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Abstract—Increasing electricity production from renewable
energy sources has, by its fluctuating nature, created the need for
more flexible demand side management. How to integrate flexible
demand in the electricity system is an open research question.
We consider the case of procuring the energy needs of a time-
shiftable load through a set of simultaneous second price auctions.
We derive a required condition for optimal bidding strategies.
We then show the following results and bidding strategies under
different market assumptions. For identical uniform auctions
and multiple units of demand, we show that the global optimal
strategy is to bid uniformly across all auctions. For non-identical
auctions and multiple units, we provide a way to find solutions
through a recursive approach and a non-linear solver. We show
that our approach outperforms the literature under higher
uncertainty conditions.

Index Terms—simultaneous auctions, demand side bidding,
time-shiftable loads

I. INTRODUCTION

Climate change is a defining challenge of the 21st century.

To reduce CO2 emissions, massive investments in renewable

energies have been made and will still be required. Since

renewable energy source are often not controlled generators,

electricity production as well as electricity prices are subject

to greater fluctuation than before.

Given the increased fluctuation on the production side, there

has been a greater interest in time shift-able loads on the

demand side [8, 14, 16, 19]. Time-shiftable and other flexible

loads can be found in various domains, such as: data centres

[7], heating systems [10], water distribution systems [15], and

household energy consumption [1]. Attention should be given

to industrial processes, which by their high energy intensity

can achieve a significant impact on the electricity system [3].

In order to take advantage of fluctuating prices on day-ahead

electricity markets, bidding strategies for time shift-able loads

have been investigated. The approach of Mohsenian-Rad [14]

suggests to bid only in a single time slot – the cheapest one

in expectation. We consider a slightly more abstract version

of the problem described in [14], to drive the point that under

the assumption of free disposal participation in all instead of

a single auction provides better results.

This work is part of the research programme Heat and Power Systems at
Industrial Sites and Harbours (HaPSISH) with project number OND1363719,
which is partly financed by the Dutch Research Council (NWO).

We extend the literature as follows. In the general case, we

extend the optimality requirement derived in Gerding et al.

[6] from single unit to multi-unit demand (see Lemma 1 in

Section IV). For the case of identical auctions, we show that

uniform bidding, i.e., not just bidding in a single auction but

participating in all auctions, is the optimal bidding strategy for

uniform distributions (see Theorem 2). For the non-identical

auction setting, in Section IV-C we: 1) provide a way to guide

a non-linear solver to converge more often to a non-trivial

solution; 2) provide a dynamic programming approach to make

the problem computationally feasible; and 3) show that our

approach outperforms solutions found in literature ([14]) under

higher uncertainty conditions.

II. RELATED WORK

Given our abstract procurement problem of a time shift-able

load, we will consider both literature particular to demand side

bidding and literature on bidding strategies more generally.

The problem of demand side bidding in electricity markets

with fixed demand in a single time slot is considered in Liu

and Guan [13], Philpott and Pettersen [17], while Herranz

et al. [11] considers multiple time slots and stochastic demand.

Neither, however, consider any control over the demand they

have to satisfy. In contrast, an electric vehicle aggregator,

as considered in Bessa et al. [4], Vagropoulos and Bakirtzis

[20], can control the charging rate of the electric vehicles

in its fleet. However, this flexibility is in magnitude only

and their bidding strategies, therefore, ignore the flexibility

to shift demand in time. Demand side bidding for time shift-

able loads is considered in Mohsenian-Rad [14]. However, we

will show that their assumption of no free disposal is causing

their solution to be sub-optimal.

The general problem of bidding in simultaneous auctions

is considered in the Trading Agent Competition [9, 21]. The

goal of their agent, however, was to construct bundles of non-

identical items, which were strong complements. Our agent on

the other hand values all electricity equally up to a particular

demand. Bidding in simultaneous auctions with identical items

has been considered in Rothkopf [18]. However, in their work

winning any auction yields some valuation independently of

the other auctions and what connects the auctions is a shared

budget that should not be exceeded. A shift-able load, as
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considered by our work, on the other hand values electricity

only up to its demand and has zero valuation beyond that.

Closest to our work, Gerding et al. [6] develops optimal

bidding strategies for simultaneous auctions of identical items

with a unit demand agent. We extend their work from single

unit to multi unit demand.

III. MODEL

We consider the electricity acquisition problem of a de-

ferrable load, which within a bounded discretized time horizon

has to run for a total of s time units – possibly non-

consecutive. We assume that this deferrable load requires the

same amount of energy for every time step in which it is

switched on. Since, the energy part of the bid does not change,

we will, going forward, only focus on the price bid.

For the given time horizon, there exists a set of electricity

auctions T , which are held in parallel and ahead of time.

For readability reasons, we will use the terms unit(s) and

auction(s) interchangeably, where clear. To win the necessary s
units/auctions to run the load, the agent submits a bid vector

B = (b1, b2, ..., b|T |) over auctions T . ft(τ), supported on

the interval [0, λel], describes the clearing price distribution of

auction t ∈ T , while Ft(τ) is its corresponding cumulative

distribution, with Ft(0) = 0 and Ft(λel) = 1. The agent wins

auction t ∈ T if the submitted bid bt is at least the clearing

price of auction t.
The expected cost the agent incurs when submitting bid B

given a demand of s units and a set of auctions T is composed

of a market cost and a backup cost, see (1).

Cost(B|T, s) = CostM (B|T, s) + CostB(B|T, s) (1)

The expected market cost is the sum of payments to auctions

T . We assume that the agent is a price taker.

Assumption 1 (Price Taker): The agent has no effect on the

clearing price.

The payment per auction t ∈ T is the clearing price of that

auction, conditionalized on the agent winning auction t.

CostM (B|T, s) =
∑
t∈T

∫ bt

0

τft(τ)dτ (2)

The expected backup cost is the payment made to a backup

generator in case of shortfall. If fewer than the desired s units

are acquired, the agent incurs the maximum price of λel. We

are making the assumption of free disposal.

Assumption 2 (Free Disposal): We assume free disposal:

any amount of electricity acquired beyond the agent’s need

can be disposed of at zero cost.

This assumption can be justified by assuming that there

exists an intra-day market at which excess electricity can be

sold at a non-negative price. Any excess energy that has been

obtained from the day-ahead market can be sold on the intra-

day market. We therefore only have to assume that prices on

the intra-day market are not negative. The backup cost is zero

if the agent wins more than s units. For any number of won

auctions j ∈ [0, s − 1] there is a set of subsets w ⊂ T such

that |w| = j. For every subset of auctions w, the probability

that the agent wins the subset and loses all other auctions is∏
t∈w

Ft(bt)
∏

t∈T\w
[1− Ft(bt)]

By summing over all possible sets w ⊂ T s.t. |w| = j, we

obtain the probability of the agent winning j out of auctions

T and can therefore calculate the expected backup cost as

follows

CostB(B|T, s) =
∑
j<s

∑
w⊂T
|w|=j

∏
t∈w

Ft(bt)
∏

t∈T\w
[1− Ft(bt)]

︸ ︷︷ ︸
Prob(x=j|T,B)

(s−j)λel.

(3)

Here Prob(x = j|T,B) represents the probability of winning

j auctions out of the set of T when submitting bid B.

IV. OPTIMAL BIDDING STRATEGIES

We begin by introducing a requirement that any optimal bid

has to satisfy, see Lemma 1, and provide a strategy that always

meets this requirement, see Theorem 1.

Lemma 1 introduces the first optimality condition. We

define B−k as the bid vector B but with the bid for auction

k removed. x is the random variable indicating the number of

auctions the agent won. Intuitively speaking (4) states that the

bid submitted to any particular auction k ∈ T is proportional

to the probability of falling short in the remaining auctions.

Lemma 1: Any optimal bid for s out of T auctions has to

satisfy the requirement in (4).

bk = Prob(x < s|T \ {k}, B−k)λel ∀k ∈ T. (4)

Proofs for Lemmas and Theorems are given in Appendix A.

The most straight-forward bidding strategy is to bid λel

in s auctions and zero in all other auctions. We define this

as a special strategy (Definition 1). Among the Λs-bidding

strategies there exists one that submits λel to the auctions

with the lowest clearing price in expectation. Whenever we

compare any strategy to Λs-bidding strategies, we mean this

lowest price version of it.

Definition 1: Let Λs be the set of bid vectors which consist

of s bids of λel and (|T | − s) bids of zero value.

Next, we will show that any strategy that meets the require-

ment set out in Lemma 1 and wins or loses an auction with

certainty, i.e., Ft(bt) = 1 or Ft(bt) = 0, is a Λs-bidding

strategy (Theorem 1). This means that an optimal bidding

strategy is either a Λs-bidding strategy or participates in all

auctions with some non-zero bid.

Theorem 1: Any bid vector B that satisfies condition (4)

and contains a bid of value λel or 0 is an element of Λs.

A. Comparison to the Literature

Having established our model, condition for optimality and

first bidding strategy, we connect our work to that of [14].

Mohsenian-Rad addresses the energy acquisition problem of a

time-shiftable load that can be run within a single time step.

His approach considers submitting energy-price bid pairs to a
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set of day ahead auctions with a secondary intra-day market

for recourse. Our bids on the other hand only consider the

price and we consider a backup generator instead of a second

stage intra-day market.

However, Theorem 3 in [14] states that the optimal bidding

strategy on the day ahead market is to acquire the entire

energy need from a single auction, i.e., submitting a single

non-zero bid for the entire energy need with a price equal

to the expected price on the intra-day market. In our setting

the intra-day market is replaced with a backup generator of

deterministic cost λel. The expected price on the intra-day

market in [14] can be viewed as our backup generator cost

λel. Translated to our setting, Mohsenian-Rad suggests bidding

λel in a single auction and 0 in all others. We will therefore

associate the strategy suggested by [14] with Λs-bidding as

defined in Definition 1.

B. Identical Auctions

We first consider an identical auctions setting. We will show

that uniform bidding satisfies (4) and provide an algorithm that

can quickly find the correct uniform bid value.

Assumption 3 (Identical Auctions): All auctions are identi-

cal: f(b) = ft(b) ∀t ∈ T.
We define the uniform bidding strategy as a bid B that

submits the same value to all auctions. For this setting, uniform

bidding satisfies (4).

Definition 2 (Uniform Bid): A uniform bid vector B is a

bid vector such that bk = bl ∀k, l ∈ T
Lemma 2: Under the assumption 3 , there exists a unique

uniform bid Bu = (bu, bu, ..., bu) s.t. condition (4) holds.

This uniform bid value, bu, can be found via interval

halving, as the right side of (4) strictly increases while the left

side decreases with increasing bu. bu can quickly be found by

interval halving.
1) Identical Uniform Auctions: Next, we consider the case

where every auction has an identical uniform price distribution.

Assumption 4 (Identical Uniform Auctions): The price of

every auction is uniformly distributed on the interval [0, λel]:
ft(b) =

1
λel

∀t ∈ T.
We will establish uniform bidding as described in Lemma 2 as

the optimal bidding strategy for settings of identical uniform

distributions (Theorem 2). To do so, we first show that uniform

bidding is the only non-Λs bidding strategy that satisfies (4)

(Lemma 3) and that the uniform bid is a local minimum(

Lemma 4). Finally, we compare our results to a strategy

suggested by Mohsenian-Rad [14] and discuss the difference

in modelling assumptions we make.

Lemma 3: Under Assumption 4, any bid B that satisfies

condition (4) is either a uniform bid across all auctions or

B ∈ Λel

Lemma 4: Under Assumption 4, the uniform bid as defined

in Lemma 2 is a local minimum of the cost function.

Theorem 2: Under the assumption of identical uniform

distributions, uniform bidding is a global optimum, i.e., for

any n ≥ 2 and s ∈ [1, n− 1], the following holds

Costu(B
u
n,s|n, s) ≤ Costu(B|n, s) ∀B ∈ [0, λel]

n,

Fig. 1. Cost Difference to Λs-Bidding

where Bu
n,s is the optimal uniform Bid and Costu(B|n, s) is

the cost of submitting bid B in n auctions with uniform price

distributions when requiring s units.

In Theorem 2, we only establish optimality of uniform

bidding, but say nothing yet about the effect of the type of

load on performance.

Figure 1 shows numerical results of uniform bidding for

loads of different demand s. The graph displays the cost

difference between Λs-bidding and optimal uniform bidding.

For all numerical results we assume λel = 1. As was expected

uniform bidding outperforms Λs-bidding for all cases. As

the number of auctions increases uniform bidding further

improves. This positive effect of adding auctions appears to

be stronger for loads that have higher demand, as indicated by

the steeper slope for s = 5 compared to s = 1.

It is noteworthy here that Theorem 2 and Figure 1 seem

to directly contradict some of the results by Mohsenian-Rad

[14]. In particular Theorem 3 in [14] states that the optimal

bidding strategy is to acquire all energy from a single auction

with a bid equal the expected cost on the intra-day market.

In section IV-A we associated this bidding strategy with Λs-

bidding in our setting. To resolve this seeming contradiction,

we need to look towards the assumptions made by Mohsenian-

Rad. In particular the constraint of equation (6) in [14] restricts

the bidding strategy to those that never run the risk of obtaining

more energy than needed, while we assume free disposal of

additional energy, see Assumption 2. Our uniform bidding

strategy runs the risk of – in the worst case – winning all

auctions. Furthermore, Figure 2 shows the expected number

of units the uniform bidding strategy wins. Figure 2 indicates

that we not only run the risk of winning more units than

necessary but that for most cases we expect to obtain more

units than demanded. This over-consumption can be explained

by the backup cost being weakly larger than market clearing

prices. Therefore obtaining too few units causes a relatively

large penalty of λel, while an agent winning too many auctions

pays an often much lower market clearing price.
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Fig. 2. Expected # of units won

C. Non-Identical Auctions

We consider the problem of acquiring s units from a set

of non-identical auctions T , which follow truncated normal

distributions. We assume that the clearing prices for auctions

t ∈ T are distributed according to N0,λel
(μt, σ

2), i.e., the

un-truncated distributions differ in mean but not standard

deviation. Let the set of mean values be μμμ = {μt|t ∈ T}.
Without loss of generality, we assume that μi ≤ μj for i < j.

Given this setting we can rewrite the condition in (4) as a

root finding problem of a system of |T | non-linear equations:

bk − Prob(x < s|T \ {k}, B−k)λel = 0 k ∈ T

For finding a solution, we use the Minpack’s [5] ’hybrj’

method, which is an adaptation of Powell hybrid method.

This method requires us to provide a Jacobian. The diagonal

elements of the Jacobian are Jk,k = 1 and the off-diagonal

elements are Jk,j = fj(bj)Prob(x = s − 1|T \ {j, k})λel.
The entries for the Jacobian only differ by a factor of fk(bk)
from the second derivative and the reader is therefore referred

to Appendix C for a derivation.

This approach exhibits two challenges. First, evaluating

the function and Jacobian requires repeated calculation of a

term of the form Prob(x = i|T \ {k}, B−k), which if done

explicitly is composed of
(|T |−1

i

)
terms. This makes finding

a solution for larger systems computationally infeasible. The

second challenge is convergence to non-trivial solutions. Since

any bid Bs ∈ Λs, which can be constructed without the

need for any solver, satisfies the system of equations, a badly

initialized solver often converges to this solution.

The first challenge is solved by recursion. Let D be a set of

auctions and let BD be a corresponding bid vector. Let d =
|D| be the corresponding auction for bid b|D| – the last bid in

bid vector BD. We calculate Prob(x = i|D,BD) recursively

as follows

Prob(x = i|D,BD) = Fd(bd)Prob(x = i− 1|D\{d}, BD,−d)

+ [1− Fd(bd)]Prob(x = i|D\{d}, BD,−d),

where BD,−d is bid vector BD with the last entry removed.

Note that Fd and [1− Fd(bd)] are the probabilities of winning

and losing auction d, respectively. Going through the recur-

sion, we can calculate Prob(x = i|D,BD) by calculating the

entries in a table of size |D| × i.
The second problem, creating an appropriate initial guess, is

addressed by iteratively solving approximate versions of the

problem. To do so we partition T = �G. For each group

g ∈ G, a group auction price distribution N (μ̄g, σ
2), where

μ̄g is the average mean of the auctions in g, is defined.

To create the approximate problem, we replace the clearing

price distribution ft(τ) for each auction t ∈ T with the

corresponding group auction price distribution N (μ̄g, σ
2). The

partitioning starts as a singleton G = {T}, i.e., all individual

price distributions are replaced with the same group price

distribution. Therefore, the first approximate problem is an

identical auction setting for which we find the uniform bid

as in Section IV-B by interval halving. The grouping is then

refined and a new approximate problem is constructed. The

solution to the prior solution is sorted (to ensure that higher

bids go to cheaper auctions) and used as the initial guess

for the new approximate problem. We refine the grouping of

auctions until every group consists of a single auction at which

point we reached the original problem.

The refinement of the partitioning can be done in one of two

ways. Either, we split every group in two approximately equal

sized subgroups. This means that we require log(|T |) iterations

of refinement to reach the original problem and therefore

add a factor of log(|T |) to the computational complexity.

Alternatively, we increase the number of groups by one every

time we refine the grouping, adding a factor of |T | to the

computational complexity. When increasing the number of

groups, we use k-means clustering on the set of mean values

μμμ to find the grouping.

1) Results and Discussion: We consider the problem of

acquiring a certain number of units from a set of non-identical

auctions, where the clearing prices for auctions t ∈ T are

distributed according to N0,λel
(μt, σ

2). Let μt be drawn from

a uniform distribution on the interval [0, λel].
We first look at the convergence rate. We consider the solver

to have successfully converged, when it finds a non-trivial

solution, i.e., a bid B /∈ Λs that satisfies (4). Figure 3 compares

the convergence success rate of different initializations. The

demand of the agent is set to s = 5. When initialized with a

uniform bid based on the identical auction approximation the

solver virtually never converges. Note that we do not mean that

the solver did not converge but rather that the solver converged

to a Λs-bidding strategy, which can be found easily without

the need of a solver. When increasing the number of groups

by one (k-means Grouping) the convergence rate is similar

to when groups are split in half at every iteration(Grouping).

This more refined increase of groups appears to add little

to the chance of converging to a non-trivial solution, while

adding a factor of |T | instead of log(|T |) to the computational

complexity. Increasing the standard deviation σ from 0.1 to 0.3
and 0.5 improve the chances of the solver converging to a non-
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Fig. 3. Convergence-Rate

Fig. 4. Cost Difference

trivial solution. Similarly, as the number of auctions increases

the success rate of the solver increases. For large number of

auctions and for high uncertainty settings, i.e., σ = 0.3 or

σ = 0.5, we reach a near 100% success rate.

Next, we compare the performance of our approach to the

Λs-bidding, which we associated in Section IV-A to the work

of Mohsenian-Rad. Figure 4 shows the cost difference between

Λs-bidding and the solution provided by our solver approach.

For visual clarity results where the solver did not converge to

B /∈ Λs were omitted. While, under low uncertainty, σ = 0.1,

ΛS is the better choice, as the uncertainty in the prices grows

(σ = 0.3, σ = 0.5) our approach appears to improve. The

solution provided by us further improves as the number of

auctions increases.

V. CONCLUSION AND FUTURE WORK

This paper considered the problem of an interruptible time-

shiftable electric load in acquiring multiple units of electricity

from a set of parallel auctions. We derived a condition for

optimality and established a direct comparison to Mohsenian-

Rad [14]. First, for the identical auction setting, we show

that uniform bidding is a solution that satisfies our optimality

condition. For identical uniform price distributions, we show

that uniform bidding, i.e., participating in all rather than

a single auction, is optimal. In comparing our results to

Mohsenian-Rad [14], we show that assuming free disposal

yields significantly reduced cost.

Second, for non-identical auctions, we use approximate

problem formulations to guide a non-linear-solver and provide

a dynamic programming approach to make solving the set

of non-linear equations computationally feasible. Numerical

results show that under high price uncertainty our approach

again outperforms the literature.

Regarding future work, we would like to extend this line

of research to include budget constraints of the agent. A

second line of extension can be to consider a wider range of

valuation functions that take into account potential secondary

uses of electricity as heat or temporal constraints of industrial

processes.

ACKNOWLEDGMENT
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APPENDIX

A. Proofs
Proof of Lemma 1.

Proof: We set the first derivative of the cost function (1)

equal to zero.

∂Cost(B|T, s)
∂bk

=
∂CostM (B|T, s)

∂bk
+

∂CostB(B|T, s)
∂bk

= 0

(5)

The derivative of the market cost is simply

∂CostM (B|T, s)
∂bk

= fk(bk)bk (6)

For the backup cost, we have to consider the inner sum over

subsets w in (3). We split the sum into the terms for which

k ∈ w, see second line in (7) and into those for which k /∈ w,

see third line in 7.

∂CostB(B|T, s)
∂bk

= fk(bk)

⎡
⎣

∑
j∈[1,s−1]

∑
w⊂T\{k}

s.t.|w|=j−1

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k})
[1− Ft(bt)](s− j)λel

−
∑

j∈[0,s−1]

∑
w⊂T\{k}
s.t.|w|=j

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k})
[1− Ft(bt)]

︸ ︷︷ ︸
Prob(x<s|T\{k},B−k)

(s− j)λel

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

When k ∈ w, second line in (7), we know that |w| ≥ 1 and

therefore the outer sum is over j ∈ [1, s−1]. The derivative of

Fk(bk) is fk(bk). Since k ∈ w, the inner sum then sums over

the subsets of w of size (j−1). When k /∈ w, third line in (7),

we take the derivative of [1 − Fk(bk)] resulting in −fk(bk),
while the outer and inner sum stay unchanged.

Next we combine the terms of the second and third line in

(7) into one summation. To do so, we first extend and shift

the summation in the second line of (7):
∑

j∈[1,s−1]

∑
w⊂T\{k}

s.t.|w|=j−1

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k})
[1− Ft(bt)](s− j)λel.

We extended the summation to iterate over the range [1, s],
which can be done as (s− s)λel = 0. We then shift the index

j by one so that both sums iterate over j ∈ [0, s − 1]. This

only changes the tail of the second line from (s − j)λel to

(s− j−1)λel. These operations alter the second line in (7) to
∑

j∈[0,s−1]

∑
w⊂T\{k}
s.t.|w|=j

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k})
[1− Ft(bt)]

︸ ︷︷ ︸
Prob(x<s|T\{k},B−k)

(s− j − 1)λel

Next, we combine the two terms in (7) to obtain

∂CostB(B|T, s)
∂bk

= −fk(bk)Prob(x < s|T \ {k}, B−k)λel.

(8)

Given (6) and (8) we can rewrite (5) in the following way:

∂Cost(b)

∂bk
= fk(bk) [bk − Prob(x < s|T \ {k}, B−k)λel]

Proof of Theorem 1.
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Proof: Let B = (b1, b2, ..., b|T |) be a bid vector which

satisfies condition (4). Let bi = 0 for some i ∈ T . Since B
satisfies (4), we know that Prob(x < s|T \ {i}, B−i) = 0.

This implies that it is certain that the agent wins s auctions

from T \ {i}, which can only be true if we submit λel to

at least s auctions. However, submitting λel in more than s
auctions cannot satisfy (4) as it would follow that for every

auction k ∈ T the agent wins s auctions from the remaining

T \ {k} auctions with certainty. Therefore Prob(x < s|T \
{k}, B−k) = 0 holds, causing a bid of 0, for every auction

k ∈ T contradicting the previous statement of bidding λel in

more than s auctions. Thus the agent bids λel in exactly s
auctions. By (4) the agent bids 0 in the remaining (|T | − s).
The proof works similarly for bi = λel.

Proof of Lemma 2.

Proof: Given a uniform bid Bu = (bu, bu, ..., bu), the

set of equations in (4) becomes a set of the same equation

and Prob(x < s|T \ {k}, B−k)λel becomes a function of bu.

Therefore, we only need to find the value of bu for which this

one equation holds:

bu = Prob(x < s|T \ {k}, B−k)λel.

As Prob(x < s|T \ {k}, B−k)λel is λel for bu = 0, 0 for

bu = λel and strictly decreasing and continuous in between,

there can only exist one crossover point where bu = Prob(x <
s|T \ {k}, B−k)λel.

Proof of Lemma 2

Proof: Let B be a bid vector that satisfies (4) and let bl
and bm be the bids on auctions l and m, respectively. The

proof will show that either B ∈ Λs or bl = bm. Let B−l,m

be the bid vector B without the bids bl and bm. We assume

B−l,m to be fixed and solve (4)for bl and bm, respectively

(derivation can be found in Appendix B):

bl = Prob(x < s|T \ {l,m}, B−l,m)λel

− Prob(x = s− 1|T \ {l,m}, B−l,m)λelF (bm)

bm = Prob(x < s|T \ {l,m}, B−l,m)λel︸ ︷︷ ︸
a

− Prob(x = s− 1|T \ {l,m}, B−l,m)︸ ︷︷ ︸
c

λelF (bl)

(9)

Given the constants a and c and the fact that F (τ) = τ
λel

, (9)

can be rewritten as follows:

bl = a− cbm

bm = a− cbl

Subtracting the second from the first equation leaves us with

bl−bm = c(bl−bm), which can only be true if bl = bm or c =
1. However, c = 1, i.e., Prob(x = s−1|T \{l,m}, B−l,m) =
1, means winning s − 1 units from auctions T \ {l,m} with

certainty. This can only be true when B ∈ Λs and (bl =
0, bm = λel) or (bl = λel, bm = 0). Therefore either B ∈ Λs

or B is a uniform bid over all auctions.

Proof of Lemma 4

Proof: The condition for a minimum is that the Hessian

matrix M is positive definite[12], i.e., xTMx > 0 ∀x ∈ R
|T |.

Given are the uniform bid Bu and identical uniform price

distributions. The Diagonal elements of the Hessian M , are

identical d, with d = ∂2Cost(b)
(∂bk)2

∣∣∣
Bu

= fk(bu), while all off-

diagonal elements are

p =
∂2Cost(b)

∂bl∂bk

∣∣∣∣
Bu

= fk(bu)fl(bu)Prob(x = s−1|T\{k, l})λel.

A derivation for the second order derivative can be found

in Appendix C. Note that for uniform price distributions

fl(bu)λel = 1 and that for uniform bidding Prob(x =
s− 1|T \ {k, l}) < 1. Therefore d > p.

xTMx =

⎡
⎣∑
t1∈T

⎛
⎝xt1

∑
t2∈T\{t1}

xt2

⎞
⎠
⎤
⎦ p+

∑
t1∈T

x2
t1d

>

⎡
⎣∑
t1∈T

⎛
⎝xt1

∑
t2∈T\{t1}

xt2

⎞
⎠
⎤
⎦ p+

∑
t1∈T

x2
t1p = (xTAx)p.

Matrix A is 1 at every entry, making all rows linearly de-

pendent and therefore A has rank 1 and only one non-zero

eigenvalue[2]. Any eigenvalue, eigenvector (λ, x) pair has to

satisfy Ax = λx, which holds for x = (x1, x1, ..., x1) and

λ = |T | > 0. Since all eigenvalues of A are non-negative, A
is positive semi-definite[2], i.e., xTAx ≥ 0 ∀x ∈ R

|T |, and

therefore xTMx > 0 ∀x ∈ R
|T |.

Proof of Theorem 2

Proof: Given Lemma 3 we know that uniform bidding and

Λs-bidding are the only two strategies satisfying (4). Given

these two options, we only need to show that uniform bidding

is always at least as good as Λs-bidding. We start by showing

that the theorem holds for a more restricted case of demanding

n− 1 units out of n auctions.

Base Case: For n = 2 and s = 1 the probability in (4) is

the probability of losing one of two auctions. The uniform bid

value bu2,1 therefore has to satisfy bu2,1 =
[
1− F (bu2,1)

]
λel =[

1− bu2,1/λel

]
λel, which resolves to bu2,1 = 0.5λel. The ex-

pected cost associated with the uniform bid Bu
2,1 = (bu2,1, b

u
2,1)

is Costu(B
u
2,1|2, 1) = 0.5λel. When bidding B ∈ Λs, the

expected cost per auction won is 0.5λel, while the expected

backup cost is zero, since winning s auctions is guaranteed.

Therefore, Costu(B
λ
n,n−1|n, n− 1) = 0.5(n− 1)λel. For the

case of n = 2 and s = 1, the cost associated with the Λel−Bid

Bλ
2,1 is Costu(B

λ
2,1|2, 1) = 0.5λel – equivalent to the cost of

submitting Bu
2,1.

Inductive Step: Assuming Costu(B
u
n,n−1|n, n − 1) ≤

Costu(B
λ
n,n−1|n, n − 1), we show that Costu(B

u
n+1,n|n +

1, n) ≤ Costu(B
λ
n+1,n|n + 1, n) by constructing B̃n+1,n =

(Bu
n,n−1, λel), i.e., bidding in n auctions according to the

uniform bid Bu
n,n−1 and submitting λel in the last auc-

tion. Since B̃n+1,n wins the last auction with certainty,

F (λel) = 1, Cost(B̃n+1,n|n + 1, n) can be expressed

as Cost
(
B̃n+1,n

∣∣∣n+ 1, n
)

= Costu
(
Bu

n,n−1

∣∣n, n− 1
)
+
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0.5λel. For an equivalent reason, Costu
(
Bλ

n+1,n

∣∣n+ 1, n
)
=

Costu
(
Bλ

n,n−1

∣∣n, n− 1
)
+ 0.5λel. Using the inductive as-

sumption, we get

Costu

(
B̃n+1,n

∣∣∣n+ 1, n
)
≤ Costu

(
Bλ

n+1,n

∣∣n+ 1, n
)
.

(10)

Since by Lemma 3 B̃n+1,n is not a local minimum, its

associated cost has to be strictly larger than the cost of at least

one local minimum, which by (10) cannot be at bid Bλ
n+1,n.

The only alternative according to Lemma 3 is the uniform

bid Bu
n+1,n, which by Lemma 4 is always a local minimum.

Therefore,

Costu
(
Bu

n+1,n

∣∣n+ 1, n
)
< Costu

(
B̃n+1,n

∣∣∣n+ 1, n
)

≤ Costu
(
Bλ

n+1,n

∣∣n+ 1, n
)
.

Having shown that the theorem holds for n − 1 out of n
auctions, we next generalize this result to the setting of s units

out of n auctions. To do so, we introduce B̃n,s = (Bu
s+1,s, 0),

i.e., bidding uniformly as if there only existed s+ 1 auctions

and submitting 0 to all other auctions. Note that adding

auctions in which the agent bids zero has no effect on the

cost, because a bid of zero incurs no market cost and also

does not change the probability of needing the backup genera-

tor. Therefore, Costu

(
B̃n,s

∣∣∣n, s
)
= Costu

(
Bu

s+1,s

∣∣s+ 1, s
)

as well as Costu
(
Bλ

n,s

∣∣n, s) = Costu
(
Bλ

s+1,s

∣∣s+ 1, s
)
.

Since we already established the validity of the theorem for

n− 1 out of n auctions, we know Costu
(
Bu

s+1,s

∣∣s+ 1, s
) ≤

Costu
(
Bλ

s+1,s

∣∣s+ 1, s
)

and using this with the previous two

equalities we get Costu

(
B̃n,s

∣∣∣n, s
)
≤ Costu

(
Bλ

n,s

∣∣n, s) .
Since, B̃n,s is not a local minimum, its associated cost has to

be larger than at least one local minimum and therefore with

the help of the previous equation we know that

Costu
(
Bu

n,s

∣∣n, s) < Costu

(
B̃n,s

∣∣∣n, s
)
≤ Costu

(
Bλ

n,s

∣∣n, s) .

B. Solving for a Pair of Bids

We assume a fixed bid vector B−l,m and try to find the bids

bl and bm such that (4) is satisfied. The procedure is the same

for bl and bm, we will therefore only do it for bl. Recall (4).

bl = Prob(x < s|T \ {l}, B−l)λel

. Winning fewer than s units from T \ {l} is the probability

of winning fewer than s units when losing auction m plus the

probability of winning fewer than s − 1 units when winning

auction m.

bl = F (bm)Prob(x < s|T \ {l,m}, B−l,m)λel

+ [1− F (bm)]Prob(x < s− 1|T \ {l,m}, B−l,m)λel

This can be rewritten as

bl = Prob(x < s|T \ {l,m}, B−l,m)λel

− Prob(x = s− 1|T \ {l,m}, B−l,m)λelF (bm)

C. Second Derivatives

We derive the second derivative for when submitting a

uniform bid that satisfies (4). Recall that the first order

derivative is

∂Cost(b)

∂bk
= fk(bk) [bk − Prob(x < s|T \ {k}, B−k)λel]

Therefore,

∂2Cost

(∂bk)2
=

∂fk(bk)

∂bk

=0︷ ︸︸ ︷
[bk − Prob(x < s|T \ {k}, B−k)λel]

+ fk(bk)
∂

∂bk
[bk − Prob(x < s|T \ {k}, B−k)λel]

Note, that the first term in the above equation is zero because

Bu satisfies (4) and that Prob(x < s|T \ {k}, B−k) is not a

function of bk. Therefore, ∂2Cost
(∂bk)2

∣∣∣
Bu

= fk(bk) Similarly,

∂2Cost

∂bk∂bl
= −fk(bk) ∂

∂bl
Prob(x < s|T \ {k}, B−k)λel (11)

in which Prob(x < s|T \ {k}, B−k) can be expressed more

verbosely as∑
j∈[0,s−1]

∑
w⊂T\{k}
s.t.|w|=j

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k})
[1− Ft(bt)]

The following derivation works similar to what has been done

in the proof for Lemma 1. For the derivative of the above

mentioned term we need to separately consider when l ∈ w
and when l /∈ w. When l ∈ w, we know that |w| > 1, causing

the outer sum to run over the interval [1, s − 1], take the

derivative of Fl(bl) and obtain the following

fl(bl)
∑

j∈[1,s−1]

∑
w⊂T\{k,l}
s.t.|w|=j−1

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k,l})
[1− Ft(bt)].

We shift the outer sum by one resulting in

fl(bl)
∑

j∈[0,s−2]

∑
w⊂T\{k,l}
s.t.|w|=j

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k,l})
[1− Ft(bt)]

︸ ︷︷ ︸
Prob(x<s−1|T\{k,l},B−k,l)

.

(12)

When l /∈ w, the outer sum is not affected and we take the

derivative of [1− Fl(bl)] and therefore obtain

−fl(bl)
∑

j∈[0,s−1]

∑
w⊂T\{k,l}
s.t.|w|=j

∏
t∈w

Ft(bt)
∏

t∈T\(w∪{k,l})
[1− Ft(bt)]

︸ ︷︷ ︸
Prob(x<s|T\{k,l},B−k,l)

.

(13)

Combining (12) and (13) and substituting the term in (11)

we obtain:

∂2Cost

∂bk∂bl
= fk(bk)fl(bl)Prob(x = s− 1|T \ {k, l}, B−k,l)λel.
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