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Abstract—Controlling complex industrial systems can be a
challenging task as it requires extensive knowledge and skills that
are usually acquired through years of experience. This makes it
difficult to program such expertise into machine algorithms. In
this paper, we present a use case that demonstrates how we built
control algorithms for a CNC machine using historical logging
of observations from experts.

With the advent of digital technologies, machining parts are
now controlled by computer programs that offer high precision
and speed. However, unforeseen scenarios can still arise, which
demand operators’ attention and intervention, even with finely
crafted machine programs. For our experiment, we collected data
from a 5-axis Mazak Integrex i500-series CNC machine over
a month manufacturing multiple instances of the same part.
We collected observational states, which are sensor data that
match the information operators receive and output engagement
feed rates following the operator’s trajectories. Using behavioral
cloning, we built an initial control policy from this data, testing
three families of machine learning models: regression models,
ensemble methods, and deep neural networks. The results showed
that ensemble methods outperformed the baseline model signif-
icantly, proving that they have learned useful control patterns.
The policies also demonstrated that ML models could eliminate
noisy behaviors from operators’ actions. We believe that with
interactive demonstrations in the future, these models have the
potential to fully mature.

Overall, our study demonstrates the feasibility of building
control algorithms for complex industrial systems using historical
expert demonstrations and machine learning techniques.

I. INTRODUCTION

Industry 4.0 is an integral component of the Fourth Indus-
trial Revolution, with a focus on intelligent manufacturing
that improves the relationship between digital technologies
and production systems [1]. The concept originated from
Germany and is expected to revolutionize manufacturing by
increasing productivity and reducing labor and material costs.
Industry 4.0 has delivered significant successes, particularly
in the semiconductor industry and the oil and gas sector [2].
However, Dalenogare et al. [3] pointed out that while IoT
technologies have accelerated product innovation, such as in
additive manufacturing, Big Data and data analysis are still
lagging in generating benefits. This is primarily due to the
lack of knowledge of data analysis in most industrial sectors.

Machining parts is a subtractive manufacturing process of
cutting raw materials into desired shapes and sizes. It is
also a beneficiary of Industry 4.0. Blueprints of machined

parts are created in Computer Aided-Design and Manufac-
turing (CAD/CAM) software and generated into Computer
Numerical Control (CNC) programs that guide machine tools
in producing machine parts with high-precision and high-
speed. Many manufacturing sectors, such as the aerospace and
medical industries, require machining parts rather than mass
production because of the need for high-quality components
[4]. Computer aid allows CNC machining of more complex
customized designs than other mass production methods.
The procedure of CNC machining is illustrated in Figure 1.
Engineers or machinists create the design of machine parts
from users’ requirements. The generated CNC programs are
tested thoroughly in simulation to optimize the toolpath and
avoid any possible conflicts. Operators are then responsible
for transferring the CNC programs to the CNC machine,
loading raw materials; configuring the machine; maintaining
and inspecting the production. Even though a CNC machine is
a well-controlled environment, no raw materials are identical,
nor do cutting tools stay the same throughout the process.
These uncertainty factors are the main reasons why operators
are still needed to monitor machining processes.

Research from Deloitte and The Manufacturing Institute
projects that the US will experience a severe shortage of
trained machine operators in 2025 [5]. This results from
workers retiring due to old age and the cost of training
replacement candidates. The knowledge of how to control
industrial machines’ cutting speed and feed rate is mainly
obtained through experience. When workers are asked to
describe how they intervene during machining processes, they
often say it is due to a feeling that it is appropriate for the
task [6]. Training a CNC machinist takes four to five years
of technical education and on-site training [7]. While it is
challenging for workers to give specific reasoning for their
actions that can be coded into machine programs, machine
learning (ML) can recognize patterns in how expert machinists
operate their machinery from historical logging data.

This paper proposes using imitation learning to learn poli-
cies that represent operator experiences in controlling engage-
ment linear feed rate and engagement spindle velocity speed
rate by training them on historical data of the operator’s
actions. The rest of the paper is structured as follows. Section
II briefs on the background of our project. Section III proposes
using imitation learning for CNC control. Section IV details
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Fig. 1. Production procedure of a CNC machine

the data description and the preparation steps to create train-
able datasets. Section V explores different ML techniques, and
Section VI discusses the results of our study. Lastly, Section
VII concludes our paper.

II. BACKGROUND

As shown in Fig. 1, the information sphere for a production
procedure involves designing blueprints and toolpath for ma-
chine parts. Research in this sphere addresses the challenges
of producing the optimal toolpath in terms of energy consump-
tion, speed, and accuracy ( [8], [9], [10], [11]). Research in
the physical sphere or the shop floor level mainly addresses
machine monitoring which includes tool condition monitoring,
tool wear monitoring, and quality control ( [12], [13], [14]).
Although the use of sensors is optional in the information
sphere [11], sensors are essential for studies in this sphere as
they deal with real-life properties that may not be presented in
the information sphere, such as vibration and temperature. The
value of sensors is, however, heavily dependent on the type of
sensors and the location where they are installed [15]. Dealing
with real-life properties also means the parameter space is
much bigger. Consequently, although the digital twin is a
promising technology for machine monitoring, its development
is still immature as it struggles with creating a high-fidelity
virtual representation of the CNC machine [16]. Thus there
is an increasing trend of ML techniques combined with Big
Data to tackle problems of machine monitoring [15].

Our industrial partner is Mekanisk Service Halden located
in Norway. They are an industrial manufacturing business
that specializes in machining parts using several multi-tasking
Mazak CNC machines. These state-of-the-art machines are
equipped with built-in sensors that generate real-time data,
which the company is interested in exploring for potential busi-
ness opportunities. Along with machine condition monitoring,
they are also keen on optimizing human resources. Therefore,
they intend to develop machine algorithms that can enhance
operators’ productivity by enabling them to monitor multiple
CNC machines simultaneously.

Using real-time data for operational purposes has been
investigated by some studies before. Moreira et al. [14] created

a real-time monitoring and controlling system comprising
of a surface roughness prediction model and a neuro-fuzzy
inference system. Their experiment showed that their system
could achieve better surface quality than the operators could.
Sakarinto et al. [17] proposed a decision support system for
sharing knowledge and expertise between operators. The core
of their expert system lies within the knowledge base which is
manually crafted. Both approaches required expert knowledge
of CNC machinery and did not effectively utilize big data.

III. IMITATION LEARNING FOR INDUSTRIAL MACHINE

Fig. 2. Mazak Integrex i500 control interface. The green box shows
information about the cutter’s positions. The pink box shows information
about different loads on the cutter. Inside the blue box are the knobs for
controlling engagement rates.

Figure 2 shows the interface the operators use to manage the
Mazak machine. The blue box at the bottom left encapsulates
three knobs that can be used to control the engagement rates
(%) for different feed rates. At 100%, the machine runs at
the full speed dictated by the CNC program. There are two
important configurations that operators need to control to
ensure safety:



« Engagement rate of linear feed rate to override the linear
feed rates of x, y, z (Fovr).

« Engagement rate of spindle velocity to override the rotary
velocity of the milling spindle and the turning spindle
(Sovr).

There are several reasons why the operators need to override
them. One reason is surface roughness. If it is too bumpy,
the chuck’s grip might not be sturdy enough to hold the
workpiece when the machine performs high-speed turning. In
the worst case, the workpiece will fly out and damage itself
and the machine. To determine the engagement rate for spindle
velocity, the operators look at different loads on the cutter’s
motors shown in the pink box in Figure 2. Another reason for
adjusting engagement rates is tool wear. In this case, the speed
of the machine is adjusted to ensure the surface quality of the
workpiece. The operators reported that they used the load on
the cutter along the Z-axis to estimate the condition of the
cutter. In addition, the operators also base their decision on
the sound that the machine makes. However, this information
is currently not in our dataset since the Mazak machine does
not have built-in vibration sensors.

Operators can demonstrate how to control complex dynamic
systems such as a CNC machine, but they cannot fully
articulate the specific skills involved. In the context of Industry
4.0, there is abundant logging of observations from opera-
tors making imitation learning best suited for this purpose.
Behavioral cloning is the simplest imitation learning strategy
directly mapping between states and experts’ trajectories [18]
f + Xy — y;. The observational states X; are hypothesized
as the same information that operators have available on the
control interface during the machining process (Fig. 2). A time
delay g is introduced between X; and y;

1) Assuming that the actions are operators’ response to

some previous state due to recognition and physical
manipulation of the controls [19].

Yt = f(X(tfg))

2) Our ML models aim to be a decision support system
for operators or a training tool for novice operators.
The models should be able to look far enough ahead
in the future to allow the operators time to react to the
instructions from the system.
Behavioral cloning can be formulated into a supervised learn-
ing problem by using state-action pairs to train policies. The
mean squared error (MSE) is used as the loss function and
evaluation metric.

1., ..
MSE = E2i=1(yi - yi)2

in which g; is the output from ML model and y; is the
ground truth. To ensure that the models do not rely on a
simple correlation, a naive forecasting model that predicts the
previous engagement rate value (¢t — 1) is used as a baseline
for comparison. It always uses the last observed value as its
output.

Ut = Y1

The policies are applied in the physical sphere of the
production procedure in Fig. 1. Behavioral cloning is effective
under the condition that collected observations fully cover all
experts’ trajectories. In practice, this is rarely the case, thus
making it brittle and prone to distributional shifts between
training and real-life scenarios. In this study, we present the
building of initial behavioral cloning policies as seeds that
can be grown into maturity via a direct expert demonstration
approach in the future. There are two methods: data aggre-
gation and policy aggregation. The learning algorithm will
keep collecting observations of expert demonstrations from
the operating cycle until it reaches maturity. A mixture of
exploration into experiences can be beneficial as imitation
learning rarely exceed the expert capacity that it learns from.

IV. DATASET PREPARATION
A. Data Collection

Mazak Integrex 1500 is a 5-axis CNC machine, whose
coordinates are depicted in Fig. 3. The C-axis allows the chuck
to angle the workpiece. The B-axis allows the cutter to be
angled. In a turning process, the value of the C angle is zero,
while the B angle is zero in a milling process. The (x,y, z)
axes allow linear movement of the cutter.

Fig. 3. 5-axis CNC machine. The five-axis include: linear axes (z,vy, z), C-
axis for workpiece angle, and B-axis for cutter angle

Data was collected for one month. During that time, the
CNC machine mass-produced instances of the same machine
part. Data is retrieved via the MTConnect protocol in XML
format. The data extracting rate from Mazak is 1 Hz when
the machine is idle and a maximum of 4Hz when the machine
is running. Each field in the XML query has its timestamp,
and they are synchronized before being converted into CSV
format for further usage. Missing data are handled by forward-
fill followed by backward-fill.

B. Data Description

There are 127 signals extracted from the XML query in
total. They can be grouped into five categories
o Axes: this category contains information on the servo
motors and spindles, such as position and workload.
o Controller: general information that controls the manu-
facturing is gathered into this category. It includes tool
numbers and execution status.



o Door: normally, the machine is not allowed to run at full
speed while the chamber door is open for safety reasons.
There are two possible values for the door status: CLOSE
and UNLATCHED.

o Systems: this category contains information about elec-
tricity, hydraulic condition, coolant, pneumatic, and lu-
brication.

o Auxiliaries: this category contains information about the
surrounding environment such as room temperature.

o Resources: this category has information about materials
and the operators.

Several signals are either unavailable or irrelevant. Some
signals are directly correlated, such as the relative and absolute
position of x. We have selected a subset of useful signals
listed in Table I. They match the information that operators
can observe on the control interface: Axes-Position signals are
inside the green box; Axes-Feed rates and Axes-Loads signals
are inside the pink box.

A chuck is a device that holds the workpiece in place and
allows it to be rotated. When raw material is launched into
the CNC machine, the chuck state transits from OPEN or
UNLATCH to CLOSED. After the machine part is finished,
the chuck is unlatched to release the workpiece. Therefore,
the Chuck state signal is used to split the data stream into
sessions for each machine part. The Execution signal is used to
determine the operating state of the Mazak machine. Currently,
we are only interested in when Execution is ACTIVE. To
build initial policies, simple scenarios were considered. The
narrowing conditions are

e The ML model is for only one tool that performs one
machinery action. We choose tool ID number 1, which
performs turning. This is the first tool used for each
session. From our observations, we saw that the operators
had to pay the most attention during the initial use of this
tool. This is due to the roughness of the surface of the
raw materials at the start of the machining process.

« We eliminate the sequences in which the tools move to the
next ready position and only use the sequences for cutting
paths. These sequences are transient and could increase
the variance of our dataset. The process is detailed in
Section IV-C

C. Cutting paths

A cutting path is defined as a period starting when the
cutting tools first cut into the workpiece and ending when
the cutting tools lift up and rapidly move to the next cutting
position. When the cutter moves in the air, the load on the
turning spindle significantly reduces toward zero. The task of
identifying abrupt changes in the behavior of a time series
is called change point detection. We used an implementation
of the PELT (Pruned Exact Linear Time) method from the
ruptures library [20]. The PELT algorithm identifies an un-
known number of changing points with the assumption that the
number of change points is linear [21]. The abrupt changes in
turning spindle load can also be caused by arbitrary surfaces.
To distinguish between cutting paths and transient, periods

between change points with a quantile smaller than ten are
classified as transient and are eliminated (Figure 4)
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Fig. 4. The green line visualizes the toolpath on Z-axis. Transient periods are
highlighted as light pink when the cutter quickly moves to the next position
for the cutting path

D. Pre-processing

To get consistent frequency, data is interpolated to a max-
imum 4Hz. Data sequences in which the CNC machine is
not active are dropped out. Experts’ trajectories 7, € R?2
include the engagement rate of linear feed rate Fovr and the
engagement rate of rotary velocity Sovr. In Table I, the signals
used as inputs are denoted with a symbol. Preliminary tests
showed that the rate of change (As; = s; — s¢—1) in signals
adds more information improving the performance of the ML
model. This finding is in line with comments from operators
saying they often observe the changes in the signals. Thirteen
rate-of-change signals were added to the input signals. They
are denoted with an additional symbol. Preliminary tests also
showed that a window size of 40 data points gives enough
information for good prediction without sacrificing the model’s
performance. The observational states X; € RN > is a vector
X = (x4, T4—1, ..., T4—p), Ty 18 @ vector with M = 33 features
and n = 40. g is set at one second or four data points.

Data is standardized by centering around the mean and
scaling with standard deviation.

s—
g

Sscaled =

in which g is mean and o is standard deviation. Stan-
dardization is a common practice in regression problems. It
helps the models to learn quicker and easier. The effects of
standardization vary depending on the learning models. In the
case of neural networks, standardization positions input into
the same scale, thus preventing saturation and speeding up
convergence.

We divided the dataset into training, validation, and test
sets with a ratio of 80-10-10. Cutting paths, in general, are
rougher at the beginning of each session and become smoother
later. The dataset is in chronological order before the split
to guarantee that the rough and smooth cutting paths are all
presented in the three sets.



TABLE I
LIST OF IMPORTANT SENSOR SIGNALS

Category Signal Unit Description
#*X mm
Y mm Linear positions of the cutting tools
Axes - Positions **Z mm
*B degree B angle of the cutting tools
*C degree  C angle of the workpiece
X frt mm/s
Y frt mm/s  Linear feed rate of the cutting tools
Axes - Feed rates *+7, frt mm/s
*#*MS rpm rpm Milling spindle’s rotary velocity
**TS rpm rpm Turning spindle’s rotary velocity
**X load %
*+Y load % Linear load on the cutting tools
Axes - Loads **Z load %
**MS load % Milling spindle’s load
**TS load % Turning spindle’s load
*X temp celsius ~ Temperature of X servo motor
*Y temp celsius  Temperature of Y servo motor
Axes - Temperature *7 temp celsius  Temperature of Z servo motor
*MS temp celsius ~ Temperature of milling spindle motor
*TS temp celsius  Temperature of turning spindle motor
Fovr % Feed rate Override - engagement rate of linear feed rate
Sovr % Spindle speed Override - engagement rate of rotary velocity

Tools number -

Controller Chuck state )

Execution -

ID number of tools in used
Status of the chuck. It has three values CLOSED, UNLATCHED, OPEN
Status of the machine. It has six values ACTIVE, STOPPED, READY, FEED HOLD,

INTERRUPTED, PROGRAM STOPPED

* Input signals
™ Input signals with added rate of change Asy = sy — s¢_1

V. MACHINE LEARNING MODELING

A. ML models

We have investigated three families of ML models:

o Regression model with Support vector machine (SVM)
[22]. SVM is a classical ML method that is still widely
used thanks to its simplicity, reliability, and flexibility.
We use the implementation of SVM from the Sklearn
library [23] that performs a kernel trick with radial basis
function kernel (rbf).

o Ensemble methods are based on the idea that one re-
gressor is weak as it can only capture an aspect of
the problem. Combining many weak regressors makes a
good model that can generalize well. Boosting methods
create sub-models successively, one after another while
bagging methods create sub-models independently. Both
approaches take a majority vote, in the end, [24]. Gradient
boost regressor (GBR) and random forest regressor (RFR)
are two popular representatives of boosting and bagging
methods, respectively. We also use the implementations
from the Sklearn library for the ensemble methods. To
avoid overfitting, both GBR and RFR are limited to depth
ten.

o The family of deep neural networks has gained popularity
in the last decade along with the exponential Big Data and
increasing computational power. Two variations of deep
neural networks are investigated: fully connected deep
networks (DNN) and long-short-term-memory (LSTM).
LSTM is a variation of recurrent neural network [25] -

a variation of deep neural network that works effectively
with time series data. We use the implementation of neu-
ral networks from the Tensorflow framework [26]. Hyper-
parameter search is done with the Hyperband method
from Keras tuner [27]. Hyperband is a random search
method that randomly tries out different configurations
on a specific schedule of iterations per configuration, then
proceeds with the selected candidates for longer runs.

Training and validation sets were used for training deep
neural networks. For the other two families, we applied cross-
validation with nine folds on the combined training and
validation sets. It ensured that each ML model was trained and
validated with 80-10% of the dataset. Finally, performance on
the test set was used as an additional benchmark to evaluate
the generality of the ML models.

B. Results

Fig. 5 shows the results from ML methods with y-axis in
logarithmic scale. The boxes visualize cross-validation results
for SVM, GBR, and RFR models. From top to bottom, the
edges are maximum, 3-quantile, median, 1-quantile, and min-
imum MSE values of the 9-fold. For DNN and LSTM models,
the dots represent MSE values on the validation set. The red
lines illustrate the baseline values. Detailed measurements of
MSE values are listed in Table II.

Overall, the engagement rate of spindle velocity Sovr is
easier to fit than the engagement rate of linear feed rate Fovr
as its MSE values tend to be lower than Fovr’s across all
methods. As the problem is non-linear, a linear model like



TABLE 11
MSE VALUES OBTAINED FROM DIFFERENT MACHINE LEARNING
METHODS. FOR CROSS-VALIDATION, THE VALUES ARE MEDIAN
(2-QUANTILE).

Models Val MSE Test MSE
Fovr Sovr Fovr Sovr

Baseline  0.0096  0.0070 - -
*SVM 0.179 0.018 0.134 0.011
*GBR 0.0057  0.0026  0.0056 0.0024
*RFR 0.0028 0.0022 0.0037 0.0021
DNN 0.096  0.0071 0.098 0.0086
LSTM 0.0090 0.0055 0.0042  0.0045

* Cross validation results

SVM performs poorly. According to Aytekin et al. [28], a
fully connected network can be equivalently represented as
a decision tree. Therefore, the DNN model is outperformed
by the GBR and RFR as they are ensemble methods with
a collection of several sub-decision trees. Only ensemble
methods are able to achieve better performances than the
baseline performances. Among the ensemble methods, RFR
performs better in cross-validation and the test set.
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Fig. 5. Cross validation performances for Fovr signal (a) and Sovr signal (b).
The y-axis is the MSE. Smaller values give better performances. The red line
is the baseline performance from naive forecasting.
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VI. DISCUSSION

The linear feed rates (X frt, Y frt, Z frt) and the spindle
velocity (MS rpm TS rpm) are directly affected by Fovr
and the Sovr respectively. This increases the risk of causal
confusion in which the policies misidentify the effects as the
causes for experts’ action [29]. The delay g we introduced
helps mitigate that risk as the effects of actions at y; would
appear in observational states X; instead of input X(;_.
Ensemble methods beat naive forecasting with a considerable
gap, proving that these models have learned more useful
patterns than the naive baseline.

A residual plot is a tool to evaluate regression models. Fig.
6’s left subplot, and right subplot shows a standardized residual
plot of the RFR’s performance on the test set and the marginal
distribution of the residuals, respectively. In common cases, the
residuals should be scattered around randomly. In this case,
the residuals forming parallel lines can be explained by the
operator’s tendency to use rounded values at multiples of 10
rather than the whole (0-100%) range. As a result, few unique
values of the observations lead to the parallel feature of the
residual plot [30]. The expected regression problem has been
transformed into an ordinal regression problem. This high-
lights one characteristic where human experience and biases
can affect how a problem is solved. The marginal distribution
shows that the residuals were condensed around the zero value.
This can be attributed to the high correlation between the
ground truth and the output predictions. In manufacturing
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settings, the interpretability of models is important to build
trust in the algorithms. This is a weakness for ML models, as
most are still considered black boxes. Although a decision tree
is essentially a set of human-readable rules, it is still tricky
for humans to reason about them. Another way to validate
the ML models is to observe the behavior on the test set.
Fig. 7 investigates the performance of the RFR model in
two scenarios where tool number 1 is used in the turning
process. The operators use the turning spindle load signal to
justify their process interventions. The blue lines in the figure
correspond to the operator’s interventions, while the red lines



are the outputs of the RFR model. It can be seen that the
model has learned to correlate the turning spindle patterns to
appropriate values for the engagement rates. However, Fovr
prediction is more sensitive to changes in the turning spindle
than Sovr. The sudden spikes in the operator’s interventions
can be explained by the operator turning the override knob past
the desired value. The operator then quickly adjusts the knob
to compensate and reach the intended value. The interventions
where overshooting occurs are considered outliers by the RFR
model. As a result, the model tries to smooth the predicted
values. Fig. 7 shows that interventions of the engagement rates
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Fig. 7. Ground truth and prediction from RFR model for Fovr signal (a) and
Sovr signal (b)

are sparse. This is because operators do not need to adjust
the engagement rate frequently. However, the CNC machine
still requires the full attention of operators. The use of ML
decision support systems can bring value by freeing operators
from constant monitoring, thereby increasing their productivity
as they can work on other tasks. As a first step, the ML
models are treated as a decision support system. Thus they
must look into the future and make a forecasting decision.
There is a trade-off between the time gap and the performances
of the models. Fig. 8 examines the trade-off. Fovr does not get
affected much by the gap compared to Sovr. The practicability
of delay time for operators to react is an engineering question
that needs to be addressed in further research. Ideally, the
reaction gap can be reduced significantly when the ML models
are integrated directly into production systems. To achieve
it, a certain degree of trust is required. This trust should be
built through careful risk analysis. Through interactive and
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Fig. 8. Cross validation examination of different values for delay g. The ML
model in use is RFR. The entire chart is below the baseline values for both
Fovr and Sovr

successful use, trust in the model can be increased.

VII. CONCLUSIONS

This study proposes the application of Big Data in imitation
learning for expert control in the manufacturing sector, which
offers several benefits, including shorter training time, reduced
risk for the learning algorithm, and access to abundant amounts
of expert demonstrations. The paper presents initial machine
learning (ML) models trained from historical data that can
evolve into mature control policies through direct policy
learning. The ML models control two important configurations
during a CNC machine operation for engagement feed rates.
They learn initial policies that can map out from the same
information operators receive via the control interface to
their actions. The best-performing ML model, the Random
Forest Regressor, achieved better MSE values than the baseline
models. The paper also examined different time gaps, and a
small delay was applied between state and action to mitigate
the effects of causal confusion and accommodate the design
of the decision support system. The control algorithm learned
through imitation learning holds significant potential as a
decision support system, aiding in workload reduction for
operators and providing assistance to novice operators in
system control.

However, synthesizing operators’ experiences, like hand-
crafted expert systems, may introduce biases from human
knowledge. In this case, bias results from the operator’s
tendency to truncate the engagement rates to rounded numbers.
Ideally, the model should fine-tune the output to optimize
the quality of the product surface, production time, and ma-
chining tool lifetime. However, it is challenging to enhance
a model’s performance beyond the operators’ experiences in
the supervised learning paradigm. To break this limitation,
exploration will be added to the learning algorithm in the
future. Nevertheless, the ML models show that they can
overcome human’s faults as they detect and smooth operators’
actions to remove sudden spikes.



Although the ML models perform well in theory, im-
plementing them on the shop floor requires further work.
Moreira et al.’s supervision controller operated directly on
the simulated CNC machine, while this system is meant to
function as a decision support system [14]. Therefore, there
will be an additional requirement for operators to have enough
time to react to the recommendation. A too-short reaction time
window can damage the product or machine. One way to meet
this requirement is to forecast the need for interventions. As

the

system’s goal is to increase productivity, it’s important

not to overload the operator with recommendations. Lastly, to
transition from a decision support system to an active control
system, a level of trust needs to be built via intense verification
and validation of the system over time. To make the procedure
practical, the system will need parallel watch-dogs to eliminate
critical actions.
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