

1

Full citation: Sharma, C., Sinha, R. and Leitao, P. (2019) IASelect: Finding Best-fit Agent
Practices in Industrial CPS Using Graph Databases, in Proceedings of the 17th International
Conference on Industrial Informatics (INDIN2019). Helsinki, Finland, IEEE Computer Society
Press, pp.1558-1563. doi: 10.1109/INDIN41052.2019.8972272.

IASelect: Finding Best-fit Agent Practices in Industrial CPS Using Graph

Databases

Chandan Sharma1, Roopak Sinha2, Paulo Leitao3
1&2IT & Software Engineering, Auckland University of Technology, New Zealand

email: chandan.sharma, roopak.sinha@aut.ac.nz
3Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,

Campus de Santa Apolónia, 5300-253 Bragança, Portugal
email: pleitao@ipb.pt

Abstract
The ongoing fourth Industrial Revolution depends mainly
on robust Industrial Cyber-Physical Systems (ICPS). ICPS
includes computing (software and hardware) abilities to
control complex physical processes in distributed
industrial environments. Industrial agents, originating
from the well-established multi-agent systems field, provide
complex and cooperative control mechanisms at the
software level, allowing us to develop larger and more
feature-rich ICPS. The IEEE P2660.1 standardisation
project, "Recommended Practices on Industrial Agents:
Integration of Software Agents and Low Level Automation
Functions" focuses on identifying Industrial Agent
practices that can benefit ICPS systems of the future. A key
problem within this project is identifying the best-fit
industrial agent practices for a given ICPS. This paper
reports on the design and development of a tool to address
this challenge. This tool, called IASelect, is built using
graph databases and provides the ability to flexibly and
visually query a growing repository of industrial agent
practices relevant to ICPS. IASelect includes a front-
end that allows industry practitioners to interactively
identify best-fit practices without having to write manual
queries.

Keywords: cyber physical systems, CPS, industrial
agents, graph database, database queries, interfacing
practices.

1. INTRODUCTION
Industrial Cyber-physical systems (ICPS) are seen as a core
ingredient in the 4th Industrial Revolution [1], which
complemented with emergent ICT technologies, such as
Internet of Things, Big Data, Cloud Computing and Data
Analytics, promotes the deployment of more interoperable,
flexible, responsive and reconfigurable devices and
systems. ICPS contain deep integration of computational
applications with physical automation devices and are
designed as networks of interacting cyber and physical

elements [1][2]–[3]. Each component of an ICPS integrates
its physical hardware function with a software (cyber)
application acting as a virtual representation of its tangible
counterpart.

The Multi-Agent Systems paradigm, derived from
distributed artificial intelligence, promotes distribution,
decentralization, intelligence, autonomy and adaptation,
contributing to achieve flexibility, robustness,
responsiveness and re-configurability [4]. This paradigm
provides a fundamentally different way to design complex
control systems based on the distribution of intelligence
and decentralization of control functions over distributed
autonomous and cooperative entities, called agents. Used
in industrial contexts, agents, or more specifically
Industrial Agents, can help to develop highly adaptive
ICPS. In industrial environments, and aligned with the
ICPS principles, the interconnection of intelligent software
agents with the automation control devices, e.g., robots and
PLCs (Programmable Logic Controllers), assumes a crucial
role. Usually, this interconnection is created in a
proprietary, case-by-case, and ad hoc manner. However,
the use of a standardized way to implement this interface
can help achieve transparency, interoperability, and
scalability.

The IEEE P2660.1 standardization project, "Recommended
Practices on Industrial Agents: Integration of Software
Agents and Low Level Automation Functions", has been
working on a methodology to rank and select best-fit
Industrial Agent practices for the interfacing between
software agents and automation control devices. Previous
work was devoted to identifying the patterns derived from
a survey of existing implementations of industrial
agents [5], and to assess their characteristics, using the
ISO/IEC 25010 standards family as a starting point [6].

This paper describes the design and development of a tool
called IASelect for implementing the methodology to
select recommended interfacing practices. IASelect
uses a graph database to store interfacing practices
templates and their technological instantiations along with
their characterization according to a set of quality criteria.

2

It provides a front-end for users to interactively retrieve the
best interface practice for a particular application scenario.
In particular, the primary contributions of this paper are:

1. The design and development of a graph database to
store the available data on Industrial Agent practices.
This approach provides several benefits including,
better data governance, data visualization, and
interactive querying. A summary of available industrial
agent practices is discussed in Sec. 2 and the design of
the graph database is presented in Sec. 3.

2. The creation of query patterns and templates to allow
industrial practitioners to use and query graph databases
more easily. These patterns allow more flexibility than
more static mechanisms like forms and spreadsheets.
We discuss the design and development of these
patterns in Sec 4.

3. An implementation of the proposed graph database and
query patterns using Neo4j and Java into a tangible tool
called IASelect. This GUI-based tool can be used by
both users and administrators to identify practices
and/or manage the knowledge base. The
implementation is presented in Sec. 4

2. BACKGROUND
Software agents can work with low-level automation
functions in a variety of ways. A survey of commonly-
encountered practices helped the P2660.1 working group to
develop a set of generic interface practices clustered
according to two dimensions, as illustrated in Fig. 1 [7].
Coupling, shown on the X-axis, is dependent on the
integration between high-level control (agents) and low-
level control. Tight coupling indicates a direct and
permanent coupling, as in the use of remote procedure calls.
Loose coupling involves a mediated connection, such as
through a queue. The Y-axis pertains to the location of the
agent. Agents can be on-device, where they run on the same
controller as the low-level functions. Hybrid systems have
agents running externally rather than on the same
controller. The survey carried out by the working group
classified available practices into four primary interface
practices: Tightly Coupled–Hybrid, Tightly Coupled–On-
device, Loosely Coupled–Hybrid and Loosely Coupled–
On-device. Each one of the generic interfacing practices
shown in Fig. 1 can be instantiated using several different
technologies.

Each practice has an associated set of qualities or
characteristics, which make it more suitable for use in
specific contexts. Selecting a best-fit interface practice for
a given system context, therefore, requires identifying these
associated qualities for each practice. The P2660.1 working
group used the comprehensive yet generic set of
characteristics from ISO/IEC 25010 [8], formerly ISO/IEC
9126, as a starting point to differentiate between practices.
The ISO/IEC 25010 standard groups system qualities into
eight characteristics. Each characteristic is then further
separated into multiple sub-characteristics. Subsequently, a
survey was conducted with a team of experts in the domain
to identify qualities that are most relevant to the field [6].
The survey found that testability, availability, time

behavior, interoperability, availability, fault-tolerance and
reusability emerged as the most important characteristics
for the practices. Further work conducted by the working
group showed how specific measures from the standard
could be used to evaluate the practices [9]. In this paper, the
characterization of practices and implementations is
extended into a tool that allows stakeholders, especially
industry experts, to identify best-fit practices through the
qualities that are most desirable in their context.

There are existing tools used for managing and querying
data sets for domains similar to ICPS. For instance, in [10]
authors discuss an approach to store information related to
security standards in relational databases and Structured
Query Language (SQL) is used for data retrieval. In [11],
authors have discussed an approach to store security
requirements in a schema less XML database. However, a
database with no schema based restrictions has higher risk
of data corruption. In [12], authors have presented a tool to
visualize requirements, and Neo4j database has been used
to maintain the graph structure. Similar kind of tools have
also been used in other domains for example in [13] where
authors have proposed a tool for storing chemical
compounds as graphs and graph algorithms are used to
search chemical structures over the database. In [14],
authors have proposed an approach based on graph
databases for genome sequencing. The approaches
discussed so far, except [10] use graph theory concepts to
handle and inquiry data. In this paper, we present a tool that
uses a graph database to store the P2660.1 data set and,
automates the analysis of existing interfacing practices on
user-defined selection criteria.

3. DESIGNING A GRAPH DATABASE
FOR SELECTING INDUSTRIAL AGENT
PRACTICES
As data size increases, managing data with traditional tools
such as spreadsheets becomes a complicated task. Based on
the law of entropy, an increase in data size also means that
over time, disorder in the data set will increase.
Spreadsheets are too cumbersome to maintain, primarily
when shared and used by multiple stakeholders, such as
users and administrators simultaneously. Database
management systems serve as an alternative for organizing
large data sets. Furthermore, they assist in correlating and
analyzing collected data.

Fig. 1. Interface patterns considering interaction mode and
location levels of abstraction. [7]

3

A. Rationale for using Graph Databases
Rational database management systems (RDBMS) are the
most popular tools for managing data. They have proven to
be persistent in providing concurrency control and
integration mechanism for data since 1970s [15]. RDBMS
are highly efficient in handling large data banks. However,
RDBMS have limited ability to capture the overall
semantics of a domain [15], [16]. Moreover, as the number
of relationships between data grows, RDBMS become
inefficient in managing and querying data [17]. On the
other hand, Graph databases (GDBs) are gaining wide
acceptance in the industry due to there application in
domains that deal with the querying and analysis of
connected data [15], [17]–[21]. A graph database contains
nodes and edges where nodes represent the entities and
edges represent relationships between the entities [17],
[18]. Together, nodes and edges capture the overall
semantics of the domain. The resulting structure is more
straightforward and is at the same time more expressive
than those produced by RDBMS and Not Only SQL (NO-
SQL) databases such as wide-column stores, document
stores and key-value stores [22], [23].

For searching data, a spreadsheet or a RDBMS performs a
search and match operation. This operation represents a
relational join between different tables to calculate
relationships at the time when a query is running. This
operation tends to be computationally expensive in highly
interconnected datasets. Graph databases are more efficient
in such cases as the relationships between data are created
at database creation stage and are stored inside the
database. Hence, the overhead of calculating relationships
at the time when data is being retrieved from the database
is minimized in graph databases.

Graph database solutions such as Neo4j are based on the
property graph data model [15], [19]. A property graph data
model is more expressive than other graph data models,
such as the resource description framework (RDF) [24]. A
property graph stores information inside nodes and edges
as key-value pairs which means that information can be
embedded inside relationships which is an advantage over
the RDF data model.

Another advantage of using graph databases is that they
scale well. A property graph data model supports
multigraphs where two nodes can be connected via multiple
edges with each edge containing separate information about
the relationship between the two nodes. Adding more
information, therefore, does not require a refactoring or
restructuring of the database. Current graph database
solutions such as Neo4j are schema optional [24], which
means that the graph database can easily accommodate any
structural changes. While there are higher chances of data
corruption, this risk can be mitigated by enforcing integrity
constraints and writing additional logic in a programming
language like Java or Python. The use of such integrity

constraints at the database creation stage ensures data
integrity and data consistency.

B. A Graph Database for Industrial Agent practices
The P2660.1 data set relates each interfacing practice to a
score for specific system qualities, some of which come
from ISO/IEC 25010. Table I shows the list of these
qualities. This mapping was represented as a two-
dimensional adjacency matrix where each mapping
between a practice and a sub-characteristic was assigned a
value, called its weight. The adjacency matrix can be
visualized as a graph where interfacing practice and sub-
characteristics are represented as nodes. Furthermore, the
edge between a practice and a sub-characteristic is labeled
with the appropriate score for that relationship.

1) Graph Schema for P2660.1 data set: Creating a graph
database requires information about how data can be
connected and structure. This information is called a graph
schema. A graph schema provides an general view of the
entire database by capturing its topology. Intuitively, nodes
and edges of the graph schema represent the node, and edge
types of the graph database. Node and edge types also assist
in grouping together the nodes and edges of the graph
database later for searching and visualization.

Fig. 2 shows the graph schema constructed using the
P2660.1 data set. The schema is a labeled directed graph
where the node types represent the relevant characteristics
from Table I, as well as the two possible location levels
(OnDevice and Hybrid). The graph schema allows storing
the weights on edges that reflect the scores as per the
P2660.1 data set. The direction of an edges shows that there
exists a weighted mapping from a practice to a
characteristic. For example, in the graph schema in Fig. 2

TABLE I. SYSTEM QUALITIES MAPPED IN THE P2660.1 DATA SET

Fig. 2. Graph Schema for storing information about practices

Fig. 3. Sample Graph Database representation of P2660.1 data
set

4

there is an outgoing edge from hybrid practice and an
incoming edge to maintenance.

2) A Graph Database for the P2660.1 data set: A graph
database (GDB) is instantiated from its graph schema. Fig.
3 represents the graph database for the P2660.1 data set,
instantiated from the graph schema in Fig. 2. Information
related to nodes and edges of the graph database is
contained as attributes of these elements and are stored as
key-value pairs. For example, the node with name OT : 1
represents a OnDevice tightly technique where the
attributes key apiClient has a value java assigned to it.
Similarly, there are edges between nodes where attribute
key weight has a value assigned to it.

C. Querying the P2660.1 Graph Database
In this research, we are using Neo4j as a graph database for
storing data. To retrieve data from the database we need to
define the kind of data we want to extract. Neo4j provides
a declarative query language called Cypher [24] to retrieve
data from the graph database. Searching a graph database
requires defining a sub-graph as a pattern to look for within
the database. This sub-graph is expressed using a pattern
graph.

A pattern graph assists in defining the sub-graph of interest
so that similarly structured data can be extracted from the
database. Structurally, a pattern graph is expressed as a sub-
graph of the graph schema. A pattern matching algorithm
then uses the pattern graph to search for the sub-graph over
the graph database. For example, by referring to the graph
schema as in Fig. 2 one can search for queries such as find
all hybrid techniques for factory automation domain which
have been assigned weight greater than 2. Such a query can
be expressed as a pattern graph in Cypher as follows:
 MATCH(h:Hybrid)-[w:WEIGHT]->(d:Domain)
 WHERE w.value > 2
 AND d.name = "Factory Automation"
 RETURN * [1]

The pattern graph is expressed in the MATCH clause of the
query. A pattern graph consists of node/edge types and
node/edge variables. The node/edge types assist in
specifying the type of data, and the node/edge variables
assist in accessing the node/edge attributes of the graph
database. The MATCH clause uses a pattern matching
algorithm to find all the matching sub-graphs in the graph
database. The sub-graphs are further restricted based on the
filter conditions specified in the WHERE clause. Filter
conditions are set based on the attribute value stored in the
database and are designed using the node/edge variables.
Finally, the RETURN clause outputs the sub-graph shown
in Fig. 4 and marks the end of the query.

4. IMPLEMENTATION
Graph databases are at an early stage of industry-wide
adoption. Moreover, users working in domains such as
cyber-physical systems and multi-agent systems may not be
familiar with graph database query languages like Cypher.
Therefore, we have developed a tool IASelect that
assists in querying graph databases without requiring a
working knowledge of Cypher.

A. IASelect-Architecture
IASelect must feature several important qualities. We use
the terminology from ISO/IEC 25010 to list the following
system characteristics:

• Functional suitability: Functionally, IASelect
must provide features such as the ability for
administrators to manage the underlying database,
and the ability for users to query the database to rank
available practices that are relevant to their context.

• Usability: IASelect must be highly usable for both
administrators and users. It must allow users to enter
information interactively and provide appropriate user
error protection, and also present the results clearly.
The tool must be accessible for multiple users from
different sub-domains of industrial control.

• Availability: IASelect must be accessible to
multiple users, possibly present in different locations,
at the same time.

• Portability: IASelect should be independent of the
users’ computer configurations.

Functional suitability is supported through the design of the
database, as described in Sec 3, which allows all desired
features to be included within the tool. The architecture of
IASelect, shown in Fig. 5, supports all other
characteristics.

To achieve high availability, IASelect is based on a
client-server architecture. The client side is a web-page that
can be run on most machines (supporting portability). The
server runs both the Neo4j database and an application to
handle requests from the client. Decoupling the server side
from the client’s machine allows us to (a) allows users to
use IASelect without installing any new software such
as Neo4j, (b) control the server side for both privacy and
performance, and (c) allow for easily modifying or scaling
the server or the client side without affecting the other. The
application server provides a restful web service so that
users can query graph database over the web. Currently, the
server application and database are deployed on a cloud
data center.

Fig. 4. Result of running Query [1] on the Graph Database shown
in Figure 3

Fig. 5. Component Diagram for IASelect

5

For usability, which is a primary characteristic of
IASelect, we embed a Model-View-Controller (MVC)
design pattern inside the client-server architecture. The
client-side web-page contains the View which can change
depending on who the user is. Currently, we support two
views: the administrator view and user view.
Administrators can to update the database while users can
only query it. At the time of writing, only the user view has
been fully integrated into IASelect. The Model and
Controller are java class objects which run on the server
side application. The Controller class object handles the
conversion of requests from a View into Cypher queries,
and the Model class runs the queries on the Neo4j database.
Using the MVC pattern support scalability and enables the
addition of Views (for additional user types) easily. It also
ensures that the code base is cleaner and understandable,
making it easier to maintain.

The client web-page further improves usability by
providing drop-down lists (for reducing user error) for
users to select appropriate context-specific qualities and
metrics. The results returned from the server side
application are then displayed as a ranked list which can
easily be understood.

B. Software Implementation of IASelect
1) Technology Stack: The server side has been
implemented in Java and integrated with Gradle and
Maven. Gradle is used for build automation. We have
added the Spring boot plugin to the Gradle project to
provide an embedded Tomcat server to host the server side
application. We use the Maven libraries to connect the Java
project with the Neo4j database. The database queries
written in Cypher are embedded inside the server side
application’s Java code and are executed through the
appropriate method call. The client side is a web-page that
is built using HTML5, CSS3, and Javascript. We have used
AJAX to communicate between the client and the server
using the XMLHttpRequest.

2) Transaction Sequence: The web-page running on the
client machine is accessed through a URL. The tool assists
users in extracting data from the graph database based on
the specified criteria. IASelect generates a report which
lists all the matching practices and recommends the most
suitable practice. For generating a practice report in
IASelect, users are presented with a web form. The web
form serves as a boilerplate [25] to specify the criteria for
generating a practice report. Boilerplates are semi-
complete query structures that can be completed through
user input.

When a request is submitted, the controller object running
within the server side application receives the request. At
the same time, the application establishes a connection with
the Neo4j database instance using the Bolt protocol. Bolt is
a TCP based network protocol which is integrated into
Neo4j for connecting to other applications. Once the
connection between the database and the model has been
established, the controller passes the request to the model
by calling the appropriate method. The model then requests
a session with the Neo4j database instance and sends a
query written in Cypher to be executed at the Neo4j
database. The request parameters received from the client

are embedded inside the Cypher query. The model then
returns the query results obtained from Neo4j database to
the controller. The controller then passes the result-set to
the server and, finally the server sends the result-set back
to the client in the form of a response. At the client, the
response is further processed and is displayed on the web
page.

3) Tool Usage: The user provides the necessary context-
specific details using the following steps. In the first step, a
user sets the context of search by specifying relevant
qualitative requirements that the Industrial practices must
fulfill. This is done by selecting the sub-characteristics
related to function and domain as listed in Tab. I. The sub-
characteristics defines the application context for the
interface practice. Furthermore, the user also specifies if the
practice should be capable to host agents. For example, as
shown in section 1 of Fig. 6, the context is set for searching
practices for factory automation domain, simulation
function and the practice should be capable to host agents.
A practice report can be generated for other sub-
characteristics of function and domain by using the drop
down menu in the web form.

In the second step, the user sets criteria based on
maintenance and performance efficiency related to the
practices. Users specify which sub-characteristics are
deemed most relevant in their context. For determining the
relevance of sub-characteristics a percentage scale is
assigned on the weights between practices and sub-
characteristics related to maintenance and performance
efficiency. For example, as shown in section 2 of Fig. 6,
scalability, time-behaviour and re-usability are set with
percentage scale of 10, 10 and 80 respectively (the total
must be 100). In this particular scenario, the user clearly
prefers a practice with high level of re-usability, and that
scalability and time-behaviour are of lower relevance.

Finally, based on the context and criteria, a practice report
is generated which displays a list of matching practices with
technique name, API client, channel and final score
assigned to each practice. The final score is calculated by
multiplying cumulative percentage weight for each practice
with a respective average weight between practice and
particular function sub-characteristics. For example, as
shown in section 4 of Fig. 6 technique HL:2 has Apache
Milo, MQTT and, 4.6 as API client, channel and, final
score, respectively. The recommended practice as
highlighted in section 5 of Fig. 6, corresponds to the
practice that got the highest final score, for example, HL:1
is the recommended practice for this scenario. The tool also
provides the list of alternative interface practices sorted
based on the score values.

5. CONCLUSIONS AND FUTURE
DIRECTIONS
This paper presents the construction of a graph database
tool, called IASelect, to allow industry practitioners to
identify best-fit industrial agent practices for industrial
CPS. IASelect is easy to use and, its architecture enables
scalability and flexibility. For instance, the edges of the
graph database currently contain the weights between
practices and sub-characteristics, which makes the database

6

equivalent to a spreadsheet table. In the future, additional
properties can be added to nodes and edges without altering
the topology of the graph. Such scalability and flexibility
are not present in spreadsheets.

The front end of IASelect enables users to query graph
databases without having a working knowledge of query
languages like Cypher. IASelect uses a boilerplates
based approach that enables users to query the graph
database. Furthermore, the boilerplate based approach is
not limited to the P2660.1 data-set and can be extended to
domains other than ICPS. IASelect has been deployed
in the cloud as a restful web service. This enables other
users to access data related to industrial agent practices via
Restful web API. Furthermore, users can integrate the web
service into their own applications. Deploying IASelect
in the cloud also provides advantages specific to cloud
computing technology such as scalability, availability,
reliability and security.

IASelect is an attempt to harness the potential of
property graph databases in the domains such as ICPS.
However, currently we are only partially utilizing the
power of graph database query languages. Graph databases
enable users to identify, search and, extract patterns from
data. Users can specify a sub-graph of interest to search all
similar occurrences of sub-graph in graph database. In
IASelect however, we are searching for very specific
patterns which are tailor made to meet the requirements
from the P2660.1 standard and it cannot yet be used to
search for generic patterns. In the future, IASelect also
needs to feature an administrator view for inserting new
data, and updating and deleting data from the database.

REFERENCES
[1] ACATECH, “Cyber-Physical Systems: Driving force for innovation

in mobility, health, energy and production,” ACATECH – German
National Academy of Science and Engineering, Tech. Rep., Dec.
2011.

[2] E. A. Lee, “Cyber physical systems: Design challenges,” in
Proceedings of the 11th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing
(ISORC). Institute of Electrical & Electronics Engineers (IEEE),
May 2008.

[3] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype
implementations and challenges,” Computers in Industry, vol. 81, pp.
11–25, Sep. 2015.

[4] P. Leitão, “Agent-based distributed manufacturing control: A state-
of-the-art survey,” Engineering Applications of Artificial
Intelligence, vol. 22, no. 7, pp. 979–991, Oct. 2009.

[5] P. Leitão, S. Karnouskos, L. Ribeiro, P. Moutis, J. Barbosa, and T. I.

Strasser, “Common practices for integrating industrial agents and low
level automation functions,” in Proceedings of the 43rd Annual
Conference of the IEEE Industrial Electronics Society (IECON17).
IEEE, 2017, pp. 6665–6670.

[6] S. Karnouskos, R. Sinha, P. Leitão, L. Ribeiro, and T. I. Strasser,
“Assessing the integration of industrial agents and low-level
automation functions with iso 25010,” in Proceedings of the IEEE
16th International Conference on Industrial Informatics (INDIN18).
IEEE, 2018, pp. 61– 66.

[7] P. Leitão, S. Karnouskos, L. Ribeiro, P. Moutis, J. Barbosa, and T. I.
Strasser, “Integration patterns for interfacing software agents with
industrial automation systems,” in Proceedings of the 44th Annual
Conference of the IEEE Industrial Electronics Society (IECON18).
IEEE, 2018, pp. 2908–2913.

[8] Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software
quality models, ISO/IEC Std. 25 010, 2011.

[9] S. Karnouskos, R. Sinha, P. Leitão, L. Ribeiro, and T. I. Strasser, “The
Applicability of ISO/IEC 25023 Measures to the Integration of
Agents and Automation Systems,” in IECON 2018 -44th Annual
Conference of the IEEE Industrial Electronics Society, Oct 2018, pp.
2927–2934.

[10] S. Morimoto, D. Horie, and J. Cheng, “A security requirement
management database based on iso/iec 15408,” in International
Conference on Computational Science and Its Applications.
Springer, 2006, pp. 1–10.

[11] S. Morimoto and J. Cheng, “A security specification library with a
schemaless database,” in International Conference on Computational
Science. Springer, 2007, pp. 890–893.

[12] R. Lööf and K. Pussinen, “Visualisation of requirements and their
relations in embedded systems,” 2014.

[13] R. J. Hall, C. W. Murray, and M. L. Verdonk, “The fragment
network: A chemistry recommendation engine built using a graph
database,” Journal of medicinal chemistry, vol. 60, no. 14, pp. 6440–
6450, 2017.

[14] M. Graves, E. R. Bergeman, and C. B. Lawrence, “Querying a
genome database using graphs,” in Proceedings of the 3th
International Conference on Bioinformatics and Genome Research,
1994.

[15] J. J. Miller, “Graph database applications and concepts with neo4j,”
in Proceedings of the Southern Association for Information Systems
Conference, Atlanta, GA, USA, vol. 2324, 2013, p. 36.

[16] R. Hulland R. King, “Semantic database modeling: Survey,
applications, and research issues,” ACM Computing Surveys (CSUR),
vol. 19, no. 3, pp. 201–260, 1987.

[17] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a data
provenance perspective,” in Proceedings of the 48th annual
Southeast regional conference. ACM, 2010, p. 42.

[18] R. Angles and C. Gutierrez, “Survey of graph database models,”
ACM Computing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[19] R. Angles, “The property graph database model.” in AMW, 2018.
[20] R. Angles, M. Arenas, P. Barcelo ́, A. Hogan, J. L. Reutter, and
D. Vrgoc, “Foundations of modern graph query languages,” CoRR,
abs/1610.06264, 2016.

[21] R. Angles, P. Boncz, J. Larriba-Pey, I. Fundulaki, T. Neumann, O.
Erling, P. Neubauer, N. Martinez-Bazan, V. Kotsev, and I. Toma,
“The linked data benchmark council: a graph and rdf industry
benchmarking effort,” ACM SIGMOD Record, vol. 43, no. 1, pp. 27–
31, 2014.

[22] R. Angles, “A comparison of current graph database models,” in
2012 IEEE 28th International Conference on Data Engineering

Fig. 6. Web form based client interface of IASelect

7

Workshops.
[23] M. A. Rodriguez and P. Neubauer, “The graph traversal pattern,” in

Fig. 6. Web form based client interface of IASelect Graph Data
Management: Techniques and Applications. 2012, pp. 29–46.

[24] I. Robinson, J. Webber, and E. Eifrem, Graph databases. IGI Global,
” O’Reilly Media, Inc.”, 2013.

[25] R. Sinha, S. Patil, C. Pang, V. Vyatkin, and B. Dowdeswell,
“Requirements engineering of industrial automation systems:
Adapting the cesar requirements meta model for safety-critical smart
grid software,” in Industrial Electronics Society, IECON 2015-41st
Annual Conference of the IEEE. IEEE, 2015, pp. 002 172–002 177.

