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Abstract

A dynamic bandwidth allocation strategy to support variable bit rate (VBR) video traffic is
proposed. This strategy predicts the bandwidth requirements for future frames using either
adaptive or non-adaptive least mean square (LMS) error linear predictors. The adaptive
technique does not require any prior knowledge of the statistics, nor assumes stationarity.
Several reservation schemes and pro-active congestion approach are also presented. Anal-
ysis using six one-half hour video traces indicate that prediction errors for the bandwidth
required for the next frame are almost white noise.

By reserving bandwidth equal to the predicted value, only the prediction errors need to
be buffered. Because the errors are almost white noise, small buffers size, high utilization,
and small delay are achieved. Simulation results show that for the same expected cell loss,
buffers size is reduced by more than a factor of 100 and network utilization is increased
more that 250 % as compared to a fixed service rate.
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1 Introduction

Variable bit rate (VBR) video traffic is expected to be one of the major applications that need
to be supported by broadband packet-switched networks. Several studies on VBR video traffic
indicate the existence of a slowly decaying auto-correlation structure [4, 5, 6, 16].

Providing efficient transport and Quality of Service (QoS) guarantees for VBR video is non-
trivial in packet-switched networks. For instance, correlated traffic dramatically increases the
queue length statistics at a multiplexor [1, 11, 12, 13]. Supporting VBR video traffic at a
deterministic fixed service, not close to the peak, usually results in large buffers, large delay,
and large delay jitter.

Because bandwidth in ATM networks can be allocated on demand, dynamic bandwidth

allocation and re-negotiation during the connection lifetime has been considered in [9, 15].
In this paper we use the correlation structure of VBR video traffic to predict the bandwidth
required for future frames. Linear prediction minimizing the mean square error is studied on
six half hour video traces. Adaptive and non-adaptive techniques are considered for predicting
the bandwidth required by future frames. Adaptive techniques do not require knowledge of
the video statistics, and do not assume stationarity, so, they can be used for on-line real-time
applications.

The order of the linear predictor is small (12 or less) and experiments show that it does
not increase with the size of the VBR video traffic trace. The prediction errors resemble white
noise, or at most short memory, but the marginals have a heavy tail.

Using fixed service rate, for highly correlated input traffic with a heavy tail, if not served
at a rate close to the peak, causes large queues, large delays, and excessive cell loss [1, 13, 17].
In contrast, by reserving bandwidth at least equal to the predicted value, only the errors in
the prediction needs to be buffered. Because the errors resemble white noise or at most short
memory, small buffers, high utilization and small delays can be achieved. Results show that the
buffer size is reduced by more than a factor of 100 as compared to a traditional deterministic
fixed service rate reservation. For a given expected loss, the utilization increased from 0.3 for
deterministic rate to 0.9 for a dynamic rate strategy, a 300 % increase in utilization.

These results suggest that fixed bandwidth allocation for VBR video will not achieve ac-
ceptable utilization. On the other hand, using prediction to reserve bandwidth dynamically,
the problem is changed from supporting slowly decaying auto-correlated input traffic stream, to
servicing and buffering the residuals (errors) of the prediction. The same prediction approach
can be used to predict N frames ahead. The value of N depends on the video correlation
structure, the errors, and the delay in negotiating the rate with the network.

The objectives of this paper are:

(a) To investigate the feasibility and performance of linear prediction algorithm to forecast
VBR video traffic using both adaptive and non-adaptive techniques.

(b) To compare queuing and delay performance of fixed and dynamic bandwidth allocation.

Potential applications include: (1) Predicting and changing leaky bucket parameters. For
MPEG streams, the predictions are found to better for individuals frames (I,P, and B), so
multiple leaky buckets suggested in [17] in conjunction with forecasting may be used. (2)
Dynamic reservation in a multi-access channels, e.g., in Metropolitan area networks.

The rest of the paper is organized as follows. Section 2 describes the non-adaptive mean
square error linear predictors. Section 3 describes the least mean square (LMS) and the normal-
ized least mean square (NLMS) adaptive linear predictors. Section 4 investigates the feasibility



and the performance of forecasting different empirical video traces. It also discusses the effect
of the size of the trace on the performance of the forecast. Section 5 addresses the perfor-
mance of dynamic bandwidth allocation schemes based on linear prediction, both adaptive and
non-adaptive, and compares them to the traditional deterministic fixed service rate. Section 6
discusses the preliminary idea of a pro-active congestion control scheme and Section 7 presents
the conclusions.

2 Minimum Mean Square Error Linear Predictor

The k — step linear predictor is concerned with the estimation (prediction) of z(n + k) using
a linear combination of the current and previous values of z(n)[7]. Thus, the p* order linear
predictor has the form:
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where w(l), for [ = 0,1---,p — 1 are the linear prediction filter coefficients. This can be
represented as shown in Figure 1.
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Figure 1: Linear predictor

Let :

W= [w(0), w(1), -, w(p— 1],
X(n) = [x(n),x(n—l—1),---,$(n—p—|—1)]T, (2)
e(n) = z(n+k)—z(n+k).
From (1) and (2)
e(n) = z(n+k)—wix(n). (3)

The optimal linear predictor in the mean square sense is one which minimizes the mean square
error &, where:

¢ = E{e’(n)}.

Since £ is a quadratic function, it has a unique minimum. Therefore, the vector w that minimizes
£ is found by taking the gradient, setting it equal to zero and then solve for w:

V¢ = VE{e*(n)}
= —2F{e(n)x(n)}=0.

Substituting the value for e(n) from (3):

V¢ = =28 { (Jc(n + k) — WTx(n)) X(TL)} =0.



Taking expectation and writing it in matrix form, we have:

Ryw! = P (k) (4)
where,
r2(0) re(1) ... ora(p—1) ro (k)
R, = rx:(l) T‘IfO) . rx(p:— 2) Pk = T'x(k:—l- 1) |
re(p—1) rz(p—-2) ... r(0) ro(k+p— 1)

and r.(k) is defined as E{xz(n+ k)z(n)}.

The equations in (4) are the Wiener-Hopf equations for linear prediction. For a 1-step linear
predictor (k = 1), the set of linear equations defined in (4) are equivalent to the set of linear
equations used to fit a p'* order autoregressive (AR) process with the exception of a minus sign
[7]. The solution of the linear equations in (4) requires the knowledge of the auto-correlation
of x(n) and it also assumes wide sense stationarity, i.e., the mean, variance, auto-covariance of
x(n) do not change with time. It also requires inverting Rx whose size depends on the order
of the linear predictor, p.

3 Adaptive Least Mean Square Error Linear Predictor

We consider in this section the method of least mean square error linear predictor (LMS)
[8]. The LMS is an adaptive approach. It does not require any prior knowledge of the auto-
correlation of the sequence. Therefore, it can be used as an on-line algorithm for forecasting
bandwidth. The operation of an adaptive linear predictor is shown in Figure 2. The prediction
coefficients w(n) are time varying. The errors, {e(n)}, are fed back and used to adapt the filter
coefficients in order to decrease the mean square error. e(n), x(n), and w are defined as in (2).

x(n+Kk)

/7

x(n) . (}/ %(n+K) - i+ .

Figure 2: Adaptive Linear Predictor

Following is a summary of the algorithm:
e Start with an initial estimate of the filter (prediction) coeflicients w(0).
e For each new data point compute V&, where

V&= —-2FE{e(n)x(n)}.

In practice, the statistics are not known and may change with time, Therefore, the ex-
pectation is replaced with an estimate. The simplest estimate is the one point sample
average e(n)x(n).



e Update w(n) by taking a step of size 0.5x in the negative gradient direction (this will
point to the bottom of the error surface) see [8]. The update equation for LMS filter
coeflicients:

wn+1) = w(n)—0.5uVE (5)
= w(n) + pe()x(n) (6

If x(n) is stationary, w(n) converges in the mean to the optimal solution Ryw = P [7, 8].
The only thing left is what value of y one should use. As has been shown in [8], LMS will
converge in the mean if 0 < 1/u < 2/Aq2, where A, is the maximum eigenvalue of Ry.

A normalized LMS (NLMS) is a modification to the LMS algorithm where the update equation
is:

wn+1l) = w(n)+ M

OIS

where ||x(n)||* = x(n)Tx(n). The advantage of using NLMS over LMS is that it is less sensitive
to the step size p. If 0 < p < 2, then NLMS will converge in the mean [8]. Using large u results
in a faster convergence and quicker response to signal changes. However, after convergence, the
prediction coefficients will have large fluctuations. On the other hand using small p results in
slower convergence and less fluctuation after convergence, i.e., there is a trade off. Since at time
n the value of z(n+ k) is not available to compute e(n), e(n — k) is used instead. For example,
the 1-step linear predictor update equation becomes:

pe(n — 1)x(n—1)
e(n — 1)|*

wn+1) = w(n)+

Replacing e(n) by e(n—1), the gradient estimate is e(n—1)x(n—1) instead of e(n—1)x(n). Our
experiments showed that using e(n — 1)x(n) instead, does not always converge to the optimal
solution.

4 Forecasting Empirical MPEG-I VBR Traces

We use six long empirical video traces (about half an hour each). obtained from the public
ftp site fip-info3.informatik.uni-wuerzburg.de. The sequences represent a wide range of video
applications. These video sequences are encoded according to the MPEG-I standard. MPEG-I
has three frame types: 1, P, and B. I frames use intra-frame coding, P frames use intra-frame
coding and motion compensation based on previous frames, and B frames use intra-frame and
motion compensation based on previous and next frames. The encoder uses a periodic frame
pattern which is called a Group of Pictures (GOP). The GOP pattern used for the video
sequences was IBBPBBPBBPBB. For more details about the encoder parameters see [18].
Table 1 shows the video traces, their mean, and maximum frame sizes. The traces were used
to test the forecast methods.

Since I, P, and B frame types have different statistical characteristics, we separate them
and forecast each frame type separately. Each video sequence is split virtually into I, P, and B
subsequences. Table 2 shows the Y~ e?(n)/ > #?(n) and the order (p) of a 1-step linear predictor
using the set of Wiener-Hopf equations defined in (4). The smaller the ) e?(n)/ > z?(n), the
better the forecast. The 1-step linear predictor is used to predict the required bandwidth of
the next frame.



Sequence Mean (bits) | Max (bits)
Soccer 25,110 190,836
Jurassic Park 13,078 119,010
Gold Finger 24,308 244,592
Talk Show 14,573 106,383
Star Wars 15,599 185,628
Terminator 10,904 79,600

Table 1: Encoded sequences used

The Akaike information criterion (AIC) [7, 19] was used to choose the best order not greater
than 12. The AIC criterion associates a cost function with the order of the filter. The maximum
order, p = 12, was chosen after experimenting with different orders and checking if the auto-
correlation function of e(n) was close to that of a white noise. The order of NLMS was kept
the same as that of the Wiener-Hopf equations (4) for a fair comparison of the two methods.

It appears from Table 2 that the I-frames can be predicted more accurately than P or B
frames. For example, the 3" e*(n)/ 3" 2?(n) for the I frames subsequence of the Talk Show trace
was 0.004, which is a signal to noise ratio (SNR) of 250, compared to 0.115 and 0.013 for the
P and B subsequences, respectively.

Figures 3(a)-(c) show the forecasted and actual subsequences for the I, P, and B frames, of
the Terminator trace respectively. The Terminator video sequence has the largest >~ e?(n)/ 3" 22 (n).
Nonetheless, closer inspection reveals that the forecasted values appear close to the actual val-
ues except at sharp transitions which are most likely scene changes. Figures 4(a)-(f) show the
auto-correlations for the I, P, and B subsequences and the residuals of the forecast for the same
trace. Although, the input subsequences are highly correlated, the residuals after forecasting
resemble white noise. This was true for all of the six video sequences tested.

The primary difficulty in supporting VBR video traflic at a fixed rate results from the
fact that VBR traffic is correlated and has heavy tail. Highly correlated input process with a
heavy tail, if served at a fixed rate not close to the peak, causes large queues, large delays, and
excessive cell loss [1, 13, 17]. Hence, by reserving bandwidth at least equal to the prediction,
only the errors of the prediction need to be buffered. Since the errors resemble white noise or
at most short memory, smaller buffers, less delays, and higher utilization are expected when
compared to traditional fixed rate reservations.

Adaptive NLMS Algorithm

The results of the NLMS prediction algorithm are also presented in Table 2. Figure 5 shows
the forecasted and the actual I subsequence and the auto-correlation of the residuals for the
Terminator trace. The results appear to be close to those obtained by using the Wiener-
Hopf equations (4) in which prior knowledge of the auto-correlation is needed. However, some
correlations do remain in the residuals (Figure 5) and this most likely results in slightly larger
S-€e*(n)/ > a%*(n) (Table 2). Therefore, the NLMS adaptive algorithm can be used on-line to
predict the rate of VBR traffic without the need to know the auto-correlation of the video
stream in advance.

Long-range dependent processes can be represented by an autoregressive (AR) process with
infinite order [14]. Therefore, to approximate a long range dependent process with an AR



Sequence Subsequence | > €e?(n)/ Y z%(n) | Y. €*(n)/ > x*(n) | Order
Wiener-Hopf NLMS
Jurassic Park I 0.011 0.013 7
P 0.110 0.120 12
B 0.046 0.052 12
Star Wars I 0.013 0.016 8
P 0.220 0.260 12
B 0.101 0.087 12
Gold Finger I 0.015 0.020 11
P 0.047 0.053 12
B 0.018 0.022 12
Terminator I 0.023 0.028 12
P 0.124 0.140 12
B 0.097 0.109 12
Talk Show | 0.004 0.006 11
P 0.115 0.138 12
B 0.013 0.016 12
Soccer I 0.027 0.033 2
P 0.036 0.042 3
B 0.042 0.053 12

Table 2: The " e%(n)/ > 2%(n) for the video sequences and the order of the linear predictor used

process, as the size of the realization of the process increases, the order of the AR process
should be increased [2]. The effect of increasing the size of the VBR trace on the mean square
error is studied by: (1) the first half of the trace is forecasted and the order of the filter is
obtained; (2) the same filter order is used on th entire trace. Table 3 shows the results for the
Terminator sequence using the two methods of forecast, Wiener-Hopf (Equation(4)) and NLMS.
We observe that the difference due to trace size is negligible. Moreover, the auto-correlation in
both cases was found to be close to white noise. Therefore, it appears that the size of the trace
does not affect the performance of that of a linear predictor, at least for these traces.

Method Subsequence | Y_€?(n)/ Y. z*(n) | S €*(n)/ > z*(n)
Half All
Wiener-Hopf I 0.0243 0.0245
P 0.1240 0.1250
B 0.0960 0.0970
NLMS I 0.030 0.028
P 0.140 0.143
B 0.113 0.109

Table 3: The Y e*(n)/ Y. a*(n) for the Terminator video trace using half and all the trace

-~
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Figure 3: Actual and forecasted subsequence for the Terminator trace. (a) I subsequence; (b) P
subsequence; (c¢) B subsequence



| e 4
@
o | S 7
s
©
o | s
w w
3] 3]
< <
<
3
<
S
o
8
o
o
HIT{HTRTITE 3 e
[ 1Ll
T T T T T T T
0 10 20 30 0 10 20 30
lag lag
(a) (b)
o o
@ |
E S
s
©
g
<o |
[’ o 'S
3] 3]
< <
<
g
<
S
o
8
]
s
o | [ AP P AT B
>4 . , . '
HHHH\HHHHHHHHHM s
T T T T T T T T T
0 10 20 30 40 0 10 20 30 40
lag lag
(© (d)
o o
@
@ | S
S
©
g
oo w
S o S
< <
<
3
<
< 3}
|
o
5 o | [ o ol [T I
° S RN [
t t t t T T T T T
0 10 20 30 40 0 10 20 30 40
lag lag

(e) (®)

Figure 4: Auto-correlation of the actual subsequence and the residuals of the Terminator trace.

(a)& (b) I subsequence; (c) & (d) P subsequence; (e) & (f) B subsequence



f — Actual
v ,,,,,,,,,,,, Forecasted

60

Size Kbps
40 50
—

30

R
o |
(e}
0 50 100 150 200 250 300
Frame
(a)
o ]
o)
®
o
=
S
g I
Al
S
o ] ‘\‘ B L T B }
o \\H‘H‘\M tol
0 10 20 30
lag

(b)

Figure 5: NLMS method. (a) Actual and forecasted | subsequence for the Terminator; (b) The
auto-correlation of the residuals for the same subsequence.

10



5 Dynamic Bandwidth Allocation Using the Forecast

The primary difficulty in supporting VBR video traflic at a fixed rate results from the fact that
VBR traffic is correlated and has heavy tail. Highly correlated input process with a heavy tail,
if served at a fixed rate not close to the peak, causes large queues, large delays, and excessive
cell loss [1, 13, 17]. Hence, by reserving bandwidth at least equal to the prediction, only the
errors of the prediction need to be buffered. If the predicted value is less than the actual value,
the difference is buffered. If the predicted value is more, extra bits can be transmitted from
the buffer. Since the errors resemble noise or at most short memory, then smaller buffers, less
delays, and higher utilization are expected when compared to traditional fixed rate reservations.

If all the predicted bandwidth is not available from the network, the video encoders need
to decrease their bit rate to not over load the network as in [10].

Simulation Results

A single server with a FIFO queue was simulated. The traces of the actual video sequences
were used as the input process. Two scenarios were studied through the simulation: (1) fixed
service rate and (2) dynamic service rate based on prediction. To be able to compare the two
scenarios, the bandwidth is assumed to be available from the network. Hence, any bandwidth
needed will be granted. This is done only to compare the two scenarios for the same video
transmission quality. The buffer size used is a multiple of the maximum frame size in the video
trace and the F[loss] is defined as:

L
Elloss] = X 100,

where L is the number of dropped cells and NV is the total number of cell arrived. Table 4 shows
the E[loss] for a fixed service rate for different utilization levels (0.9 and 0.8) and different buffer
sizes. The relation between buffer size and the F[loss]is almost linear. and increasing the buffer
size was not efficient in reducing the Elloss].

Table 5 shows Elloss] for dynamic bandwidth allocation. To achieve the utilization (U), the
value used for reservation is the predicted value &(n+1) divided by the required U. Another way
to achieve a specific utilization is by adding a constant C to each predicted value, i.e., reserve
&(n + 1) + C. This approach did not achieve the same performance as the former approach,
therefore, it was not used.

Figure 6 (a) shows the queue length process for the fixed capacity approach for the Jurassic
Park trace. The queue length is large and stays large for a long period of time. This is due to
both high correlation and heavy tail distribution of the input stream. For example the queue
builds up and reaches a value greater than 15000 kbits and it stays large for a considerable
period of time. Therefore, if the buffer was less than 15000 kbits, excessive losses will occur.
Even if one can afford this buffer size, the problem of delay remains. For example, cells that
arrive after their play back point are not useful. These cells consume network resources and
may cause other cells not to meet their delay bounds. Figure 6(b) shows the queue length for
the same video trace (Jurassic Park) but this time with dynamic allocation. As Figure 6(b)
shows, the maximum queue length is decreased considerably from larger than 15000 kbits to
approximately 140 kbits. This is a reduction by a factor of more than a 100. Moreover, the
queue length process does not build up, and does not stay high for a long time because the
residuals are uncorrelated. Therefore, if a buffer less than 140 kbits is used, the losses will not
be large because the area under the queue length process curve is very small.

11



Let us consider the maximum utilization that can be achieved for a specific E[loss]. Using
simulations, we found as an example, for the Soccer video trace and for E[loss] < 0.025, the
maximum utilization using the fixed approach was 0.3, while for the dynamic approach it was
0.9. This significant increase in utilization was observed for all the six video traces tested.

It appears from the results that fixed bandwidth allocation for VBR video will not achieve
acceptable utilization. On the other hand, using prediction to reserve bandwidth dynamically,
the problem is changed from supporting highly correlated input traffic stream, to servicing and
buffering the residuals (errors) of the prediction which resemble white noise or short memory.
This approach achieved a significant increase in the network utilization and decreased the buffer
needed.

The same approach can be used for predicting N frames ahead. The value of N depends on
the structure of the video, the errors, and the delay in negotiating the rate with network. The
above prediction strategy can be used either at the network side or at the user side. An example
of how to implement and use the prediction is given in Section 6.

Enhanced DBW Allocation using Forecast Errors

An enhancement to the dynamic bandwidth allocation based on prediction may be achieved by
using the knowledge of previous errors to enhance the reservation, for example:

e Use LMS or NLMS to predict #(n + 1).
o If e(n) > 0, then reserve Z(n + 1) + e(n).

If e(n) is positive, the reserved value is less than the actual frame size and e(n) bits are
known to be not transmitted. These bits are most likely buffered. Hence, by reserving the
error of the previous prediction and the next predicted frame size, the e(n) bits buffered are
guaranteed transmission over the next interval. Thus, the maximum delay will be one frame
and the maximum buffer size needed will be at most the maximum positive prediction error.

Discussion

One may consider updating only the filter coefficients whenever the predicted value is less than
the actual value. This approach is a more conservative one aiming at reducing the marginal tail
of the errors. Simulation results showed that the E[loss] was higher than the NLMS approach.
This is due to the fact that the errors generated were correlated. Therefore, it is important for
any prediction scheme used to have white noise residuals. Also, it’s worth noting that the filter
coefficients used for prediction emphasize the last value. This is especially true for the I frames.
Thus, one may model the I frame subsequence as a non stationary autoregressive integrated
moving average (ARIMA) with a difference d equal to one [3].

6 Pro-Active Congestion Control

This section discusses how a prediction algorithm can be used to achieve high utilization and
prevent congestion in the network. One possible approach is to use a framing strategy. Time
is split into frames, each frame corresponds to a time interval T. Each video source predicts
the bandwidth required for the next k frames. The sources divide the predicted value by a
factor of a, where 0 < a < 1. The larger is «, the higher utilization that can be achieved, but
more likely larger delays will occur. Therefore, each source can determine for it self the value

12



U | Buffer size | Jurassic Park | Star Wars | Gold Fingers | Terminator | Talk | Soccer

0.9 1 9.38 14.82 9.04 6.81 7.34 | 9.62
2 8.20 13.36 8.13 5.31 6.54 | 8.23
3 7.43 12.31 7.57 4.44 5.94 | 7.16
4 6.81 11.49 7.12 3.83 5.51 | 6.23
5 6.34 10.86 6.73 3.80 5.13 | 5.56

0.8 1 5.93 11.2 5.32 3.85 4.34 | 5.99
2 4.93 9.91 4.54 2.58 3.79 | 4.75
3 4.27 9.00 4.10 1.96 3.34 | 3.84
4 3.78 8.32 3.73 1.51 3.05 | 3.17
5 3.41 7.84 3.40 1.18 281 | 2.65

Table 4: E[loss] for different utilization when bandwidth reserved is fixed

U | Buffer size | Jurassic Park | Star Wars | Gold Fingers | Terminator | Talk | Soccer

0.9 1 0.005 0.0360 0.0068 0.0450 0.000 | 0.0222
2 0.000 0.0000 0.0000 0.0000 0.000 | 0.0000
3 0.000 0.0000 0.0000 0.0000 0.000 | 0.0000

0.8 1 0.000 0.0002 0.0003 0.0037 0.000 | 0.0003
2 0.000 0.0000 0.0000 0.0000 0.000 | 0.0000
3 0.000 0.0000 0.0000 0.0000 0.000 | 0.0000

Table 5: Elloss] for different utilization when bandwidth reservation is dynamic
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of a, based on the accuracy of the forecast and the tradeoff between the service price and QoS.
The value of « can also be adaptive, i.e., could change with time, as the accuracy or the QoS
requirements of the forecast changes.

Based on the predicted values and «, each source will negotiate with the network the
bandwidth required for future frames and send a reservation request. If the reservation is
granted, the source encoder will not reduce the output rate. If the reservation is not granted,
the video source must adapt and reduce the output bit rate.

For the network in Figure 7, each intermediate network node (hop) between source and
destination will add all the requested bandwidth from all the video sources share the output
path from that hop. If the total bandwidth requested is less than the link capacity, all requests
will be granted. Otherwise, depending on how much capacity is available, the video sources (all
or subset) will be asked to reduce their output bit rate. Other non delay sensitive traffic can
be transmitted on the availability of the bandwidth, or a fixed bandwidth can be reserved for
it.

7 Conclusions

The feasibility and performance of adaptive and non-adaptive linear predictors based on min-
imizing the mean square error are studied using long empirical video traces. The forecasting
results for the 1-step linear predictor show that:

e Forecasted values appear to be close to the actual values. For example, the 3" e%(n)/ > z%(n)
of the Talk Show I subsequence was less than 0.004, a SNR more than 250. However,
sharp transitions in the video causes the error distribution to have a heavy tail.

e The prediction errors in all cases resemble white noise, or at most short memory.

e Although VBR video traffic is structured and correlated, the order of the filter does not
increase with increasing the size of the sequence.

Dynamic bandwidth allocation schemes for VBR video based on adaptive and non-adaptive
linear prediction were presented. The adaptive technique does not require any prior knowl-
edge of the video and does not assume stationarity, so it can be used for on-line, real-time
applications.

The results suggest that fixed bandwidth allocation for VBR video will not achieve accept-
able utilization. On the other hand, using prediction and reservation of bandwidth dynamically
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changes the problem from supporting slowly decaying auto-correlated input traffic stream to
servicing and buffering the residuals (errors) of the prediction. Errors, resembling white noise,
allow for small buffer size, higher utilization, and small delay. Simulation results show that
buffer size is reduced by more than a factor of 100 as compared to a traditional deterministic
fixed service rate reservation. For a given expected loss, the utilization increased from 0.3 for
deterministic rate to 0.9 for a dynamic rate strategy, a 300 % increase in utilization.

The same prediction approach should extend to forecasting N frames ahead. The value of
N depends on the video correlation structure, the errors residual, and the delay in negotiating
the rate with the network.
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