
Copyright 1997 IEEE. Published in the Proceedings of INFOCOM’97, April 7-11, 1997 in Kobe, Japan. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

A Highly Adaptive Distributed Routing Algorithm
for Mobile Wireless Networks

Vincent D. Parka and M. Scott Corsonb

a
Naval Research Laboratory, USA

b
University of Maryland, USA

Abstract

We present a new distributed routing protocol for
mobile, multihop, wireless networks. The protocol is one
of a family of protocols which we term “link reversal”
algorithms. The protocol’s reaction is structured as a
temporally-ordered sequence of diffusing computations;
each computation consisting of a sequence of directed link
reversals. The protocol is highly adaptive, efficient and
scalable; being best-suited for use in large, dense, mobile
networks. In these networks, the protocol’s reaction to
link failures typically involves only a localized “single
pass” of the distributed algorithm. This capability is
unique among protocols which are stable in the face of
network partitions, and results in the protocol’s high
degree of adaptivity . This desirable behavior is achieved
through the novel use of a “physical or logical clock” to
establish the “temporal order” of topological change
events which is used to structure (or order) the
algorithm’s reaction to topological changes. We refer to
the protocol as the Temporally-Ordered Routing
Algorithm (TORA).

1.0 Introduction

We consider the problem of routing in a mobile
wireless network as described in [1]. Such a network can
be envisioned as a collection of routers (equipped with
wireless receiver/transmitters) which are free to move
about arbitrarily. The status of the communication links
between the routers, at any given time, is a function of
their positions, transmission power levels, antenna
patterns, cochannel interference levels, etc. The mobility
of the routers and the variability of other connectivity
factors result in a network with a potentially rapid and
unpredictably changing topology. Congested links are also
an expected characteristic of such a network as wireless
links inherently have significantly lower capacity than
hardwired links and are therefore more prone to
congestion.

Existing shortest-path algorithms [2] and adaptive
shortest-path algorithms [3-9] are not particularly well-

suited for operation in such a network. These algorithms
are designed for operation in static or quasi-static
networks with hardwired links. If the rate of topological
change in the network is sufficiently high, these
algorithms may not be able to react fast enough (i.e. to
maintain routing) and flooding will be the only recourse.
Furthermore, most of these algorithms provide only one
path for routing between each given source/destination
pair which exacerbates the link congestion problem.
While link-state algorithms provide the capability for
multipath routing, the time and communication overhead
associated with maintaining full topological knowledge at
each router makes them impractical for this environment
as well.

Some existing algorithms which have been developed
for this environment include the following: the Gafni-
Bertsekas (GB) algorithms [10], the Lightweight Mobile
Routing (LMR) protocol [11], the Destination-Sequenced
Distance Vector (DSDV) routing protocol [12], the
Wireless Routing Protocol (WRP) [13], and the Dynamic
Source Routing (DSR) protocol [14]. While these
algorithms are better suited for this environment, each has
its drawbacks.

The GB algorithms exhibit instability in portions of
the network which become partitioned from the
destination. During the period of instability, nodes will
non-productively transmit both control packets and
message packets until such time that the network is re-
connected. This results in inefficient use of the available
bandwidth and is unacceptable, since partitioning is
expected to be common in a mobile wireless network.

The LMR protocol also exhibits some unwanted
behavior which is most prevalent in partitioned portions of
the networks. The protocol can result in temporary
construction of invalid routes through “false reply”
propagation. While it was shown that all invalid routes
would be erased in a partitioned portion of the network
(with probability one), no finite bound could be placed on
the time required.

DSDV is limited in that it provides only a single path
for routing between each given source/destination pair.
Furthermore, the protocol requires selection of the

following parameters: periodic update interval, maximum
value of the “settling time” for a destination and the
number of update intervals which may transpire before a
route is considered “stale”. It is difficult to assess the
impact that selection of these parameters will have on
performance, but we believe good parameter selection
may be critical. These parameters will likely represent a
trade-off between the latency of valid routing information
and excessive communication overhead. To further
complicate the problem, good parameter selection will
likely be dependent on the networking environment (i.e.
the size of the network, rate of topological change, etc.)

While WRP is described as providing only single path
routing, nodes maintain sufficient information to perform
multipath routing. However, there is potentially a
significant amount of overhead associated with
maintaining the shortest-path spanning tree reported by
each neighbor and reactions to failures may be far-
reaching (i.e. every node which includes the failed link in
its shortest-path spanning tree must participate in the
failure reaction).

 DSR is also described as providing only single path
routing; although, it could be amended to support
multipath routing. More significantly, it suffers from a
scalability problem due to the nature of source routing. As
the network becomes larger, control packets (which
collect node addresses for each node visited) and message
packets (which contain full source routing information)
also become larger. Clearly, this has a negative impact
due to the limited available bandwidth.

In our view, a routing algorithm well-suited for
operation in this environment should possess the following
properties:
• Executes distributedly
• Provides loop-free routes
• Provides multiple routes (to alleviate congestion)
• Establishes routes quickly (so they may be used

before the topology changes)
• Minimizes communication overhead by localizing

algorithmic reaction to topological changes when
possible (to conserve available bandwidth and
increase scalability)

Routing optimality (i.e. determination of the shortest-path)
is of less importance. It is also not necessary (nor
desirable) to maintain routes between every
source/destination pair at all times. The overhead
expended to establish a route between a given
source/destination pair will be wasted if the source does
not require the route prior to its invalidation due to
topological changes.

We have developed a routing algorithm which is
tailored for operation in this highly dynamic network
environment. The algorithm is based, in part, on the work
presented in [10] and [11]; however, it does not share their
undesirable characteristics associated with network
partitions. The protocol is designed to minimize reaction to

topological changes. A key concept in its design is that it
decouples the generation of potentially far-reaching
control message propagation from the rate of topological
changes. Such messaging is typically localized to a very
small set of nodes near the change without having to resort
to a dynamic, hierarchical routing solution with its
attendant complexity. A possible enhancement to the
protocol (to be discussed later) would be to imbed far-
reaching control message propagation into the protocol as
a secondary mechanism. This propogation would occur
periodically at a very low rate—independent of the
network topology dynamics—and would be employed as a
means of infrequent route optimization and soft-state route
verification.

The algorithm is distributed in that nodes need only
maintain information about adjacent nodes (i.e. one hop
knowledge). It guarantees all routes are loop-free, and
typically provides multiple routes for any
source/destination pair which requires a route. Like LMR,
the protocol is “source initiated” and quickly creates a set
of routes to a given destination only when desired. Since
multiple routes are typically established, many topological
changes require no reaction at all as having a single route
is sufficient. Following topological changes which do
require reaction, the protocol quickly re-establishes valid
routes. This ability to initiate and react infrequently serves
to minimize communication overhead. Finally, in the
event of a network partition, the protocol detects the
partition and erases all invalid routes within a finite time.

2.0 The Protocol

2.1 Notation and Assumptions

We model a network as a graph G = (N, L), where N
is a finite set of nodes and L is a set of initially undirected
links. Each node i ∈ N is assumed to have a unique node
identifier (ID), and each link (i, j) ∈ L is assumed to allow
two-way communication (i.e. nodes connected by a link
can communicate with each other in either direction). Due
to the mobility of the nodes, the set of links L is changing
with time (i.e. new links can be established and existing
links can be severed). From the perspective of neighboring
nodes, a node failure is equivalent to severing all links
incident to that node. Each initially undirected link (i, j) ∈
L may subsequently be assigned one of three states; (1)
undirected, (2) directed from node i to node j, or (3)
directed from node j to node i. If a link (i, j) ∈ L is
directed from node i to node j, node i is said to be
“upstream” from node j while node j is said to be
“downstream” from node i. For each node i, we define the
“neighbors” of i, Ni ∈ N, to be the set of nodes j such that
(i, j) ∈ L. For the subsequent discussion, we assume the
existence of a link-level protocol which ensures that each
node i is always aware of its neighbors in the set Ni;
although the logic of the protocol remains the same if this

is not the case—i.e. there may be an arbitrary delay in the
time between a link status change and subsequent protocol
notification of the change. We also assume that all
transmitted packets are received correctly and in order of
transmission. Finally, since existing networks of this type
typically employ omnidirectional antennas, we have
assumed that when a node i transmits a packet, it is
broadcast to all of its neighbors in the set Ni,. The rules of
the protocol described herein reflect this assumption;
however, only slight modifications to the rules would be
required to make it work in networks where only a subset
of the neighbors receive a transmission—i.e. those which
incorporate Space Division Multiple Access (SDMA)
techniques.

2.2 Foundation and Basic Structure

A logically separate version of the protocol is run for
each destination to which routing is required. For the
following presentation, we will focus on a single version
running for a given destination.

The protocol can be separated into three basic
functions: creating routes, maintaining routes, and erasing
routes. Creating a route from a given node to the
destination requires establishment of a sequence of
directed links leading from the node to the destination.
This function is only initiated when a node with no
directed links requires a route to the destination. Thus,
creating routes essentially corresponds to assigning
directions to links in an undirected network or portion of
the network. The method used to accomplish this is an
adaptation of the query/reply process described in [11],
which builds a directed acyclic graph (DAG) rooted at the
destination (i.e. the destination is the only node with no
downstream links). Such a DAG will be referred to as a
“destination-oriented” DAG. Maintaining routes refers to
reacting to topological changes in the network in a manner
such that routes to the destination are re-established within
a finite time. By this we mean that its directed portions
return to a destination-oriented DAG within a finite time.
Two GB algorithms, which are members of a general
class of algorithms designed to accomplish this task, are
presented in [10]. However, the GB algorithms are
designed for operation in connected networks. Due to
instability exhibited by these algorithms in portions of the
network which become partitioned from the destination,
they are deemed unacceptable for the current task. We
have designed a new algorithm in the same general class,
which is more efficient in reacting to topological changes
and capable of detecting a network partition. This leads to
the third function—erasing routes. Upon detection of a
network partition, all links (in the portion of the network
which has become partitioned from the destination) must
be undirected to erase invalid routes.

The protocol accomplishes these three functions
through the use of three distinct control packets: query

(QRY), update (UPD), and clear (CLR). QRY packets are
used for creating routes, UPD packets are used for both
creating and maintaining routes, and CLR packets are
used for erasing routes.

2.3 General Class of Algorithms

It is beneficial at this point to briefly review the GB
algorithms. Consider a connected DAG with at least one
node (in addition to the destination) which has no
downstream links. We shall refer to such a DAG as
“destination-disoriented.” The following excerpts from
[10] loosely describe two algorithms designed to
transform a destination-disoriented DAG into a
destination-oriented DAG.

Full Reversal Method: At each iteration each node
other than the destination that has no outgoing links
reverses the direction of all its incoming links.

Partial Reversal Method: Every node i other than the
destination keeps a list of its neighboring nodes j that have
reversed the direction of the corresponding links (i, j). At
each iteration each node i that has no outgoing links
reverses the directions of the links (i, j) for all j which do
not appear on its list, and empties the list. If no such j
exists (i.e. the list is full), node i reverses the directions of
all incoming links and empties the list.

These two algorithms are subsequently re-stated in
the context of a generalized numbering scheme which we
will summarize here; however, much detail will be left
out. For a thorough understanding, one should review the
original paper. Essentially, a value is associated with each
node at all times, and the values are such that they can be
totally ordered. For example, in the full reversal method, a
pair (αi, i) is associated with each node where i is the
unique ID of the node and αi is an integer. The pairs can
then be totally ordered lexicographically (e.g. (αi, i) > (αj,
j) if αi > αj ,or if αi = αj and i > j). Let us refer to the value
associated with each node i as its “height” and denote it hi.
Now, assume that we assign an initial height to each node
in the destination-disoriented DAG such that node i is
upstream from node j if and only if hi > hj. Then it is clear
that node i has no downstream links when, measured by
its height, it is a local minimum with respect to its
neighbors, hi < hj for all j ∈ Ni. To achieve the desired
behavior in the full reversal method, node i must select a
new height such that it becomes a local maximum with
respect to its neighbors, hi > hj for all j ∈ Ni. Node i simply
selects a new value αi = max {αj | j ∈ Ni}+1 and
broadcasts the value to all of its neighbors. The partial
reversal method can neither be viewed conceptually nor
explained as easily. Again, a node selects a new height
only when it is a local minimum, but it does not always
become a local maximum. To reverse only some of its
links (i.e. partial reversal), a node selects a new height
which is higher than its own previous height and the
height of some of its neighbors, but not higher than all of

its neighbors.
Further details of these two algorithms are not

relevant to the development and discussion of our
protocol. What is relevant is that [10] goes on to describe
a general class of algorithms based on a generalized
numbering scheme. This class of algorithms is shown to
be loop-free, and terminate in a finite number of iterations
to a destination-oriented DAG. Furthermore, only nodes
which have lost all downstream paths to the destination
react to a given failure. These properties all apply to the
new algorithm as it is a member of this class. The new
algorithm is similar to the partial reversal method in that it
often reverses only some of its links. However, the rules
for the selection of a new height are significantly more
complex, in order to provide its partition detection
capability. These rules are discussed in detail in
section 2.4.2.

The basic idea is as follows. When a node loses its
last downstream link (i.e. becomes a local minimum) as a
result of a link failure, the node selects a new height such
that it becomes a global maximum by defining a new
“reference level”. By design, when a new reference level
is defined, it is higher than any previously defined
reference levels. This action results in link reversals which
may cause other nodes to lose their last downstream link.
Any such node executes a partial reversal with respect to
its neighbors that have heights already associated with the
newest (highest) reference level. In this manner, the new
reference level is propagated outward from the point of
the original failure (re-directing links in order to re-
establish routes to the destination). This propagation will
only extend through nodes which (as a result of the initial
link failure) have lost all routes to the destination. Any
node, which prior to the start of this reaction had only
downstream links, may experience link reversals (as a
result of the same initial link failure) from all its
neighbors. Any such node must select a new height such
that it becomes a local maximum. This is accomplished by
defining a higher sub-level associated with the new
reference level, which we refer to as the “reflected
reference level”. This node essentially “reflects” this
higher sub-level back toward the node which originally
defined the new reference level. Should this reflected
reference level be propagated back to the originating node
from all of its neighbors, then it is determined that no
route to the destination exists. The originating node has
then detected a partition and can begin the process of
erasing the invalid routes.

2.4 Detailed Description

At any given time, an ordered quintuple Hi = (τi, oidi,
ri, δi, i) is associated with each node i ∈ N. Conceptually,
the quintuple associated with each node represents the
height of the node as defined by two parameters: a
reference level and a delta with respect to the reference

level. The reference level is represented by the first three
values in the quintuple while the delta is represented by
the last two values. A new reference level is defined each
time a node loses its last downstream link due to a link
failure. The first value representing the reference level, τi,
is a time tag set to the “time” of the link failure. For now
we will assume that all nodes have synchronized clocks.
This could be accomplished via interface with an external
time source such as the Global Positioning System (GPS)
[15] or through use of an algorithm such as the Network
Time Protocol [16]. As we will discuss in section 2.5, this
time tag need not actually indicate or be “time,” nor will
relaxation of the synchronization requirement invalidate
the protocol. The second value, oidi, is the originator-ID
(i.e. the unique ID of the node which defined the new
reference level). This ensures that the reference levels can
be totally ordered lexicographically, even if multiple
nodes define reference levels due to failures which occur
simultaneously (i.e. with equal time tags). The third value,
ri, is a single bit used to divide each of the unique
reference levels into two unique sub-levels. This bit is
used to distinguish between the original reference level
and its corresponding, higher reflected reference level.
When a distinction is not required, both original and
reflected reference levels will simply be referred to as
“reference levels.” The first value representing the delta,
δi, is an integer used to order nodes with respect to a
common reference level. This value is instrumental in the
propagation of a reference level. How δi is selected will be
clarified in a subsequent section. Finally, the second value
representing the delta, i, is the unique ID of the node
itself. This ensures that nodes with a common reference
level and equal values of δi (and in fact all nodes) can be
totally ordered lexicographically at all times.

Each node i (other than the destination) maintains its
height, Hi. Initially the height of each node in the network
(other than the destination) is set to NULL, Hi = (−, −, −,
−, i). Subsequently, the height of each node i can be
modified in accordance with the rules of the protocol. The
height of the destination is always ZERO, Hdid = (0, 0, 0, 0,
did), where did is the destination-ID (i.e. the unique ID of
the destination for which the algorithm is running). In
addition to its own height, each node i maintains a height
array with an entry HNi, j for each neighbor j ∈ Ni. Initially
the height of each neighbor is set to NULL, HNi, j = (−, −,
−, −, j). If the destination is a neighbor of i (i.e. did ∈ Ni)
node i sets the height entry of the destination to ZERO,
HNi, did = (0, 0, 0, 0, did).

Each node i (other than the destination) also
maintains a link-state array with an entry LSi, j for each
link (i, j) ∈ L, where j ∈ Ni. The state of the links is
determined by the heights Hi and HNi, j and is directed
from the higher node to the lower node. If a neighbor j is
higher than node i, the link is marked upstream (UP). If a
neighbor j is lower than node i, the link is marked
downstream (DN). If the neighbors height entry, HNi, j, is

NULL, the link is marked undirected (UN). Finally, if the
height of node i is NULL, then any neighbor’s height
which is not NULL is considered lower, and the
corresponding link is marked downstream (DN). When a
new link (i, j) ∈ L is established (i.e. node i has a new
neighbor j ∈ Ni), node i adds entries for the new neighbor
to the height and link-state arrays. If the new neighbor is
the destination, the height entry is set to ZERO, HNi, did =
(0, 0, 0, 0, did); otherwise it is set to NULL, HNi, j = (−, −,
−, −, j). The corresponding link-state, LSi, j, is set as
outlined above. Nodes need not communicate any routing
information upon link activation.

2.4.1 Creating Routes. Creating routes requires use of
the QRY and UPD packets. A QRY packet consists of a
destination-ID (did), which identifies the destination for
which the algorithm is running. An UPD packet consists
of a did, and the height of the node i which is broadcasting
the packet, Hi.

Each node i (other than the destination) maintains a
route-required flag, RRi, which is initially un-set. Each
node i (other than the destination) also maintains the time
at which the last UPD packet was broadcast and the time
at which each link (i, j) ∈ L, where j ∈ Ni, became active.

When a node with no directed links and an un-set
route-required flag requires a route to the destination, it
broadcasts a QRY packet and sets its route-required flag.
When a node i receives a QRY it reacts as follows. (a) If
the receiving node has no downstream links and its route-
required flag is un-set, it re-broadcasts the QRY packet
and sets its route-required flag. (b) If the receiving node
has no downstream links and the route-required flag is set,
it discards the QRY packet. (c) If the receiving node has at
least one downstream link and its height is NULL, it sets
its height to Hi = (τj, oidj, rj, δj + 1, i), where HNi, j = (τj,
oidj, rj, δj, j) is the minimum height of its non-NULL
neighbors, and broadcasts an UPD packet. (d) If the
receiving node has at least one downstream link and its
height is non-NULL, it first compares the time the last
UPD packet was broadcast to the time the link over which
the QRY packet was received became active. If an UPD
packet has been broadcast since the link became active , it
discards the QRY packet; otherwise, it broadcasts an UPD
packet. If a node has the route-required flag set when a
new link is established, it broadcasts a QRY packet.

When a node i receives an UPD packet from a
neighbor j ∈ Ni, node i first updates the entry HNi, j in its
height array with the height contained in the received
UPD packet and then reacts as follows. (a) If the route-
required flag is set (which implies that the height of node i
is NULL), node i sets its height to Hi = (τj, oidj, rj, δj + 1,
i)—where HNi, j = (τj, oidj, rj, δj, j) is the minimum height
of its non-NULL neighbors, updates all the entries in its
link-state array LS, un-sets the route-required flag and
then broadcasts an UPD packet which contains its new
height. (b) If the route-required flag is not set, node i

simply updates the entry LSi, j in its link-state array. The
section on maintaining routes discusses the additional
reaction that occurs if (b) results in loss of the last
downstream link.

An example1 of the route creation process is depicted
in Fig. 1. The respective heights are shown adjacent to
each node and the destination for which the algorithm is
running is marked DEST. A circle around a node indicates
that the route-required flag is set. Recall that the last value
in each height is the unique ID of the node, and that
lexicographical ordering (where 0 < 1 < 2... and A < B <
C...) is used to direct links. Note that the height selected
for node D in Fig. 1(e) reflects an arbitrary assumption
that node D received the UPD packet from node E prior to
the packet from node B. Had node D instead selected a
height in response to the packet from node B, the direction
of link (A, D) in Fig. 1(f) would have been reversed.

2.4.2 Maintaining Routes. Maintaining routes is only
performed for nodes which have a height other than
NULL. Furthermore, any neighbor’s height which is
NULL is not used for the computations. A node i is said to
have no downstream links if Hi < HNi, j for all non-NULL
neighbors j ∈ Ni. This will result in one of five possible
reactions depending on the state of the node and the
preceding event. Each node (other than the destination)
that has no downstream links modifies its height, Hi = (τi,
oidi, ri, δi, i), as follows.

Case 1 (Generate): Node i has no downstream links (due
to a link failure).

τ i ,oidi ,ri()= t,i,0(), where t is the time of the failure

δ i ,i()= 0,i()
In essence, node i defines a new reference level. The
above assumes node i has at least one upstream neighbor.
If node i has no upstream neighbors it simply sets its
height to NULL.

1 While the algorithm is designed to operate asynchronously, the
examples depict the algorithm executing synchronously with
transmissions occurring at fixed points in time.

QRY

DEST

(-,-,-,-,A) (-,-,-,-,D)

(-,-,-,-,C)

(-,-,-,-,G) (-,-,-,-,H)

(-,-,-,-,B)

(-,-,-,-,E)

(0,0,0,0,F)

(a) Node C initiates QRY

QRY

DEST

(0,0,0,0,F)

(b) Nodes A and G propagate QRY

QRY

DEST

(0,0,0,1,H)

(0,0,0,0,F)

(c) Nodes B and D propagate QRY,
node H generates UPD

UPD

DEST

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(d) Nodes B and G propagate UPD,
node E generates UPD

DEST

(0,0,0,3,A) (0,0,0,2,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(e) Nodes A, C, and D propagate UPD

DEST

(0,0,0,3,A) (0,0,0,2,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(f) Route creation process complete

QRY

QRY

UPD

UPD

UPD

UPD

UPD UPD

(-,-,-,-,A)
(-,-,-,-,D)

(-,-,-,-,C)

(-,-,-,-,G) (-,-,-,-,H)

(-,-,-,-,B)

(-,-,-,-,E)

(-,-,-,-,A)
(-,-,-,-,D)

(-,-,-,-,C)

(-,-,-,-,G)

(-,-,-,-,B)

(-,-,-,-,A) (-,-,-,-,D)

(-,-,-,-,C)

(-,-,-,-,E)

 Fig. 1 Creating routes

Case 2 (Propagate): Node i has no downstream links (due
to a link reversal following reception of an UPD packet)
and the ordered sets (τj, oidj, rj) are not equal for all j ∈ Ni.

τ i , oidi , ri()= max τ j, oid j, rj() j ∈Ni{ }

δ i ,i()= min δ j

j ∈ Ni with τ j, oid j ,rj()
= max τ j ,oid j , rj(){ }





 





 
− 1,i






 






 

In essence, node i propagates the reference level of its
highest neighbor and selects a height which is lower than
all neighbors with that reference level.

Case 3 (Reflect): Node i has no downstream links (due to
a link reversal following reception of an UPD packet) and
the ordered sets (τj, oidj, rj) are equal with rj = 0 for all j ∈
Ni.

τ i ,oidi ,ri()= τ j, oidj ,1()
δ i, i()= 0,i()

In essence, the same level (which has not been
“reflected”) has propagated to node i from all of its
neighbors. Node i “reflects” back a higher sub-level by
setting the bit r.

Case 4 (Detect): Node i has no downstream links (due to a
link reversal following reception of an UPD packet), the
ordered sets (τj, oidj, rj) are equal with rj = 1 for all j ∈ Ni,
and oidj = i (i.e. node i defined the level).

() ()−−−= ,,,, iii roidτ
δ i, i()= −, i()

In essence, the last reference level defined by node i has
been reflected and propagated back as a higher sub-level
from all of its neighbors. This corresponds to detection of
a partition. Node i must initiate the process of erasing
invalid routes as discussed in the next section.

Case 5 (Generate): Node i has no downstream links (due
to a link reversal following reception of an UPD packet),
the ordered sets (τj, oidj, rj) are equal with rj = 1 for all j ∈
Ni, and oidj ≠ i (i.e. node i did not define the level).

τ i ,oidi ,ri()= t,i,0(), where t is the time of the failure

δ i, i()= 0,i()
In essence, node i experienced a link failure (which did
not require reaction) between the time it propagated a
reference level and the reflected higher sub-level returned
from all neighbors. This is not necessarily an indication of
a partition. Node i defines a new reference level.

Following determination of its new height in cases 1,
2, 3, and 5, node i updates all the entries in its link-state
array LS; and broadcasts an UPD packet to all neighbors j
∈ Ni. The UPD packet consists of a did, and the new
height of the node i which is broadcasting the packet, Hi.
When a node i receives an UPD packet from a neighbor j

∈ Ni, node i updates the entries HNi, j and LSi, j in its height
and link-state arrays. If the update causes a link reversal
which results in node i losing its last downstream link,
then it modifies its height as outlined in the cases above.
Fig. 2 summarizes these five cases in the form of a
decision tree, starting from the time a node loses its last
downstream link. In the event node i loses a link (i, j) ∈ L
which is not its last downstream link, node i simply
removes the entries HNi, j and LSi, j in its height and link-
state arrays.

The following examples illustrate how the algorithm
works. Fig. 3 provides an example where no reaction is
required. The network is first depicted as at the end of Fig.
1, with the addition that link (D, E) is marked as failing.
Since all nodes still have downstream links following the
failure, no transmissions are required. The significance of
this is greater for networks which are highly connected. If
a given node in the network on average has degree k (i.e. k
adjacent links), then one could estimate the average
number of downstream links for a given node to be (k/2).
This implies that a node could tolerate (k/2)-1 downstream
link failures without requiring any reaction. Fig. 4
provides an example where a reaction is required. The
network is first depicted as at the end of Fig. 3, with the
addition that link (B, H) is marked as failing.

2.4.3 Erasing Routes. Following detection of a
partition (case 4), node i sets its height and the height
entry for each neighbor j ∈ Ni to NULL (unless the
destination is a neighbor, in which case the corresponding
height entry is set to ZERO), updates all the entries in its
link-state array LS, and broadcast a CLR packet. The CLR

Node i loses its last
downstream link

Case 1:
Generate new
reference level

Case 2:
Propagate the highest

neighbor's reference level

Case 3:
Reflect back a higher

sub-level

Case 5:
Generate new
reference level

Case 4:
Partition detected,

erase invalid routes

Was the
link lost due to

a failure?

Do all of the
neighbors have the same

reference level?

Did this
node originally define
that reference level

(oid = i)?

Is the
reflection bit (r) in

that reference level
set to 1?

YES NO

YES NO

YES NO

YES NO

Fig. 2 Maintaining routes decision tree

DEST

(0,0,0,3,A) (0,0,0,2,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(a) Link (D,E) fails

DEST

(0,0,0,3,A) (0,0,0,2,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(b) No reaction necessary, all nodes
still have downstream links

Fig. 3 Link failure with no
reaction

packet consists of a did and the reflected reference level of
node i, (τi, oidi, 1)2. When a node i receives a CLR packet
from a neighbor j ∈ Ni it reacts as follows. (a) If the
reference level in the CLR packet matches the reference
level of node i; it sets its height and the height entry for
each neighbor j ∈ Ni to NULL (unless the destination is a
neighbor, in which case the corresponding height entry is
set to ZERO), updates all the entries in its link-state array
LS and broadcasts a CLR packet. (b) If the reference level
in the CLR packet does not match the reference level of
node i; it sets the height entry for each neighbor j ∈ Ni

(with the same reference level as the CLR packet) to
NULL and updates the corresponding link-state array
entries. Thus the height of each node in the portion of the
network which was partitioned is set to NULL and all
invalid routes are erased. If (b) causes node i to lose its
last downstream link, it reacts as in case 1 of maintaining
routes. Fig. 5 provides an example which demonstrates
partition detection and erasing of invalid routes. The

2 In actuality the value ri = 1 need not be included since it is always 1
for a reflected reference level.

network is first depicted as at the end of Fig. 4, with the
addition that link (A, C) is marked as failing.

It is advantageous to define the CLR packet with an
additional one bit field, which we will refer to as a query
flag. When a node would normally broadcast a CLR
packet immediately followed by a QRY packet, the node
sets the query flag and broadcasts only the CLR packet .
Consequently, reception of a CLR packet with the query
flag set is processed as if a CLR packet was received first
and then a QRY packet was received.

We will summarize the results illustrated by the
examples. When a failure causes a node to lose its last
downstream link, the node will re-establish a route to the
destination in one pass of the set of nodes affected by the
failure (provided that a path to the destination exists). If a
path to the destination no longer exists, the node will
detect the partition in two passes of the set of affected
nodes, and all invalid routes will be erased in three passes
of the set of affected nodes.

2.5 Effect of Time Tag Errors

The effect of clock errors is difficult to bound
analytically, or to determine quantitatively without
simulation. The following is a general discussion
regarding the effects of clock errors on protocol
correctness and efficiency.

By using the assumption of synchronized clocks and
time tagging the reference levels that are created each
time a node loses its last downstream link, we are
establishing the temporal order of these events. Because
the algorithmic reactions are structured in this manner, we
refer to the protocol as the Temporally-Ordered Routing
Algorithm (TORA). If time tags are created by some other
method, such that the relative ordering of the time tags
still matches the temporal order of the corresponding
events, the algorithm will function exactly as described
thus far. For example, to evaluate the results of three link
failures which occur at times 1, 2 and 3, it would not
matter if the corresponding time tags were (1, 2, 3), (5, 6,
7), (10, 20, 30), or (4, 80, 900); the results would be the
same. An excellent analysis on the ordering of events in a
distributed system is provided in [17]. While the details
will not be covered here, suffice it to say that simply
establishing the order of events does not require the use of
physical clocks. Such an ordering can be accomplished
with “logical clocks” which can be implemented by
counters with no actual timing mechanism.

Now, let us consider the effect of time tag errors such
that the relative ordering of the time tags associated with a
sequence of events does not agree with the actual order in
which the events occurred. First, note that time tag errors
do not exclude this algorithm from the general class; thus,
all of the class properties are retained. What is lost, in
some cases, is the efficiency with which routes are re-
established.

DEST

(1,B,0,-2,A) (1,B,0,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(a) Link (A,C) fails

DEST

(2,A,0,0,A) (1,B,0,1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(b) Node A defines new reference level

UPD

DEST

(2,A,0,0,A) (2,A,0,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(c) Node D propagates reference level

UPD

DEST

(2,A,0,0,A) (2,A,0,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(2,A,1,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(d) Node B reflects higher sub-level

UPD

DEST

(2,A,0,0,A) (2,A,1,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(2,A,1,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(e) Node D propagates sub-level

UPD

DEST

(-,-,-,-,A) (2,A,1,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(2,A,1,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(f) Node A detects partition

CLR

DEST

(-,-,-,-,A) (-,-,-,-,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(-,-,-,-,B)

(-,-,-,-,A) (-,-,-,-,D)

(-,-,-,-,B)

(0,0,0,1,E)

(0,0,0,0,F)

(g) Nodes B and D propagate CLR

CLR

CLR

DEST

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,1,E)

(0,0,0,0,F)

(h) All invalid routes erased

Fig. 5 Erasing invalid routes after a failure which
partitions the network

DEST

(0,0,0,3,A) (0,0,0,2,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,B)

(0,0,0,1,E)

(0,0,0,0,F)

(a) Link (B,H) fails

DEST

(0,0,0,3,A) (0,0,0,2,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(b) Node B defines new reference level

UPD

DEST

(0,0,0,3,A)
(1,B,0,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(c) Node D propagates reference level

UPD

DEST

(1,B,0,-2,A) (1,B,0,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(d) Node A propagates reference level

UPD

DEST

(1,B,0,-2,A) (1,B,0,-1,D)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(1,B,0,0,B)

(0,0,0,1,E)

(0,0,0,0,F)

(e) Failure reaction complete

Fig. 4 Re-establishing routes after failure of last
downstream link

Let us now consider how this applies to a practical
implementation of the algorithm. If statistics are known
about the rate of topological change in the network, one
could use this information to determine a desired clock
synchronization accuracy. For instance, if the average
time between link failures is on the order of minutes, then
achieving a clock synchronization on the order of seconds
is very likely sufficient. While this would not guarantee
preservation of the correct ordering of all events;
intuitively, it seems unlikely that events would be
incorrectly ordered very often.

3.0 Performance

There are no comparitive simulation results available
at this time, although such work is underway. Instead, we
present a comparitive summary of worst-case protocol
complexities, augmented with a discussion of basic
operation of several major protocol classes.

The complexities of TORA, along with an Ideal Link-
state (ILS) algorithm, the DUAL family of algorithms, the
GB full reversal algorithm, the LMR protocol, the DSDV
protocol, and the WRP protocol are shown in Table 1. We
borrow the complexity computations of ILS, and DUAL
from [7] to which the reader is referred for details. The
ILS protocol assumes that each network topology change
must be sent to every node. DUAL is the lowest
complexity, distance-vector, shortest-path algorithm
known.

In making comparisons, we make the same
assumptions as [7]. We assume that the protocols execute
synchronously. We compare the Time Complexity (TC),
defined as the number of steps required to perform a
protocol operation, and the Communication Complexity
(CC), defined as the number of messages exchanged in
performing the operation.

The complexity parameters are the number of
network links |L|, the network diameter d, the number of
nodes in a network segment materially affected by a

topological change x, the length of the longest directed
path in the affected network segment l, the height of the
routing tree h, and the maximum nodal degree D.

The comparison shows that TORA’s worst case
complexity is generally better than the algorithms to
which it is most closely related. In many cases, TORA
would actually require only a single pass with TC O(l) and
CC O(Dx) to react to a link failure, further improving its
performance. Additionally, like GB and LMR, it has no
explicit reaction to link additions further reducing its
complexity relative to ILS, DUAL and WRP.

Having written this, we still refrain from placing
much emphasis on worst-case complexity comparisons as
they have limited value. Unfortunately, they are fuzzy
and imprecise as it is difficult to compare algorithms with
differing functionality in a precise, fair and meaningful
fashion. For example, the number of nodes denoted by x
is potentially different for each protocol, and the variables
l and h are specific to given protocols. Rather, what is
important is the protocol’s average performance which is
only obtainable via simulation.

We feel TORA has the potential to perform well
relative to existing approaches based on the following
reasoning. Existing approaches can be categorized into
several broad classes which we now discuss. Link-state
algorithms have the property that changes in link status,
such as a failure, must be propagated to all nodes in the
network. This is an example of “far-reaching” message
propagation mentioned previously. Distance-vector
approaches entail propagation of distance update
information to a potentially large set of nodes, depending
on the location of the change, in furtherance of a
distributed shortest-path computation. Path-finding
algorithms have characteristics of both link-state and
distance-vector approaches, and seek to combine the best
aspects of each into a hybrid protocol. Still, depending on
the location of a change, a large set of nodes may be
included in a shortest-path computation. The link-reversal
mechanism of TORA forgoes propagation of link-state or
distance information and, consequently, is able to localize
its reaction to topological changes much more than the
preceding classes. Its operation is best suited for relatively
dense networks in which only several nearby nodes are
typically involved in a reaction.

The effect of this localization is that the scalability of
the protocol is greatly increased. Scalability, rather than
being constrained by communication and time complexity,
is now limited primarily by storage complexity, which
only grows linearly with the number of nodes in the
network.

4.0 Conclusions

We have proposed a highly adaptive distributed
routing algorithm that is well-suited for operation in
mobile wireless networks. It quickly creates and maintains

Table 1 Complexity Comparison
Protocol TC CC
ILS O(d) O(2|L|)
DUAL (link failure, cost increase) O(x) O(6Dx)
DUAL (link addition, cost decrease) O(d) O(|L|)
DSDV (link failure) O(x) O(Dx)
DSDV (periodic update) O(l) O(|L|)
WRP (link failure, cost increase) O(h) O(Dx)
WRP (link addition, cost decrease) O(d) O(|L|)
GB (connected, postfailure) O(2l) O(lDx)
GB (disconnected, postfailure) ∞ ∞
LMR (connected, postfailure) O(2l) O(2Dx)
LMR (disconnected, postfailure) < ∞ w.p.1 < ∞ w.p.1
TORA (connected, postfailure) O(2l) O(2Dx)
TORA (disconnected, postfailure) O(3l) O(3Dx)

loop-free multipath routing to destinations for which
routing is required, while minimizing communication
overhead. It rapidly adapts to topological changes, and has
the ability to detect network partitions and erase all invalid
routes within a finite time.

As mentioned earlier, the protocol is designed to
decouple (to the greatest extent possible) the generation of
far-reaching control message propagation from the
dynamics of the network topology. Consequently, there is
no distance estimate or link-state information propagation.
A negative effect of this design choice is clear; viz. over
time, as the link reversal process proceeds, the
destination-oriented DAG may become less optimally
directed than it was upon creation.

That is, upon route creation (before any subsequent
link reversals), the DAG is formed and the fourth element
of each node’s height δi essentially contains the distance in
hops from the destination over the path traveled by the
UPD packet to the node (recall Fig. 1f). This distance
information can be used, if desired, to favor routing over
links with shorter distances; although—under heavy traffic
conditions—we would not advocate routing all packets
over a single path due to the congestion-enhancing effect
of single-path routing [2]. As links are reversed in reaction
to a failure, this distance information is lost in these
“reversed” network portions (as δi no longer denotes
distance to the destination when the reference level is not
zero).

A possible enhancement to the protocol would be to
periodically propagate refresh packets outwards from the
destination, reception of which resets the reference level
of all nodes to zero and restores distance significance to
their δi’s. The usage of periodic, destination-initiated,
route optimization was mentioned as a possible routing
enhancement in [18] and, later, a similar technique was
developed as the major mechanism for route adaptation
and maintenence in [12]. Besides serving as a routing
enhancement, the periodic refresh guarantees that router
state errors—resulting from undetectable errors in packet
transmissions or other sources—do not persist for
arbitrary lengths of time. Any router state which is not
explicitly refreshed will eventually time-out and be
deleted (i.e. returned to a NULL value). Thus, the
periodic optimation also serves as soft-state confirmation
of route validity.

This refresh process permits introduction of far-
reaching control message propagation into the protocol in
a fashion that is independent of network topology
dynamics. The refresh interval is controllable, and the
refresh procedure is expected to occur at a very low rate—
it can be viewed as a secondary, background mechanism.
The refresh overhead only grows linearly with the number
of destinations in the network.

References

[1] M.S. Corson, S. Batsell and J. Macker, Architectural
considerations for mobile mesh networking,
working draft, May 1996, available at
http://tonnant.itd.nrl.navy.mil/mmnet/mmnetRFC.txt.

[2] D. Bertsekas and R. Gallager, Data Networks (Prentice-
Hall, 1987).

[3] P. Merlin and A. Segall, A failsafe distributed routing
protocol, IEEE Trans. Commun. (September 1979).

[4] J. Jaffe and F. Moss, A responsive distributed routing
algorithm for computer networks, IEEE Trans. Commun.
(July 1982).

[5] P. Humblet, Another adaptive shortest-path algorithm,
IEEE Trans. Commun. (June 1991).

[6] J.J. Garcia-Luna-Aceves, Distributed routing with labeled
distances, Proc. IEEE INFOCOM ‘92, Florence, Italy
(1992).

[7] J.J. Garcia-Luna-Aceves, Loop-free routing using
diffusing computations, IEEE Trans. Networking 1(1)
(1993)

[8] J.J Garcia-Luna-Aceves and S. Murthy, A loop-free path-
finding algorithm: specification, verification, and
complexity, Proc. IEEE INFOCOM ‘95, Boston, MA
(1995).

[9] J.J Garcia-Luna-Aceves and J. Behrens, Distributed,
scalable routing based on vectors of link states, IEEE
Journal on Selected Areas in Commun. (October 1995).

[10] E. Gafni and D. Bertsekas, Distributed algorithms for
generating loop-free routes in networks with frequently
changing topology, IEEE Trans. Commun. (January 1981).

[11] M.S. Corson and A. Ephremides, A distributed routing
algorithm for mobile wireless networks, Wireless
Networks 1 (1995).

[12] C Perkins and P. Bhagwat, Highly dynamic destination-
sequenced distance vector routing (DSDV) for mobile
computers, ACM SIGCOMM, (October 1994).

[13] S. Murthy and J.J. Garcia-Luna-Aceves, An Efficient
Routing Protocol for Wireless Networks, ACM Mobile
Networks and Applications Journal, Special issue on
Routing in Mobile Communication Networks, (1996).

[14] D. Johnson and D. Maltz, Dynamic source routing in ad
hoc wireless networks, T. Imielinski and H. Korth, eds.,
Mobile computing, (Kluwer Academic Publ. 1996).

[15] NAVSTAR GPS user equipment introduction,
MZ10298.001 (February 1991).

[16] D. Mills, Network time protocol, specification,
implementation and analysis, Internet RFC-1119
(September 1989).

[17] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Comm. of the ACM, (July 1978).

[18] M.S. Corson, A. Ephremides, A Distributed Routing
Algorithm for Mobile Radio Networks, Proc. MILCOM
‘89, Boston, MA, (October, 1989).

