

1

Full citation: Jarvis, D., Jarvis, J., Yang, C., Sinha, R. and Vyatkin, V. (2019) Janus: A Systems
Engineering Approach to the Design of Industrial Cyber-Physical Systems, in Proceedings of the
17th International Conference on Industrial Informatics (INDIN2019). Helsinki, Finland, IEEE
Computer Society Press, pp.87-92. doi: 10.1109/INDIN41052.2019.8972051

Janus: A Systems Engineering Approach to the Design of Industrial Cyber-
Physical Systems

Dennis Jarvis1, Jacqueline Jarvis2, Chen-Wei Yang3, Roopak Sinha4,
& Valeriy Vyatkin5

1&2School of Engineering and Technology, Central Queensland University, Brisbane, Australia
3Department of Computer Science, Electrical and Space Engineering,

Luleå University of Technology, Luleå, Sweden
4IT & Software Engineering, Auckland University of Technology, Auckland, New Zealand

5Department of Computer Science, Electrical and Space Engineering,
Luleå University of Technology, Luleå, Sweden

5Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
emails: 1d.jarvis@cqu.edu.au, 2j.jarvis@cqu.edu.au, 3chen-wei.yang@ltu.se, 4roopak.sinha@aut.ac.nz,

5vyatkin@ieee.org

Abstract
The benefits that arise from the adoption of a systems
engineering approach to the design of engineered systems
are well understood and documented. However, with
software systems, different approaches are required given
the changeability of requirements and the malleability of
software. With the design of industrial cyber-physical
systems, one is confronted with the challenge of designing
engineered systems that have a significant software
component. Furthermore, that software component must be
able to seamlessly interact with both the enterprise's
business systems and industrial systems. In this paper, we
present Janus, which together with the GORITE BDI agent
framework, provides a methodology for the design of agent-
based industrial cyber-physical systems. Central to the
Janus approach is the development of a logical
architecture as in traditional systems engineering and then
the allocation of the logical requirements to a BDI (Belief
Desire Intention) agent architecture which is derived from
the physical architecture for the system. Janus has its
origins in product manufacturing; in this paper, we apply
it to the problem of Fault Location, Isolation and Service
Restoration (FLISR) for power substations.

Keywords: cyber-physical systems, multi-agent
systems, industrial automation, IEC 61850, IEC
61499

1. INTRODUCTION
Our interest lies in the development of multi-agent
architectures and frameworks that can be deployed at all
levels of an industrial enterprise. However as noted in [1],
the lack of design methodologies and software frameworks
that directly support the development of agent-based

applications is limiting the uptake of agent technology in
the industry.

Central to the operations of industrial enterprises are the
physical systems that produce the product or generate the
service that the enterprise provides. These physical systems
need to interact with the supporting business systems, such
as order management, where changes in customer orders
impact on production and production disruptions can
impact on customer orders. Agent technology provides an
attractive means to deliver the required integration, but
more importantly, to provide the flexibility to handle
change both at the business level and at the production
level. However, how should agent-enabled systems be
designed? In answer to this question, we observe that agent-
based production systems are amenable to design using
standard Systems Engineering practices if:

1. Functional decomposition and analysis is
reformulated as goal decomposition and analysis

2. Agents and teams of agents are mapped to the
systems, subsystems and leaf nodes of the physical
architecture

3. Functional allocation is reformulated as goal
allocation to the agent/teams of agents identified in 2.

The resulting design methodology is called Janus and is
described in Section 3. However, its efficacy will be greatly
improved if the goal allocation process can occur in such a
way that executable agent behaviours are generated, rather
than paper-based specifications as in traditional Systems
Engineering. In this regard, Janus is intended to be used in
conjunction with the GORITE BDI framework [2]. Janus
draws from various sources and case studies in the domain
of agent-based manufacturing; this background material
forms Section 2 and Janus is presented in Section 3.
In section 4, the applicability of Janus to a quite different

2

cyber-physical application, namely power substation
automation, is examined; the case study is then discussed
in Section 5. Concluding remarks are provided in Section
6.

2. Background
Central to Janus is the alignment of the logical (goal)
architecture with the agent architecture and the alignment
of the agent architecture with the physical architecture. The
latter mapping implies an agent architecture in which teams
of agents are explicitly represented and correspond to
systems and/or subsystems. Individual agents in turn map
to subsystem components. For example, in [3], the cell is
the team/system and its constituent machines are the
agents/components. Such a modelling perspective fosters
reusability, as each entity, be it a system, subsystem or
component is an entity in its own right as well as potentially
being a component in a larger system. This duality of the
system/sub-system relationship was first documented by
Koestler [4] within the context of biological and social
systems. Koestler used the so-called Janus effect as a
metaphor for describing this dichotomy:

"like the Roman god Janus, members of a hierarchy have
two faces looking in opposite directions"

In other words, these members can be thought of as self-
contained wholes looking downwards to the subordinate
level and/or as dependent parts looking upward. Koestler
coined the terms holon to refer to system/subsystem and
holarchy to describe the organisational structure formed by
holons. His work subsequently provided the conceptual
basis for the Holonic Manufacturing Systems (HMS)
project [5]. However, as was noted in [6], the HMS Project
focused on the concept of a holon as a distinct cyber-
physical entity and not on the concept of holarchy.

In keeping with the prevailing view of the multi-agent
systems community, holarchies were viewed as dynamic
constructs formed in response to a need to achieve
particular goals. However, the dynamism extended only to
holarchy formation (determining the structure of a team of
holons that could achieve a particular goal) and not to
actual team plan formation. While in many situations,
dynamic planning is essential, the success of the Belief-
Desire-Intention (BDI) model of agency [7] has
demonstrated that in many applications it is not. Rather, it
is often the case that providing an agent with the ability to
choose between different predefined courses of action to
achieve a particular goal is sufficient. Nonetheless, the
HMS project did not embrace the BDI model, preferring to
leave plan definition and execution as implementation
concerns. Furthermore, while the achievement of complex
goals often requires dynamic team formation, such team
formation generally occurs within an existing
organisational structure, such as a factory which has been
organised into manufacturing cells Neither the HMS
Project nor the BDI frameworks of the time addressed this
issue and the top-down approach to team formation that it
engenders.

Since the completion of the HMS Project, the concept of
holarchy has been captured in the BDI agent frameworks

JACK Teams [8] and GORITE [2], developed by
Rönnquist. In these frameworks,

4. a holarchy is mapped to a hierarchical structuring of
teams, sub-teams and individual agents

5. as with an individual agent, an agent team has its own
beliefs, desires and intentions

6. team behaviour is specified in terms of roles (defined
as collections of related goals)

7. team behaviour is realised by selecting team members
that are able to perform the roles required by the
behaviour.

Both JACK Teams and GORITE have been successfully
employed in the development of agent-based execution
systems for manufacturing cells [3], [9], [10]. In all cases,
teams of agents were employed, with individual agents
mapped to PLC controlled machines/devices (IEC 61131
in [3]; IEC 61499 in [9], [10]). Additionally, a holarchic
design using JACK Teams was developed for the
Cambridge Holonic Enterprise Demonstrator [11] but was
ultimately implemented using JACK [8] because of
schedule pressures [12].

While the BDI systems implemented above embodied the
holarchic concept espoused by Koestler, they were
developed in the absence of any explicit design
methodology. In this regard, note that while the Prometheus
methodology [13] and its associated design tool [14] haves
been widely used in the development of BDI agent
applications, Prometheus does not support agent teams.
Furthermore, while the design tool has code generation
capabilities, code is restricted to the proprietary JACK
framework. Consequently, it was decided to formulate a
systematic design methodology called Janus which is
aligned with the open source GORITE BDI framework.
The formulation of Janus has been informed by reflection
on the experiences gained through the development of
execution systems developed using JACK, JACK Teams
and GORITE and from the HMS industry testbeds, in
particular [15].

In traditional systems engineering [16], three design phases
are enunciated – Conceptual Design, Preliminary Design
and Detailed Design and Development. In the first of these
phases, business needs and system requirements are
identified and a logical architecture is constructed through
a process of functional decomposition and analysis. In the
second phase a candidate physical architecture is identified
at the subsystem level and requirements embodied in the
logical architecture are refined and then allocated to
subsystems, taking into account the technical performance
measures associated with each requirement. Further
refinement of both the logical and physical architectures to
the component level then occurs in the final design phase,
resulting in a fully specified physical architecture. Note that
while design proceeds in a top-down manner, it will often
be the case that the physical architecture will be constrained
by the nature of the system, as with factories that employ
manufacturing cells and other machine aggregations. This
is also the case with power substations, as will be seen
in Section 4. Also, as the design process progresses, there
will be a need for specialist engineering and design input.

3

These inputs will be application specific, so consequently
are out of scope for Janus. Rather, Janus in its current form
focuses on the agent architecture and its relationship with
both the logical architecture and the physical architecture.

3. The Agent Architecture
As noted in [6], a cyber-physical agent can be
conceptualised as having a behaviour part and an
embodiment part. In Janus, this conceptualisation is applied
at the architectural level with the agent architecture being
mapped to both the physical architecture (embodiment) and
the logical architecture (behaviour). In terms of the physical
architecture/agent architecture mapping, in Janus, the
initial mapping is 1-1, with systems/sub-systems mapping
to teams of agents and devices/machines mapping to
agents. Behaviours/requirements in the logical architecture
are then allocated to teams/agents in the agent architecture.
However, in order for a cyber-physical element to exhibit
autonomy and thereby provide the flexibility that autonomy
entails, Janus defines behaviour in terms of goals, rather
than functions. Nonetheless, system goals can be
decomposed in a manner analogous to functional
decomposition. While goals and functions may appear to
be similar, as evidenced by the goal decompositions
presented in [2], a key point of differentiation is that goals
embody choice – when a goal achievement is delegated to
an entity (either an agent or a team of agents), the entity
chooses the way in which the goal is achieved depending
on the current situational context.

With Janus, the analogy with the traditional functional
analysis and allocation process, which is central to systems
engineering design, extends beyond decomposition. A key
tool in functional analysis is the Functional Flow Block
Diagram (FFBD) which details the sequencing of actions
(functions) [16]. In an FFBD, functions are represented as
behaviour nodes called blocks. Control nodes are then
added to sequence the behaviours. In Systems Engineering,
FFBDs are used primarily as an aid in function
decomposition. However, in Janus, process models (the
goal-based analogue of FFBDs) both control nodes and
behaviour nodes are modelled as instances of the GORITE
framework’s Goal class and its sub-classes [2]. Goal-
specific behaviour is provided by overriding the
Goal.execute() method. Default behaviours are provided
for all GORITE control goal classes, which include classes
to model choice, sequence, loop and parallel nodes. The
resulting process models are executable and BDI execution
semantics are preserved. In this regard, if there are multiple
plans (models) that could be employed for the achievement
of a particular goal (the applicable set), if a plan fails, then
the applicable set can be regenerated and (possibly) another
plan chosen.

If a leaf node of an agent’s process model results in physical
action, interfacing to the corresponding device/machine in
the physical architecture will be required. In
manufacturing, this will typically involve interaction with
PLC-controlled devices. As befitting a top-down design
methodology grounded in a Systems Engineering
approach, Janus is neutral with respect to the actual control
technology (e.g. IEC 61131 or IEC 61499) employed.

When the design of the basic cyber-physical system is
complete, goals will have been identified for the primary
system function (e.g. product generation / service
provision) and sub-goals allocated to each team/agent in the
agent architecture. For the leaf nodes, their process models
will be grounded in physical action. However, for
intermediate elements (i.e. teams) some or all of its
elements may not be grounded – a leaf node in a process
model for a team can be a goal that is expected to be
achieved by another agent or team. Consequently, there is
the opportunity for flexibility in terms of how an
intermediate process model is achieved, as the goals that it
requires to be achieved by other agents are not bound to
actual agents in the process model specification. Rather,
binding (called task team formation in Janus) is a separate
process that can occur prior to or during process model
execution. As demonstrated in [2], a task team can be
automatically reformed if a current task team member fails
and there is a suitable alternative available. Or in the case
of [9],[10], if one of the manipulator cylinders fails, then
operation can continue, but with a reduced task team size
and functionality. Support for both team formation and
reformation are provided in the GORITE framework
classes.

Process model node behaviours are detailed using the
GORITE framework classes and Java code, as described
in [2]. In this regard, note that process model execution in
GORITE is delegated by the owning team to an executor
object. This object then traverses the process model graph.
At each node, it invokes the execute() method of the bound
goal. Execution is time sliced, so multiple goals can be
progressed concurrently. Also, when a node is executed, an
object containing data relating to the process model
execution is made available to the bound goal, thus
providing a business process modelling metaphor for goal
achievement. Such a metaphor is particularly apt for
product manufacture, where the order being filled can be
represented in the data context.

4. Power Substation Automation
As indicated in section I, two common types of industrial
enterprises are those that produce products and those that
provide services. Janus was conceived through
consideration of enterprises that produce manufactured
products. In this section, we examine its applicability to
industrial service provision, in particular, power
distribution at the substation level.

Figure 1. IEC 61850 IED Model [17]

4

As mentioned in section 3, Janus is characterised by a top-
down systems engineering approach where the overall
system specifications and their interactions are defined first
(irrespective of the level of decentralization of the system)
before working "downwards" in the detailed design of the
sub-systems. This approach is in contrast to the current
method of engineering substation systems where the design
approach is very much bottom-up. This is due to the
vendor-driven nature of the industry where the Protection
and Control (PAC) functionalities are tightly coupled to the
availability of the hardware devices. Ideally, the design of
the substation automation system should be driven by the
technical requirements for the system based on the need for
the protection and the control philosophy rather than the
limitations of the chosen or the installed equipment.

The IEC community have made significant advances in
addressing the challenges of system design with the
introduction of the IEC 61850 standard [17]. This standard
defines communication protocols for use by intelligent
devices (IEDs) in power substations, together with an
abstract data model so that conformant devices are
interoperable. Of particular interest from a Janus
perspective is that the data model groups standardised data
and services into what are called logical nodes (LNs). The
LN specification defines semantics of real-time and
nonreal-time data which are exchanged between IEC 61850
devices (i.e., IEDs). The different elements of the data
model are hierarchically organized as illustrated in Fig. 1.
The implementation of LN functionality is not specified by
IEC 61850 and various technologies can be employed, such
as IEC 61499, as in [18].

In Janus, there are five key steps to the design process:

1. Goal (requirement) decomposition

2. Physical architecture specification

3. Agent team architecture specification

4. Mapping of the agent team architecture to the physical
architecture

5. Allocation of goals to agents and teams

If a substation is to be designed to be IEC 61850
conformant, then the standard provides elements (logical
nodes and logical devices) that can be used as leaf nodes in
both goal decompositions and physical architecture
decompositions. Furthermore, an IEC 61850 logical device
can be viewed as a cyber-physical entity which accesses its
physical embodiment via logical nodes and interoperates
with other cyber-physical entities via its containing
physical device/IED. However, the modelling of non-leaf
nodes in both the physical and logical (goal) architectures
is outside the scope of IEC 61850. With Janus, both
physical and logical architecture design follow normal
systems engineering practice using a top-down approach
and hierarchies will be created that are grounded in logical
devices and logical nodes. Also, the agent architecture
mirrors the resulting physical architecture, with leaf nodes
(cyber-physical entities) mapped to agents and non-leaf
nodes (such as feeders) to teams.

Figure 2. A small distribution utility [18]

Figure 3. The status of fault detection from CB1, ROS11 and
ROS12 in the presence of a permanent fault at location Load1

Figure 4. Interactions between the CB1, ROS11 and ROS12
intelligence on locating and isolating the permanent fault

5

Note that a leaf node (i.e. a cyber-physical device) will have
autonomy with respect to some functions, such as
protection. However, there are other behaviors such as load

sharing and Fault Location, Isolation and Service
Restoration (FLISR) that involve multiple cyber-physical
entities and are therefore allocated to teams.

We will now consider how FLISR operates, using the
simple distribution utility illustrated in Fig. 2. This utility
consists of three 11kV feeders supplied by three different
zone substations. The zone substations are isolated from
each other by TIE switches which are set in the open
position while the ROS switches are in the closed position.
This means that each of the substation zones is operating
independently of each other and are responsible for serving
their own feeder loads. Each of the switching units is a
cyber-physical entity in the sense described previously.

Consider the following scenario. A permanent fault occurs
on Feeder 1 of Zone substation B at the location of Load 1
as shown in Fig. 3. This induces a fault current which is
detected by the cyber-physical entity CB1. Cyber-physical
entities ROS11 and ROS12 do not detect a fault current
since they are downstream from the fault location at Load1.
Sensing the presence of a fault current, CB1’s circuit
breaker is immediately "opened" and the power supply is
cut to all loads on Feeder1 (i.e. load2 and load3).

At this stage, the Feeder1 team (consisting of CB1, ROS12
and ROS12) does not yet know the exact location of the
fault. Therefore, the team initiates the fault isolation
process to isolate the fault from the distribution system. It
sends query signals to both ROS11 and ROS12 checking to
see whether a fault current was detected as shown in Fig. 4.
Based on the reply from ROS11 and ROS12, the team can
determine the location of the fault. In this scenario, since
ROS11 and ROS12 did not sense a presence of a fault
current, the Feeder1 team can determine that the fault
location is likely to be between CB1 and ROS11. The team
will then ask ROS11 to open its switch to isolate the fault
from the rest of the distribution system.

The last step in the FLISR scheme is service restoration.
Once the fault location is isolated, alternative supply is
needed to re-energize Load2 and Load3 respectively. This
requires a team operating at a higher level than the feeder
teams (e.g. a substation team), as it needs to maintain
internal maps of self-restoration routes. Request message
will then be propagated through the switching units along

these pre-defined restorative paths as shown in Fig. 6. In
this scenario, the alternative supply for Load 3 is Zone
Substation 3 along the restorative path TIE132, ROS32,
ROS31, CB3. After the restoration request is granted by
Zone Substation 3, the TIE 132 switch will be closed,
transferring Load 3 to Zone Substation 3. To restore service
to Load2, the restoration request is sent via the path
TIE121, ROS21, CB2.

To summarize, the FLISR goal can be decomposed as
follows:

FLISR

 fault detection

 monitor each switch in parallel

 fault resolution

 fault isolation

 fault restoration

The FLISR goal and the fault detection, fault resolution and
fault restoration goals are allocated to the substation team.
Fault isolation goals are allocated to the feeder teams and
monitor goals are allocated to switch agents. A partial
mapping (focusing on fault detection) is presented in Fig.
5. In the diagram, the physical architecture is collapsed into
two levels and the fault resolution goal is not refined or
mapped.

Figure 5. Partial mapping of Fault location and isolation agents with respect to physical architecture

Figure 6. Service restoration agent interactions between the
switching units

6

Note that the FLISR goal "decomposition" is, in fact, a
process model, as it incorporates both implicit (sequential)
and explicit (parallel) execution. There is also an
understanding that sub-goals will be further refined until
actionable behaviors are reached. For example, the fault
detection goal could be realized using the following logical
nodes:

• TCTR (Non-functional): The current transformer LN
is used to measure the current at a fixed sampling rate.

• PIOC (Functional): The overcurrent LN is used to
compare the current measurement against a
predefined threshold value. If the measured reading
exceeds the threshold value, an overcurrent fault is
registered.

• PTRC (Functional): The trip conditioning LN is used
to check whether the conditions for the tripping of the
circuit breaker/switches are satisfied.

• CSWI (Functional): The switch control LN which
issues the tripping command to the circuit breaker

• XCBR (Non-functional): The circuit breaker LN
issues the physical tripping signal to the Circuit
Breakers.

As noted earlier, IEC 61850 does not specify how logical
nodes are to be implemented. In this discussion, we have
considered logical nodes as providing a functional API for
cyber-physical entities with the expectation that a
technology appropriate for real-time systems, such as IEC
61499, would be employed. However, there is also
coordination of logical node actions to be considered.
Whether this coordination is realised by a GORITE process
model or through the use of technology such as IEC 61499
will be dependent on performance requirements.

5. Discussion
The substation automation case study has demonstrated that
a key substation automation task (FLISR) is amenable to
design using Janus and IEC 61850. As discussed in section
4, IEC 61850 provides a detailed data model and protocols
that enable IEC 61850 compliant devices (which we refer
to as cyber-physical entities) to inter-operate. However, the
standard does not extend to model and service
implementation and importantly is agnostic with respect to
implementation technology. Consequently, IEC 61850
integrates seamlessly with the top down design approach
that underpins Janus. In contrast, the manufacturing
systems considered in Section 2 were not supported by a
similarly rich (and standardised) domain model.

One of the key benefits of Systems Engineering in general
and Janus in particular, is that its top-down approach can
provide design flexibility, as implementation issues (such
as choice of technology) and detailed design issues (such as
the modelling of logical nodes) can often be deferred to a
subsequent design refinement. For example, in [18], the
decision was made to employ a multi-agent architecture in
which logical nodes were mapped to agents and
implemented as IEC 61499 function blocks. With Janus, it
may well be that such a design decision is made. However,
given the top-down nature of Janus, the decision does not

need to be made early in the design process. Also, by
deferring this particular decision, its applicability can be
constrained to the subsystems/goals that need the
performance and flexibility provided by such an approach.
For other sub-systems/goals that do not have such stringent
requirements, it may be more appropriate to implement
their functionality using high-level languages and agent
frameworks such as GORITE.

The ability of GORITE agents to interact effectively with
devices controlled by IEC 61499 function blocks has been
demonstrated in [9], [10]. As highlighted in the previous
paragraph, this now means that a designer has numerous
options in determining where the boundary between
agents/teams and control actions should be placed.
Technical performance measures will clearly drive this
process, but the top-down nature of Janus encourages the
consideration of design alternatives/technologies at the
sub-system level and lower. An interesting additional
option would be to implement GORITE itself as a function
block. Doing so would enable BDI conformant IEC 61499
agents and teams to be constructed. More importantly, it
would enable the seamless integration of GORITE agents
on both sides of the technology boundary.

6. Conclusion and Future Work
With Janus, the design of agent-based cyber-physical
systems is viewed as an extension of the traditional Systems
Engineering process. This paper has demonstrated that the
adoption of such a design stance is feasible. Furthermore,
key benefits arising from the top down approach which is
central to Systems Engineering (such as late commitment
to technology choices) are preserved.

In terms of future work, Janus needs to be deployed in the
development of a range of representative industrial systems
in order to quantify the benefits of the approach and to
identify general guidelines for agent architecture design.
Also, tool support in a similar form to the Prometheus
Design Tool is required if Janus is to impact on practical
system development.

REFERENCES
[1] P. Leitão, S. Karnouskos, L. Ribeiro, T. Strasser and A. Colombo,

"Smart agents in industrial cyber-physical systems", Proceedings of
the IEEE, vol. 104, pp. 1086-1101, 2016.

[2] D. Jarvis, J. Jarvis, R. Rönnquist and L. Jain, "Multiagent Systems and
Applications" in 2, Springer, 2012.

[3] J. Jarvis, R. Rönnquist, D. McFarlane and L. Jain, "A team-based
approach to robotic assembly cell control", Journal of Network and
Computer Applications, vol. 29, pp. 160-176, 2006.

[4] A. Koestler, "The Ghost in the Machine" in , Arkana, London, 1967.
[5] "IMS International “Project Clusters: Completed. HMS- Phase I and

II: Holonic Manufacturing Systems”", [online] Available:
https://www.ims.org/projects-clusters/.

[6] R. Brennan and D. Norrie, "From FMS to HMS" in Agent Based
Manufacturing. Advances in the Holonic Approach, Springer, 2003.

[7] R. M. Jones and R. E. Wray, "Comparative Analysis of Frameworks
for Knowledge-Intensive Intelligent Agents", AI Magazine, vol. 27,
no. 2, pp. 57-70, 2006.

[8] "AOS Autonomous Decision-Making Software", [online] Available:
http://www.agent-software.com.

[9] A. Kalachev, G. Zhabelova, V. Vyatkin, D. Jarvis and C. Pang,
"Intelligent Mechatronic System with Decentralised Control and
Multi-Agent Planning", Proceedings of IECON 2018, pp. 3126-3133,
2018.

7

[10] D. Jarvis, J. Jarvis, A. Kalachev, G. Zhabelova and V. Vyatkin,
"PROSA/G: An architecture for agent-based manufacturing
execution", Proceedings of ETFA 2018, pp. 155-160, 2018.

[11] M. Fletcher, D. McFarlane, A. Lucas, J. Brusey and D. Jarvis, "The
Cambridge Packing Cell – A Holonic Enterprise
Demonstrator", Lecture Notes in Computer Science, vol. 2691, pp.
533-543, 2003.

[12] M. Fletcher, D. McFarlane, A. Thorne, D. Jarvis and A. Lucas,
"Evaluating a Holonic Packing Cell" in Lecture Notes in Computer
Science, Springer-Verlag, vol. 2744, pp. 246-257, 2004.

[13] L. Padgham and M. Winikoff, "Developing Intelligent Agent
Systems: A Practical Guide" in , John Wiley and Sons, 2004.

[14] L. Padgham, J. Thangarajah and M. Winikoff, "The Prometheus
Design Tool – A Conference Management System Case
Study", Lecture Notes in Computer Science, vol. 4951, pp. 197-211,
2008.

[15] J. Jarvis, D. Jarvis and D. D. McFarlane, "Achieving Holonic Control
– an Incremental Approach", Computers in Industry: Special Issue on
Virtual Enterprise Management, vol. 51, pp. 211-223, 2003.

[16] B. Blanchard and W. Fabrycky, "Systems Engineering and Analysis:
Fifth Edition" in , Pearson, 2011.

[17] "Communication networks and systems for power utility
automation", International Electrotechnical Commission (IEC) Std.,
2010, [online] Available: http://www.iec.ch.

[18] G. Zhabelova and V. Vyatkin, "Multiagent smart grid automation
architecture based on IEC 61850/61499 intelligent logical
nodes", IEEE Transactions on Industrial Electronics, vol. 59, no. 5,
pp. 2351-2362, May 2012.

