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Abstract 
The benefits that arise from the adoption of a systems 
engineering approach to the design of engineered systems 
are well understood and documented. However, with 
software systems, different approaches are required given 
the changeability of requirements and the malleability of 
software. With the design of industrial cyber-physical 
systems, one is confronted with the challenge of designing 
engineered systems that have a significant software 
component. Furthermore, that software component must be 
able to seamlessly interact with both the enterprise's 
business systems and industrial systems. In this paper, we 
present Janus, which together with the GORITE BDI agent 
framework, provides a methodology for the design of agent-
based industrial cyber-physical systems. Central to the 
Janus approach is the development of a logical 
architecture as in traditional systems engineering and then 
the allocation of the logical requirements to a BDI (Belief 
Desire Intention) agent architecture which is derived from 
the physical architecture for the system. Janus has its 
origins in product manufacturing; in this paper, we apply 
it to the problem of Fault Location, Isolation and Service 
Restoration (FLISR) for power substations. 
 
Keywords: cyber-physical systems, multi-agent 
systems, industrial automation, IEC 61850, IEC 
61499 
 

1. INTRODUCTION 
Our interest lies in the development of multi-agent 
architectures and frameworks that can be deployed at all 
levels of an industrial enterprise. However as noted in [1], 
the lack of design methodologies and software frameworks 
that directly support the development of agent-based 

applications is limiting the uptake of agent technology in 
the industry. 

Central to the operations of industrial enterprises are the 
physical systems that produce the product or generate the 
service that the enterprise provides. These physical systems 
need to interact with the supporting business systems, such 
as order management, where changes in customer orders 
impact on production and production disruptions can 
impact on customer orders. Agent technology provides an 
attractive means to deliver the required integration, but 
more importantly, to provide the flexibility to handle 
change both at the business level and at the production 
level. However, how should agent-enabled systems be 
designed? In answer to this question, we observe that agent-
based production systems are amenable to design using 
standard Systems Engineering practices if: 

1. Functional decomposition and analysis is 
reformulated as goal decomposition and analysis 

2. Agents and teams of agents are mapped to the 
systems, subsystems and leaf nodes of the physical 
architecture 

3. Functional allocation is reformulated as goal 
allocation to the agent/teams of agents identified in 2. 

The resulting design methodology is called Janus and is 
described in Section 3. However, its efficacy will be greatly 
improved if the goal allocation process can occur in such a 
way that executable agent behaviours are generated, rather 
than paper-based specifications as in traditional Systems 
Engineering. In this regard, Janus is intended to be used in 
conjunction with the GORITE BDI framework [2]. Janus 
draws from various sources and case studies in the domain 
of agent-based manufacturing; this background material 
forms Section 2 and Janus is presented in Section 3. 
In section 4, the applicability of Janus to a quite different 
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cyber-physical application, namely power substation 
automation, is examined; the case study is then discussed 
in Section 5. Concluding remarks are provided in Section 
6. 
 

2. Background 
Central to Janus is the alignment of the logical (goal) 
architecture with the agent architecture and the alignment 
of the agent architecture with the physical architecture. The 
latter mapping implies an agent architecture in which teams 
of agents are explicitly represented and correspond to 
systems and/or subsystems. Individual agents in turn map 
to subsystem components. For example, in [3], the cell is 
the team/system and its constituent machines are the 
agents/components. Such a modelling perspective fosters 
reusability, as each entity, be it a system, subsystem or 
component is an entity in its own right as well as potentially 
being a component in a larger system. This duality of the 
system/sub-system relationship was first documented by 
Koestler [4] within the context of biological and social 
systems. Koestler used the so-called Janus effect as a 
metaphor for describing this dichotomy: 

"like the Roman god Janus, members of a hierarchy have 
two faces looking in opposite directions" 

In other words, these members can be thought of as self-
contained wholes looking downwards to the subordinate 
level and/or as dependent parts looking upward. Koestler 
coined the terms holon to refer to system/subsystem and 
holarchy to describe the organisational structure formed by 
holons. His work subsequently provided the conceptual 
basis for the Holonic Manufacturing Systems (HMS) 
project [5]. However, as was noted in [6], the HMS Project 
focused on the concept of a holon as a distinct cyber-
physical entity and not on the concept of holarchy. 

In keeping with the prevailing view of the multi-agent 
systems community, holarchies were viewed as dynamic 
constructs formed in response to a need to achieve 
particular goals. However, the dynamism extended only to 
holarchy formation (determining the structure of a team of 
holons that could achieve a particular goal) and not to 
actual team plan formation. While in many situations, 
dynamic planning is essential, the success of the Belief-
Desire-Intention (BDI) model of agency [7] has 
demonstrated that in many applications it is not. Rather, it 
is often the case that providing an agent with the ability to 
choose between different predefined courses of action to 
achieve a particular goal is sufficient. Nonetheless, the 
HMS project did not embrace the BDI model, preferring to 
leave plan definition and execution as implementation 
concerns. Furthermore, while the achievement of complex 
goals often requires dynamic team formation, such team 
formation generally occurs within an existing 
organisational structure, such as a factory which has been 
organised into manufacturing cells Neither the HMS 
Project nor the BDI frameworks of the time addressed this 
issue and the top-down approach to team formation that it 
engenders. 

Since the completion of the HMS Project, the concept of 
holarchy has been captured in the BDI agent frameworks 

JACK Teams [8] and GORITE [2], developed by 
Rönnquist. In these frameworks, 

4. a holarchy is mapped to a hierarchical structuring of 
teams, sub-teams and individual agents 

5. as with an individual agent, an agent team has its own 
beliefs, desires and intentions 

6. team behaviour is specified in terms of roles (defined 
as collections of related goals) 

7. team behaviour is realised by selecting team members 
that are able to perform the roles required by the 
behaviour. 

Both JACK Teams and GORITE have been successfully 
employed in the development of agent-based execution 
systems for manufacturing cells [3], [9], [10]. In all cases, 
teams of agents were employed, with individual agents 
mapped to PLC controlled machines/devices (IEC 61131 
in [3]; IEC 61499 in [9], [10]). Additionally, a holarchic 
design using JACK Teams was developed for the 
Cambridge Holonic Enterprise Demonstrator [11] but was 
ultimately implemented using JACK [8] because of 
schedule pressures [12]. 

While the BDI systems implemented above embodied the 
holarchic concept espoused by Koestler, they were 
developed in the absence of any explicit design 
methodology. In this regard, note that while the Prometheus 
methodology [13] and its associated design tool [14] haves 
been widely used in the development of BDI agent 
applications, Prometheus does not support agent teams. 
Furthermore, while the design tool has code generation 
capabilities, code is restricted to the proprietary JACK 
framework. Consequently, it was decided to formulate a 
systematic design methodology called Janus which is 
aligned with the open source GORITE BDI framework. 
The formulation of Janus has been informed by reflection 
on the experiences gained through the development of 
execution systems developed using JACK, JACK Teams 
and GORITE and from the HMS industry testbeds, in 
particular [15]. 

In traditional systems engineering [16], three design phases 
are enunciated – Conceptual Design, Preliminary Design 
and Detailed Design and Development. In the first of these 
phases, business needs and system requirements are 
identified and a logical architecture is constructed through 
a process of functional decomposition and analysis. In the 
second phase a candidate physical architecture is identified 
at the subsystem level and requirements embodied in the 
logical architecture are refined and then allocated to 
subsystems, taking into account the technical performance 
measures associated with each requirement. Further 
refinement of both the logical and physical architectures to 
the component level then occurs in the final design phase, 
resulting in a fully specified physical architecture. Note that 
while design proceeds in a top-down manner, it will often 
be the case that the physical architecture will be constrained 
by the nature of the system, as with factories that employ 
manufacturing cells and other machine aggregations. This 
is also the case with power substations, as will be seen 
in Section 4. Also, as the design process progresses, there 
will be a need for specialist engineering and design input. 
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These inputs will be application specific, so consequently 
are out of scope for Janus. Rather, Janus in its current form 
focuses on the agent architecture and its relationship with 
both the logical architecture and the physical architecture. 
 

3. The Agent Architecture 
As noted in [6], a cyber-physical agent can be 
conceptualised as having a behaviour part and an 
embodiment part. In Janus, this conceptualisation is applied 
at the architectural level with the agent architecture being 
mapped to both the physical architecture (embodiment) and 
the logical architecture (behaviour). In terms of the physical 
architecture/agent architecture mapping, in Janus, the 
initial mapping is 1-1, with systems/sub-systems mapping 
to teams of agents and devices/machines mapping to 
agents. Behaviours/requirements in the logical architecture 
are then allocated to teams/agents in the agent architecture. 
However, in order for a cyber-physical element to exhibit 
autonomy and thereby provide the flexibility that autonomy 
entails, Janus defines behaviour in terms of goals, rather 
than functions. Nonetheless, system goals can be 
decomposed in a manner analogous to functional 
decomposition. While goals and functions may appear to 
be similar, as evidenced by the goal decompositions 
presented in [2], a key point of differentiation is that goals 
embody choice – when a goal achievement is delegated to 
an entity (either an agent or a team of agents), the entity 
chooses the way in which the goal is achieved depending 
on the current situational context. 

With Janus, the analogy with the traditional functional 
analysis and allocation process, which is central to systems 
engineering design, extends beyond decomposition. A key 
tool in functional analysis is the Functional Flow Block 
Diagram (FFBD) which details the sequencing of actions 
(functions) [16]. In an FFBD, functions are represented as 
behaviour nodes called blocks. Control nodes are then 
added to sequence the behaviours. In Systems Engineering, 
FFBDs are used primarily as an aid in function 
decomposition. However, in Janus, process models (the 
goal-based analogue of FFBDs) both control nodes and 
behaviour nodes are modelled as instances of the GORITE 
framework’s Goal class and its sub-classes [2]. Goal-
specific behaviour is provided by overriding the 
Goal.execute() method. Default behaviours are provided 
for all GORITE control goal classes, which include classes 
to model choice, sequence, loop and parallel nodes. The 
resulting process models are executable and BDI execution 
semantics are preserved. In this regard, if there are multiple 
plans (models) that could be employed for the achievement 
of a particular goal (the applicable set), if a plan fails, then 
the applicable set can be regenerated and (possibly) another 
plan chosen. 

If a leaf node of an agent’s process model results in physical 
action, interfacing to the corresponding device/machine in 
the physical architecture will be required. In 
manufacturing, this will typically involve interaction with 
PLC-controlled devices. As befitting a top-down design 
methodology grounded in a Systems Engineering 
approach, Janus is neutral with respect to the actual control 
technology (e.g. IEC 61131 or IEC 61499) employed. 

When the design of the basic cyber-physical system is 
complete, goals will have been identified for the primary 
system function (e.g. product generation / service 
provision) and sub-goals allocated to each team/agent in the 
agent architecture. For the leaf nodes, their process models 
will be grounded in physical action. However, for 
intermediate elements (i.e. teams) some or all of its 
elements may not be grounded – a leaf node in a process 
model for a team can be a goal that is expected to be 
achieved by another agent or team. Consequently, there is 
the opportunity for flexibility in terms of how an 
intermediate process model is achieved, as the goals that it 
requires to be achieved by other agents are not bound to 
actual agents in the process model specification. Rather, 
binding (called task team formation in Janus) is a separate 
process that can occur prior to or during process model 
execution. As demonstrated in [2], a task team can be 
automatically reformed if a current task team member fails 
and there is a suitable alternative available. Or in the case 
of [9],[10], if one of the manipulator cylinders fails, then 
operation can continue, but with a reduced task team size 
and functionality. Support for both team formation and 
reformation are provided in the GORITE framework 
classes. 

Process model node behaviours are detailed using the 
GORITE framework classes and Java code, as described 
in [2]. In this regard, note that process model execution in 
GORITE is delegated by the owning team to an executor 
object. This object then traverses the process model graph. 
At each node, it invokes the execute() method of the bound 
goal. Execution is time sliced, so multiple goals can be 
progressed concurrently. Also, when a node is executed, an 
object containing data relating to the process model 
execution is made available to the bound goal, thus 
providing a business process modelling metaphor for goal 
achievement. Such a metaphor is particularly apt for 
product manufacture, where the order being filled can be 
represented in the data context. 
 

4. Power Substation Automation 
As indicated in section I, two common types of industrial 
enterprises are those that produce products and those that 
provide services. Janus was conceived through 
consideration of enterprises that produce manufactured 
products. In this section, we examine its applicability to 
industrial service provision, in particular, power 
distribution at the substation level. 

 
Figure 1. IEC 61850 IED Model [17] 
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As mentioned in section 3, Janus is characterised by a top-
down systems engineering approach where the overall 
system specifications and their interactions are defined first 
(irrespective of the level of decentralization of the system) 
before working "downwards" in the detailed design of the 
sub-systems. This approach is in contrast to the current 
method of engineering substation systems where the design 
approach is very much bottom-up. This is due to the 
vendor-driven nature of the industry where the Protection 
and Control (PAC) functionalities are tightly coupled to the 
availability of the hardware devices. Ideally, the design of 
the substation automation system should be driven by the 
technical requirements for the system based on the need for 
the protection and the control philosophy rather than the 
limitations of the chosen or the installed equipment. 

The IEC community have made significant advances in 
addressing the challenges of system design with the 
introduction of the IEC 61850 standard [17]. This standard 
defines communication protocols for use by intelligent 
devices (IEDs) in power substations, together with an 
abstract data model so that conformant devices are 
interoperable. Of particular interest from a Janus 
perspective is that the data model groups standardised data 
and services into what are called logical nodes (LNs). The 
LN specification defines semantics of real-time and 
nonreal-time data which are exchanged between IEC 61850 
devices (i.e., IEDs). The different elements of the data 
model are hierarchically organized as illustrated in Fig. 1. 
The implementation of LN functionality is not specified by 
IEC 61850 and various technologies can be employed, such 
as IEC 61499, as in [18]. 

In Janus, there are five key steps to the design process: 

1. Goal (requirement) decomposition 

2. Physical architecture specification 

3. Agent team architecture specification 

4. Mapping of the agent team architecture to the physical 
architecture 

5. Allocation of goals to agents and teams 

If a substation is to be designed to be IEC 61850 
conformant, then the standard provides elements (logical 
nodes and logical devices) that can be used as leaf nodes in 
both goal decompositions and physical architecture 
decompositions. Furthermore, an IEC 61850 logical device 
can be viewed as a cyber-physical entity which accesses its 
physical embodiment via logical nodes and interoperates 
with other cyber-physical entities via its containing 
physical device/IED. However, the modelling of non-leaf 
nodes in both the physical and logical (goal) architectures 
is outside the scope of IEC 61850. With Janus, both 
physical and logical architecture design follow normal 
systems engineering practice using a top-down approach 
and hierarchies will be created that are grounded in logical 
devices and logical nodes. Also, the agent architecture 
mirrors the resulting physical architecture, with leaf nodes 
(cyber-physical entities) mapped to agents and non-leaf 
nodes (such as feeders) to teams. 

 
Figure 2. A small distribution utility [18] 

 
Figure 3. The status of fault detection from CB1, ROS11 and 
ROS12 in the presence of a permanent fault at location Load1 

 
Figure 4. Interactions between the CB1, ROS11 and ROS12 
intelligence on locating and isolating the permanent fault 
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Note that a leaf node (i.e. a cyber-physical device) will have 
autonomy with respect to some functions, such as 
protection. However, there are other behaviors such as load  

sharing and Fault Location, Isolation and Service 
Restoration (FLISR) that involve multiple cyber-physical 
entities and are therefore allocated to teams. 

We will now consider how FLISR operates, using the 
simple distribution utility illustrated in Fig. 2. This utility 
consists of three 11kV feeders supplied by three different 
zone substations. The zone substations are isolated from 
each other by TIE switches which are set in the open 
position while the ROS switches are in the closed position. 
This means that each of the substation zones is operating 
independently of each other and are responsible for serving 
their own feeder loads. Each of the switching units is a 
cyber-physical entity in the sense described previously. 

Consider the following scenario. A permanent fault occurs 
on Feeder 1 of Zone substation B at the location of Load 1 
as shown in Fig. 3. This induces a fault current which is 
detected by the cyber-physical entity CB1. Cyber-physical 
entities ROS11 and ROS12 do not detect a fault current 
since they are downstream from the fault location at Load1. 
Sensing the presence of a fault current, CB1’s circuit 
breaker is immediately "opened" and the power supply is 
cut to all loads on Feeder1 (i.e. load2 and load3). 

At this stage, the Feeder1 team (consisting of CB1, ROS12 
and ROS12) does not yet know the exact location of the 
fault. Therefore, the team initiates the fault isolation 
process to isolate the fault from the distribution system. It 
sends query signals to both ROS11 and ROS12 checking to 
see whether a fault current was detected as shown in Fig. 4. 
Based on the reply from ROS11 and ROS12, the team can 
determine the location of the fault. In this scenario, since 
ROS11 and ROS12 did not sense a presence of a fault 
current, the Feeder1 team can determine that the fault 
location is likely to be between CB1 and ROS11. The team 
will then ask ROS11 to open its switch to isolate the fault 
from the rest of the distribution system. 

The last step in the FLISR scheme is service restoration. 
Once the fault location is isolated, alternative supply is 
needed to re-energize Load2 and Load3 respectively. This 
requires a team operating at a higher level than the feeder 
teams (e.g. a substation team), as it needs to maintain 
internal maps of self-restoration routes. Request message 
will then be propagated through the switching units along  

these pre-defined restorative paths as shown in Fig. 6. In 
this scenario, the alternative supply for Load 3 is Zone 
Substation 3 along the restorative path TIE132, ROS32, 
ROS31, CB3. After the restoration request is granted by 
Zone Substation 3, the TIE 132 switch will be closed, 
transferring Load 3 to Zone Substation 3. To restore service 
to Load2, the restoration request is sent via the path 
TIE121, ROS21, CB2. 

To summarize, the FLISR goal can be decomposed as 
follows: 

FLISR 

 fault detection 

  monitor each switch in parallel 

 fault resolution 

  fault isolation 

  fault restoration 

The FLISR goal and the fault detection, fault resolution and 
fault restoration goals are allocated to the substation team. 
Fault isolation goals are allocated to the feeder teams and 
monitor goals are allocated to switch agents. A partial 
mapping (focusing on fault detection) is presented in Fig. 
5. In the diagram, the physical architecture is collapsed into 
two levels and the fault resolution goal is not refined or 
mapped. 

 
Figure 5. Partial mapping of Fault location and isolation agents with respect to physical architecture 

 

Figure 6. Service restoration agent interactions between the 
switching units 
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Note that the FLISR goal "decomposition" is, in fact, a 
process model, as it incorporates both implicit (sequential) 
and explicit (parallel) execution. There is also an 
understanding that sub-goals will be further refined until 
actionable behaviors are reached. For example, the fault 
detection goal could be realized using the following logical 
nodes: 

• TCTR (Non-functional): The current transformer LN 
is used to measure the current at a fixed sampling rate. 

• PIOC (Functional): The overcurrent LN is used to 
compare the current measurement against a 
predefined threshold value. If the measured reading 
exceeds the threshold value, an overcurrent fault is 
registered. 

• PTRC (Functional): The trip conditioning LN is used 
to check whether the conditions for the tripping of the 
circuit breaker/switches are satisfied. 

• CSWI (Functional): The switch control LN which 
issues the tripping command to the circuit breaker 

• XCBR (Non-functional): The circuit breaker LN 
issues the physical tripping signal to the Circuit 
Breakers. 

As noted earlier, IEC 61850 does not specify how logical 
nodes are to be implemented. In this discussion, we have 
considered logical nodes as providing a functional API for 
cyber-physical entities with the expectation that a 
technology appropriate for real-time systems, such as IEC 
61499, would be employed. However, there is also 
coordination of logical node actions to be considered. 
Whether this coordination is realised by a GORITE process 
model or through the use of technology such as IEC 61499 
will be dependent on performance requirements. 
 

5. Discussion 
The substation automation case study has demonstrated that 
a key substation automation task (FLISR) is amenable to 
design using Janus and IEC 61850. As discussed in section 
4, IEC 61850 provides a detailed data model and protocols 
that enable IEC 61850 compliant devices (which we refer 
to as cyber-physical entities) to inter-operate. However, the 
standard does not extend to model and service 
implementation and importantly is agnostic with respect to 
implementation technology. Consequently, IEC 61850 
integrates seamlessly with the top down design approach 
that underpins Janus. In contrast, the manufacturing 
systems considered in Section 2 were not supported by a 
similarly rich (and standardised) domain model. 

One of the key benefits of Systems Engineering in general 
and Janus in particular, is that its top-down approach can 
provide design flexibility, as implementation issues (such 
as choice of technology) and detailed design issues (such as 
the modelling of logical nodes) can often be deferred to a 
subsequent design refinement. For example, in [18], the 
decision was made to employ a multi-agent architecture in 
which logical nodes were mapped to agents and 
implemented as IEC 61499 function blocks. With Janus, it 
may well be that such a design decision is made. However, 
given the top-down nature of Janus, the decision does not 

need to be made early in the design process. Also, by 
deferring this particular decision, its applicability can be 
constrained to the subsystems/goals that need the 
performance and flexibility provided by such an approach. 
For other sub-systems/goals that do not have such stringent 
requirements, it may be more appropriate to implement 
their functionality using high-level languages and agent 
frameworks such as GORITE. 

The ability of GORITE agents to interact effectively with 
devices controlled by IEC 61499 function blocks has been 
demonstrated in [9], [10]. As highlighted in the previous 
paragraph, this now means that a designer has numerous 
options in determining where the boundary between 
agents/teams and control actions should be placed. 
Technical performance measures will clearly drive this 
process, but the top-down nature of Janus encourages the 
consideration of design alternatives/technologies at the 
sub-system level and lower. An interesting additional 
option would be to implement GORITE itself as a function 
block. Doing so would enable BDI conformant IEC 61499 
agents and teams to be constructed. More importantly, it 
would enable the seamless integration of GORITE agents 
on both sides of the technology boundary. 
 

6. Conclusion and Future Work 
With Janus, the design of agent-based cyber-physical 
systems is viewed as an extension of the traditional Systems 
Engineering process. This paper has demonstrated that the 
adoption of such a design stance is feasible. Furthermore, 
key benefits arising from the top down approach which is 
central to Systems Engineering (such as late commitment 
to technology choices) are preserved. 

In terms of future work, Janus needs to be deployed in the 
development of a range of representative industrial systems 
in order to quantify the benefits of the approach and to 
identify general guidelines for agent architecture design. 
Also, tool support in a similar form to the Prometheus 
Design Tool is required if Janus is to impact on practical 
system development. 
 

REFERENCES 
[1] P. Leitão, S. Karnouskos, L. Ribeiro, T. Strasser and A. Colombo, 

"Smart agents in industrial cyber-physical systems", Proceedings of 
the IEEE, vol. 104, pp. 1086-1101, 2016. 

[2] D. Jarvis, J. Jarvis, R. Rönnquist and L. Jain, "Multiagent Systems and 
Applications" in 2, Springer, 2012. 

[3] J. Jarvis, R. Rönnquist, D. McFarlane and L. Jain, "A team-based 
approach to robotic assembly cell control", Journal of Network and 
Computer Applications, vol. 29, pp. 160-176, 2006. 

[4] A. Koestler, "The Ghost in the Machine" in , Arkana, London, 1967. 
[5] "IMS International “Project Clusters: Completed. HMS- Phase I and 

II: Holonic Manufacturing Systems”", [online] Available: 
https://www.ims.org/projects-clusters/. 

[6] R. Brennan and D. Norrie, "From FMS to HMS" in Agent Based 
Manufacturing. Advances in the Holonic Approach, Springer, 2003. 

[7] R. M. Jones and R. E. Wray, "Comparative Analysis of Frameworks 
for Knowledge-Intensive Intelligent Agents", AI Magazine, vol. 27, 
no. 2, pp. 57-70, 2006. 

[8] "AOS Autonomous Decision-Making Software", [online] Available: 
http://www.agent-software.com. 

[9] A. Kalachev, G. Zhabelova, V. Vyatkin, D. Jarvis and C. Pang, 
"Intelligent Mechatronic System with Decentralised Control and 
Multi-Agent Planning", Proceedings of IECON 2018, pp. 3126-3133, 
2018. 



 
7 

[10] D. Jarvis, J. Jarvis, A. Kalachev, G. Zhabelova and V. Vyatkin, 
"PROSA/G: An architecture for agent-based manufacturing 
execution", Proceedings of ETFA 2018, pp. 155-160, 2018. 

[11] M. Fletcher, D. McFarlane, A. Lucas, J. Brusey and D. Jarvis, "The 
Cambridge Packing Cell – A Holonic Enterprise 
Demonstrator", Lecture Notes in Computer Science, vol. 2691, pp. 
533-543, 2003. 

[12] M. Fletcher, D. McFarlane, A. Thorne, D. Jarvis and A. Lucas, 
"Evaluating a Holonic Packing Cell" in Lecture Notes in Computer 
Science, Springer-Verlag, vol. 2744, pp. 246-257, 2004. 

[13] L. Padgham and M. Winikoff, "Developing Intelligent Agent 
Systems: A Practical Guide" in , John Wiley and Sons, 2004. 

[14] L. Padgham, J. Thangarajah and M. Winikoff, "The Prometheus 
Design Tool – A Conference Management System Case 
Study", Lecture Notes in Computer Science, vol. 4951, pp. 197-211, 
2008. 

[15] J. Jarvis, D. Jarvis and D. D. McFarlane, "Achieving Holonic Control 
– an Incremental Approach", Computers in Industry: Special Issue on 
Virtual Enterprise Management, vol. 51, pp. 211-223, 2003. 

[16] B. Blanchard and W. Fabrycky, "Systems Engineering and Analysis: 
Fifth Edition" in , Pearson, 2011. 

[17] "Communication networks and systems for power utility 
automation", International Electrotechnical Commission (IEC) Std., 
2010, [online] Available: http://www.iec.ch. 

[18] G. Zhabelova and V. Vyatkin, "Multiagent smart grid automation 
architecture based on IEC 61850/61499 intelligent logical 
nodes", IEEE Transactions on Industrial Electronics, vol. 59, no. 5, 
pp. 2351-2362, May 2012. 

 
 

 


