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Abstract—Industry 4.0 describes an adaptive and changeable
production, where its factory cells have to be reconfigured at
very short intervals, e.g. after each workpiece. Furthermore, this
scenario cannot be realized with traditional devices, such as pro-
grammable logic controllers. Here the use of well-proven technolo-
gies of the information technology are conquering the production
hall (IT-OT convergence). Therefore, both virtualization and novel
communication technologies are being introduced in the field of
industrial automation. In addition, these technologies are seen as
the key for facilitating various emerging use cases. However, it is
not yet clear whether each of the dedicated hardware and software
components, which have been developed for specific control tasks
and have performed well over decades, can be upgraded without
major adjustments.

In this paper, we examine the opportunities and challenges of
hardware and operating system-level virtualization based on the
stringent requirements imposed by industrial applications. For
that purpose, benchmarks for different virtualization technologies
are set by determining their computational and networking over-
head, configuration effort, accessibility, scalability, and security.

Index Terms—Smart Manufacturing, Virtualization Technolo-
gies, Container, Virtual Machines, Automation Systems, Network-
ing, Performance Benchmarking, Industrial Security

I . INTRODUCTION

The industrial Internet of Things (IIoT), in conjunction with
industrial cyber-physical systems (ICPSs) are seen as the basis
for the realization of a smart manufacturing, twhich introduces
novel use cases that bring new challenges for both commu-
nication and automation systems. These can be mobility re-
quirements, the application of computing-intensive algorithms,
such as for machine learning (ML) or artificial intelligence
(AI), and a highly flexible reconfiguration of manufacturing
systems or entire factories. Here, a reconfiguration or even
redeployment of industrial automation systems at very short
intervals, e.g. before each workpiece, is conceivable, while
recent industrial installations are typically based on dedicated
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hardware controllers, such as programmable logic controllers
(PLCs), that cannot provide these capabilities [1]. In order to
address these challenges, virtualization is a suitable approach.
The virtualization of industrial automation systems enables the
application of concepts that are already well-known in the field
of information technology (IT). Since most of these concepts
cannot be applied “out of the box”, the question arises how these
concepts can be adopted for industrial purposes.

Furthermore, the convergence between IT and operational
technology (OT), and the connection to the IIoT makes security
an important topic, which until now has not had much relevance
in the industrial communication technology (ICT)[2]. This was
not intended as these systems were inherently secure against
network intrusion, as there were no connections to the Internet
and only few wireless connections. As security mechanisms
should not compromise the performance of the system, in many
cases existing solutions cannot be used. Therefore, security has
to be considered already in an early phase of new installations
and has been a concern in our investigations. In this paper, the
following contributions can be found:

• Identification of challenges and opportunities imposed
by industrial use cases and the most important require-
ments.

• Evaluation of different virtualization technologies and
configurations based on the identified requirements.

Therefore, the paper is structured as follows: Sec. II motivates
our work on this topic, while Sec. III provides insights into chal-
lenges in industrial automation. An overview of virtualization
technologies is given in Sec. IV, followed by a benchmarking
of the proposed technologies and specific configurations (Sec.
V). Finally, a conclusion of the paper is given in Sec. VI.

II . BACKGROUND

In order to allow a smart manufacturing, a multitude of novel
use cases have to be realized. Due to the mobility requirements
of devices and process equipment, the number of wireless
connections between devices in the industrial landscape will
increase rapidly. Therefore, the authors in [3] describe a variety
of emerging use cases that rely on wireless communications.
Here, it must be taken into account that these devices often only
have limited resources available. For instance, if ML, AI, or
advanced control algorithms shall be applied, the computing
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power of these resource constrained devices is not sufficient. To
overcome this issue, the application of computation offloading
is a suitable approach. In this concept, a cloud service performs
the calculation of the complex algorithm and only transfers the
output values to the resource constrained devices [4]. Another
point is the limited battery life time of mobile applications,
such as mobile robots or drones for industrial inspection. If the
complexity of the algorithm to be performed exceeds a certain
level, it is beneficial not to execute it on the mobile device itself,
but to offload it to a cloud instance [5]. Therefore a longer
battery life time of the device and an increase of its availability
and productivity can be achieved.

Another area where the application of virtualization tech-
nologies is advantageous is the virtualization of industrial
automation systems. Here, a number of benefits can be achieved
by applying these approaches. One of these is the access to
high performance computer systems that enable the previously
mentioned gains of computing offloading. On the other hand,
the virtualization of devices and applications offers a further
level of abstraction with which both their flexibility and their
availability can be enhanced. In order to evaluate this, [6] have
evaluated a virtualized PLC based on virtual machines (VMs)
that are running on Windows. By using this setup a variety of
applications can already be realized. However, they limited the
range to applications that do not have stringent requirements
on latency and determinism, the so-called soft real-time (RT)
applications. In this context, the introduction of container-based
virtualization can offer benefits. For this reason, [7] proposes
a container-based architecture for flexible industrial control ap-
plications and provide performance benchmarks for containers
running on a Raspberry Pi 2 with and without additional load.
However, they assume an interval of 1ms for the cyclic execution
of an application, which may be too high for some industrial
applications. Therefore we vary the interval within the limits
of 1ms - 1µs. In addition, [8] investigated how the determinism
of applications running in and outside a container is related to
a given RT priority and measured the handling latency of the
virtual network interface of containers for the standard network
drivers, thus determining the overhead of virtualization on the
network interface. As it can be advantageous for industrial
applications to use a network driver other than the standard one,
we have included all of them in our investigations.

III . INDUSTRIAL AUTOMATION

Very characteristic for industrial applications are the high
requirements on the cycle time, determinism, and availability,
that vary tremendously from applications on the office floor. In
this area, closed loop motion control is the most demanding
use case group [3]. This includes use cases such as machine
tools, packaging, and printing machines, that typically require
a maximum cycle time of 0.5 - 2ms, a synchronicity of 1 - 5µs
and a maximum failure of less than one minute per year.

Therefore, the IEC 61131-3 describes the functionality and
programming of PLCs. PLCs are sophisticated hardware con-
trollers, that usually provide low processing times and a high
availability. In addition to the processing time of the PLC, the
cycle time also includes the duration of the data transmission

from the sensors to the PLC and the reception of the output
values by the actuator. Consequently, the underlying commu-
nication system also has to fulfil these demands. In order to
reliably satisfy the requirements of all use case types, very het-
erogeneous communication protocols, the so-called Industrial
Ethernet (IE) protocols, were developed. These protocols are
typically divided into the following RT classes [9]:

• RT class A: 𝑡cycle<100 ms,
• RT class B: 𝑡cycle<10 ms, and
• RT class C: 𝑡cycle<1 ms.

In particular, protocols targeting RT class C are often not based
on the Internet Protocol (IP) layer, which represents the network
layer (layer 3 (L3)) of the Open Systems Interconnection (OSI)
model, but build directly on top of the Media Access Control
(MAC) layer [9]. This corresponds to the data link layer (layer
2 (L2)) of the OSI model. This method saves the overhead of
UDP/IP or TCP/IP header, which has several advantages. Firstly,
more user data can be transmitted within the same packet size
or the packet size can be reduced. Consequently, the number of
devices can be increased and the data packets can be processed
faster. For this reason, novel communication technologies and
communication protocols such as time-sensitive networking
(TSN) and the Open Platform Communications Unified Archi-
tecture (OPC UA) standard with its L2-based Publish/Subscribe
pattern for RT traffic are also based on these benefits [10]. The
possibility of L2 communication is therefore a prerequisite if
use cases of RT class C are to be addressed with the virtualized
industrial automation system.

In the case of mobile use cases, high demands arise on
wireless communications that cannot be met by state of the art
solutions. Here, 5th generation wireless communication system
(5G) is seen as a highly promising candidate. In order to
integrate 5G in the industrial landscape, [11] proposed a concept
that foresees to present the 5G system to the TSN system like
any other TSN-aware bridge.

With the emerging interconnectivity of OT, the attack surface
is growing as well, requiring security considerations to be part
of the infrastructure design process [3]. In order to evaluate the
security of different network configurations a threat model for a
generalized industrial automation network topology was made
(see Fig. 1). The network consists of three factory halls, a factory
cloud, and a demilitarized zone (DMZ) that are connected over
a router. In the DMZ servers are reachable from the internet and
only have a limited connection to the internal network. In each
factory hall an edge server is located where multiple virtualized
industrial automation systems run on. Within a factory hall all
devices are connected over a L2 bridge. Four types of attackers
are defined depending on their location in the network. As
shown in Fig. 1 the weakest attacker, here defined as D, can
only reach the DMZ of the network from the internet, attacker C
is located in the factory network but on a different subnet. This
attacker can enumerate the network and try to pivot to different
hosts. Attacker B has compromised a virtualized industrial
automation system on the edge server and aims, for example, to
escape the container restrictions and to laterally move to other
hosts. Attacker A has already compromised the edge server and
can, with the respective privileges, control the running container
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Figure 1. Industrial automation network including possible attacker locations on a generalized network threat model.

daemon and therefore change the containers configuration and
connect to them. From here the attacker could steal information,
cause outages (denial of service) or manipulate sensor and
actuator data [12] to damage the machinery and thereby pose
fatal risk to the factory staff.

IV. V IRTUALIZATION CONCEPTS

Bare-Metal Server

Hypervisor

VM

Virtual HW
Guest OS

Bins/Libs

App A

VM

Virtual HW
Guest OS

Bins/Libs

App B

Bare-Metal Server or VM

Host OS

Container

Bins/Libs

App A

Container

Bins/Libs

App B

Docker Engine

Host OS

Figure 2. Comparison of abstraction layers between VMs and containers.

Virtualization refers to the replacement of physical resources
with virtual replicas. In enterprise environments the main
virtualization technology is server virtualization, where tradi-
tionally a software called hypervisor may run multiple virtual
guest machines on the same physical hardware of the host
machine. In the recent decade operating system (OS)-level
virtualization gained momentum in the IT, where only part
of the OS is virtualized, allowing more efficiency and lower

latency through a reduced overhead [13]. Virtualization offers
numerous advantages, starting with the ease of deployment, the
more economically efficient use of physical hardware, and the
improved security enabled by the isolation which comes along
with virtualization. The following will give a brief introduction
to the technologies of VMs and containers and discuss their
respective implications. Note that further, less common virtual-
ization technologies, e.g. micro-virtualization [14], exist but are
not viable for the virtualization in the industrial context.

A. Virtual machine (VM)

Hardware virtualization software, namely hypervisor or vir-
tual machine monitor (VMM) have first been popular in the
1970ies, when it was allowing multiple tenants to share expen-
sive hardware. The hypervisor may run as an application on
top of a running host OS or run on bare-metal with a custom
kernel providing a higher performance. On top of the hypervisor
multiple guest VMs can run in parallel, whereby each VM
can have a different OS and virtual hardware. The hypervisor
translates virtual central processing unit (CPU) instructions to
the underlying hardware. To enforce the VM isolation, privi-
leged instructions are intercepted and their effect is emulated on
the virtual hardware. This instruction set virtualization can be
achieved completely in software where the complete instruction
stream is just-in-time translated, or in hardware, in case the
CPU supports virtualization, where the CPU may take over the
execution of the VM instructions, until a privileged instruction is
tried to be executed, which is then handed over to the hypervisor
[15]. Similarly, memory virtualization can be achieved either in
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software or in hardware. Modern OSs already isolate processes
by default through assigning virtual memory.

B. Container
The term container refers to a virtualized environment on

OS-level which offers similar advantages to VMs regarding
isolation and ease of deployment while costing significantly
less resources, as multiple isolated containers can run directly
on the underlying OS and physical or virtual hardware simul-
taneously with other containers [16]. As can be seen in Fig.
2, an application and its dependencies can be packed into a
container, which is running on a container management software.
The user-interface for containers is provided by the container
manager, offering functionality for building, managing, sharing
and running containers [17]. The system independence and easy
deployment along with container orchestration software, such
as Docker Swarm or Kubernetes (K8s), allows to automate the
management, deployment and scaling of containerized applica-
tions and is therefore popular for running applications in a cloud-
computing infrastructure [16].

In summary, containers offer an efficient and lightweight
virtualization and allow an easy and scalable platform inde-
pendent deployment of server applications and bring up many
novel automation tools assisting the operation, but introduce
complexity and overhead compared to bare-metal, allow only
Linux as a guest system, and lack support for a graphical user
interface (GUI) which some applications may require.

C. Summary
To conclude, containers can compete with VMs by providing

similar features with better performance. Still VMs will not
disappear as they provide functionalities containers can not
such as hosting guests with different OS kernels, offering a
better isolation, in spite of which VM escapes existing, and
supporting applications with GUIs. While these functionalities
are not relevant for most cloud services, the current practice tend
towards containers running on virtualized infrastructure, inside
of VMs. In the long-term containers running on bare-metal are
completely capable of replacing VMs in cloud infrastructure,
also from a security and privacy perspective. Therefore, a vir-
tualization of industrial automation systems based on container
technology is well suited for industrial applications. Boettiger
motivates the usage of Docker to enable reproducible and re-
usable research [18].

V. V IRTUALIZATION IN FUTURE INDUSTRIAL
AUTOMATION SYSTEMS

This section investigates how Docker containers can be used
for industrial applications and compares performance bench-
marks for specific configurations. First, the computational over-
head associated with the use of containers is determined (Sec.
V-A). Therefore, we compare the determinism of an application
running identically in a container, in a VM, and on a bare-
metal server, based on different execution intervals. In addition,
Sec. V-B evaluates the different networking configurations of
a Docker container, and compares several characteristics with
VMs and bare-metal. For all investigations we have used the
equipment listed in Tab. I.

Table I
HARDWARE CONFIGURATIONS

Equipment QTY Specification
Mini PC 2 Intel Core i7-8809G, 2x16 GB DDR4,

Intel i210-AT & i219-LM Gibgabit
NICs, Ubuntu 18.04 LTS 64-bit,
Linux 4.19.103-rt42

Switch 1 8-Port Gigabit Ethernet Switch

A. Computation Performance

This section examines the use of a general purpose server for
industrial applications. Here, latency and determinism are the
main candidates to be analyzed. Therefore, we use Cyclictest1,
a well-known micro-benchmarking software for the verification
of RT characteristics for x86 and x64-based systems and is
also the basis of the investigations in [7], [8]. It determines
the jitter of a periodically executed task. In order to determine
the performance overhead of container and VM virtualization
compared to bare-metal the Cyclictest programm is executed on
one of the mini PCs listed in Tab. I. We decided to use mini
PCs because they are comparable to typical industrial PLCs
(e.g. S7-300 [19] and its successor S7-1500 [20]) in terms of
space consumption and pricing. Therefore, we ran the following
command, where -N prints the result in nanoseconds, -n uses
clock_nanosleep, -p sets the RT priority, -D denotes the
duration of the test, and -i sets the interval of the execu-
tion: cyclictest -N -n -p99 -D10m -iI. Since the
dependency of Cyclictest on the basis of the priorities was
already part of the investigations in [8], we have set the priority
to 99, representing the highest level. In addition, the behavior
for different intervals should be investigated, corresponding to
the cyclic execution of industrial applications. Based on the
requirements of the use cases in Sec. III we will test the behavior
for intervals of 1ms, 100µs, 10µs, and 1µs. The duration of each
test run is set to 10 minutes. In addition, each test run was
performed for the following setups:

• No preemption: in this configuration, the Cyclictest soft-
ware module runs directly on the generic Linux kernel that
was supplied with Ubtunu 18.04 LTS.

• Preemption: in this mode, a RT patch for the Linux kernel
4.19. was applied [21] and the “Fully Preemptible” mode
has been activated [22].

• Container: in this setup, Cyclictest runs inside a
Docker container that has been launched with the
--privileged=true flag.

• Virtual machine: the host PC maintains a kernel-based
virtual machine (KVM), that is also running on Ubuntu
18.04 LTS in combination with the above mentioned Linux
kernel in combination with the RT patch.

For the graphical interpretation of the results, box plots
containing 60,000 samples per data series have been created
(see Fig. 3).

1For further information and download see the following website:
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/
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Figure 3. Readings for the Cyclictest software module running on different
platforms and and at different intervals

By default, 50% of the values are located inside the boxes and
the outliers are those values that exceed ±1.5× 𝐼𝑄𝑅. Assuming
that every second value is close to the median value and the next
value is significantly higher, this could lead to the worst case
scenario where no values are placed between the boxes and the
outliers and therefore only 50% of the samples lie within the
box plots. Since this or similar cases are not sufficient for the
rigorous demands of industrial applications, we have selected
the outliers so that 99.99% of all data points are located within
the box plots.

It turns out that the timing of the VM is significantly worse
than the timing of the other systems. Especially the interval of
1ms shows that the median value is 10 times higher compared
to the others. The median value decreases with higher processor
load, but there are still many outliers in the range of 10 - 100µs.
This confirms the previous investigations, which have shown
that VMs are not suitable for low-latency RT applications due
to the overhead by the additional software stack [13], [23].

Looking at the system with the generic kernel, it can be
seen that the median value of this system is the lowest, i.e. the
majority of the recorded data values is below that of the other
systems. However, if the processor load is increased by reducing
the interval, there are some outliers upwards without the use of
preemption. This corresponds to the assumption that generic
kernels are generally more efficient, but cannot guarantee the
level of determinism expected by industrial applications [24].

Next, the RT kernel running on the bare-metal server and
the deployment of a container should be compared. Here, the
investigations show that there are no significant limitations when
using Docker for OS-level virtualization. In an interval of 1ms
the readings are even slightly lower when running the container
versus using preemption, but the reason for this is probably the

number of samples. Looking at the other intervals, there is a
performance difference of <0.05µs in the median values and
<1µs for the maximum values. This means, there is no significant
performance impact by using a Docker container. These results
comply with the findings in [7], [8].

Another point to consider is the required determinism. If, for
example, a reliability of 99.99%, i.e. a failure of 0.01% of all
values, is sufficient for an application, the use of a generic kernel
can be advantageous as it brings a higher overall efficiency. In
this case, a generic kernel can achieve a jitter of <7µs with a
reliability of 99.99%, while an RT kernel is only able to provide
about <10µs.

B. Networking

The next step is to check the network performance of Docker
containers for different configurations of the network interface.
Furthermore, we assume the following two scenarios:

1) Host-only communication
2) Inter-host communication

In the first scenario, the host-only communication, there are
two applications on a single host server that interact with each
other. This scenario is useful if an industrial automation system
needs to be reconfigured. If, for example, an update of the
configuration, firmware or software is required, it is preferable to
have both applications on the same system so that the migration
between the old and the new application can be triggered
without delay by an additional communication network. In cases,
where a resilient operation of industrial automation systems
is required, however, a redundant instance of the industrial
automation system should be placed on a separate host in
order to maintain operation of the production line in case of
breakdown of the host server. This situation requires inter-host
communication.

To enable one of the major advantages of virtualization
technologies an automated deployment of industrial automation
systems on multiple hosts should be possible. Various orchestra-
tion tools are available for a massive and automated container
deployment. In this context, K8s and Docker Swarm are the
most prominent candidates. Since K8s works on the basis of
proxy servers on IP level and a plain L2 communication is not
envisaged [25], the investigations have been done on the basis of
Docker Swarm. Various settings can be made when configuring
Docker containers and using Docker Swarm. Of particular
interest here are the network drivers. These vary depending on
configuration effort, accessibility, scalability, security level, and
performance. All supported network drivers are listed below:

• None: for this container, networking is disabled. Communi-
cation outside the container is not possible. Therefore this
network driver is not considered further.

• Host: in this configuration all network isolation is deacti-
vated. All containers have direct access to the interfaces of
the host and can communicate with each other as well as
with external devices.

• Bridge: the default network driver. If no driver is specified
when starting a container, it is assigned to this network
type. All containers on the host are connected by a network
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bridge and can communicate. However, inter-host commu-
nication is not foreseen by the default bridge network. This
driver is mainly used for standalone containers.

• Macvlan: macvlan networks allow the assignment of MAC
addresses to containers so that they appear as physical
devices on the network. The Docker daemon forwards the
traffic to containers based on their MAC addresses. This
allows containers that use the macvlan driver to avoid the
routing through the network stack of the Docker host.

• Ipvlan: ipvlan can be compared with the network driver
macvlan and offers a L2 and L3 mode. In contrast to the
network driver macvlan, the endpoints using ipvlan have
the same MAC address.

• Overlay: overlay networks connect the Docker daemons of
multiple hosts and enable the container-to-container com-
munication of multiple hosts. By using overlay networks,
the routing of packets is handled by Docker and makes
routing at OS-level obsolete. For this reason this is the
default network driver for Docker Swarm services.

As already described in Sec. III, the requirements for industrial
use cases are usually expressed by the cycle time, which consists
of the time to exchange the messages and the computing time of
the algorithm. Since this time includes both the reception of the
sensor values and the transmission of the control outputs to the
actuators, the round-trip time (RTT) for the respective network
drivers is determined and compared with bare-metal and VMs.
Once more, box plots with 60,000 data samples per series were
generated for the evaluation of these measurements. Again, the
outliers were defined in such a way that 99.99% of all values are
within the outer limits of the box plot.

Host-only comm. Inter-Host comm.101

102

103

𝑅
𝑇
𝑇

[µ
s]

Bare-Metal VM Host Bridge
Macvlan Ipvlan L2 Ipvlan L3 Overlay

Figure 4. Readings for the measurement of the RTT for for host-only and inter-
host communication

As shown in Fig. 4, VMs perform significantly worse than
the other configurations in both host-only and inter-host tests.

In host-only communication, the median value for the RTT is
about 10 times higher than in all other network configurations.
In addition, the median values for the host, macvlan and ipvlan
configuration differ from the bare-metal system by only 2µs
and 3µs for the host-only measurements and are equal for inter-
host communication. The maximum values for these network
configurations also only vary in the range of 582µs ± 5µs. This
means that selecting these network drivers for the deployment
of a Docker container will not degrade network performance
compared to the use of bare-metal.

Next, looking at the standard drivers for standalone containers
and Docker Swarm clusters using bridge and overlay modes, it
can be seen that these are about 20% slower for both of the
investigated scenarios. From a performance point of view, the
network drivers host, macvlan and ipvlan are preferable, as they
have a very low overhead and therefore no significant effect
regarding the RTT of the communication system.

In addition to performance, other criterions have to be consid-
ered when selecting a suitable virtualization method. These are
the configuration complexity for setting up the respective system
(configuration), which network interfaces are required (network-
ing), whether automated deployment of multiple instances is
possible (scalability), and the system’s vulnerability (security
level), where a threat model for attacker types A, B, C, and D
was introduced in Sec. III. Therefore, Tab. II sums up the key
aspects for each network configuration.

First the bare-metal should be evaluated. Here the perfor-
mance is fine and the applications can directly access the phys-
ical network adapter of the system. Furthermore, this system
allows L2 communication that is required by applications that
belong to RT class C. However, automated provisioning and
configuration is not possible and there is no isolation, so security
concerns are an important factor when using the infrastructure
without virtualization. In terms of network performance and
isolation, VMs behave in the opposite way compared to bare-
metal. Performance is significantly worse compared to all other
systems analyzed, but the security level is higher due to isolation
when using a fully virtualized system. Therefore, VMs can only
be used if performance is not the primary focus.

Next, the different Docker network configurations should be
discussed. In host mode the containers network can be accessed
directly over the host’s adapter, exposing it to everything con-
nected to the host and is therefore comparable to bare-metal.
In terms of performance there is a small overhead given by
the virtualization, but there is no scalability, since this network
driver cannot be used for a Swarm service. In addition, attackers
D and C can connect to the application if it is not authenticated
and attackers A and B can monitor any traffic going over the host
adapter, as host mode effectively lifts the networking isolation
Docker offers by default. From a security perspective, this mode
should only be used when necessary and with trusted services
running on the container.

A Bridge network where the container connects to the host
network over a virtual bridge is enabled by default. Nonetheless
the official Docker documentation discourages from using de-
fault bridges, arguing that every unrelated container without a
specified network communicates over the same bridge and may
perform ARP spoofing or MAC flooding attacks. Assuming
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Table II
COMPARISON OF THE DIFFERENT NETWORK CONFIGURATIONS

Network Config. of Host / Docker Networking Scalability Security Level Performance (RTT)
Config. Host Docker L2 L3 Guest/Host

isolation
Network
isolation

Host-
only

Inter-
Host

Bare-
Metal

Not required — Yes Yes No — No 51µs 522µs

VM Config. of a
Linux bridge
per host

— Yes Yes Yes Yes No 536µs 992µs

Host Not required Not required Yes Yes No No No 53µs 522µs
Bridge Config. of a

Linux bridge
per host

Config. of
Docker
network

Yes Yes Yes, but addi-
tional config.
per Host

No Yes 76µs 600µs

Macvlan Only for Host-
to-Container
comm.

Config. of
Docker
network

Yes Yes Yes, but addi-
tional config.
per Host

Yes No 54µs 520µs

Ipvlan
(L2)

Not required Config. of
Docker
network

No Yes Yes, but addi-
tional config.
per Host

Yes No 55µs 520µs

Ipvlan
(L3)

Not required Config. of
Docker
network

No Yes Yes, but addi-
tional config.
per Host

Yes No 58µs 539µs

Overlay Not required Not required No Yes Yes Yes Yes 71µs 656µs

an isolated user-defined bridge is used, attacker B can only
communicate to the host and over the specified ports, attacker
A has full access to the bridge network. Attacker C and D only
have access to the bridge network over ports forwarded by the
host interface. User-defined bridges also provide a Swarm mode.

As macvlan makes the container appear as a physical device
with an own MAC address, it is well suited for industrial
communication. While a firewall can still restrict access by
attacker D, attacker C can communicate with the device because
the macvlan must be on the same subnet as the host interface.
The traffic between the container and the underlying hosts is
filtered by kernel modules to provide isolation, therefore access
for attacker type A is restricted. Attackers of type B are isolated
from the host but can access other containers macvlan network.
If access by the host should not be allowed, configuration of the
host is not required. For the use in a Docker Swarm cluster, a
configuration on Docker level is also required for this network
driver once per host.

Ipvlan L2 mode is functionally equivalent to the macvlan
bridge mode, with the difference that all containers running on
the same host are assigned the same MAC address. This may be
useful when it is not possible to run the interface in promiscuous
mode, which would be required for macvlan. In addition, certain
network switches have a security feature where a physical
port only transmits packets from one known MAC address to
mitigate adress resolution protocol (ARP) spoofing attacks. In
this case ipvlan is preferred over macvlan as all containers have
the same MAC address and can share the secure port. Also, for
whitelisting base MAC filters ipvlan may be preferred. Ipvlan
L3 mode different subnets and networks can communicate when
the parent interface is the same. Like in macvlan, direct commu-

nication with parent interface is not possible. In ipvlan L3 mode
interfaces do not allow broadcast or multicast traffic, these are
handled by the host. Routing, in contrary to L2 mode, is done
by the parent interface according to the namespace, therefore
L3 mode is better suited for non-trusted environments [26]. If
an application requires L2 communication, and the security
policies allow the assignment of a physical MAC address for
each container, the macvlan network driver should be selected.

Overlay networks are the default network driver when de-
ploying a Docker Swarm service and allow multiple Docker
hosts to connect to a virtual network on top of an existing
network. Therefore, the Docker daemons of each host are con-
figured automatically This avoids misconfiguration, but causes
an overhead that results in a loss of performance compared to
the host, macvlan and ipvlan network drivers. By default, the
traffic is not encrypted and can be seen by attacker type A, B,
and C. Attacker D could also see unencrypted overlay traffic if
two Docker daemons are connected over the internet and passes
attacker D. Encryption can be easily enabled and would restrict
attacker C and D from viewing the data.

C. Summary

The investigations have shown that the use of containers leads
to a better performance compared to VMs in addition to the
increased efficiency. Furthermore, container-based applications
perform only slightly worse than bare-metal applications and
can be used for industrial applications of each of the proposed
RT classes. A look at the computation performance shows that
a Linux RT kernel in combination with Docker can reliably run
the cyclic execution of applications in intervals of 1µs - 1ms
with a jitter of <15µs. Comparing this with the RT kernel without
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using Docker, the maximum jitter is about 1µs lower, which is
almost negligible. From a security perspective, traffic encryption
is recommended, but the non-negligible performance penalty
does not allow network encryption for time-critical applications,
then security must be achieved through a high degree of traffic
isolation and other security measures. Looking deeper into the
networking of each technology, we concluded that the macvlan
network driver is best suited for applications that have high
latency requirements and require L2 and L3 communications,
while the overlay driver should be used when a higher level of
security needs to be achieved and the application can handle
RTTs that are 20% higher than those of other configurations.

VI. CONCLUSION

In this paper, we have examined the possibilities of virtualiza-
tion in the industrial landscape. Performance comparisons for
bare-metal applications, VMs and containers were conducted
and evaluated for industrial needs. Furthermore, the available
network drivers of Docker containers were listed and compared
based on configuration effort, accessibility, scalability, security
level, and performance. Again, the performance for VMs and
applications without virtualization technology was compared.
The analyses indicate that the flexibility gained by virtualization
can be achieved for industrial applications without violating the
stringent RT requirements in the industrial landscape, if Docker
containers with a suitable configuration are used.
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