
TCP Fast Recovery Strategies: Analysis and Improvements

Dong Lin and H.T. Kung
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

Abstract

This paper suggests that, to match an ideal Internet gateway
which rigorously enforces fair sharing among competing TCP
connections, an ideal TCP sender should possess two properties
while obeying congestion avoidance and control principles.
First, the TCP sender which under-uses network resources
should avoid retransmission timeouts. When experiencing
network congestion, a TCP connection should not time out unless
it has already reduced its congestion window to one packet but
still cannot survive. Second, the TCP sender which over-uses
network resources should lower its bandwidth. The congestion
window for a connection should decrease each time a lost packet
is detected, because an ideal gateway will drop packets, during
congestion, with a probability proportional to the bandwidth of
the connection.

Following these guidelines, we propose Network-sensitive
Reno (Net Reno), a set of optimizations that can be added to a
traditional Reno TCP sender. Using TCP’s self-clocking property
and the packet conservation rule, Net Reno improves Reno and
its variants (New-Reno and SACK), in reducing TCP
retransmission timeouts (RTOs) and in being conservative in
network usage during the fast recovery phase. Through a trace
analysis, we have shown that over 85% of RTOs are due to small
congestion windows that prevent fast retransmission and
recovery algorithms from being effective. This implies that
sophisticated recovery schemes such as SACK will have limited
benefits for these loads. Net Reno overcomes this problem with a
small window optimization.

While being less aggressive than previous approaches, Net
Reno can recover any number of packet losses without timeouts
as long as the network keeps at least one packet alive for the
connection. This scheme thus brings TCP one step further toward
the ideal model. Net Reno requires no modifications to the TCP
receiver. Simulations and laboratory experiments have shown
that they significantly reduce RTOs and improve TCP’s goodput.

1. Introduction

With its explosive growth, the Internet backbone faces the
challenge of operating at its capacity. Many remote TCP connec-
tions experience high loss rates due to gateway congestion during
busy hours. Congestion avoidance and control have become crit-
ical to the use of the Internet.

In 1988, Jacobson [6] pioneered the concepts of TCP
congestion avoidance and control: slow start, congestion avoid-
ance, conservation of packets, and exponential timer backoff.
TCP was later augmented with fast retransmission and fast

recovery algorithms in 1990 to avoid inefficiency caused by
retransmission timeouts (RTOs) [7, 19, 20].

These basic TCP principles were designed based on the
assumption that the gateway drops at most one packet per flow
when the sender increases the congestion window by one packet
per round-trip time. Therefore, TCP’s fast retransmission and fast
recovery algorithms can quickly recover the loss and adapt to
equilibrium using exponential decrease and linear increase of the
congestion window. A recent study [16] has suggested that
packet loss rates on the Internet have doubled within a year and
that burst dropping is common. With the deployment of Random
Early Detection (RED) gateways [3], the number of dropped
packets per connection will be proportional to its bandwidth
usage at the shared link, causing multiple drops for large window
connections. Therefore, it is worthwhile to study the interactions
between end-systems and gateways at the individual flow level.

In this paper, we use connection and flow interchangeably to
refer to a flow identified by source/destination addresses, port
numbers, and protocol id.

1.1 Previous Work on Avoiding Timeouts

TCP’s fast retransmission and fast recovery algorithms [7,
19, 20] were developed to recover packet losses quickly without
RTOs. The fast retransmission algorithm, which first appeared in
Tahoe TCP [6], retransmits an unacknowledged segment after
receiving three duplicate acknowledgments (ACKs), resets the
congestion window to one packet, and begins slow start. The fast
recovery algorithm in Reno [7, 20] replaces the slow start with
congestion avoidance by reducing the congestion window to one
half.

In Reno, the maximum number of recoverable packet losses
in a congestion window without timeout is limited to one or two
packets in most cases. Under the most optimistic assumptions
that the algorithms always be triggered, no more than six, or
log2128 - 1, losses can be recovered with a maximum window
size of 128 packets. This is because Reno TCP cuts the conges-
tion window by half for each recovered loss. With six back-to-
back lost packets, the final window size would reduce to two
packets. Further losses have to be retransmitted after a long delay
when RTO is triggered by a 500ms slow timer, bringing the
throughput to its knees.

TCP’s selective acknowledgment (SACK) option [12]
enables the receiver, when holding non-contiguous data, to
inform the sender consecutive blocks that were successfully
received. With SACK, the sender is able to identify and

To appear in INFOCOM’98

retransmit multiple lost packets within the same round-trip time
(RTT) if there are enough ACKs returning to the sender.

Hoe [5] proposed a modification to Reno (New-Reno TCP)
that can help the sender recover multiple packet losses. It is
suggested that the sender should fall into a slow start immedi-
ately after the initial loss is detected and inflate the congestion
window by one packet for every two duplicate ACKs. This
scheme, however, generates unnecessary retransmissions for
packets already cached at the receiver. Fall and Floyd [2]
described a modified New-Reno which avoids unnecessary
retransmissions and slow start.

In summary, we are interested in four different TCPs:

• Tahoe: The sender implements fast retransmission only.
• Reno: The sender implements both fast retransmission and

fast recovery.
• Modified New-Reno: The sender retransmits one lost packet

per RTT upon receiving partial ACKs and terminates the
recovery phase when the whole window is acknowledged.

• SACK: The sender is able to retransmit multiple lost packets
per RTT using additional information in SACK blocks.

1.2 Remaining Issues

Previous studies have assumed that multiple packet loss is
the major cause of RTO. By studying an extensive set of traces of
Paxson [17], we have found that for these traces the average
congestion window is small (12 packets) and that over 85% of
the timeouts are due to non-trigger of fast retransmission (see
Section 4.1 below). This strongly suggests that no multiple loss
recovery schemes can be effective for the Internet load repre-
sented by these traces. Other factors that cause RTO including
lost retransmissions and limited data are not addressed.

Another shortcoming of some previous work is that TCP’s
efficiency concerns seem to overwhelm network congestion
concerns. That is, refinements to improve TCP’s efficiency are
provided by adding aggressiveness.

1.3 Results of This Paper

In this paper, we provide insights into Internet congestion
avoidance and control in the following two areas:

• We describe an ideal model based on cooperative gateway
and end-system strategies.

• Following the ideal model, we propose Network-sensitive
Reno (Net Reno) TCP, a set of optimizations that make TCP
more resilient to packet losses even under small congestion
windows and more conservative in network usage.

We hope that, with end-systems running Net Reno TCP,
gateways implementing ideal packet discard algorithms will be
able to achieve fair sharing among competing TCP connections.

Our optimizations can be applied to both Reno and SACK
TCP. They require no modifications to the TCP receiver. Most of
all, they maintain TCP’s congestion control algorithms and
strictly obey the principles of slow start, congestion avoidance,
and conservation of packets [6, 7].

The rest of this paper is organized as follows: Section 2
describes our ideal model for Internet congestion avoidance and

control; Section 3 summaries terminologies of this paper; Section
4 describes the problem and solution for small congestion
windows; Section 5 describes our conservative loss-sensitive
window reduction mechanisms; Section 6 gives additional opti-
mizations to avoid timeouts; Section 7 presents simulation and
experimental results.

2. Cooperative Gateways and End-Systems

While efficiency and stability have been the major objectives
in the study of TCP congestion avoidance and control algorithms,
the interactions among competing TCP connections sharing
gateway resources have not been given equal attention.

2.1 Ideal Network Model

With respect to traffic management, an ideal Internet should
demonstrate the following properties:

• congestion avoidance and control
• equal sharing
• denial of service avoidance

An ideal gateway should have mechanisms for congestion
avoidance. It drops packets in order to signal congestion and
trigger end-system’s flow control algorithms. These signals must
be selectively delivered only to the offending end-systems. A fair
gateway should statistically avoid dropping packets from connec-
tions that use less than the fair share of the resources. Otherwise
the system would not converge to the ideal equilibrium.

The gateway causes denial of service when it cannot provide
at least one packet buffer per flow when the number of simulta-
neous flows increases. While it is possible that TCP’s exponential
timer backoff scheme allows a subset of the competing flows to
share the resources while others are waiting in timeouts, we
believe that smooth sharing and less bandwidth variation provide
better stability than ON/OFF sharing. Unfair bandwidth distribu-
tion within short intervals noticeable by users is particularly
biased against short-lived and interactive connections. This idea
of one buffer per user was first addressed by Nagle [15]. The
ideal gateway should delay denial of service by reducing the
bandwidth variation among the competing flows in order to
maximize the number of simultaneous users.

In [11], we demonstrated a fair gateway packet discard algo-
rithm, Flow Random Early Drop (FRED), which supports a large
number of simultaneous flows fairly by simply adding more
buffers. In contrast, fairness worsens when the buffer size
increases under other algorithms such as Drop-Tail or RED.
Therefore, enforcing fairness not only benefits each individual
flow, but also makes the maximum number of simultaneous
flows more scalable with respect to the required gateway buffer
size.

2.2 Ideal End-System Model

An ideal end-system should deploy multiplicative decrease
and additive increase for congestion control and avoidance. As
suggested by [6], anything more aggressive would cause collapse
or instability.

It is commonly believed that TCP should be robust on recov-
ering packet losses and avoiding timeouts. We claim that a TCP
sender should aggressively recover packet losses and avoid time-
outs. A timeout is necessary only if TCP cannot survive with a
window size of one packet. A fragile TCP connection (which is
very sensitive to losses) should not fall into timeouts while other
connections are increasing their bandwidth share at the gateway.

Matching aggressive TCP recovery schemes with non-ideal
gateway packet discard algorithms deserves further investigation.
An ideal gateway signals the offending connections only. RED
[3], an approximation to the ideal model, assures that the number
of packet losses from a connection is proportional to its band-
width usage. Thus, offending connections using bandwidths
larger than their fair shares will incur more losses than the others.
An ideal TCP sender should respond properly to this clue by
reducing the congestion window each time a lost packet is
detected. A SACK TCP sender which cuts the window by one
half, regardless of the number of losses, may be too aggressive
and destructive to other connections and the whole network.

3. Terminology and Notations

Throughout this paper, we use the following terms in TCP’s
protocol control block. These names are taken from NetBSD
1.2’s TCP implementation:

• snd_cwnd: the sender’s congestion window size
• snd_una: the smallest sequence number of the unacknowl-

edged packets
• snd_nxt: sequence number of the next packet to be sent
• snd_ssthresh: sender’s slow start threshold
• dupacks: the number of duplicate ACKs received

The following terms are not in the implementation but appear in
our analysis and graphs:

• rcv_rseq: sequence number in the header of a received
packet

• rcv_dseq: sequence number of a missing packet observed by
the receiver when receiving a non-consecutive packet

• snd_sseq: sequence number in the header of a transmitted
packet

Maximum segment size is 512 bytes. All terms described
above are converted from sequence numbers to packet numbers
(sequence numbers divided by segment size). Delayed ACK is
enabled by default. Each TCP session starts with a congestion
window of one packet and snd_ssthresh of 128 packets (64KB).
TCP’s fast timer expires every 200ms and slow timer every 500
ms. A random factor is added to each timeout interval so that no
two timers go off at the same time.

4. The Small Windows Problem and Solution

According to a trace study of this section, the most dominant
factor that causes TCP to timeout appears to be small congestion
windows. Before a lost packet is recovered, the window size
limits the number of returning ACKs the sender may receive.
Because TCP requires three duplicate ACKs in order to trigger
fast retransmission and fast recovery, small windows may
prevent these algorithms from being effective.

Paxson [16] has found that out-of-order delivery is common
and argued that TCP should not retransmit too early by lowering
the received duplicate ACK threshold. In this section, we
describe a novel approach that remedies the problem. This algo-
rithm was used in [11] as a demonstration of FRED where we
pointed out that this small window optimization improves the
robustness of TCP significantly and enables connections with
tiny windows to compete fairly with other high bandwidth
connections sharing the same gateway.

4.1 Trace Study of Timeouts

To understand the dynamics of RTOs, we analyzed 2,000
actual TCP bulk transfers over the Internet. This is a subset of a
large trace collected by Paxson [16, 17] during November and
December of 1995. Each transfer delivered 100KB of data.
Traces were collected at both senders and receivers.

Our objective is to identify retransmission timeouts from the
traces and analyze their causes. We categorize the timeouts into
the following three classes:

• Non-trigger: The sender retransmits a packet without
previous attempts because the fast retransmission algorithm
has not been triggered.

• Multiple losses: The sender retransmits a packet that is
different from previous retransmissions sent at the beginning
of this timeout period.

• Lost retransmission: The sender retransmits the same packet
that has already been resent.

A TCP receiver sends a duplicate ACK when it receives out-
of-sequence packets. The sender has to accumulate three dupli-
cate ACKs before it triggers the fast retransmission and fast
recovery algorithms in order to avoid unnecessary retransmis-
sions due to out-of-order delivery. The non-trigger case will lead
to RTO for all versions of TCP. Under standard Reno, multiple
packet loss causes back-to-back recoveries as the sender only
retransmits one packet per recovery phase. Previous work
enables the sender to handle multiple losses per recovery,
improving efficiency during the recovery period. Currently, no

TCP that we are aware of can deal with lost retransmissions1. By
analyzing the distribution of various causes, we hope to identify
the most significant factor among these three.

For each timeout, we record the connection’s instant conges-
tion window size. We then calculate the distribution for all time-
outs that have congestion windows greater than or equal to X
packets for all values of X. Figure 1 shows details of the analysis.
Astonishingly, this graph shows that over 85% of the timeouts are
due to non-trigger. For the remaining, 11% are due to multiple
loss and 4% are due to lost retransmissions (from the three dots at
X=1). Figure 1 also shows that less than 10% of timeouts have
congestion window larger than 10 packets (from the total window
distribution curve) and that the distribution for multiple loss is
never more than 10% (from the multiple loss curve).

To verify our findings, we measured the congestion windows
while the connections are not in timeout. The average window

1. See Section 6.2 and [9] for a recent development.

size is 12 packets. Given such a small window size, it is quite
intuitive to expect that non-trigger is common.

These results imply that sophisticated multiple loss recovery
schemes such as SACK have limited benefit for TCP connections
over the load represented in the trace. Given the small congestion
window size, variants of New-Reno might do just as well. SACK
can, perhaps, be more effective over long links where connec-
tions have large windows and the congestion is not as severe.

4.2 Recovery from Small Windows

This section presents a solution to the small window
problem, based on the packet conservation rule [7]. In Reno TCP,
the sender stops sending when receiving duplicate ACKs. When
three dupacks are received, the fast retransmission and recovery
phase starts, otherwise the sender waits for an RTO. In our solu-
tion, the sender generates a new packet for each duplicate ACK
received (only for the first two ACKs). As mentioned in [7], a
duplicated ACK received means a packet has left the network.
We can inject one new packet so that the total number of in-flight
packets is as many as the current congestion window allows.
New packets are generated by inflating the congestion window as
in the recovery phase. Assume that the network will keep alive at
least one packet per connection. Then these new packets injected
into the network will cause more ACKs to come back and even-
tually “force” the sender into the recovery phase when three
duplicate ACKs arrive.

When the recovery phase is triggered, the inflated conges-
tion window should be deflated back for computing the slow start
threshold. If a positive ACK comes back before dupacks reaches
three, then the number of packets acknowledged should be
checked against the number of packets injected. If the amount
acknowledged is more than or equal to the amount inflated,
dupacks is cleared. Otherwise, dupacks should be subtracted by
the amount acknowledged as if the next unacknowledged packet
is now receiving duplicate ACKs. The reason is that if we have
received N ACKs, but can only shift the congestion window less
than N packets to the right, this next unacknowledged packet
must be either out-of-order or missing.

Figure 2 demonstrates the effect of window inflation for
recovering losses for small windows. X-axis is time in the unit of
packet time (time to transmit a 512 byte packet at link rate). Y-
axis is packet number (sequence number divided by segment
size). The connection has a window size of three packets. The
outstanding packets were 43, 44 and 45 transmitted at (93, 43),
(93, 44) and (99, 45). Packet 43 was lost (marked by the triangle
at (97, 43)) and the ACK generated by packet 44 was positive
because packet 42 did not cause an ACK due to delayed ACK.
The ACK generated by packet 45 set dupacks to one. The
congestion window was immediately inflated to four so that
packet 46 was sent at (103, 46) and it became the only packet
alive. One RTT later the ACK generated by packet 46 came back
which incremented dupacks to two and inflated the window
further to five and packet 47 was sent at (108, 47). Another RTT
later, the new returning ACK finally triggered fast retransmission
of packet 43 at (112, 43).

This optimization for small windows is of less significance
for large windows and may cause extra packet losses under
severe congestion. Therefore, pre-recovery window inflation
should be dynamically enabled. In our implementation, it is trig-
gered only if the congestion window size is less than ten packets.

A similar approach was simultaneously developed in [18].
However, their approach does not justify why two new packets
can be injected into the network or how to account for the two
extra packets in the congestion window after three duplicate
ACKs or a positive ACK are received. It is also pointed out in
[18], through trace analysis of a busy web server, that 90% of the
retransmission timeouts are due to non-trigger.

5. Loss-Sensitive Window Reduction

As mentioned earlier, ideal gateways, to which RED and
FRED approximate, signal congestion by dropping packets from
offending flows. The number of packet drops reflect the over
aggressiveness of individual flows. A Reno sender reduces its
congestion window by one half for each packet loss. Therefore,

the congestion window is after L recoveries where L is the
number of losses in a window of size W. New-Reno and SACK,
however, cut the window by a half regardless of the number of
losses. This makes the window to be after one recovery
when all losses are retransmitted.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

W
ei

gh
te

d
D

is
t.

of
 C

W
N

D
 (>

=
X

)

Congestion Window (cwnd)

non-trigger
multiple loss (SACK effective)

lost rxt
total dist.

Figure 1. Congestion window sizes distribution and
timeout classes distributions. Non-trigger is the
dominant factor for timeouts. Multiple losses never
contribute to more than 10% of the timeouts.

40

42

44

46

48

50

52

54

90 95 100 105 110 115 120 125

Pa
ck

et
 N

um
be

r

Packet Time

snd_nxt
snd_una (ack)

rcv_rseq
snd_sseq
rcv_dseq

Figure 2. Recovering one packet loss for a window of
three packets, under the small window recovery
scheme.

W 2L⁄

W 2⁄

Besides the mismatch with gateway packet discard algo-
rithms, such loss insensitive window reduction also causes packet
bursts when recovering multiple packet losses. A partial ACK
that only acknowledges some but not all packets in the original
window causes a sudden shift of the window allowing multiple
packets to be sent. In addition, since the number of in-flight
packets will be smaller than half of the original window size if
more than one packet is lost, the window reset at the end of the
recovery will allow multiple packets to be injected. Fall and
Floyd [2] first pointed out this packet bursts problem.

In this section, we described a loss-sensitive window reduc-
tion algorithm based on the packet conservation rule. The size of
the congestion window after the recoveries will be a function of
the number of lost packets. Specifically, the algorithm will
reduce the window to where c is proportional to the
number of packet losses. In addition, the algorithm does not have
the packet bursts problem.

5.1 Loss-Sensitive New-Reno TCP

We describe below the two changes made to the standard
Reno TCP implemented in NetBSD 1.2 for our loss-sensitive
New-Reno:

1. When a partial ACK is received, i.e., a positive ACK that
only acknowledges some but not all the packets in the
original window after fast recovery was triggered, imme-
diately retransmit the next lost packet pointed by the ACK
and continue the recovery process. In addition, reduce the
congestion window so that this partial ACK does not cause
more packets to be sent other than the retransmission.

2. If a positive ACK acknowledges all the packets in the
original congestion window, terminate the recovery phase.
Reset the congestion window to one half or less so that at
most one packet can be sent due to the left edge of the
window shifting to the right. This will cause the sender to
slow start instead of blasting a large number of packets to
the network.

Notice from the above two rules that after the number of
outstanding packets is reduced by one-half, each received ACK
(duplicate or partial) causes exactly one packet to be sent for the
rest of the recover phase. In other words, the number of
outstanding packets does not re-grow during the recovery phase.
In contrast, the method of [2] imposes a maximum burst of four
packets for each received ACK and does not adjust the window
upon receiving positive ACKs.

5.2 Loss-Sensitive SACK TCP

While our SACK receiver strictly complies with the specifi-
cation [12], our SACK sender is implemented by the following
additions to NetBSD 1.2 Reno TCP:

1. If the inflated congestion window allows sending one
packet, retransmit a lost packet and reduce the window by
one packet. If all lost packets have been retransmitted,
send a new packet as in Reno.

2. When a partial ACK is received, retransmit a lost packet
or send a new packet. Reduce the congestion window so

that this ACK does not cause more packets to be sent.
3. Use the last rule defined in Section 5.1 to terminate the

recovery process and reset the congestion window.

Notice again that each received ACK (duplicate or partial)
causes exactly one packet to be sent for the second half of the
recovery phase. The authors of [2] suggest that when SACK
retransmits a lost packet, another packet should be sent because
the number of outstanding packets is at least one less than
expected due to the newly detected lost packet. By doing this, the
number of outstanding packets would be as close to half of the
original window size as possible. We argue that, under some
circumstances, the congestion window should actually be
reduced by more than one-half in view of sudden increase of link
sharing at the gateways as indicated by packet losses. Our less
aggressive sender allows the number of outstanding packets to be
shaped by the exact number of packet losses. Therefore, the
number of packets on the fly is half of the original window size
minus a constant c, i.e., (), where c is the distance
between the first and the last lost packets. During no time does
the sender generate more than one packet for each received ACK.
At the end of a multiple-packet loss recovery phase, the number
of outstanding packets is smaller than half of the original window
size, and the connection uses slow start to ramp up. Our more
conservative scheme strictly obeys the conservation of packets
rule. We believe that the sender should not insist on keeping the
number of in-flight packets to be one half of the window during
recovery when congestion is detected.

5.3 Dealing with Out-of-order Packets During
Recovery

Three duplicate ACKs are required before fast retransmis-
sion starts. This is a conservative measure to avoid unnecessary
retransmission caused by out-of-order delivery. However, the
schemes described in the above two subsections and those in
previous work will retransmit other lost packets in the same
window upon receiving the first partial ACK. This is inconsistent
with the original Reno approach and may cause unnecessary
retransmission when out-of-order packets occur. This is demon-
strated in the following example:

With a congestion window of W packets (W >> 3), the
sender has W packets in-flight. Assume P1 is lost, Pw and the

retransmission of P1 arrive out-of-order. The incoming packet
sequence at the receiver is:

P2,......, Pw-1, P1, Pw, Pw+1,......, P3w/2

The receiver generates the following ACK sequence accordingly:

A1,......, A1, Aw, Aw+1, Aw+2......, A3w/2+1

The outgoing packet sequence on the sender side is:

P1, P2,......, Pw, P1, Pw+1, Pw+2,......, P3w/2, Pw

Notice Aw is a partial ACK because it falls into the original

window of W packets. This causes the sender to falsely
retransmit Pw due to out-of-order by one packet.

Our Net Reno solves the problem with the following modifi-
cations to Rule 1 in Section 5.1:

W 2⁄ c–

W 2⁄ c–

1. When a packet is retransmitted, set a marker at the in-
flight packet with the largest sequence number (snd_nxt).

2. When a partial ACK is received, the following value is
calculated , where M and A are the
sequence numbers of the marker and the partial ACK
respectively, and S is the segment size. Retransmit the next
lost packet if D is at least three. Otherwise, send a new
packet and more duplicate ACKs must be received in
order to initiate the retransmission. The number of addi-
tional duplicate ACKs is .

These two rules are used recursively until a complete ACK is
received. This modification assumes that most out-of-order
delivery is no more than three packets and therefore is consistent
with the original Reno.

6. Additional Recovery Optimizations for
Avoiding Retransmission Timeouts

This section describes the rest of our proposed improve-
ments to Reno TCP and its variants in detail.

6.1 TCP’s Self-Clocking Property

TCP’s round-trip time boundaries can be detected by
counting the number of returning ACKs. This is similar to
congestion avoidance in which the congestion window is
increased by one packet per RTT, except that we use duplicate
ACKs during the recovery phase. To explain our idea, for the
moment, assume that delayed ACK is disabled, that TCP does
not change its congestion window size, and that the network does
not drop packets. If the current window size is one packet, then
the time between two consecutive ACKs is exactly one RTT
(including queueing and processing delays). If the window size is
two packets, then the time between every other received ACKs is
one RTT. In general, if the window size is W, then the time
between ACKN and ACKN+W is one RTT.

For the purpose of this paper, we only use the ACK-clock
during recovery in which the reference congestion window is
static. More specifically, if the congestion window is W when the
first loss is detected, then we consider W worth of ACKs as the
first RTT and W/2 worth of ACKs as each additional RTT. The
receiver is required to send one ACK for each non-consecutive
data packet received.

6.2 Recovery of Lost Retransmissions Using TCP’s
ACK-Clock

This section explains how we use ACK-clock to recover lost
retransmissions. As depicted by Figure 1, lost retransmissions
account for about 5% of the timeouts in the traces we examined.
Reno, New-Reno and SACK do not deal with lost retransmis-
sions. Figure 3 shows a simulation trace of a SACK TCP session.
When the congestion window reached 34 packets (snd_nxt -
snd_una), packets 638, 639, and 640 were dropped, marked by
three triangles around point (1530, 638). SACK TCP quickly
retransmitted packet 638 after receiving three duplicate ACKs at
point (1553, 638). The retransmissions of packets 639 and 640
were delayed until (1583, 639) because TCP had to flush half of

the packets on the fly in order to shrink its congestion window by
one-half. This was done by waiting for 17 duplicated ACKs (14
plus the original 3 dupacks). However, both packets were sent as
soon as the congestion window was open again. Each packet was
sent upon receiving one ACK. Once all three lost packets were
retransmitted, new packets started to fill the pipe due to the
inflated congestion window by the conservation of packets rule
starting from (1587, 672). The square points in the figure show
the packets actually arrived at the receiver. Notice that the
retransmission for packet 638 did not make it, although retrans-
mitted packets 639 and 640 did (near point (1602, 639)). As a
consequence, snd_una did not get increased and eventually the
slow timer went off (not shown in the figure).

We propose using TCP’s ACK-clock to time out lost retrans-
missions. If the clock shows one RTT has gone by and we have
received three additional duplicate ACKs since the end of the
RTT, the current packet pointed by snd_una should be retrans-
mitted again. The three additional dupacks is a conservative
measure against out-of-order packets. When a positive ACK
comes back and additional lost packets have not been recovered,
the ACK-clock value is recorded so that the next unacknowl-
edged packet can be timed.

Implementing the ACK-clock is straightforward. The
receiver sends a duplicate ACK for each non-consecutive packet
received. Therefore, the value of dupacks represents exactly the
ACK-clock ticks. When a data packet is lost in the network, the
corresponding ACK, which should have been generated and
delivered to the sender, will be missing. This slows down the
ACK-clock. Therefore, one additional tick should be generated
for each retransmission.

Figure 4 shows a simulation trace over the same TCP
connection when the ACK-clock is used. As before, SACK TCP
retransmitted packets 638, 639 and 640, but only the latter two
packets arrived at the receiver. When dupacks reached 40
(3+RTT+3), the sender retransmitted packet 638 again at point
(1623, 638) and the packet successfully arrived at the receiver at
point (1642, 638). Consequently, this caused a huge right shift for
the sender’s congestion window at point (1659, 688) and the
recovery phase terminated. At the time dupacks reached 40, 37

D M A–() S⁄=

3 D–

620

640

660

680

700

720

1520 1540 1560 1580 1600 1620 1640 1660

Pa
ck

et
 N

um
be

r

Packet Time

snd_nxt
snd_una (ack)

rcv_rseq
snd_sseq
rcv_dseq

Figure 3. The retransmission for lost packet 638
was dropped by the gateway. The SACK TCP
connection fell into a retransmission time out.

duplicated ACKs had been received, with the other three ticks
coming from the original three retransmissions.

The authors of [9] proposed adding a field to the TCP header
that carries a non-decreasing counter generated by the sender and
echoed by the receiver. Our approach does not require modifica-
tions to the header fields or the receiver. In addition, the scheme
of [9] does not consider out-of-order delivery.

6.3 Correcting the ACK-Clock

The ACK-Clock slows down upon packet losses. In the
worst case, when TCP loses over half of the packets in the same
window and the first retransmission, the clock stalls because the
Reno sender requires reception of at least W/2 duplicate ACKs in
order to send new packets and keep the clock ticking.

To prevent stalling, the sender needs to identify the first RTT
boundary without counting returning ACKs. This can be done by
inserting markers after the recovery begins. Piggybacked markers
are sent by the sender with data packets and echoed by the
receiver with ACKs. The only packet sent during the first half of
the RTT is the first retransmission. To increase the probability
that at least one marker successfully returns to the sender, new
packets need to be injected into the network during the first half
of the RTT. But this adds aggressiveness to the algorithm, gives
less time for the gateway queue to drain, and therefore might
cause further congestion. As a compromise, we propose sending
one marked new packet upon receiving the fifth and the seventh
duplicate ACK respectively.

Packet marking can be done in two different ways without
modifying the receiver. The first option is to use time stamps. For
each retransmission, a new time stamp should be used to differ-
entiate new packets from old packets. The second approach is
specific to SACK TCP. When a new packet (not a retransmitted
packet) is sent, the corresponding ACK will carry a SACK block
outside the original window. SACK requires that the first block
must reflect the change made by the reception of this new packet
[12]. Therefore, as long as new packets are injected into the pipe,
the returning SACK blocks can serve as non-ambiguous markers.

6.4 Incorporating Back-to-back Recoveries

The recovery process terminates when a positive ACK
acknowledges all packets in the original congestion window.
Simulations show that the sender may immediately fall into
another recovery phase due to the loss of new packets from the
inflated window. The connection needs to accumulate another
three duplicate ACKs for the second recovery.

As stated in Section 5.2, at the end of a recovery the total

number of outstanding packets is about . If a posi-
tive ACK indicates more than W packets unacknowledged, then
there is at least one more lost packet even if all the packets in the
original packets are acknowledged. In SACK TCP, this positive
ACK would carry a SACK block. Such information can be used
to help start the second recovery early.

When the sender receives an ACK that acknowledges less
than the expected number of packets, the sender should
retransmit the packet pointed by the incoming ACK. Because this
lost packet is sent after the window is reduced by one half, it is a
sign of further congestion. The sender should indeed reduce the
window again. We set the dupacks counter to two packets and
send out a new packet to void structural changes to the imple-
mentation. This way, the second recovery will be triggered by the
next incoming duplicate ACK. This is demonstrated by a New-
Reno TCP connection in Figure 5: the first recovery starts after
the sender has received three duplicate ACKs at (150819, 6554)
and retransmitted five lost packets. At the end of the recovery
when a positive ACK is received at (151349, 6590), the sender
sets dupacks counter to two, and transmits a new packet. The
second recovery starts when the next ACK comes at (151369,
6578).

6.5 Recovering with Limited Data

We have previously demonstrated that, with a window size
of W packets and a loss of L packets, SACK is able to recover all
losses within one RTT, whereas New-Reno requires L*RTT to
finish. During this potentially long period, New-Reno requires
data to generate new packets. If the sender does not have enough
data or is limited by the receiver’s advertised window, then the
connection would stall into a RTO.

To prevent this RTO, we propose that the sender should re-
send the packets starting from the first unacknowledged packet at

620

630

640

650

660

670

680

690

700

710

720

1520 1540 1560 1580 1600 1620 1640 1660

Pa
ck

et
 N

um
be

r

Packet Time

snd_nxt
snd_una (ack)

rcv_rseq
snd_sseq
rcv_dseq

Figure 4. TCP’s ACK-clock recovered the lost
retransmission which enabled the connection to
continue without timeout.

W W 2⁄ c–=

6545

6550

6555

6560

6565

6570

6575

6580

6585

6590

6595

150800 151000 151200 151400 151600

Pa
ck

et
 N

um
be

r

Packet Time

snd_nxt
snd_una (ack)

snd_sseq

Figure 5. First recovery helps to quickly trigger
the second recovery immediately follows.

snd_una. Although this would cause unnecessary retransmissions
in case of out-of-order delivery, it can keep the flywheel going
and eventually clock the connection out of recovery. Another
approach is to send header-only packets with sequence numbers
higher than snd_una. This accomplishes the same goal and
preserves link efficiency although it does not contribute to TCP’s
goodput. Gateways such as RED and FRED that are capable of
measuring buffer usage in bytes should favor the second
approach.

7. Performance Comparison

We present performance results based on simulations and
also on experiments on laboratory test networks.

The simulator used for results of Section 7.1 is a distant
descendant of one written for the DARPA/Nortel funded Cred-
itNet ATM Project [10] in 1992. The switch implements pure
EPD with no partial packet discard in order to emulate packet
switching. We use 512 data-byte TCP packets which are carried
in 12 ATM cells. The gateway decides whether to drop a packet
upon receiving the first cell in the packet. NetBSD 1.2 TCP Reno
source files are used with our modifications described in this
paper.

For the rest of this section, we use the terms New-Reno and
SACK to represent, respectively, Loss-Sensitive New-Reno and
SACK described in Section 5.

7.1 Avoiding RTOs by Net Reno

Senders C1-C4 in Figure 6 each have a (1ms, 103.3 mbps)
link to a shared gateway. Sender C-5 has a long link of (16 ms,
31.0 mbps). All five connections go through a shared link (2 ms,
51.7 mbps) to the same host receiver. The five FTP senders
always have data in the socket buffers and the congestion
windows can grow up to 128 packets. The gateway implements
RED [3] (with buffer size = 16 packets, minth = 4, maxth = 8, wq

= 0.002, and maxp = 1/50). As discussed in Section 4.1, our trace

analysis reveals that the average congestion windows size for
TCP connections in the trace is 12 packets. We used small buffers
at the gateway so that we can imitate the correct congestion
window sizes for both local and cross country connections. RED
is used to eliminate the phase effects caused by constant propaga-
tion delays and deterministic control algorithms [4].

We simulated New-Reno, SACK, and Net Reno (Net-Reno
and Net-Reno-SACK). For each of the above TCP implementa-

tions, we ran the simulation 10 times, each simulating about 30
seconds of traffic.

Table 1 shows the total number of RTOs each connection has
experienced over the ten runs. Notice that the Net Reno optimiza-
tions described in this paper have completely eliminated RTOs
for both New-Reno and SACK TCP.

Table 2 shows the total number of packet losses for each
connection over the ten runs. Notice that each connection experi-
enced slightly more losses under Net Reno. This is because the
connections were constantly generating packets into the network
whereas, in the New-Reno and SACK case, the connections were
shut off during RTOs. The traffic patterns are smoother with Net
Reno than without, due to absence of RTOs. Note that Net Reno
did not fall into any RTO even if there were more packet losses.

7.2 Improving Goodput by Net Reno

In our laboratory at Harvard, we have implemented Net
Reno (except packet marking), New-Reno, SACK, and RED
under NetBSD 1.2. The SACK implementation was written from
scratch, but was partially inspired by a BSDI version [1].

Figure 7 depicts a test setup in our lab. A TCP sender on a
100 mbps fast ethernet sends infinite data to a sink on a 10 mbps
ethernet through a RED gateway (buffersize=20, minth=5,
maxth=10, wq=1/512, maxq=0.02). A small buffer size is to limit

TCP’s window size so that the small window optimization can be
more effectively demonstrated. All links are a couple of feet
long. The maximum segment size is 512 bytes, delayed ACK is
enabled, and the maximum TCP socket buffer size is 256KB. All
machines are 200 Mhz Intel Pentium Pro with 64 MB RAM. To
test the effectiveness of each optimization, we measured the
TCP’s goodput with various combinations of the optimizations
turned on. Each test were run 300 seconds.

Table 3 summarizes average TCP goodput of the experi-
ments. The first column shows the optimizations used for the
measurement. “lrxt” stands for lost retransmission. The second
and third columns show the goodput for New-Reno. and SACK
respectively. For both New-Reno and SACK, the goodput
improves as more optimizations are added. The gateway reported
loss rate of 1%. For comparison, a standard Reno sender obtained
a goodput of 4006 kbps. Surprisingly, SACK fell behind New-

C-5

C-4 C-3 C-2 C-1

Sink

2 ms, 51.7 mbps16 ms, 31.0 mbps

1 ms, 103.3 mbps

RED
GW

Figure 6. A simulation test network. A long distance
TCP competes with four local connections at a RED
gateway for the shared link to a sink.

C-1 C-2 C-3 C-4 C-5 total

new-reno 19 33 36 28 13 129

sack 28 35 26 26 8 123

net-reno 0 0 0 0 0 0

net-reno-sack 0 0 0 0 0 0

Table 1. Total number of retransmission timeouts (RTO)
over ten runs for the configuration in Figure 6. Columns
one to five show the #RTOs for the five connections.

C-1 C-2 C-3 C-4 C-5 total

new-reno 2627 2528 2491 2442 708 10796

sack 2691 2645 2562 2504 734 11136

net-reno 2674 2625 2610 2553 695 11157

net-reno-sack 2748 2704 2682 2690 691 11515

Table 2. Total number of packet drops over ten runs for
the configuration in Figure 6

Reno in all cases. We replaced the sender and the sink machines
with two Pentium 100 Mhz machines. Reno and New-Reno
provided similar goodput. SACK performance degraded in all
cases by about 20%. Our simulation traces of Section 7.1 reveal
that New-Reno provided lower total goodput than SACK, but
Net-Reno’s performance is better than SACK and comparable to
that of Net-Reno-SACK.

We speculate from our simulations and real experiments that
SACK might not be able to demonstrate significant advantages
over Net Reno under moderate congestion and that it will require
significantly more CPU power than Reno variants unless it can
be efficiently implemented. Previous studies of SACK [2, 13]
have all been simulation-based in which end-systems are
assumed to have infinite CPU power. Perhaps the necessity of
SACK deserves further investigation, given its added complexity.
In addition, transporting SACK blocks from the receiver to the
sender reduces capacity in the packet payload.

8. Conclusions

We have described an ideal network model where TCP end-
system algorithms will match ideal gateway congestion control
algorithms. We have presented optimizations to TCP’s fast
recovery strategies to bring end-systems one step further toward
the ideal model. These optimizations make TCP more tolerant of
packet losses and more robust on avoiding retransmission time-
outs. Simulations and experiments have shown that Net Reno
will significantly reduce RTOs and improve TCP’s goodput.

A Net Reno TCP connection is able to avoid RTOs
completely as long as the network keeps at least one packet alive
for each round trip time. This requirement is met by FRED gate-
ways [11]. Reducing RTOs also help improve fair resource
sharing at gateways. Low bandwidth connections with these
improvements are more likely to recover packet losses and avoid
throughput deficiency than without them.

While improving efficiency and robustness, Net Reno is less
aggressive than New-Reno and SACK. Net Reno strictly obeys
the conservation of packets rule, enforces loss-sensitive window
reduction, and does not generate packet bursts during recovery.

Optimizations of Net Reno TCP are applicable to the SACK
option and can also work independently under Reno.

Acknowledgments

This work was supported in part by research funding from
Nortel and Sprint. Vern Paxson kindly provided us the N2 trace
[16, 17]. His suggestions and the tcpanaly program have saved us
a tremendous amount of time.

Reference

[1] Balakrishnan, H., TCP SACK Implementation for BSDI
2.1. ftp://cs.daedalus.berkeley.edu/pub/tcpsack/

[2] Fall, K., Floyd, S., “Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP,” Computer Communication
Review, July 1996

[3] Floyd, S., Jacobson, V., “Random Early Detection Gate-
ways for Congestion Avoidance,” Transactions on Net-
working, August 1993

[4] Floyd, S., Jacobson, V., “On Traffic Phase Effects in
Packet-Switched Gateways,” Computer Communication
Review, April 1991

[5] Hoe, J., “Improving the Start-up Behavior of a Congestion
Control Scheme for TCP,” SIGCOMM’96

[6] Jacobson, V., “Congestion Avoidance and Control,” SIG-
COMM’88

[7] Jacobson, V., “Modified TCP congestion avoidance algo-
rithm,” April 30, 1990, end2end-interest mailing list

[8] Jacobson, V., Braden, R., Borman, D. “TCP Extensions for
High Performance,” RFC1323

[9] Keshav, S. and Morgan S.P., “SMART Retransmission: Per-
formance with Overload and Random Losses,” INFO-
COM’97

[10] Kung, H.T., Chapman, A., The CreditNet Project, http://
www.eecs.harvard.edu/cn.html

[11] Lin, D., Morris, R., “Dynamics of Random Early Detec-
tion,” SIGCOMM’97

[12] Mathis M., Mahdavi, J., Floyd S., Romanow A., “TCP
Selective Acknowledgment Options,” RFC2018

[13] Mathis, M., Mahdavi, J., “Forward Acknowledgment:
Refining TCP Congestion Control,” SIGCOMM’96

[14] Morris, R., “TCP Behavior with Many Flows,” IEEE Inter-
national Conference on Network Protocols, October 1997,
Atlanta

[15] Nagle, J., “One Packet Switches with Infinite Storage,”
IEEE Transactions on Communications, Vol. 35, pp 435-
438, 1987

[16] Paxson, V., “End-to-End Internet Packet Dynamics,” SIG-
COMM’97

[17] Paxson, V., “Automated Packet Trace Analysis of TCP
Implementations,” SIGCOMM’97

[18] Seshan, S., Stemm. M., Balakrishnan, H., Padmanabhan,
V.N., and Randy H. Katz, “TCP Behavior of a Busy Inter-
net Server: Analysis and Improvements,” INFOCOM’98

[19] Stevens, W.R., “TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms,” RFC2001

[20] Wright, G., Stevens, W. R., TCP/IP ILLUSTRATED VOL-
UME 2, Addison-Wesley Publishing Co., New York, 1995

[21] Zhang, L., Shenker, S., Clark, D., “Observations on the
Dynamics of a Congestion Control Algorithm: The Effects
of Two-Way Traffic,” SIGCOMM’91

new-reno sack

none 5274 5009

smallwnd 6027 5321

lrxt 5782 5406

back-to-back 5584 4985

smallwnd+lrxt 6717 5925

smallwnd+lrxt+back 6739 5842

Table 3. Measured TCP goodput (kbps) for configuration
in Figure 7. The first column specifies the optimization(s)
used for the measurements in the same row.

Sender Sink
10 mbps100 mbps RED

GW

Figure 7. An experimental test network. The TCP
sender on a 100 mbps fast ethernet sends infinite data
to a sink on a 10 mbps ethernet through a RED
gateway. All links are less than two feet.

