 
Abstract— Feature selection is a key step in data analysis. 

However, most of the existing feature selection techniques are serial 

and inefficient to be applied to massive data sets. We propose a feature 

selection method based on a multi-population weighted intelligent 

genetic algorithm to enhance the reliability of diagnoses in e-Health 

applications. The proposed approach, called PIGAS, utilizes a weighted 

intelligent genetic algorithm to select a proper subset of features that 

leads to a high classification accuracy. In addition, PIGAS takes 

advantage of multi-population implementation to further enhance 

accuracy. To evaluate the subsets of the selected features, the KNN 

classifier is utilized and assessed on UCI Arrhythmia dataset. To 

guarantee valid results, leave-one-out validation technique is 

employed. The experimental results show that the proposed approach 

outperforms other methods in terms of accuracy and efficiency. The 

results of the 16-class classification problem indicate an increase in the 

overall accuracy when using the optimal feature subset. Accuracy 

achieved being 99.70% indicating the potential of the algorithm to be 

utilized in a practical auto-diagnosis system. This accuracy was 

obtained using only half of features, as against an accuracy of 66.76% 

using all the features. 

Keywords—Data Analysis; Feature Selection; K-Nearest Neighbor 

Classification; Optimization; Parallel Genetic Algorithm; E-Health. 

I. INTRODUCTION 

Heart and blood vessel diseases (Cardiovascular Diseases -
CVDs) are the first cause of death in the world. Potential life 
threatening conditions like heart failure can be successfully 
avoided if arrhythmias are detected at early phases. A most 
valuable diagnostic means that enhances the detection of CVDs is 
electrocardiogram (ECG), providing a successor representation of 
cardiac activity [1]. In recent years, one of the most significant 
innovations in early detection of diseases is wearable devices, 
which aim at providing real-time feedback information about the 
health condition of a person. Besides all their advantages, wearable 
systems face a number of challenges to become a reality. The most 
important hurdle is that their processors and architectures require 
a large amount of energy, demanding sizable batteries. This creates 
challenges for reducing the size of wearable devices. While 
minimization is done, another challenge arises that is the reliability 
of decision making. The detection accuracy depends on the data 

analysis process. From this perspective, data analysis and machine 
learning algorithms play an important role [2]. 

The process of knowledge discovery in databases (KDD) or 
data analysis involves some steps, such as dataset selection, data 
understanding, data preparation, data analysis, result 
interpretation, and result evaluation [3]. An important phase in 
data preparation, which is one of the significant issues in the 
construction of classification model, is feature selection. Feature 
selection can be determined as a process of choosing a minimum 
subset of features (𝑁𝐹𝑆) from the original set of features (N) so that 
the feature space is optimally reduced while the classification 
accuracy remains relatively the same [4].  

Two general categories to solve the feature selection problem 
are filter and wrapper. In the filter approach, features are selected 
by statistical properties. By applying the filter approach, features 
can be quickly selected, but the performance of the learning 
models is not usually as high as that of the wrapper method as the 
selected feature may not be the best possible ones [5]. The wrapper 
technique, on the other hand, employs optimization algorithms in 
the learning machine techniques to find optimal subset of features. 
This utilization allows the use of standard optimization methods 
with the learning machine techniques. The wrapper approach is 
considered in this paper.  

To solve the optimization problem, there are different methods 
such as deterministic solutions, heuristic searches, and meta-
heuristic searches [6]. In large scale datasets, the meta-heuristic 
approaches are more efficient regarding the NP-complete aspect 
of the feature selection problem [7]. Evolutionary algorithms 
(EAs) are a well-known class of meta-heuristic searches [6]. A 
dominant advantage of EAs for feature selection problems, 
compared with deterministic algorithms, is their capability to 
escape from local optima that often encounters in feature selection 
problems [8]. A popular group of EAs are genetic algorithms 
(GAs). They are population-based search techniques, which mimic 
the process of natural selection and evolution. A GA is started with 
initializing a population and then running frequent operations such 
as selection, crossover, mutation, and replacement. All operations 
of a GA are repeated until reaching a competent result or a certain 
iteration.  [9].  



Although EAs are successful in solving various problems, 
there are some disadvantages associated with them in dealing with 
large search spaces [10], [11]. In these cases, it is possible for 
algorithms to converge to local optima. This problem can be 
mitigated if the initial population is increased, which is not feasible 
with a single processor. Utilizing more than one processor 
(parallelizing EAs) to enable an enormous diversity of population 
is a key point in feature selection for critical detection systems. 
Parallelizing EAs can improve the result quality and timing 
overhead [10], [11]. Among the parallelizing approaches for EAs, 
Multi-population techniques are useful for GAs when there are 
multiple processors with several memory units, by providing a 
larger population diversity to improve the accuracy of results [10]. 
In a multi-population method, there is a set of processors, such that 
each processor hosts an independent population and independently 
runs a serial GA on this population. One of the key features of this 
approach is the migration operation. After several iterations, some 
of the best chromosomes are selected by each processor and are 
then sent to the other processors. This operator shares the best 
solution of each processor with the others, enabling discovery of 
the best solution in lower iterations while providing a higher 
accuracy [10].  

In this work, a parallel weighted intelligent genetic algorithm 
is proposed to solve the feature selection problem (Fig. 1). The 
KNN classifier is utilized to evaluate subsets of the selected 
features.   

The proposed method, called PIGAS, is evaluated on 
cardiovascular diseases. The weighting is performed for increasing 
the priority of some dominant features. Since feature selection 
algorithms are generally run offline, especially the proposed 
algorithm is applied in this case, the accuracy is more important 
than the speed. The main contributions of this work are as follows. 
1) We could obtain a high accurate detection of multi-class 
arrhythmia diseases based on KNN classification using only half 
of features 2) an intelligent crossover and mutation operations are 
presented in order to enable the algorithm to escape from potential 
local optima. 3) The multi-population strategy is utilized to 
improve the classification accuracy. 4) Features are weighted 
combining the human knowledge and auto weighting techniques. 
This offers a better accuracy and relevance for medical 
applications.  

The rest of the paper is organized as follows: Section II covers 
the state of the arts in the area. Section III presents the proposed 
multi-population implementation of a weighted feature selection 
based on genetic algorithm (PIGAS). Section IV evaluates the 
proposed method and presents the experimental results. Finally, 
Section V concludes the paper. 

II. RELATED WORK 

So far, lots of papers have presented the wrapper-based feature 
selection approach to reduce the dimensionality of datasets and 
improve the accuracy of classifiers. They have some differences in 
three used materials: classifiers, datasets, and selection methods.   

Some hybrid GA-based feature selection techniques have been 
presented in [15], [34]. A parallel GA has been used for feature 
selection problem in [16]. A feature selection algorithm based on 
heuristic search technique has been utilized in [4]. Some simple 

GAs have been used for feature selection problem in [17], [35]. A 
multi-objective evolutionary algorithm has been employed for 
feature selection approach in [18]. A binary GA for feature 
selection has been used for dimensionality reduction to enhance 
the performance of classification in [36]. A hybrid GA has been 
used in [37] for feature and instance selection concurrently. A 
feature selection method based on normalized mutual information 
wrapped on a KNN classifier has been presented in [19]. A 
wrapper-filter approach has been utilized in [38] to remove 
irrelevant features for improving classification accuracy. A 
wrapper approach has been used in [20] to predict more accurately 
the presence of cardiovascular disease with reduced number of 
features. Moreover, feature selection is widely utilized to discover 
the best informative subset of tests in a disease diagnosis similar 
to our approach in this paper. For instance, a GA-based feature 
selection method has been proposed in [21] for detection of 
abnormal ECG recording. A feature selection using GA has been 
utilized in [22] for coronary artery diseases.  A GA-based feature 
selection technique has been proposed in [23] on cardiac 
arrhythmia dataset. A GA-based feature selection has been 
employed in [24] to improve the classification accuracy for 
detection of heart diseases. Some different methods for feature 
selection have been used in [39] in order to optimize skin tumor 
diagnosis. Among all of the solutions in the mentioned paper, GA 
has obtained the best results. A GA-based feature selection has 
been employed in [40] to find the best patterns and features to 
recognize breast cancer. A GA-based feature selection has been 
utilized in [41] for detect of arrhythmia. A system for diagnosing 
the risk level for heart disease by applying fuzzy rules is proposed 
in [43]. 

III. PRPPOSED WORK  

In this section, we propose a feature selection technique 
applied on the UCI Arrhythmia database, it is worth mentioning 
that this algorithm can be applied and tuned on other datasets. The 
main objective of the proposed selection method is maximizing the 
accuracy of the KNN classification (𝑖. 𝑒. , 𝛼) while reducing the 
number of features. We design a weighted intelligent genetic 
algorithm (multi-population implementation) within the wrapper 
framework to solve the feature selection problem. The flowchart 
and algorithm are shown in Fig. 1 and Algorithm 1. In this 
approach, a KNN classifier is utilized to evaluate subsets of the 
selected features. Different phases of the algorithm are described 
in the following subsections. 

A. The Feature Weighting Techniques 

In medical applications, some features are known to be 
necessary for a detection of a disease that are based on clinical 
observations. However, if only an automatic feature selection 
method is applied, some of those features might be wrongly 
removed, e.g., due to the lack of sufficient data. For this purpose, 
we applied three feature weighting techniques, without any 
specific order, to keep the known clinically important features and 
those selected by the machine learning methods. The three feature 
selection approaches are as parallel coordinate plots, intelligent 
GA (a meta-heuristic search), and physiologist knowledge. 
Parallel coordinates plot (PCP) is used to find the features that 
identify useful predictors for separating classes [25]. Intelligent 
GA is applied to find the features that are appeared in at least 20 
times running the GA. This subset of features is considered as a 



part of the main initial population in GA. Note that the intelligent 
GA is the same as the one we apply in the proposed method and is 
described in Section III.B To keep the clinically important 
features, the system weights to ECG features that are clinically 
known to be important such as P-wave, QRS- complex, and T-
wave [26] . These features can be read from a file (the first phase 
of Fig. 1), and there is a numeric weight associated with each 
feature.  This file can be set for other datasets. 
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Fig. 1. Flowchart of the proposed work (PIGAS) 

B. The Proposed Parallel Intelligent Genetic Algorithm 

The GA is started with initializing a population and then 
running frequent operations such as selection, crossover, mutation, 
and replacement. All operations of a GA are repeated until 
reaching a competent result or a certain iteration. Several phases 
of the proposed parallel intelligent GA are described as follows. 

1) Initial Population 
In the genetic algorithm, the initial population consists of some 
individuals (chromosomes), each of them carrying a probable 
solution of the problem and is composed of some genes. Each gene 
represents an attribute of the intended individual. The key point of 
evolutionary algorithms is the formation and determination of 
these attributes. The proposed GA operates on binary search space 
as the chromosomes are bit strings. For binary chromosome 
employed in this work, the gene value ’1’ indicates that the 
corresponding feature is selected while the value ’0’ means that 
the feature is not selected for chromosomal evaluation. The gene 
width equals to the number of features in the dataset. Thus, the 
initial population is a 𝑁𝑝 × 𝑁𝐹  matrix (𝐼𝑃𝑁𝑝×𝑁𝐹

) where 𝑁𝑝 is the 

population size and 𝑁𝐹 is the gene width. Basically each bit 
randomly takes the value zero or one while the bits associated with 

the important features takes the value one with a higher 
probability.   

Input: The Arrhythmia Data Set 

Output: Maximum accuracy of KNN while reducing the 

number of features  

Processor 𝑃𝑖: 1 ≤ 𝑖 ≤ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 

1. for each processor do 

2. Run Weighting Function for increasing the priority of 

some dominant features. 

3. Generate initial population based on the weights 

4. Evaluate initial population by applying the KNN 

function. 

5. Select some chromosomes from the initial population by 

the Tournament operation. 

6. Run intelligent Crossover operator 

7. Run intelligent Mutation operator. 

8. Evaluate intermediate population by calling KNN 

function 

9. Run Steady-State replacement operator and replace the 

intermediate population on the initial population. 

10. If  ( #Iterations % Migration Gap == 0) 

11.     Select the best and the worst chromosomes 

12.     Send the best chromosome to 𝑃𝑖+1 

13.     Receive the worst chromosome from  𝑃𝑖−1 

14. If  ( termination condition ) 

15. go to step 18 

16. else 
17. go to step 4 

18. End 
Algorithm 1. Algorithm of the proposed work (PIGAS) 

2) Chromosome Evaluation  

In this step, we employ the KNN-based fitness function to evaluate 
the chromosomes. Since accuracy is more important than the 
training time in this paper, a nonlinear classification has been 
chosen that is very simple to understand but works incredibly well 
in practice [3]. The usage of KNN has some other important 
advantages such as the capability of adapting to different types of 
data by selecting a suitable distance measure; and obtaining good 
predictive accuracy in large and sufficiently representative training 
datasets. In KNN classification, an object is classified by a 
majority vote of its neighbors and the output is a class of dataset. 
It solves the classification problem by seeking the shortest distance 
between the test data and training sets in the feature space. It 
assumes that the data is in a feature space; therefore, they have a 
notion of distance such as Euclidean, Manhattan, Minkowski, and 
Hamming distance. In this paper, the distance (𝐷(𝑥𝑡𝑒𝑠𝑡  , 𝑥𝑖)) is 
based on the Euclidean distance (EDM). The distance between 
observations is given in Equation (1). 

 𝐷(𝑥𝑡𝑒𝑠𝑡  , 𝑥𝑖) = √∑ 𝐸𝐷𝑀(𝑡𝑒𝑠𝑡, 𝑖, 𝑗)𝑛
𝑗=1  (1) 

where n is the number of features, 𝑥𝑖 is an observation in the 
training set and 𝑥𝑡𝑒𝑠𝑡  is an observation in the test set. EDM is a 
function to calculate the Euclidean distance with the domain as the 
dataset and the range as the real numbers (EDM :𝐷 → ℝ). This 
EDM function is shown in Equation (2).  

𝐸𝐷𝑀 (𝑡, 𝑖, 𝑗) = {
0                           𝑖𝑓 𝑐ℎ[𝑗] = 0

(𝑥𝑡𝑒𝑠𝑡[𝑗] − 𝑥𝑖[𝑗])2  𝑖𝑓 𝑐ℎ[𝑗] = 1
 

 
(2) 



where 𝑐ℎ[𝑗] is the j-th chromosome in the initial population. The 
proposed classification model is validated by the leave-one-out 
method. Validation means measuring the predictor behavior on 
data points other than those in the training set.  

The evaluation of a subset in GA must be performed by a 
fitness function. The classification accuracy (𝛼) and the number of 
selected features (𝑁𝐹𝑆) are the two criteria that are utilized to 
design our fitness function. As given in Equation (3), a high fitness 
value is produced for the chromosome with a high classification 
accuracy and a small number of features. Accuracy (α) is a real 
number between zero and one. Furthermore, the inverse of the 
number of selected features (i.e.,1 𝑁𝐹𝑆

⁄ ) is a real number between 

zero and one. Therefore, the fitness value will be between zero and 
two ( 0 ≤ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≤ 2).  

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 + 1
𝑁𝐹𝑆

⁄ (3) 

Accuracy is calculated as the sum of correct classifications divided by 

the total number of classifications. For the multiple class datasets, the 

accuracy is demonstrated only by the average hit rate [33]. The 

performance of PIGAS has been investigated by the average accuracy for 

multiclass classification (Equation (4)). 

𝛼 =
∑ (

𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖
)𝑙

𝑖=1

𝑙
 (4) 

where 𝑙 is the number of classes, 𝑡𝑝𝑖 are true positive for an individual 

class𝐶𝑖, 𝑓𝑝𝑖 are false positive, 𝑓𝑛𝑖  are false negative, and 𝑡𝑛𝑖 are true 

negative counts respectively. 

3) Selection Operator  
The fundamental idea of the selection operator is giving preference 
to better chromosomes and allowing them to pass their genes to 
the next generation. In PIGAS, the best chromosome is selected 
based on the tournament technique with three members, meaning 
that in every cycle three chromosomes are randomly chosen and 
then the best one is selected for the next generation.  

4) Crossover Operator 
In genetic algorithms, two leading operators that impact the fitness 
value are the crossover and mutation. After evaluating 
chromosomes by the fitness function and selecting them for 
reproduction, the crossover is applied on each pair of the 
chromosomes. Crossover is a critical genetic operator to explore 
new solution regions in the search space and to escape from being 
stuck in local optima. Crossover randomly exchanges genes 
between two chromosomes. The crossover operator is performed 
on a random set of chromosomes that are chosen based on a 
probability, called crossover rate (𝑃𝑐) [27].  

In this work, an intelligent crossover is utilized to escape from 
being stuck in local optima. The proposed crossover is based on 
the two-point type, acting as follows: first, two parents are chosen 
from the population based on the crossover rate (𝑃𝑐). Second, two 
random numbers, like 𝑟1,𝑟2 that are indexes of the genes, are 
generated such that 1≤ 𝑟1 𝑎𝑛𝑑   𝑟2 ≤ the number of features. 
Afterward, values of these two genes are exchanged. The 
outstanding advantage of our crossover operator is that the 
crossover rate changes whenever the convergence of the solutions 
is not improved for some successive generations. In other words, 
to escape from being stuck in local optima, the value of 𝑃𝑐 

dynamically changes. At first, 𝑃𝑐 is set to 0.8 so that exploitation 
is performed for as long as the algorithm converge, 𝑃𝑐 is reduced 
and the mutation rate is increased. This shifts the algorithm state 
from exploitation to exploration. In other words, exploitation, 
which is related to local search, leads to probe a promising limited 
region of the search space with the hope of improving the solution 
that we already have. On the other hand, exploration, which is 
related to global search, consists of probing a much larger region 
of the search space with the hope of finding other promising 
solutions that are yet to be refined [28]. 

5) Mutation Operator  
The mutation operator is performed with a probability, called 
mutation rate (𝑃𝑚) [27]. In mutation process, the genes may 
occasionally be inverted (i.e. from 0 to 1 or vice versa). As 
previously mentioned, this operator explores the search space to 
find a new search region to prevent being stuck in local optima.  

In the proposed algorithm, the type of mutation operator and 
the number of its probability are adaptively tuned by the algorithm. 
The mutation operator is intelligently applied in various types 
based on different states of the algorithm.  

It means that, first the mutation is bit flipping (one-point) and its 
rate is 0.2 (𝑃𝑚=0.2) until the algorithm appropriately converges to 
the best solutions. In the bit flipping mutation, a number is 
randomly generated between 1 and the number of features and the 
value of the 𝑟1

𝑠𝑡 gene in the selected chromosome is inverted. But 
like our crossover operator, the mutation rate incrementally grows 
when the convergence of the algorithm does not change for several 
generations. In this case, the mutation type switches to a new kind 
of mutation somewhat similar to the boundary mutation (boundary 
mutation is applied on genomes, but our operator is applied on 
genes) where two numbers are randomly generated between one 
and the number of features (i.e.,1≤ 𝑟1,𝑟2 ≤ #features) and all 
values of the genes between 𝑟1 and 𝑟2 are inverted. This intelligent 
mutation helps to discover a new search region and prevent all 
solutions in a population from falling into local optima. The 
proposed mutation returns to its initial state after the improvement 
in the process of convergence was completely done. This 
movement to initial state enhances the crossover to more explore 
the space.  

1) Replacement Operator 

Offspring replaces the old population using the steady state or 

elitism replacement strategy and establishes a new population in 

the next generation. In our algorithm, the steady-state method is 

employed for the replacing process. The proposed operation 

compares each chromosome in the current  

population with its corresponding one in the last generation. If a 

chromosome in the current generation is better than its 

corresponding one in the last generation, the new chromosome is 

replaced with the old one. 

2) Migration Operator 
We use the multi-population strategy where each processor 
separately runs a GA with its own initial random population until 
the migration time. The migration operator enables processors to 
exchange their best genetic material. This operator occurs at fixed 
intervals (migration gap). The migration time happens on every 
migration gap. In this work, the migration gap is set to two 



generations. During the migration process, the best chromosomes 
in each processor are selected and sent to the next processor in a 
ring. Each processor replaces its worst chromosomes with the 
received best ones. This exchanging happens with a fixed 
migration rate. In PIGAS, the migration rate is set to one 
chromosome. Seven processors have been utilized in the 
implementation of this work. 

3) Stopping Strategy 
In general, the evolutionary process operates many iterations until 
the termination condition is met. The proposed algorithm stops 
after forty iterations, because it has the best convergence until this 
generation. 

IV. EXPERIMENTAL RESULTS 

In this section, a series of experiments have been carried out to 
evaluate the effectiveness of the proposed methods, PIGAS (a 
parallel weighted intelligent genetic algorithm) and PAGAS (a 
parallel genetic algorithm). They are evaluated on Arrhythmia 
Dataset obtained from UCI Machine Learning Repository [29]. 
Biomedical datasets create a unique classification challenge to 
machine learning and data mining algorithms because of their high 
dimensionality, noisy data, missing values, and multiple classes. 
The UCI dataset consists of 452 observations, 279 features (from 
which 206 are linear values and the rest are nominal), and 16 
classes of diseases. The missing values in the dataset (32%) were 
replaced with the mean during the preprocessing phases. The 
performance of PIGAS has been investigated by the average 
accuracy in the case of multiclass classification (Equations (4)). 
To guarantee valid results for making predictions, the data set was 
validated by the leave-one-out technique.  

A. Implementation Details 

PIGAS and PAGAS were implemented in Visual C++ using 
the MPI library for parallelization. They were run with MPICH2 
on a shared memory structure although they work on both shared 
memory and message passing architectures. Ring topology has 
been utilized for connections. All implementations and 
experiments have been performed on an Intel Core i7-4770 CPU 
3.40 GHz, RAM 16.0 GB, running  Windows 7 Enterprise (64-
bit). Seven cores have been leveraged in the parallel 
implementation. The parallel GA parameters are indicated in 
TABLE I.   

TABLE I.     PARALLEL GENETIC ALGORITHM PARAMETERS 
Initial population (each processor) 400 

 

# Iterations 40 

Crossover Intelligent Crossover 

𝐂𝐫𝐨𝐬𝐬𝐨𝐯𝐞𝐫 𝐫𝐚𝐭𝐞 𝑷𝒄 Dynamic 

Mutation Intelligent Mutation 

𝐌𝐮𝐭𝐚𝐭𝐢𝐨𝐧 𝐫𝐚𝐭𝐞 𝑷𝒎 Dynamic 

Replacement steady-state 

# Processors 7 

Migration rate 1 chromosome 

Migration gap 2 iterations 

B. Validation of Experimental Results 

PIGAS and PAGAS were compared with two prior feature 
selection techniques. All approaches were evaluated on the UCI 
dataset. Furthermore, they were compared with a number of 
classical feature selection methods implemented in Weka software 
for dimensionality reduction [30].  

In this work, the test performance was also evaluated on the 
selected features on a number of Weka classifiers such as KNN 
(called IBK), Naive Bayes (NB), Multi-Layer Perceptron (MLP), 
and SVM (called SMO). The Weka Wrapper Subset Evaluator was 
used for features evaluation and the genetic and greedy stepwise 
approaches were used as the search techniques. The accuracy of 
PIGAS proved to be better than that of the other considered 
methods, as demonstrated in TABLE II. In this table, B1 refers to a 
feature selection technique based on normalized mutual 
information [19]. B2 refers to a method [31] that recognizes the 
best feature sets and accordingly ensembles the classifications to 
obtain a high accuracy [31]. As reported in this table, PAGAS and 
PIGAS outperforms the other methods under all classifications. 
Specifically, the accuracy of 98.48% and 99.70% are obtained 
when the KNN classifier is applied in which the methods are 
optimized for. Although PAGAS and PIGAS has not been 
optimized on the SVM, NB, and MLP classifiers, they still gain 
the highest accuracy as compared to the other approaches.  

One of the disadvantages in evolutionary algorithms is that the 
convergence speed decreases when the number of iterations grows 
(Generally, difficult problems have no proper convergence to the 
best solution in low iterations).  However, it can be easily observed 
from the convergence diagram of PIGAS and PAGAS (Fig. 2) that 
the distance between the diagrams increases when the number of 
iterations grows, demonstrating the strength of PIGAS. This 
improvement is because of increasing the selection pressure and 
population diversity, intelligent operators, and weighting system. 
This is the best proof to show the benefits of applying the parallel 
intelligent method, especially on biomedical datasets, where the 
number of features is large. In Fig. 2, the “best” diagrams represent 
the elitism chromosomes (the best chromosomes) in the population 
for PIGAS and PAGAS. The “mean” diagrams, in turn, represent 
the mean accuracies of the other chromosomes. The stability 
diagrams of PIGAS and PAGAS are shown in Fig. 3.We can see 
that the diagram of PIGAS fluctuates less, indicating that PIGAS 
is more stable and reliable than the non-intelligent algorithm. 

 The statistical results are reported in TABLE IV. There are four 
important parameters in this table, described as follows: The 
standard deviation (STD), a standard deviation close to zero 
indicates that the data points tend to be very close to the mean (also 
called the expected value) while a high standard deviation shows 
that the data points are spread over a wider range of values [32]. 
The mean is the average value of all the best results in all 20 runs. 
The best and the worse are the best and the worse values of all 20 
runs. A method can be considered the best when it has the lowest 
values of STD and the mean and the highest values of the best and 
the worst. TABLE IV demonstrates that our algorithm is more 
accurate with fewer errors than the non-intelligent algorithm.  

Two major performance measures in evaluating a parallel 
system are speedup and efficiency. The speedup is defined for each 
number of processors n as the ratio of the single processor 
execution time to the execution time when n processors are 
available, which is obtained by Equation (5):  

𝑆(𝑛) =
𝑇1

𝑇𝑛
⁄  

 

 (5) 

The efficiency is defined as the average utilization of the n 
allocated processors, which is obtained by Equation (6): 



𝐸(𝑛) = 𝑆(𝑛)
𝑛⁄  

 (6) 

where 𝑛 is the number of processors [42]. In TABLE III, serial and 
parallel implementations are compared regarding these two 
measures. This table shows that the efficiency and speedup of the 
proposed parallel implementation are prominent. According to the 
efficiency value, PIGAS is able to efficiently utilize 80% of 
resources, and based on the speedup value, it is 5.6 times faster 
than the serial method.  

TABLE II. ACCURACY OF DIFFERENT FEATURE SELECTION METHODS UNDER 

VARIOUS CLASSIFICATION APPROACHES 

 

FS Method 

Classifiers 
KNN SVM NB MLP 

All features 66.76 67.01 61.50 67.25 

PIGAS 99.70 70.57 70.40 72.56 

Weka 54.20 68.91 62.38 68.92 

PAGAS 98.48 69.24 69.24 69.02 

𝑩𝟏 [19] 65.47 67.92 - - 

𝑩𝟐 [31] - 66.67 - - 

TABLE III. SPEEDUP AND EFFICIENCY VALUES FOR PARALLEL IMPLEMENTATION 

 #Processors Parallel 

Time (m) 

Serial 

Time (m) 

Efficiency Speedup 

PIGAS 7 467 2615.2 0.8 5.6 

TABLE IV. STATISTICAL RESULTS FOR PAGAS AND PIGAS 

 STD Mean Median Best Worst 

PAGAS 0.0019 0.9832 0.9836 0.984895 0.9803 

PIGAS 0.0012 0.9933 0.9970 0.9970 0.9890 

 

 
Fig. 2. Convergence diagrams for PIGAS and PAGAS 

 

Fig. 3. Stability diagrams for PIGAS and PAGAS 

I. CONCLUSION 

In this paper, to enhance the reliability of diagnoses in e-Health 
applications, a wrapper approach including a parallel intelligent 
genetic algorithm for feature selection (PIGAS) was presented and 
evaluated on cardiovascular diseases. The main contributions of 
this work are the following. 1) Intelligent crossover and mutation 
operations were proposed in order to enable the algorithm to 
escape from potential local optima. 2) The multi-population 
strategy was utilized to improve the classification accuracy while 
improving the time and scalability. 3) Features were weighted 
combining human knowledge and auto weighting methods. This 
offered a better accuracy and relevance for medical applications. 
The application of the proposed multi-population genetic 
algorithm for feature selection enhanced the accuracy of KNN to 
99.70% using only half of features, as against an accuracy of only 
66.76% using all the features. PIGAS achieved this accuracy for 
the KNN classifier with three neighbors examined on the UCI 
Arrhythmia dataset. The classification model was validated with 
the leave-one-out technique. The performance of the proposed 
method was studied by comparing it with various types of 
approaches. The efficiency of the parallel implementation was 
80%, and it was 5.6 times faster than the serial algorithm. The 
results clearly demonstrated the effectiveness of the proposed 
PIGAS wrapper approach. 
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