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Abstract—In Day-ahead Power Market (DAM), Load Serving 
Entities (LSEs) needs to submit their load schedule to market 
operator beforehand. For reduction of the total cost, the disparity 
of the price of DAM and the price of RDM (Real Day Market) 
should be considered by the LSEs. Therefore, the problem is that 
a more accurate load-forecasting model sometimes provide a price 
that has an interspace will lead to a lower cost. Facing this issue, 
this paper initiates a load forecasting model considering the 
Costing Correlated Factor (CCF) with deep Long Short-term 
Memory (LSTM). The target of the forecast model contains both 
accuracy section and power cost section. At the same time, the 
construct of LSTM can offset the sacrificed accuracy. Also, this 
paper uses an Adaptive Moment Estimation algorithm for 
network training and the type of neuron is Rectified Linear Unit 
(ReLU). A numerical study based on practical data is presented 
and the result shows that LSTM with CCF can reduce energy cost 
with acceptable accuracy level. 

Keywords—Recurrent Neural Network, Power Market, Load 
Forecast, Smart Grid, Machine Learning, Demand Response, 
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I. INTRODUCTION

At present, more and more countries have adopted or will 
adopt power market. In power market, the trade between energy 
buyers and sellers is driven by price instead of government 
policy and regulation. The deregulated power system can 
optimize the asset utilization and improve the social efficiency. 
Under deregulated environment, power markets develop into 
complicated systems that contain multiple trading modes. There 
are three familiar conceptual trading modes namely, power-pool 
model (day-ahead and real-time markets), bilateral-transaction 
model (forwards, futures, options and contracts for difference) 
and mix model [1, 2]. 

Nord Pool market in Nordic Europe, National Electricity 
Market in Austria, early British power market [3], PJM, 
CAISON and ERCOT in America electricity markets use 
power-pool model [4]. The bilateral-transaction model is 
adopted in Nordic and California electricity markets. The Nord 
pool in Scandinavia, the MIBEL in Portugal and Spain, they  
adopt mixed trade system [5].  

The electric power is the concentrated spot in the whole 
power market, which consists of the day-ahead market and real-
time market. In the day-ahead market, the vendors and the 
customers submit their respective quoted prices and 
transactional quantities to the day-ahead trade system. The 
transactional quantities between the disparity of actual power 
quantity are based on the forecast of future power demand. The 
calculation of day-ahead prices and real-time prices are based on 
Locational Marginal Pricing (LMP), which comprises system 
energy, congestion and loss cost [6]. 

Electrical load forecasting is integrated to operation and 
scheme of a utility company that covers the producing plan like 
electricity generation and purchase in power market, load 
switches and infrastructure development. According the time 
duration, the electrical load forecasting will be classified as 
short-term, medium-term and long-term forecasting [7].  

Most of the targets of load forecasting model focus on the 
prediction accuracy. The tools were developed mainly based   on 
artificial neural network (ANN) [8], fuzzy logic [9], Support 
Vector Machine (SVM) [10] and other time series forecasting 
models [11]. For instance, reference [12] designs an ANN-based 
model to ameliorate load forecasting accuracy in PJM market 
and ISO New England market [13]. In [14], the authors publish 
a predictive model with a hybrid adaptive fuzzy neural system.  



By considering the mismatch of the accuracy of traditional 
load-forecasting model and total power cost, a model is built 
based on LSTM by considering the Beneficial Correlated 
Regularization, which improve the accuracy and reduce the 
energy cost. To begin with, the connections among the 
individual data within conventional model are made because of 
the structure of LSTM; in addition to this, the target of the 
forecast model contains both accuracy section and energy cost 
section, therefore the model provides a load forecasting solution 
which ensures the required accuracy and reduce the energy cost 
simultaneously. 

The content of this paper is summarized as below. Section II 
provides a case about the mismatch of the model accuracy and 
the total energy cost. A case of LSTM is introduced in Section 
III. A numerical study to support the performance of proposed
model is presented in Section IV. Conclusions are made in
Section V.

II. PROBLEM DEFINITION: MISMATCH BETWEEN ACCURACY

AND ENERGY COST 

A. Power Market

The trading mode consisting of the day-ahead and real-time
market is adopted globally, which stimulates participants in 
managing their schedule to estimate power consumption for 
day-ahead market. This market matches the trading by 
considering optimal power system operation (unit commitment 
and dispatch) with network stability constraints. In real-time 
market, the disparity between the schedule and real-time 
consumption will be settled, which is unable to be perceived in 
the schedule. Locational Marginal Pricing (LMP) is the pricing 
model for pricing processes in both markets [15].  

The Day-ahead Market (DAM) is a forward market in which 
hourly clearing prices are calculated for each hour of a future 
operating day. Before daily accounting deadline, the hourly 
power consumption schedules of LSEs on the target day will be 
submitted to market operator, which are predicted by load 
forecasting model. Taking PJM as an example, Table I 
introduces the daily accounting deadline of PJM market for 
LSEs in the US [16].  

TABLE I DAILY ACCOUNTING DEADLINE OF PJM MARKET 

General 4:00 PM for schedule changes from two 

business days prior 

Power 

Schedule 

Monday-Thursday Operating Days due on two 

business days later, by 4:00 PM. 

Friday-Sunday Operating Days due on the 

following Tuesday, by 4:00 PM. 

In Real-time Market (RTM) the clearing prices are 
calculated at minute’s level. LSEs will purchase the power 
consumption exceeding their day-ahead schedule by Real-time 
LMPs and will receive revenue for demand deviations below 
their scheduled quantities [16]. 

B. Mismatch between Accuracy and Cost

For the hourly consumption schedule in DAM, LSEs will
predict their hourly consumption by load forecasting model. The 
aim of LSEs is to purchase sufficient power for their 
downstream consumers with least cost. The cost contains two 
parts, the fee paid for the power in schedule and the fee paid for 
or received the disparity of the schedule. In fact, using a 
traditional load forecasting model, a higher-accuracy schedule 
may not result in a lower cost. The following case study with the 
traditional ANN load forecasting model is performed to verify 
this phenomenon. 

The load of a large consumer in Pittsburgh US, DAM price 
and RTM price in the same area are selected for analysis. Data 
from 2014 to 2015 is adopted for the study. According to the 
rule of PJM market, the model is used to predict 2-day-ahead 
load.  

Fig 1 RMSE and Power Cost 

RMSE (Root Mean Square Error) of the load forecasting 
model, the disparity between the forecasting load and real load, 
reflect the model accuracy. The power cost is calculated by price 
of DAM and RTM. From Fig 1, the RMSE of the model keeps 
a downward trend and the accuracy is rising. However the power 
cost does not fall continuously along with the rising accuracy. 
At 26*50 time training, the power cost is a minimal and then the 
power cost begin to increase. This phenomenon reflects the 
mismatch between accuracy and power cost. 

III. DEEP LSTM CONSTRUCTION

A. Model Construction

This paper proposes a Long Short-term Memory based
Recurrent Neural Network (LSTM) model for load forecasting. 
The model is implemented on real-time electricity data provided 
by the PJM. The predictions have hourly frequency and hence 
are highly beneficial for use by LSEs. The hourly predictions 
provide a more accurate description of load demand in the 
forthcoming weeks and maximum load demand can also be 
computed on a daily basis using the data obtained. For 
performing time series predictions, Recurrent Neural Networks 
(RNNs) are one of the most widely used models [16]. However, 
RNNs suffer from an inherent problem of vanishing gradient 



descent. To overcome this problem and additionally formulate 
long-term dependencies between training samples, LSTM is 
used which significantly increases the precision of the proposed 
model [18].  

Contrary to RNN model, the hidden layers of LSTM have a 
complex structure. The LSTM structure consists of three gates, 
namely, input gate, forget gate and output gate . In each gate, 
there is a sigmoid function to transform the data. In Equation (1), 
the input data contains ht-1  (the last output state), xt (the No.t 

input data) and �(Activation function) and  the input function is:

1( [ , ] )z t t zz f W h x b�� �  (1) 

Equation (2) is the input gate function which filters the useless 

information.  

1([ [ , ] ])i t t ii sigmoid W h x b�� �  (2) 

Equation (3) and Equation (4) represent the forget gate and 

output gate. 

1([ [ , ] ])f t t ff sigmoid W h x b�� �   (3) 

1([ [ , ] ])o t t oo sigmoid W h x b�� �
   (4) 

The model state is calculated by Equation (5) which contains 
the Ct-1(the last state). 

1t tc f c t z�� � � �    (5) 

And Equation (6) is the output function within which the output 

is calculated by ct and the forget gate. The structure of LSTM is 

shown in Fig. 2 below:  

( )t th o f c� �   (6) 

For the RNN to remember the long-team meaningful 

information effectively, the performance of the input gate and 

forget gate is very important. The effect of the forget gate is to 

forget the former useless information, which filters the 

information on the basis of the xt and the ht. After forgetting, 

the information need to be supplied by the input gate in which 
xt and ht-1 decide and provide the useful information into ct-1 to 

build the ct. 

Fig. 2 Structure of LSTM 

Deep LSTM based on the RNN is an advanced LSTM 
model. To improve the learning ability, the deep LSTM model 
has several layers of LSTM. Between the input and output at 
every moment, there are several LSTM which can extract more 
hidden information. Every layer of LSTM, every LSTM 
parameters are the same and the LSTM parameters in a layer are 
different from the parameters of other layers.  

In Fig 3, the structure of the deep LSTM is given. The input 
x passes into l layer and then across the fully connected layer to 
form the output. The h is the initial output of the LSTM which 
is given as zero. 

Fig. 3 Structure of Deep LSTM 



B. Case study 

Feature space of model input consists of historical load
section and target day weather section. In historical load section, 
the latest weekday’s 24-hour load data are selected as model 
input. In target day weather section, hourly temperature and 
humidity are selected as model input under the condition that the 
weather forecast accuracy is sufficiently high. The weather data 
is obtained from ‘Local Climatological Data’ from National 
Oceanic and Atmospheric Administration (NOAA) [19]. 
According to the rules of PJM submissions schedule of DAM in 
Table I, the historical load data of different target weekday are 
different, which is a mix step load forecasting data process. 

For testing the effect of LSTM and several layers, several 
experiments have been carried out. The first one is to compare 
influences of diverse activation functions and the second one is 
to test several layers. This study uses 2014-2015 year data as 
training set and the 2015-2016 year data as the testing set. The 
results for testing set are given in Tables III. Test 1 parameters 
and values are given in Table II below: 

TABLE II MODEL PARAMETERS AND VALUES 

HIDDEN_SIZE 20 

LAYERS_NUM 1 

Learning rate 0.001 

Optimizer Adam 

TRAINING_STEPS 2000 

The model selects three typical activation functions to take a 

test using the common parameters in Table I and the result is in 

the Table III. Observing Table III, it can be noticed that the 

function ReLU and function tanh perform better than function 

sigmoid on the condition of Table II. 

TABLE III RESULT OF DIFFERENT ACTIVATION FUNCTION 

Activation 

Function 

Mean Absolute Percentage Error 

(MAPE) 

sigmoid 0.0812 

ReLU 0.0802       

Tanh 0.0806 

In Test 2,   tests on the influence in different layers of deep 
LSTM were carried out and the result is given in Fig. 4. Further 
tests were set up by including changes in the number of layers 
from 2 to 4,select function ReLU and function tanh. 

From Fig. 4, we notice that the performance in different 
layers are changing. Since the information are abstracted further 
after every layer, the information produced by a surface LSTM 
may contain useless part and noise and an excessively deep 
model may filter too much information. A proper deep model 
can obtain abundant and useful information. Function ReLU and 
function tanh both got the lowest MAPE with 2 layers and the 
result of the function ReLU with 2 layers has the best 
performance in the Test 2. 

Fig. 4. Results for different number of layers 

IV. CONSIDERING COSTING CORRELATED FACTOR

A. Model Construction

From the test in Section III, It can be observed that an energy
cost from a better load forecasting model may have a space to 
compress the cost. According to the prices in PJM which 
contains DAM and RTM, the loss function not only contains the 
traditional loss but also CCF. The loss based on the accuracy is 
given in Equation (7) below. Within that, yforecasting, a vector of 
1*24, represents the forecasting value and yreal, the vector of 
1*24 represents the real value. 

2loss ( )accuracy forecasting real

i

y y� ��   (7) 

To investigate the influence of power cost over the prediction, 
take the total power cost as the loss in Equation (8). Within that, 

PDAM is the hourly price in DAM and PRTM is the hourly price 

in RTM. 

 
cosloss ( )t forecastiong DAM real forecastiong RTMy P y y P� � � � �   (8) 

By preventing the excessive influence of total power cost over 

the forecasting accuracy, this gives the losscost a factor as the 

CCF. So the total loss function is given by Equation (9) as 

below: 

 
cosLoss accuracy tloss loss	� � �  (9) 

The significance of α is a control parameter to balance 

lossaccuracy and losscost. If α is too small, the primary loss is 
lossaccuracy and the effect of losscost in the processing is weak. On 

the contrary, an enormous α will lost the accuracy and the 

forecast of the total price will be negative continuously. The 

model will limit buying power when the DAM price is lower 

than the RTM price and sell back when the DAM price is higher 

than the RTM price. 



The optimization method we use is the Adam, Adaptive 

Moment Estimation, a method for stochastic optimization which 

can calculate adaptive learning rate of every parameter. This 

method contains tg (gradients stochastic objective at time step 

t), tm (the biased first moment estimate and initialized value is 

0), tv  (the biased second raw moment estimate and initialized 

value is 0), ˆ
tm (the bias-corrected first moment estimate) and 

t̂v (the bias-corrected second raw moment estimate). The 

Equations (10) to (15) are the parameter-updated formula and 

more details and information can be found in [20]. 

1( )t t tg f
 
 �� �     (10) 

1 1 1(1 )t t tm m g� ��� � �g g                 (11) 

2

2 1 2(1 )t t tv v g� ��� � �g g             (12) 
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�
  (15) 

From [20], good default settings for the tested machine 
learning problems are η = 0.001, β1 = 0.9, β2 = 0.999 and ε = 
10−8. The Adam algorithm is different from the traditional 
stochastic gradient descent. Random gradient descent keeps a 
single learning rate to update all weights and the learning rate 
does not change during training. Theadaptive learning rate for 
different parameters is calculated from the biased first moment 
estimation and biased second raw moment estimate. 

B. Case Study

First, a research in the traditional ANN and deep LSTM
model without the CCF is implemented. The energy costs in 
different MAPE by traditional ANN and deep LSTM model are 
recorded and compared in Fig. 5. 

From Fig. 5, it can be observed that not only the MAPE but 
also the energy cost of deep LSTM are better than traditional 
ANN result. Similarly, in the performance of deep LSTM, the 
energy cost will not follow the performance of MAPE. But in 
the area of MAPE which the traditional ANN cannot achieve, 
the energy cost of deep LSTM is lower than the traditional ANN 
energy cost. The lowest energy cost of deep LSTM is 3.24E+08, 
a saving about 2.6% of the lowest power cost of ANN 
(3.3354E+8). So the deep LSTM indeed increases the accuracy 
and decrease the energy cost. 

Fig. 5. Result of ANN and LSTM 

Secondly, the model combines CCF with the deep LSTM 
and make some load forecasting tests. The parameter α of CCF 
is set from 0 to 0.05 and the interval is 0.001. The results of load 
forecasting model in diverse α are given in Fig. 6. 

Fig. 6 Results of diverse α 

From Fig. 6, as the values for parameter α increase from 0 to 
0.05, the losscost proportionally rises, the MAPE increases but 
the power cost falls. When the parameter α is 0.05, the power 
cost saves 4.1% of the lowest cost in deep LSTM and saves 6.6% 
of the lowest cost in ANN. But when α becomes larger, the 
accuracy will be degraded further, which may threaten the safety 
of the grid. So the model only reduces the energy cost in the 
condition of accuracy. If the condition of accuracy is 90%, the 
parameter α will be 0.04 approximately and this saves 6.3% of 
the lowest cost in ANN. 

V. CONCLUSIONS

This paper introduces a new model for load forecasting and 
the model consists of deep LSTM and CCF. The LSTM 
structure can utilize the hidden connection of independent data 
and deep layers can dig out the hidden information to improve 



the accuracy. When CCF is introduced in the deep LSTM model, 
the accuracy is considered while the power cost is emphasized 
too. 

In this paper, it can be observed that mismatch between the 
accuracy and energy cost exists from the Test 1 and Fig. 5. Using 
the hidden connection of independent data, it is proved that the 
accuracy can be improved by the deep LSTM and the energy 
cost falls to some degrees relative to the traditional ANN model. 
Utilizing the mismatch between the accuracy and energy cost, 
an appropriate CCF model sacrifice accuracy to a certain extent 
or in a certain condition which can be complemented by deep 
LSTM to reduce the energy cost further. 

In the future, more in-depth research will be performed, 
including mining deeper information structure with more 
diverse data combination to improve the accuracy, and a model 
with consideration of dynamic load forecasting instead of fixed 
24 hours.  
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