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The graphical modeling language GRAFCET is used as a formal specification language in indus-
trial control design. This paper proposes a static analysis approach based on the control flow of
GRAFCET using abstract interpretation to allow verification on specification level. GRAFCET has
different elements leading to concurrent behavior, which in general results in a large state space.
To get precise results and reduce the state space, we propose an analysis suitable for GRAFCET
instances without concurrent behavior. We point out how to check for the absence of concurrency
and present a flow-sensitive analysis for these GRAFCET instances. The proposed approach is
evaluated on an industrial-sized example.

I. INTRODUCTION

In industrial automation, Programmable Logic Con-
trollers (PLC) are widely used. To design the control
code running on a PLC a beneficial approach is to use
formal means in order to first specify the logical behavior
of the PLC before implementing the control code. Using
a formal specification in the design phase has multiple
advantages like using the specification as documentation
and communication tool, allowing an automatic trans-
formation into control code and applying formal verifica-
tion at specification level. One such means is GRAFCET
according to IEC 60848 [1] a graphical, semi-formal,
domain-specific language to model control code of PLCs.
As we have shown in [2], GRAFCET is used in several
industrial domains and is widely known in the respec-
tive areas. This acceptance of GRAFCET might improve
the acceptance of formal methods in the respective do-
mains, which is still a problem [3]. Although GRAFCET
adapts concepts of Petri nets - like transitions and steps,
connected alternately by arcs - it provides a consider-
able number of additional modeling mechanisms like hi-
erarchical structuring of the specification which allow for
compact modeling of complex systems [2].

Regarding the application of formal methods to
GRAFCET specifications, there is preliminary work by
Julius et al. [4] to allow a code generation of such hierar-
chical GRAFCET specifications to PLC-code. Because
the work presented by Julius et al. does not cover ver-
ification of the Grafcets (the term Grafcet refers to an
instance of GRAFCET), we extend the approach by a
formal verification of GRAFCET. A verification on spec-
ification level has the advantage of finding possible design
errors early in the design process, given that the costs of
correcting errors in software systems increases exponen-
tially as the development phase progresses [5].

The verification approach proposed in this work is a
static analysis using abstract interpretation based on the

control flow of GRAFCET.We will compare the proposed
approach to other possible approaches in Section II, fol-
lowed by the preliminaries on GRAFCET and abstract
interpretation in Section III. The behavior of a Grafcet
depends on its state which is composed of the possible
active steps and the possible assignments of the inter-
nal variables. In Section IVA we will point out how
these states of a Grafcet can be approximated by its con-
trol flow which is only possible by ensuring the absence
of concurrency. We will present what elements of the
GRAFCET standard result in concurrent behavior and
how to ensure its absence. Section IVB presents the ac-
tual analysis. We end with evaluating the proposed anal-
ysis on a practical example and showing properties to be
analyzed (Section V) before giving a conclusion (Section
VI).

II. RELATED WORK

In the domain of industrial automation an important
requirement for the application of formal means is that it
is appropriate for craftsman and that it needs to be per-
formed under time pressure [3]. Therefore an automatic
verification approach that does not require an expert is
beneficial in contrast to approaches like theorem proving.
For verifying GRAFCET there are approaches suit-

able for model checking, such as translating hierarchi-
cal Grafcets into time Petri nets by Sogbohossou et al.
[6] and recently transforming Grafcets into Guarded Ac-
tion Language (GAL) resulting in a transition system by
Mroß et al. [2]. Utilizing a model checking approach al-
lows for an exhaustive exploration of the model but has
the downside of resulting in a state space explosion.
Very few approaches are presented for analyzing

GRAFCET without applying model checking. A struc-
tural analysis regarding the hierarchical dependencies be-
tween modules of the Grafcets (called partial Grafcets)
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has been presented by Lesage et al. [7]. The authors
provide an analysis to ensure that the hierarchical de-
pendencies form a partial order. Moreover, Lesage et al.
[8] provide an analysis of the GRAFCET-specific expres-
sions by extending the Boolean algebra by events repre-
sented by rising and falling edges of Boolean signals in
GRAFCET. This allows the user to check syntactic prop-
erties of transition conditions. None of the presented
approaches allows for a static analysis of the run-time
behavior.

A different approach and the main idea pursued in this
work is to approximate the state space of the Grafcets by
means of abstract interpretation proposed by Cousot et
al. [9]. An application of abstract interpretation to Se-
quential Function Chart (SFC), a graphical programming
language in the field of industrial automation, has been
proposed by Simon et al. [10]. The analysis builds the
reachability graph of the SFCs and calculates abstract
values of the variables as pre- and post-conditions of the
reachable states. An analysis of statecharts, a specifica-
tion language comparable to GRAFCET, with automat-
ically generated test cases, has been proposed by Peleska
et al. [11]. The proposed algorithm calculates an abstract
computation sequence of the statechart using abstract in-
terpretation. Both approaches presented in [10, 11] are
based on building some kind of reachability graph over
the set of steps (for state diagrams called control states)
and approximating the internal variables using abstract
interpretation. This might result in a huge state space
depending on how many parallel steps are present in the
system to be modeled.

To achieve the most scalable results, also in comparison
to model checking approaches like [2], we propose a static
analysis using abstract interpretation based on the con-
trol flow of GRAFCET. A standard algorithm applying
abstract interpretation to the control flow of a sequen-
tial program has been described in [12] and shown in the
next section. The algorithm was extended to apply it
to concurrent multi-threading programs e.g., by Kusano
et al. [13]. Analyzing multi-threading programs results
in an interplay of multiple Control Flow Graphs (CFG).
Although this might be a promising approach for notably
partial Grafcets, there are structures in Grafcet that are
not comparable with a sequential CFG, which are shown
in Section IVA.

III. PRELIMINARIES

The goal of this work is to adapt abstract inter-
pretation based on a CFG representing a program to
GRAFCET as formalized in Section IIIA. To explain
the analogies as well as differences between a CFG and
GRAFCET in Section IV we start by providing the pre-
liminaries on abstract interpretation based on a CFG in
Section III B.
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FIG. 1. Illustrative example of a Grafcet.

A. Syntax of IEC 60848 GRAFCET

Since the GRAFCET standard does not define the syn-
tax and semantics of GRAFCET sufficiently for formal
verification, we use in this work the formalization pro-
posed by Mroß et al. [2] to explain the concepts of
GRAFCET that are important for this contribution.
A Grafcet G = (Vin , Vint , Vout , C) comprises a set of

partial Grafcets C ̸= ∅ with globally available sets of in-
put variables Vin , internal variables Vint and output vari-
ables Vout . Variables can either be Boolean or integral,
i.e., v is assigned a value of Z for all v ∈ Vin ∪Vint ∪Vout

with Boolean variables being limited to the set {0, 1}.
Given these variables, we can construct Boolean expres-
sions with usual relational symbols (such as = and ≤)
and Boolean operators (such as disjunction ∨ and nega-
tion ¬). A variable may change values caused by an
event. By CND we denote the set of all Boolean expres-
sions over variables in G. Every partial Grafcet c ∈ C is
a 6-tuple c = (S, I, E,M, T,A), where

• S is a finite set of steps, each of which is either
active or inactive,

• I ⊆ S is the set of initial steps,

• E ⊆ S × C is the set of enclosing steps,

• M ⊆ S is the set of marked steps,

• T ⊆ P(S)× P(S)× CND is the set of transitions,

• A is a set of actions.

Fig. 1 shows an illustrative example of a partial Grafcet
with two steps S = {1, 2} one of which is an initial step
I = {1} and two transitions T = {t1, t2} as well as two
actions associated to step 1 and step 2.
We use the notation Sc, Ic, Ec, Mc, Tc, Ac to refer

to the respective sets of a given partial Grafcet c ∈ C.
The set Mc describes the steps that are activated by the
enclosing step. Every e ∈ Ec describes an enclosing step,
which translates formally to e = (s, cenc) for a s ∈ Sc and
a partial Grafcet cenc ∈ C. If an enclosing step becomes
active, it activates all steps m ∈ Mcenc . If an enclosing
step becomes inactive, it deactivates all steps s ∈ Scenc .
We say that c is enclosed iff Mc ̸= ∅. Every step s ∈ Sc

induces a new Boolean variable xs which indicates the
activation status of s and is true iff the step is active
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FIG. 2. Example CFG and its corresponding program
adapted from [9].

in the current situation. These variables can be used in
Boolean expressions CND .

A transition t ∈ Tc is a triple t = (•t, t•, b), where
•t ⊆ Sc is the set of immediately preceding steps, t• ⊆ Sc

is the set of immediately succeeding steps, •t ̸= ∅∨t• ≠ ∅
and b ∈ CND is the transition condition. We also call •t
the upstream and t• the downstream of t. We say that
t is enabled if xs is true for every s ∈ •t. We say that t
can fire if it is enabled and b is true.
Finally, we formalize the set of actions Ac. The stan-

dard defines different types of actions: continuous ac-
tions (Acont), stored actions (Astor ) and forcing orders
(Afo). These sets are assumed to be disjoint. Let
Ac = Acont∪Astor∪Afo . Every element ofAcont is a triple
(s, v, b), where s ∈ Sc is the associated step, v ∈ Vout is
an output variable which must be Boolean and b ∈ CND
is the action condition. We say that a continuous action
is active if xs and b are true. Several partial Grafcets
in G may employ continuous actions on the same output
variable v. In this case, v is set to true if at least one of
these continuous actions is active. Note that v can not
be used by any stored action. Every element of Astor is
a tuple (s, v, val, b), where s ∈ Sc is the associated step,
v ∈ Vint ∪Vout is an internal or output variable, val is an
expression yielding a value in the respective domain, e.g.,
val ∈ Z and b ∈ CND is the action condition. A stored
action sets v to val if xs and b are true. This also allows
to model actions on activation and deactivation of a step,
as introduced by the standard. Finally, every element of
Afo is a tuple (s, cforced , S), where s ∈ Sc is the associ-
ated step, cforced ∈ C is the partial Grafcet which is to
be forced and S ∈ (P(Scforced )∪{∗, init}). A forcing order
is regarded as a special kind of continuous action. It is
active while xs is true and forces cforced into the situation
specified by S. If S = ∗, then the current situation in
cforced is retained for as long as s is active. If S = init
then cforced is set to its initial situation. Otherwise, it is
set to the specified situation (element of the power set
P(Scforced )).

B. Abstract Interpretation

In this section we provide the preliminaries on abstract
interpretation based on a CFG. The nodes of such a CFG
represent the instructions of the represented program and
the edges represent the control flow paths [14]. Fig. 2
shows an example CFG adapted from [9]. The program
has three statements, two assignments and a condition,
as well as an entry (exit) point denoted by the incoming

(outgoing) arrow. Note that we restrict ourselves in this
work to sequential programs, i.e., programs written for
example in C running on a single thread.
Abstract interpretation allows to approximate concrete

variable values by an element of an abstract domain. The
abstract domain in this work is the interval lattice. For
every program point, every variable has a lower and an
upper bound, e.g., a variable x = [1, 100]. All possi-
ble intervals, meet (⊓) and join (⊔) operators, a partial
ordering (⊑) as well as a bottom (⊥ = ∅) and a top
(⊤ = [−∞,∞]) element form the lattice. To apply ab-
stract interpretation based on a CFG the worklist algo-
rithm in Alg. 1 [12] is a standard algorithm (A ◁ a is
short for A ← A ∪ a). It calculates an abstract envi-
ronment Env(n) for every node n of the CFG, just be-
fore n is executed. As long as a node n is on the work-
list W the algorithm calculates a new environment e by
executing n in the abstract domain using the Trans-
fer function. The Transfer function performs in our
case interval arithmetic calculations for assignments (e.g.,
[1, 100] + [1, 1] = [2, 101] continuing the example above
and executing x := x + 1), or it uses the meet opera-
tor to intersect with the interval of the condition (e.g.,
[2, 101]⊓[−∞, 100] = [2, 100] continuing the example fur-
ther and executing x ≤ 100). Unless the analysis has sta-
bilized (i.e., e ⊑ Env(n′)) the algorithm joins the calcu-
lated environment with the environment of the successor
nodes n′ (e.g., [2, 101]⊔ [1, 100] = [1, 101]) and adds them
to the worklist. To speed up the calculations and guar-
antee termination in case of loops, a widening operator
[9] can be used.

Algorithm 1 Abstract interpretation based on a CFG
[12]

1: function AbstInt(Cfg : CFG)
2: Env(n) is initialized to ⊤ if n ∈ Entry(Cfg), else to
⊥

3: W ← Entry(Cfg)
4: while W ̸= ∅ do
5: n←W.poll
6: e← Transfer(n,Env(n))
7: for all n′ ∈ Succs(Cfg , n) such that e ̸⊑ Env(n′)

do
8: Env(n′)← Env(n′) ⊔ e
9: W ◁ n′

10: return Env

IV. APPLYING ABSTRACT
INTERPRETATION TO GRAFCET

To apply abstract interpretation as shown in Section
III B to GRAFCET we first compare in Section IVA
the control flow of GRAFCET to the control flow of
sequential programs. We point out that it is impor-
tant to ensure the absence of concurrency in the Grafcet
and, therefore, ensure soundness before applying a flow-
sensitive abstract interpretation analysis presented in
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FIG. 3. Different structures in GRAFCET [1] leading to concurrent behavior indicated by actions a and b.

Section IVB. As an abstract domain we choose inter-
vals. With flow-sensitive we mean an analysis providing
information about the variable values for every point in
the control flow.

A. Challenges of applying a control flow based
analysis to GRAFCET

In GRAFCET different types of variables are defined
[1]: Input variables are write-protected and are assumed
to be non-deterministic since they correspond to sensors
from the underlying process. By applying abstract inter-
pretation we approximate internal and output variables
with elements from the abstract domain since internal
variables have an influence on the state of the Grafcet
and information about output variables can be useful to
identify safety-critical situations. Step variables can only
be set by firings of transitions in accordance with the evo-
lution rules of GRAFCET and therefore, are correlated
to the control flow of the Grafcet. In the analogy to the
CFG, the steps and transitions correlate to nodes in the
CFG.

In a CFG built from a sequential program without
concurrency, only one node of the CFG is executed at
a time. This makes it easy to determine the execution
order and execution number (e.g., how often an instruc-
tion is executed) of instructions on variables. However,
the GRAFCET standard [1] presents different structures
leading to concurrent behavior as shown in the partial
Grafcets G1 to G8 in Fig. 3:

• Multiple conditional actions (graphically repre-
sented by a flag, followed by an expression like ↑x,
where ↑ is called a rising edge of x and occurs when
x changes from 0 to 1) associated to a single step
(G1)

• Multiple initially active steps in sequence (G2) or
parallel (G3)

• Elements producing active steps like source tran-
sitions (•t = ∅ in G5) or its equivalence using an
activation of parallel sequences (G4) as introduced
by the standard [1]

• Activation of parallel sequences activating multiple
steps at the same time (|t•| > 1 in G6)

• Concurrently activated partial Grafcets (G7 and
G8)

All these structures can lead to a non-deterministic fir-
ing order of transitions and a non-deterministic execution
order of actions. The latter is indicated in Fig. 3 by ac-
tions a and b in concurrent parts of the Grafcet. a and b
here indicate any two types of actions that are dependent
on each other. An example for a could be x := 0, and
an example for b could be x := x + 1, where the execu-
tion order has an influence on the resulting value of x.
Only the last structure G7 and G8 occurs in relation to a
hierarchical structuring indicated by the Global Grafcet
notation enclosing the partial Grafcets G7 and G8.
All of the shown structures are not comparable to

sequential control flow since statements are not exe-
cuted concurrently in a single CFG. Multi-threading ap-
proaches that indeed deal with concurrency are usually
based on multiple CFGs running concurrently to each
other. However, every single CFG is sequential. Only
partial Grafcets like in G7 and G8 are comparable to
multi-threading programs.
Besides the fact that the order of firing and execu-

tion is non-deterministic, their number of executions is
non-deterministic as well. E.g., source transitions can
non-deterministically generate multiple active steps in a
sequence due to the non-deterministic change of input
variables. Structures like shown in G4 in Fig. 3 have a
similar behavior.
In order to successfully apply a flow-sensitive abstract

interpretation to GRAFCET, we first have to ensure the
Grafcet being present does not behave concurrently with
possible race conditions. The following conditions ensure
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for every possible partial Grafcet that it has no concur-
rent read and write instructions:

• Each step has no associated conditioned actions a ∈
Astor with expressions va, vala and ba that depend
on each other, corresponding to G1 in Fig. 3.

• No multiple initially active steps are present (|Ic| ≤
1 ∧ |Mc| ≤ 1 ∧ |Sa| ≤ 1, the latter holds for all
a ∈ Afo), corresponding to G2 and G3 in Fig. 3.

• No source transitions are present (•t ̸= ∅ holds for
all t ∈ Tc), corresponding to G5 in Fig. 3.

• No variables are written in concurrency as a result
of activation of parallel sequences as shown in G4
and G6 in Fig3 (sa′ /∈ SC

sa for all va′ = va ∈ Vint ∪
Vout and a′, a ∈ A, where SC

s ⊆ S is a set of steps
concurrent to s. For the calculation of every SC

s

with s ∈ S we apply a structural analysis of the
Grafcet)

Furthermore, to ensure the absence of concurrency, no
internal and output variables must be written in multiple
partial Grafcets concurrently (c = c′ holds for all a ∈
Ac∪Ac′ and for all va ∈ Vint∪Vout). If all the conditions
presented above are met, a flow-sensitive analysis based
on Alg. 1 presented in Section IVB can be applied.

B. Flow-sensitive abstract interpretation of
GRAFCET

Before applying the worklist algorithm for abstract
interpretation over the control flow shown in Section
III B we need to define the control flow of GRAFCET.
In GRAFCET read instructions are connected to condi-
tions associated with transitions (neglecting conditional
actions for a moment) and write instructions are con-
nected to actions associated with steps. Therefore, the
statements of the control flow correspond to steps and
transitions which are connected by arcs forming the flow
relations. By ensuring the absence of concurrency as de-
scribed in Section IVA, we ensure the control flow to
be sequential. Although steps might not have an associ-
ated action and therefore do not change the state of the
Grafcet the step’s reachability could still be important
information.

To cover the different types of actions in GRAFCET,
we need to consider them in more detail:

• Continuous actions with a condition (might be
true)

• Stored actions, activated by step activation (indi-
cated by the upward arrow shown in Fig. 4 a))

• Stored actions, activated by step deactivation (in-
dicated by the downward arrow shown in Fig. 4
b))

• Stored actions, activated by an event (indicated by
the flag shown in Fig. 4 c))

According to the standard [1], the set of variables written
in continuous actions and stored actions are disjoint
and therefore can be treated separately. Furthermore,
continuous actions can only be applied on Boolean
output variables. The values of the corresponding
Boolean output variables result implicitly from the
corresponding step variables as well as the associated
condition (v =

∨
a∈Acont

xsa ∧ ba with va = v). Therefore,
they have no impact on the state of the Grafcet, so
we ignore them for now. For stored actions, we apply
a normalization, as shown in Fig. 4, before applying
the abstract interpretation. Actions on activation are
executed when the associated step is reached. Actions
on deactivation are executed after the downstream tran-
sition is executed. For a single action activated by an
event associated with a step, there are two possibilities.
Either the condition might be true or false. This is
modeled by an additional branch covering the condition
of the action and the action itself.

Algorithm 2 Abstract interpretation of a sequential
partial Grafcet

1: function AbstInt(C: partial Grafcet)
2: Env(n) is initialized to [0, 0] if n ∈ I, else to ⊥
3: W ← I
4: while W ̸= ∅ do
5: n←W.poll
6: e← Transfer(n,Env(n))
7: for all n′ ∈ Succs(C, n) such that e ̸⊑ Env(n′)

do
8: Env(n′)← Env(n′) ⊔ e
9: W ◁ n′

10: return Env

We apply Alg. 1 for abstract interpretation on sequen-
tial Grafcets as shown in Alg. 2. Env(n) is again the
abstract environment (an abstract value for every vari-
able in Vint ∪ Vout) just before the read or write instruc-
tions associated with n ∈ T ∪ S are executed. To deal
with only one variable type Boolean variables are mod-
eled using integers with the usual interpretation that 0
corresponds to false and 1 to true. According to the stan-
dard [1] integer variables are initialized to 0 and Boolean
variables to false. Therefore, we initialize the abstract
values in Env(n) for the initial step n ∈ I to [0, 0] and
for all other nodes in the Grafcet n ∈ T ∪ S to ⊥. Input
variables are not part of the abstract environment since
they can change at all times to a non-deterministic value.
Their abstract value therefore would be the trivial ⊤ ele-
ment. The initial statement on the worklist is the initial
step since |I| = 1. For the current statement from the
worklist we apply the function Transfer. The result
of Transfer will be joined with the abstract environ-
ment Env(n′) of every successor statement n′ if it is not
already included. If the calculated value of the abstract
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FIG. 4. Control flow semantics of different stored action types.

environment of the successor statement n′ is changing, it
is put on the worklist.

Depending on whether n ∈ S or n ∈ T the function
Transfer either executes the actions associated to the
step in the abstract domain based on the approximated
values in Env(n) or applies the transition condition to
Env(n). For illustration, consider a step ni ∈ S with an
associated action executing Z := 0 as soon as the step
is activated. No matter what the approximation of Z is
at ni, Transfer(ni, Env(ni)) returns [0, 0] as approx-
imation for Z after ni is executed. The approximation
of all other variables does not change, since they are not
affected by the value assignment. Further, consider a
transition ni+1 ∈ T with a condition Z == 1. Trans-
fer(ni+1, Env(ni+1)) now returns ⊥ as approximation
for Z after ni+1 is executed, since there is no value in [0,
0] that satisfies the transition condition.

To deal with the Boolean operators (i.e. ∧,∨,¬) in
the abstract domain we substitute XB ∧ Y B to α(XZ) ⊓
α(Y Z), XB∨Y B to α(XZ)⊔α(Y Z) and ¬XB to XZ == 0,
where α(X) is the abstract value of the expression X
and XB is the value of the Boolean expression in the
Boolean domain which is substituted to XZ, the value
in the integer domain. Consider possible variable values
XB = Y B = {true, false} as an example at nj ∈ T . In
the abstract domain we get α(XZ) = α(Y Z) = [0, 1] for
Env(nj). The potential condition X∧¬Y of nj is substi-
tuted to α(XZ == 1) ⊓ α(Y Z == 0). Applying Trans-
fer(nj , Env(nj)), the abstract value of the left hand side
of the meet operator ⊓ resolves to α(XZ) = [1, 1] and
α(Y Z) = [0, 1] and the right hand side to α(XZ) = [0, 1]
and α(Y Z) = [0, 0]. Applying ⊓ the return value of
Transfer is α(XZ) = [1, 1] and α(Y Z) = [0, 0], which is
the only possible approximation satisfying the transition
condition.

V. EVALUATION

The proposed approach was implemented and inte-
grated in a toolchain developed by the authors. Part of
the toolchain is a graphical editor for GRAFCET based
on a GRAFCET meta-model proposed by Julius et al.
[15]. The meta-model was implemented using the Eclipse
Modeling Framework (EMF)1. For the abstract interpre-
tation, we used the library Apron proposed by Jeannet
et al. [16].
Besides the reachability of steps and transitions in

combination with the respective approximation of inter-
nal and output variables, the analysis is able to detect
problems regarding the firing of transitions: whether a
transition can always fire or never fire which can lead
to a deadlock or livelock, respectively, during run-time.
Further it can detect so-called transient steps. A step is
transient if an upstream and downstream transition eval-
uate to true in the same situation and therefore the tran-
sitions fire successively until a stable situation is reached
when no transition can fire anymore.
The presented approach was evaluated using the

GRAFCET-specification of an industrial plant first
shown in [17]. The application example is an automatic
testing machine for quality control of components that
consists of a conveyor belt, a rotary indexing table and six
stations. Coordinated by the rotary indexing table, the
parts pass through these stations, where separation and
quality control take place. The components are marked
as regular or damaged parts, and damaged parts are sub-
sequently sorted out. The complete specification consists
of 8 partial Grafcets, altogether consisting of 60 steps,
62 transitions, 46 stored actions, 15 continuous actions

1 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/
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FIG. 5. Application example Grafcet G20.

and 8 enclosing steps. In total 80 Boolean and integer
variables are used (45 input, 20 output and 15 internal
variables). The duration of the analysis of the exam-
ple applying Alg. 2 was between 20 and 500 milliseconds
per partial Grafcet and about 1200 milliseconds in to-
tal. By applying the analysis, we were able to identify
some unreachable steps in the specification, which was
due to an input error in one of the transitions. We com-
pared the duration of the control flow based approach
proposed in this work to the model checking approach
proposed in [2]. Using the model checking approach [2]
we checked every partial Grafcet on its own for reacha-
bility of the steps using a CTL formula according to the
scheme EF (xs) ∧ EF (xs+1) ∧ · · · . The duration of the
analysis using the model checking approach was between
7 milliseconds and 129 seconds per partial Grafcet and
about 135 seconds in total. This test confirms that the
presented control flow based approach scales more effec-
tively for industrial sized GRAFCET specifications.

In the remainder of the section we illustrate the re-
sults on the GRAFCET specification G20 of the second
station of the illustration example, shown in Fig. 52 An
emergency stop as well as the coordination of the sta-
tions is implemented using an enclosing steps that can
start and stop the partial Grafcet G20. In Fig. 5 the
number 12 at the top refers to the enclosing step 12 con-
trolling the station. The asterisk at step 202 marks that
the step is activated by the superior enclosing step. The
station has the task to fix the parts into the socket of
the rotary indexing table. The fix is done by a piston
accessed by the variable press2. The part is pressed into
the socket up to three times before the station reports a
fault. Otherwise the station reports the termination of
the process setting station2 finished to true. The count-
ing of the attempts is done by using the internal variable
k2.

2 The full specification formalized with GRAFCET can
be viewed here: https://github.com/Project-AGRAFE/

GRAFCET-instances

TABLE I. Results of the control flow based analysis of G20
shown in Fig. 5.

Step/Transition k2 station2 finished fault

Step 201 [0, 3] [0, 1] [0, 1]

Step 202 [0, 2] [0, 1] [0, 1]

Step 203 [0, 2] [0, 1] [0, 1]

Step 204 [3, 3] [0, 1] [0, 1]

Transition t201 [0, 0] [1, 1] [0, 1]

Transition t202 [0, 2] [0, 1] [0, 1]

Transition t203 [1, 3] [0, 1] [0, 1]

Transition t204 [1, 3] [0, 1] [0, 1]

Transition t205 [3, 3] [0, 1] [1, 1]

Transition t206 [0, 2] [0, 1] [0, 1]

The analysis starts by initializing the internal and out-
put variables to 0 for step 202 and to ⊥ for all other steps
and transitions. The algorithm iterates over the preced-
ing steps and transitions in G20, resulting in the approxi-
mated intervals for the variables k2, station2 finished and
fault, shown in Table I. The results show that every step
and transition is reachable since the corresponding ab-
stract values differ from the initialized value ⊥, which is
the expected behavior.

VI. CONCLUSION

The goal of this paper was to present an auto-
matic and scalable analysis approach for IEC 60848
GRAFCET compared to other approaches like model
checking. Therefore, we chose a static analysis approach
based on the control flow of GRAFCET. In Section IVA
we compared the control flow of GRAFCET to a sequen-
tial CFG in order to adapt analysis means applicable
to a CFG. We pointed out why this is possible only
for Grafcets without concurrent behavior. In order to
apply a sequential analysis we presented what elements
of GRAFCET result in concurrent behavior and how to
identify these to ensure the absence of concurrency.
The proposed analysis itself approximates the variable

values for every step and transition in the control flow
using abstract interpretation. This results in an analysis
result that has the same structure like the Grafcet itself,
making the remediation of design errors easier in compar-
ison to inspecting a complete state space. On a realistic
example the evaluation has revealed that run-time errors
like, e.g., unreachable states can be detected. Further,
the evaluation has revealed that Grafcets of realistic size
can be analyzed in a reasonable amount of time. In com-
parison to the model checking approach presented in [2]
the scalability of the analysis is improved. However, with
the disadvantage that an approximation in general can
lead to false alarms and the properties to be checked are
limited to safety properties.
Since the presented approach is applicable only for a

https://github.com/Project-AGRAFE/GRAFCET-instances
https://github.com/Project-AGRAFE/GRAFCET-instances
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subset of GRAFCET without concurrency we currently
work on extending the approach to deal with concurrent
partial Grafcets. This could be achieved by adapting
algorithms proposed for multi-threaded programs, such
as those by Kusano et al. [13]. In addition, other ab-
stract domains could be used besides the interval lattice
to achieve a more precise approximation of the variable

values.
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[4] R. Julius, M. Schürenberg, F. Schumacher, and A. Fay,
“Transformation of GRAFCET to PLC code including
hierarchical structures,” Control Engineering Practice,
vol. 64, pp. 173–194, 2017.

[5] B. W. Boehm, Software engineering economics, ser.
Prentice-Hall advances in computing science and technol-
ogy series. Englewood Cliffs, NJ: Prentice-Hall, 1981.

[6] M. Sogbohossou and A. Vianou, “Translation of
hierarchical GRAFCET charts into time Petri nets,”
Sep. 2020, working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02934113

[7] J.-J. Lesage and J.-M. Roussel, “Hierarchical approach
to GRAFCET using forcing order,” Automatique
Productique Informatique Industrielle, vol. 27, no. 1,
pp. 25–38, Mar. 1993. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-00347044

[8] J.-J. Lesage, J.-M. Roussel, and C. Thierry, “A theory
of binary signal,” in CESA’96 IMACS Multiconference :
computational engineering in systems applications, 1996.

[9] P. Cousot and R. Cousot, “Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints,” ser. POPL

’77. New York, USA: Association for Computing Ma-
chinery, 1977, p. 238–252.

[10] H. Simon and S. Kowalewski, “Static analysis of Sequen-
tial Function Charts using abstract interpretation,” in
2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 2016, pp.
1–4.

[11] J. Peleska, E. Vorobev, and F. Lapschies, “Automated
Test Case Generation with SMT-Solving and Abstract
Interpretation,” in NASA Formal Methods, M. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 298–
312.

[12] F. Nielson, H. R. Nielson, and C. Hankin, “Principles of
Program Analysis,” in Springer Berlin Heidelberg, 1999.

[13] M. Kusano and C. Wang, “Flow-sensitive composition of
thread-modular abstract interpretation,” Proceedings of
the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016.

[14] F. E. Allen, “Control flow analysis,” in Proceedings of
a Symposium on Compiler Optimization. New York,
NY, USA: Association for Computing Machinery, 1970,
p. 1–19.

[15] R. Julius, T. Trenner, A. Fay, J. Neidig, and X. L. Hoang,
“A meta-model based environment for GRAFCET spec-
ifications,” in 2019 IEEE International Systems Confer-
ence (SysCon), 2019, pp. 1–7.

[16] B. Jeannet and A. Miné, “Apron: A Library of Nu-
merical Abstract Domains for Static Analysis,” in Com-
puter Aided Verification, A. Bouajjani and O. Maler, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
661–667.

[17] F. Schumacher and A. Fay, “Formal representation of
GRAFCET to automatically generate control code,”
Control Engineering Practice, vol. 33, pp. 84–93, 2014.

https://hal.archives-ouvertes.fr/hal-02934113
https://hal.archives-ouvertes.fr/hal-00347044
https://hal.archives-ouvertes.fr/hal-00347044

	 A Control Flow based Static Analysis of GRAFCET using Abstract Interpretation 
	Abstract
	Introduction
	Related work
	Preliminaries
	Syntax of IEC 60848 GRAFCET
	Abstract Interpretation

	Applying abstract interpretation to GRAFCET
	Challenges of applying a control flow based analysis to GRAFCET
	Flow-sensitive abstract interpretation of GRAFCET

	Evaluation
	Conclusion
	Acknowledgments
	References


