
Combining auto-regression with exogenous
variables in sequence-to-sequence recurrent neural

networks for short-term load forecasting
Henning Wilms,

Student Member IEEE
Automation of Complex Power Systems

E.ON Energy Research Center
RWTH Aachen University

Aachen, Germany
Email: hwilms@eonerc.rwth-aachen.de

Marco Cupelli,
Senior Member IEEE

Automation of Complex Power Systems
E.ON Energy Research Center

RWTH Aachen University
Aachen, Germany

Email: mcupelli@eonerc.rwth-aachen.de

Antonello Monti,
Senior Member IEEE

Automation of Complex Power Systems
E.ON Energy Research Center

RWTH Aachen University
Aachen, Germany

Email: amonti@eonerc.rwth-aachen.de

Abstract—In this paper we propose a sequence-to-sequence
machine learning architecture for time-series forecasting based
on recurrent neural networks. This architecture can be used as
a general purpose forecasting method and is evaluated for the
application of short-term electric load forecasting in this paper.
The proposed sequence-to-sequence architecture1 combines ele-
ments of auto-regressive forecasting techniques with multivariate
regression by including exogenous variables for each forecasted
time step as well as previous values when inferring forecasts.
We assess the proposed architecture on a load data set provided
by the Global Energy Forecasting Competition. The conclusion is
that it outperforms other machine learning forecasting techniques
as well as time-series analysis methods.

Index Terms—Time-Series Forecasting, Load Forecasting, Re-
gression, Auto-Regressive, Recurrent Neural Networks, STLF

I. INTRODUCTION

Neural networks and other machine learning approaches
have recently been used for regression tasks, especially
time-series forecasting with application in the energy sector
[1], [2]. Regression as a methodology to forecast loads is a
relevant application for the future energy grid [3]. Short-term
load forecasting (STLF) considers load forecasts with a
time horizon of up to two weeks. Load forecasts with time
horizons of less than one day form a subcategory within
STLF [4]. These short-term load forecasts are particularly
useful for micro-grid operation to optimize the utilization of
available resources, prolong islanding mode or reduce carbon
footprints. Dispatch scheduling, demand side management
and maintenance scheduling in conventional power systems
also rely on short-term load forecasts [5].
Forecasting short term electric loads is difficult because of
their nonlinear and non-stationary characteristics. As such,
electric loads are influenced by temperature, seasonal effects
or humidity (amongst others) calling for a multivariate
regression approach. However, univariate regressions still

1The implementation is available at:
https://github.com/HenWil13/ieeeINDIN18

leverage some auto-correlation for short-term forecasting but
are limited by the nonlinear characteristics of electric load
time-series [1], [6]. The proposed forecasting architecture
aims at exploiting both univariate and multivariate effects for
a better forecasting accuracy.
Time-series contain inherent information in their succession
and auto-correlation of values. As such, auto-regressive or
univariate forecasting exploits these time-series dependencies
to forecast following values from its previous values utilizing
linear relationships between historic and future values. In
such auto-regressive forecasting approaches the dependent
variable is used to describe the same dependent variable
at a different time step. Alternatively, time-series can be
forecasted by utilizing supplementary information in the form
of independent variables that describe the forecasted value,
constituting a multivariate regression [7].
One of the several research focuses within the machine
learning domain lies on time series forecasting. (Deep)
recurrent neural networks (RNNs) show various advantages
and an improved performance when learning time-series
dependencies within load forecasting applications to address
the above mentioned issues [1], [2], [8], [9].

In this paper we propose a sequence-to-sequence
forecasting architecture based on recurrent neural networks
that combines aspects of univariate and multivariate
regression. RNNs exploit multivariate inputs to map these
inputs to regress onto desired outputs by finding nonlinear
dependencies. At the same time, the architecture is explicitly
fed the previous output from the previous time step to add to
the auto-recursivity of the forecasting approach. Furthermore,
a framework is presented that combines best practice methods
for machine learning based forecasting tasks with specific
elements of the developed sequence-to-sequence architecture.
It provides the training scheme for the architecture as well as
data preparation methods required to boost the performance.
Finally, the architecture is assessed on the load data set of

(c) 2018 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users.
DOI: 10.1109/INDIN.2018.8471953.
Publisher version: https://ieeexplore.ieee.org/document/8471953



the Global Energy Forecasting Competition 2014 [10] and
the results are compared to various time-series forecasting
techniques.
For the context of this paper an architecture refers to a
general neural network set-up that describes the general
workings of the graph. A model is a specific instance of an
architecture that is fitted, trained and optimized for a specific
data set. Exogenous, independent variables provide additional
explanatory context to each forecasted value and are also
called features, whereas the dependent target variables, i.e.
the forecast variables are referred to as labels.

II. RECURRENT NEURAL NETWORKS FOR SEQUENCE
LEARNING

RNNs possess cyclic connections within their network of
neurons that enable them to capture the dynamic behavior of
sequences. As the number of cycles of a RNN is arbitrary,
the forecast horizon can be chosen and adjusted dynamically.
Fig. 1 shows a recurrent neuron with a cyclic connection
and shows how this connection is rolled out step by step
over a sequence. For time-series forecasting, the temporal
dependencies of the time-series can be captured within these
cycles. Therefore, the neuron is rolled out further by one step
for each forecasted time step, thus producing one output for
each time step it is being rolled out over. It is important to
note, that the rolled-out neuron is the same neuron for each
time step and uses the same trained variables, i.e. weights and
biases for each of these steps to infer the output value.

𝑥

𝑦

𝑥($%&)

𝑦($%&)

𝑥($%()

𝑦($%()

𝑥($%))

𝑦($%))

𝑥($)

𝑦($)

Time

Singular Recurrent Neuron Rolled out over time

ℎ($%&) ℎ($%() ℎ($%)) ℎ($)ℎ

Fig. 1. Recurrent neuron rolled out over time

RNNs store the context of the sequence in a recurrent hidden
state ht, whose activation is dependent on the activation of the
previous time step ht-1 as well as the current input xt. For all
time steps other than t=0 during which the state is initialized
to 0, the update of the hidden state follows

ht = σ(Wxt + Uht-1) (1)

where σ is a non-linear function, called the activation function
and W and U are weight matrices controlling the recurrent
interaction between steps, states and exogenous inputs [9],
[11]. As activation function the tanh-function has been used
in the proposed architecture. Deep RNNs have hidden layers,
stacking layers of the depicted RNN neurons above each other.

A. RNN training
We train our RNN models with backpropagation using

gradient descent (GD) on mini batches to update the variables
within the network [12]. GD calculates the partial derivatives
of a loss function for each of the trainable variables within
the network. The loss function evaluates the goodness of
fit between the network’s predictions and the desired labels.
Mini batches are used to increase training efficiency, as it is
expected that the calculated gradient is about the same for a
random batch of the data set as if calculated on the entire data
set. The training operation itself then consists of updating all
the trainable variables using the calculated partial derivatives
with the aim of minimizing the loss function. The update
equation for the weights w is

w← w− η∇wF (2)

where η describes the learning rate and defines the amount
by which the weights are updated along the calculated partial
gradients ∇wF. The partial gradients of the loss function F
are calculated with respect to the trainable variables w for
the entire mini batch by GD. This process works analogously
for updating the biases of the RNN [9]. However, these
gradients often vanish or explode for long sequences or deep
RNNs making it hard to train RNNs and extract longer time
dependencies [13], [14]. Two approaches provide solutions
to this problem and will be utilized within the proposed
framework:

• Gradient Clipping and
• RNN Cells.

Gradient clipping limits the norm of the gradients to a thresh-
old [15]. This works especially well to deal with exploding
gradients and is used in the proposed sequence-to-sequence
model for this purpose. RNN cells deal with exploding or
vanishing gradients by using so called recurrent units or cells.
These cells provide the cyclic self-connection with a value
of 1. The information flow is controlled by gates operated to
restrict or allow for the state of a cell to be updated. This
way the outer gradient remains constant and simply a cell’s
state is updated with each time step, whenever the gates allow
for such an update [11], [15], [16]. Long Short-Term Memory
(LSTM) cells [16], Gated Recurrent Units (GRU) [17] and
Layer-Normalizing LSTM (LN-LSTM) cells [18] have been
evaluated to produce sequence-to-sequence models and are
part of the proposed framework. As they all operate in a
similar fashion, only the LSTM cell as widely used cell type
is described in more detail in the following section.

B. Long short-term memory cells
LSTM cells as depicted in Fig. 2 and described in [11], [16]

have three outer connections:
• Output y which is equal to the cell activation h,
• Memory cell state s and
• Inputs, i.e. exogenous variables x.

Fig. 2 further shows the different gates of the LSTM cell. Each
gate is controlled by a fully connected, simple feed forward
neural network:



Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

𝒙(.)

𝒉(.12)

𝒔(.12)

𝑓(.) 𝑔(.) 𝑖(.) 𝑜(.)

𝒉(.)

𝒔(.)

𝒚(𝒕) = 𝒉(.)

Forget	
Gate

Input	Gate

Output	
Gate

LSTM	Cell

Fig. 2. LSTM Cell

• Forget gate, controlled by f(t)

• Input gate, controlled by i(t) selecting what to include
from the input node g(t) and the

• output gate, controlled by o(t).
In Fig. 2 the lighter grey boxes represent a tanh-activation
function φ and the darker grey boxes represent a sigmoid-
activation function σ. The ⊕-symbol denotes an element
wise addition of the vectors, the ⊗-symbol an element wise
multiplication. Fig. 2 can be summed up with the following
six equations:

f (t) = σ(W f,xx(t) ⊕W f,hh(t-1))⊕ bf (3)

i(t) = σ(W i,xx(t) ⊕W i,hh(t-1))⊕ bi (4)

g(t) = φ(W g,xx(t) ⊕W g,hh(t-1))⊕ bg (5)

o(t) = σ(W o,xx(t) ⊕W o,hh(t-1))⊕ bo (6)

s(t) = o(t) ⊗ i(t) ⊕ s(t-1) ⊗ f (t) (7)

y(t) = h(t) = φ(s(t))⊗ o(t) (8)

where W denotes the different weight matrices with the
connections of each weight matrix indicated by its indices
and b denotes the bias terms of each of the fully connected
layers.
GRU cells are a more simplified version of the described
LSTM cell as they do not have a separated memory cell state
but store their memory in the overall h-state. Further, they
combine the forget and input gate controller into one and do
not need an output gate [17]. The LN-LSTM cell also used
in the proposed sequence-to-sequence architecture works very
similar to the LSTM cell but adds layer normalization in
between each hidden layer to rescale the outputs from the
previous layer for the subsequent layer [18].
Considering the STLF use case, the inputs x include
the features of the data set and comprise measurements
such as temperature and weather conditions, time of the
day, day of the week, months or information on holidays.

Outputs y would be the load predictions of one or more zones.

Standard RNN architectures using LSTM cells have been
used in [1], [2], [8] and [9] and are depicted in Fig. 3. These
standard RNNs consist of one or more layers of RNN cells
with a cyclic self-connection. RNNs containing more than one
layer form a deep network. These RNNs forward their states
through their self-connection from one time step to the next
time step within each of the layers as the cells are being
rolled out over time. Inferred outputs are derived from one
or multiple layers for each time step.

ft ft+3ft+2ft+1

yt yt+1 yt+2 yt+3

Cell Cell Cell Cell

Layer	of RNN	Cells

Cell Cell Cell Cell

Layer	of RNN	Cells

y:	outputs
f:	features

Fig. 3. Standard RNN architecture

Sequence-to-sequence architectures build on these standard
RNNs for their basic set up within their encoder and decoder,
where the encoder does not produce any outputs and the
decoder does not take any exogenous inputs. This RNN based
encoder-decoder structure is described in the next section.

III. SEQUENCE-TO-SEQUENCE ARCHITECTURES

Sequence-to-sequence architectures have first been intro-
duced in [19] with translation tasks in mind. The general
structure of such sequence-to-sequence architectures (depicted
in Fig. 4) consists of an encoder and a decoder.

Cell Cell Cell Cell

Encoder Decoder

Cell Cell Cell Cell
Hidden	State

A B C D eos X Y Z

X Y Z eos

Fig. 4. Sequence-to-sequence architecture as defined in [19]

Here, the encoder is fed an input sequence, i.e. a sentence
in the original language. It encodes this sequence within the
hidden state of the RNN cells where the last RNN cell of the
encoder contains a full representation of the input sequence
within its hidden state. The decoder takes the full input
sequence representation and decodes the hidden state into the
target language. It requires an EOS token (end of sequence) in
the first step of the roll-out to mark the beginning of the target
sequence roll-out. From the EOS token onwards, the decoder



unrolls the hidden state in the target language, re-feeding itself
the previous output for each time step. At the end of the target
sequence it terminates with another EOS token.

A. Proposed architecture for time-series forecasting

The basic idea for our proposed sequence-to-sequence ar-
chitecture (Fig. 5) combines ideas from

1) standard RNN architectures and
2) sequence-to-sequence architectures.

The standard RNN allows for inclusion of exogenous
variables, i.e. features, whereas the decoder part of the
sequence-to-sequence architecture enables the self-feeding,
auto-regressive element during inference. In this set-up, the
encoder ”learns” a hidden representation of the historic time-
series values up to time step t by feeding the encoder previous
values of a feature time-series as well as a t-1-shifted label
time-series. The final internal representation of the time-series
is passed to the decoder as hidden state. This hidden state
thus includes a representation of the time-series up to the first
forecastable label lt.
The combination thus consists in building a sequence-to-
sequence architecture using the standard RNN setup. How-
ever, in comparison to the sequence-to-sequence architecture
used for translation tasks, the proposed sequence-to-sequence
architecture takes exogenous variables as external inputs in
addition to the previous values and thus derives its predictions
using both historic, univariate inputs as well as exogenous
multivariate features.

Cell Cell Cell Cell

Encoder Decoder

Cell Cell Cell Cell
Hidden	State

ftft-1ft-2ft-3 lt-1lt-2lt-3lt-4 ft+3ft+2ft+1eos yt+2yt+1yteos

y:	outputs
f:	features

t

historic values forecasted values

yt-3 yt-2 yt-1 yt yt yt+1 yt+2 yt+3

Fig. 5. Proposed sequence-to-sequence architecture for time-series forecast-
ing, greyed out labels of the encoder are omitted during inference and only
relevant during training operations

In the proposed architecture, both the encoder and the decoder
are fed the same type of inputs: for each time step t the
RNN cell takes the features (e.g. temperature measurements)
of the same time step t and the labels (observed target
values of the load time-series) from the previous time step
t-1, thus including exogenous variables at each time step for
an otherwise auto-regressive forecasting architecture. Encoder
and decoder lengths are not fixed and can be chosen and
tuned for both best performance during training as well as in
accordance with the desired forecast horizon during inference.
The proposed architecture does not terminate with an EOS
token for the last forecasted step, as there is no natural end
to a time-series in comparison to a sentence and thus the

decoder terminates with inferring the final label of the pre-
defined forecasting horizon.

B. Encoder
The encoder as such is a standard RNN rolled out over

time taking externally fed features of each time step t and
labels of time step t-1 as inputs. The outputs of the encoder
are omitted as they do not provide an added benefit to the
forecast and would simply result in already known values of
historic labels. These outputs however are relevant during the
training of a sequence-to-sequence model (see section III-D).

C. Decoder
The decoder in its basic structure also follows that of a sim-

ple RNN. However, as it necessitates EOS tokens for the initial
step as well as a re-feeding of the outputs during inference,
special helper functions provide this extra functionality.
EOS tokens need to be concatenated to the start of the
input sequence for the decoder during training and inference
sessions. Besides, the decoder works analogous to the encoder,
taking the same combination of features of time step t and t-1-
shifted labels as inputs to infer the output at time step t. The
training operation fits the RNN so that the combination of
inputs predicts the desired target value. During training, the
helper does not re-feed the outputs but concatenates the t-1-
shifted labels to the features of time step t thus simulating a
perfectly predicted output at time step t-1. This is to ensure that
the underlying neural network can learn the auto-regressive
element from re-feeding the desired target value that a perfect
RNN would re-feed itself. During inference, these labels are
yet unknown and the predicted outputs need to be re-fed and
joined with the remaining features. Training and inference
helper functionalities are depicted in Fig 6.

Decoder

Cell Cell Cell CellHidden	
State

ft+3ft+2ft+1eoseos

yt yt+1 yt+2 yt+3

Decoder

Cell Cell Cell Cell

ft+3ft+2ft+1eos lt+2lt+1lteos

yt yt+1 yt+2 yt+3

Hidden	
State

y:	outputs
l:	labels
f:	features

Training

Inference

Fig. 6. Label and feature concatenation by the training helper as well as the
re-feeding operation of outputs by the inference helpers



D. Overall framework

Fig. 7 shows the overall framework for the sequence-
to-sequence architecture and describes the data preparation
and training procedure for obtaining a specific sequence-to-
sequence model as well as the inference operation.

Labels

Features

Normalization

Normalization
One-hot encoding

Encoder	TrainingArchitecture

Decoder	Training

Backscaling

Forecasts

Feature	reduction

Inference

Data	Preperation

Hidden	State

Decoder

Layer	of RNN	Cells

Layer	of RNN	Cells

Helper	Functions

Encoder

Layer	of RNN	Cells

Layer	of RNN	Cells

inputs

omitted outputs

inputs

outputs

Build
architecture
and freeze
decoder

Random	search
on	architectural
and training
hyperparameters

Best	found
encoder
model

Saved encodermodel

Build
architecture
and freeze
encoder

Random	search
on	training
hyperparameters

Best	found
seq2seq	
model

Restore
encoder
model

Saved seq2seq	model

Build
architecture

Restore
seq2seq	
model

Infere outputs

Concatenation
and reshaping

Fig. 7. Sequence-to-sequence (seq2seq) framework for data preparation,
training and inference

Data preparation is the first step within the framework.
Numerical features and labels need to be rescaled because
neural networks in general perform better when all the inputs
are from a similar range, as the GD would otherwise be
biased towards larger numerical values. For the sequence-
to-sequence architecture, features as well as labels must be
rescaled, as they jointly form the model inputs. Therefore,
the final model outputs need to be scaled backwards for
inference. For the used data set (see section IV-B) we have
found that standardization yields the best results. Categorical
features are one-hot encoded. For the STLF problem at
hand hours, days, months and years represent the categorical
features. After one-hot encoding, their information is then
represented by arrays of ones and zeros.

Generalization is the neural network’s capability to learn
patterns within the training data set and infer predictions
from an unknown data set. Over-fitting is the phenomenon
when the neural network starts learning the training data set
”by heart” and stops learning general patterns thus losing its
generalization capabilities. This happens especially in deep
neural networks with many units and degrees of freedom.
We use Dropout as a means of regularization to reduce the
overfitting of our sequence-to-sequence models. During the

training session the neural network’s degrees of freedom
are impeded to force the neural network to focus on the
underlying patterns of the data set and ensure generalization
capabilities [20], [21].
Parameters such as the number of hidden layers, number
of units, regularization or the learning rate are also called
hyperparameters. They specify the overall set-up of an
architecture that is to be used for a specific model. As it is
not possible to define the best combination of hyperparameters
beforehand, random search trains several different versions
of the architecture with different random hyperparameter
combinations of a predefined hyperparameter search space
and evaluates these combinations. This does not lead to the
overall best possible combination of hyperparameters but
results in a close fit, depending on the number of randomly
chosen hyperparameter combinations and the predefined
search space [21].

The training adjusts the trainable variables of the network
so that the desired target value can be inferred from the
provided inputs (see section II-A). For the proposed sequence-
to-sequence architecture there is a two-fold training operation,
performed one after the other:

1) encoder training and
2) decoder training.

Encoder training is performed before decoder training to
ensure that the best possible representation of the historic
time-series is embedded in the hidden state that is passed to
the decoder making it easier for the decoder to learn from
this starting point. During encoder training, only the trainable
variables of the encoder are adjusted and the loss function is
calculated using only the omitted outputs. After the encoder
is fully trained, the decoder is trained using only the decoder
variables and the decoder outputs, i.e. the models final inferred
predictions are used for the loss calculation.
Random search is applied to find the best hyperparameter
combination for each specific data set (see section II-A). There
are two different kinds of hyperparameters in the case of our
sequence-to-sequence architecture:

• Architectural hyperparameters and
• Training hyperparameters.

Architectural hyperparameters need to be the same for both
the encoder as well as the decoder and are hence only part
of the encoder random search. The best found architectural
hyperparameter combination for the encoder must then be
the same for the decoder. Training hyperparameters can be
different for encoder and decoder. Table I provides an overview
over the two hyperparameter classes.

IV. EVALUATION

A. Benchmark forecasting methods

We compare our proposed sequence-to-sequence architec-
ture to two machine learning approaches as well as to two
methods from the time-series analysis (TSA) domain. From the
machine learning domain, we use a standard RNN following



TABLE I
OVERVIEW OVER ARCHITECTURAL AND TRAINING HYPERPARAMETERS

Architectural Hyperparameters Training Hyperparameters
Number Layers Learning Rate
Number Units Gradient Clipping Value
Cell Type Batch Size

Dropout Keep Probabilities

the established best practice approach described in [8] as
well as a random forest regressor implemented following
the description of [22]. Further, we performed TSA-based
forecasting using second degree exponential smoothing and
auto-regressive integrated moving average (ARIMA). For
the TSA forecasting we used the default off the shelf imple-
mentations within pandas for exp. smoothing and statsmodels
for ARIMA.

B. Test data set

As test data set we used the load data set of the Global
Energy Forecasting Competition 2014 [10]. It contains hourly
load measurements as target time-series as well as 25 supple-
mentary temperature readings as well as time stamps (string
containing the date and time information). In total, the data set
has a length of 60,600 entries. The first 80% of the data set
are used for training and the remaining part for validation and
evaluation. The minimal value lmin of the load time-series is
16.1, the maximum value lmax is 317.5.
The test data set shows a cyclic auto-correlation that is
especially strong for a lag of under 500 as shown in Fig. 8.
The auto-correlation in the data set is expected to benefit
the auto-regressive element within the sequence-to-sequence
architecture as well as the benchmarks performing TSA based
forecasts.

0 10000 20000 30000 40000
Lag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n

Fig. 8. Auto-correlation plot of the test data set

C. Testing Methodology

A forecast horizon of 12 hours is used to evaluate the
proposed forecasting architecture. All the used benchmark
methods have been set up, trained or optimized using their
respective best practice approaches. The benchmarks also
perform a 12 hour forecast for comparison. The validation

data set is used for the evaluation of the benchmark methods
as well as our proposed forecasting architecture. It is reshaped
into sequences of 12 values. Each method forecasts all the
sequences within the validation data set and the evaluation
metrics are calculated on each of the resulting sequences
and are finally reduced to their mean value for the overall
comparison.
Three evaluation metrics were chosen for the evaluation. The
R2-accuracy measure was used although being uncommon
because it provides a not skewed, scale independent interpreta-
tion of the goodness of fit for each of the models. It describes
the explained variance by the model and input data as part of
the variance within the underlying targets. A perfect fit results
in a R2 of one [23], [24].
For better interpretation of the forecasting accuracy the root
mean square error (RMSE) is also calculated:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − li)2 (9)

with i denoting each output yi and label li for all the sequences
of the validation data set comprising n instances, i.e. overall
number of hourly values.
Furthermore, the normalized RMSE (nRMSE%) is calculated
to add interpretability by dividing the RMSE by the overall
labels’ scale lmax − lmin (see section IV-B):

nRMSE% =
RMSE

lmax − lmin
× 100 (10)

D. Results

Table II shows the results for the different forecasting
methods and their respective R2, RMSE and nRMSE% values.

TABLE II
RESULTS OVERVIEW AND COMPARISON

Model R2 RMSE nRMSE%
Sequence-to-sequence RNN 0.9497 10.82 3.59
Standard RNN 0.9168 14.37 4.77
Random Forests 0.8335 18.31 6.07
ARIMA 0.7553 18.72 6.21
Exponential Smoothing 0.6245 24.12 8.00

The results clearly show that the proposed sequence-to-
sequence architecture outperforms other state of the art ma-
chine learning approaches on the GEFCom data set. Compared
to TSA, the superiority of the sequence-to-sequence architec-
ture is clearly visible as well.

V. DISCUSSION AND CONCLUSIONS

There are three particularities that need to be evaluated in
future research:

1) effect of encoder accuracy,
2) effect of decoder inaccuracy on the forecast deterioration

over the forecasting horizon and
3) performance on data sets with less auto-correlation.

Henning Wilms




During the training of our sequence-to-sequence architecture,
we noticed that the overall performance of the decoder is
strongly dependent on the accuracy of the encoder, i.e. the
accuracy of its encoded hidden state that provides the first
step of the decoder. This effect should be evaluated further
to determine if the sequence-to-sequence architecture is
outperformed by the benchmark methods when the encoder
cannot be fitted well enough and wether this threshold can be
defined more clearly.
Secondly, we suspect that the decoder’s inaccuracy will
increase with longer forecast horizons, as the error of each
forecasted step will propagate into the following steps due
to its re-feeding of the forecasted value. This should also be
evaluated further as the benchmark methods could outperform
the sequence-to-sequence architecture on longer forecast
horizons.
Furthermore, it is interesting to evaluate wether the
sequence-to-sequence architecture can still make use of
the auto-recursive element when the data set does not show
such a strong short-term auto-correlation and continues
outperforming the multivariate regressions techniques.

In this paper we have introduced an adaptation of RNN
based sequence-to-sequence architectures for time-series fore-
casting of electrical loads within power systems. The ar-
chitecture combines univariate and multivariate forecasting
techniques. We were able to show that this combination yields
better results than strictly univariate or multivariate forecasting
methods for a load data set that shows an auto-correlation over
the first few lags. This auto-correlation is captured by the auto-
regressive re-feeding of the proposed architecture, whereas the
non-stationary characteristics are captured by the multivariate
element. As many load data set show such a short-term auto-
correlation combined with nonseasonal and non-stationary
characteristics, the sequence-to-sequence architecture should
be considered as an alternative for STLF.
During the random search for the tuning of the hyperparame-
ters, we have found that 2-4 hidden layers with 10-40 cells are
sufficient to capture the GEFCom Load data set’s patterns and
produce reasonable predictions. In general, hidden layers of 3
or more needed high amounts of regularization to prevent over-
fitting and we deduce that 2-3 layers of 10-20 cells provide
sufficient degrees of freedom for the STLF example case at
hand. The LN-LSTM cell usually converged quicker than the
others when comparing training iterations but took longer in
total due to their increased computational complexity.

ACKNOWLEDGMENT

We thank the European Commission for their funding of
the InterFlex H2020 project (grant agreement no 731289).

REFERENCES
[1] Z. Jian, X. Cencen, Z. Ziang, and L. Xiaohua, “Electric load forecasting

in smart grids using long-short-term-memory based recurrent neural
network,” in 2017 51st Annual Conference on Information Sciences and
Systems (CISS), Conference Proceedings, pp. 1–6.

[2] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and
R. Jenssen, “An overview and comparative analysis of recurrent

neural networks for short term load forecasting,” arXiv preprint
arXiv:1705.04378, 2017.

[3] K. D. Orwig, M. L. Ahlstrom, V. Banunarayanan, J. Sharp, J. M.
Wilczak, J. Freedman, S. E. Haupt, J. Cline, O. Bartholomy, H. F.
Hamann, B. M. Hodge, C. Finley, D. Nakafuji, J. L. Peterson, D. Mag-
gio, and M. Marquis, “Recent trends in variable generation forecasting
and its value to the power system,” IEEE Transactions on Sustainable
Energy, vol. 6, no. 3, pp. 924–933, 2015.

[4] T. Hong and S. Fan, “Probabilistic electric load forecasting: A tutorial
review,” International Journal of Forecasting, vol. 32, no. 3, pp. 914–
938, 2016.

[5] H. Chitsaz, H. Shaker, H. Zareipour, D. Wood, and N. Amjady, “Short-
term electricity load forecasting of buildings in microgrids,” Energy and
Buildings, vol. 99, pp. 50–60, 2015.

[6] D. Xishuang, Q. Lijun, and H. Lei, “Short-term load forecasting in smart
grid: A combined cnn and k-means clustering approach,” in 2017 IEEE
International Conference on Big Data and Smart Computing (BigComp),
Conference Proceedings, pp. 119–125.

[7] J. S. Armstrong, Principles of forecasting: a handbook for researchers
and practitioners. Springer Science and Business Media, 2001, vol. 30.

[8] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,”
IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1–1, 2017.

[9] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[10] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J.
Hyndman, “Probabilistic energy forecasting: Global energy forecasting
competition 2014 and beyond,” International Journal of Forecasting,
vol. 32, no. 3, pp. 896–913, 2016.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” ArXiv e-prints,
vol. 1412, p. arXiv:1412.3555, 2014.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Report, 1985.

[13] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning, Conference Proceedings, pp. 1310–1318.

[16] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
continual prediction with lstm,” in 1999 Ninth International Conference
on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2,
Conference Proceedings, pp. 850–855 vol.2.

[17] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” ArXiv e-prints, vol.
1406, p. arXiv:1406.1078, 2014.

[18] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv
e-prints, vol. 1607, p. arXiv:1607.06450, 2016. [Online]. Available:
http://adsabs.harvard.edu/abs/2016arXiv160706450L

[19] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, Conference Proceedings, pp. 3104–3112.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, ser. Adaptive
computation and machine learning. Cambridge, Massachusetts: The
MIT Press, 2016.

[22] A. Geron, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, 2017.

[23] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[24] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International journal of forecasting, vol. 22, no. 4, pp. 679–
688, 2006.




