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Abstract

A substantial fraction of all network traffic today comes from applications in which clients
retrieve objects from servers. The caching of objects in locations “close” to clients is an
important technique for reducing both network traffic and response time for such appli-
cations. In this paper we consider the benefits of associating caches with switching nodes
throughout the network, rather than in a few hand-chosen locations. We also consider
the use of various self-organizing or active cache management strategies for organizing
cache content. We evaluate caching techniques using both simulation and a general ana-
lytic model for network caching. Our results indicate that in-network caching can make
effective use of cache space. In particular, self-organizing caching schemes yield better av-
erage round-trip latencies than more traditional approaches, while requiring much smaller
caches per node.
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1 Introduction

A substantial fraction of all network traffic today comes from applications in which clients
retrieve objects from servers (e.g. the World-Wide Web). The caching of objects in locations
“close” to clients is an important technique for reducing both network traffic and response
time for such applications. Studies have shown [5, 6] that caching can substantially improve
performance.

In this paper we consider the benefits of associating caches with switching nodes throughout
the network, rather than in a few hand-chosen locations. We also consider the use of various
self-organizing or active cache management strategies. Our goal is to maximize the benefit
from each cached object by placing it where it will do the most good. The idea is that each
node caches those objects that most frequently “pass through” it, and objects end up cached
at “hot spots” where streams of requests come together.

We develop the self-organizing algorithms in light of an “active” network [9]. In an active
network, the routing nodes can execute code on behalf of users. The processing required
by the self-organizing caching algorithms form a natural application for active networks (as
this processing is confined to within the network, and uses knowledge that is available only
within the network). In the rest of the paper, we use the terms “self-organizing” and “active”
interchangeably.

We define performance in terms of the average number of packet-hops required to satisfy
a client request. This measure accounts for both aspects of the benefits of caching: reduction
in network traffic, and reduction of the request-response latency. Our studies involve both
analysis and simulation, and use object request distributions that are consistent with studies
of actual Web traffic [2]. Our results indicate that in-network caching can make effective use
of cache space. In particular, active caching yields better average round-trip latencies than
more traditional approaches, while requiring much smaller caches per node. Since cache cost
grows (and performance shrinks) at least linearly with size, this means that performance is
improved overall without increasing cost.

Placing caches at network nodes almost certainly would degrade overall performance today,
due to the overhead of checking the cache at nodes en route. Note, however, that while trans-
mission and processing speeds will continue to increase, propagation and queuing overhead is
likely to remain constant. At some point in the future it seems likely that node processing
will be sufficient, and it will be reasonable to trade node processing for latency.

The remainder of this paper is organized as follows. In Section 2 we provide background
on wide-area caching and outline our assumptions about the application and network. We
also describe related prior work in caching; we will refer collectively to these techniques as
“traditional”. In Section 3 we develop a set of new mechanisms for caching that take advantage
of the enhanced processing capabilities available in the network due to active networking. The
remainder of the paper contains an evaluation of the new and traditional caching mechanisms.
In Section 4, we describe a simple analytical model for network caching. After validating the
model, we demonstrate its use in tuning one of the new caching mechanisms. In Section 5,
we describe our simulation model, experiment methodology and setup. Section 6 presents the
results of our experiments. We conclude in Section 7.



2 Background

2.1 Wide-area caching

We assume an application in which clients request objects from servers located throughout
the network. Each object is assumed to have a globally unique identifier (e.g. a hash function
of a URL), and to fit in a single “message”. That is, each transaction consists of a request
message sent from a client toward a server, containing the ID of one requested object. The
request message travels through the network until it reaches a node where the requested object
is stored, which may be a cache or the server itself. A response message containing the object
then travels from the server (or cache) back to the originating client. This model ignores the
significant problem of reliable transfer of large objects in a datagram network, by assuming
that each object fits in a single message.

In our caching study, we model the network as a collection of domains, each of which
is represented as a graph of switching nodes connected by links. Domains are of two types,
transit, which (as their name implies) carry transit traffic, and stub, through which only
packets addressed to or from some node in the domain are carried. The graph models used in
our simulations are constructed using the GT-ITM internet topology modeling package [11].
The paths along which packets travel in the simulations have the following characteristics:

e The path connecting two nodes in the same domain stays entirely within that domain.

e The shortest path connecting node u in stub domain U to node v in another stub domain
V goes from U through one or more transit domains to V', and does not pass through
any other stub domains.

e In case two stub domains are connected directly via a stub-stub edge, the path between
two nodes on the two domains may (but need not) go along that edge and avoid any
transit domains.

2.2 Related work

The Harvest Cache [4] project at the University of Colorado is the largest wide area cache
implementation in the Internet. Harvest caches are usually arranged in a hierarchy, and Web
clients are manually configured to access a particular cache in the hierarchy that is designated
as the client’s proxy. If the client request can be satisfied at the initial proxy cache, it is
served by the proxy. In case of a miss, the parent and sibling caches in the hierarchy are
contacted using the connection-less mode of the Internet Cache Protocol (ICP [10] discussed
below). If the requested object is not available at the sibling caches, or at the parent, then the
client’s proxy cache generates another HI'TP query with its parent cache as the target using
the HT'TP proxy protocol or a connection-oriented version of ICP. This process is recursively
repeated till the request is either served, or the object is retrieved from its origin (by the
root of the hierarchy). Once the item is retrieved, it is cached on its way down to the leaf.
This scheme is effective in reducing the wide-area bandwidth requirements, and in accessing
“hot-spots” only once per hierarchy (as the “hot” item is then cached within the hierarchy,
and subsequent requests to the same object can be satisfied by a Harvest cache hit).



The geographical push caching scheme [7] of Seltzer and Gwertzman at Harvard uses a
friends-of-friends algorithm in which servers selectively push their content to friend caches that
reside in active client networks. An similar push caching approach in which servers disseminate
popular pages has been proposed by Oritz and German at the University of Waterloo [8]. In
both these schemes, the server initiates the caching of an object (that it deems popular) at a
remote site. In the simulation results given in the Harvard work, the “friendly” caches that
act as proxys for a given server are chosen to be the nodes closest to networks that generate
the most requests. Further, the server sends a redirect message to clients that contact the
server but have a push cache close to them. In the Waterloo work, clients identify themselves
to servers as willing push caches, and servers can choose to replicate popular objects at certain
clients. The servers keep track of currently active push clients, and can redirect subsequent
requests to its known proxies.

The Internet Cache Protocol (ICP) [10] defined by the Network Working Group of the
IETF is a message format used for communicating among Web caches. Harvest (and its
successor—Squid [1]) both use ICP to exchange information about objects cached at neigh-
boring caches.

3 Self-Organizing Network Caching

A prudent amount of caching inside the network can lead to large benefits, both in terms of
access latencies and bandwidth usage [4, 7]. Traditional approaches towards network caching
have been to place large caches at specific points in the network, with little or no co-ordination
between the caches. In contrast, we consider networks in which small caches are placed at
every node. As a response message moves through the network, each cache makes a decision
whether or not to store the object. Effective use of a large number of small caches is a non-
trivial problem. Unless effectively organized, only a very small number of items will be cached
(as the caches are much smaller), but these cached items will be replicated at many locations
throughout the network. Thus, accesses to the small number of cached objects will exhibit
very low latencies, but in general, the latency will not be decreased appreciably due to caching.
However, if objects are cached too sparsely, then the latency does not tend to decrease, and
cache performance is again sub-par. In this section, we will develop “self-organizing” caching
schemes that address the problems outlined above by autonomously organizing a large number
of very small caches. We will show that these schemes obviate the need to decide where
to place caches — which can be a critical decision for traditional caching mechanisms. Of
course, the self-organizing caching mechanisms work well with larger caches as well, but unlike
traditional mechanisms, large caches are not required by our mechanisms to provide good cache
performance.

Caching Radius and Modulo Caching As mentioned before, effective use of a large
number of small caches is a difficult problem. In traditional (processor) cache situations, the
cache replacement policy (along with cache size) determines the effectiveness of the cache.
However, in order to minimize thrashing, and to stop excessive replication, a small cache
must first decide whether or not to cache a particular item. This problem is effectively solved
by introducing a cache radius: an item is cached only once within a given cache radius (in
hops). Thus, the cache radius mechanism distributes an item throughout the network. By



using the cache radius, we avoid making ad-hoc decisions about whether to cache particular
items closer to servers or clients. In general, each of these ad-hoc mechanisms lead to poor
performance. If items are cached closer to servers, the cache hit rate is high, the the overall
latency is not reduced appreciably. On the other extreme, caching items closer to clients
leads to very low cache hit rates (as a lot of popular items need to be cached close to busy
clients to get good cache performance). We will see in our performance evaluation section
that the radius caching mechanism is extremely robust across a wide range of access patterns
and client—server distributions.

For a given radius, we use a modulus function to obtain an even distribution of objects
(within the path). The modulus function is applied to the unique item identifier and is used to
identify where a specific item should be cached within a segment (of length equal to the radius)
of a client—server path. Thus, any given cache has a specific set of objects that can be cached
there, and those sets do not overlap. In effect, nodes on the path between a client and server
are partitioned into equivalence classes, so that adjacent nodes are in different equivalence
classes. Objects are similarly partitioned, and objects are only cached at nodes belonging to
their equivalence class. An object will be cached at every node on the path between server
and client where it is allowed to be cached. We refer to the application of modulo functions
within a cache radii as modulo caching.

Lookaround Network caches store relatively large items compared to the amount of space
required to store the location of such an item within the network. For example, an object
in a network cache can be several thousand bytes, while its location (node address) could
be an IP address (four bytes). If an object is cached, then it has multiple “home” locations
— one at the original server, and one at each of the caches. A self-organizing cache can
dedicate some of its object cache space to store locations of nearby items. During a cache
search, the object is searched for in local memory, and in a list containing items in “nearby”
caches. If a hit is detected in a nearby cache, the request can be re-routed to the nearby
cache. We can generalize this lookaround cache check algorithm to checking nodes within any
given lookaround level. However, in our simulations, we constrain the lookaround to within a
given domain, i.e. neighboring caches are checked if and only if the neighbor is a member of
the same stub or transit domain. In this way, even very small caches can look like “virtual”
large caches. We refer to the lookaround extensions of the modulo caching scheme as modulo
caching with lookaround.

The lookaround scheme can easily be implemented in an active network. Within an active
network, active nodes keep a periodically updated list of items cached at neighbors. The cache
check at any node includes checking the in-node cache, and the list of caches of neighbors.
If a hit is detected at a neighboring cache, the datagram is forwarded to the neighbor (with
the same source and destination addresses). If the information about the neighbor’s cache
is incorrect, the datagram is forwarded to the destination (through the neighbor’s shortest
path). Otherwise a cache hit is recorded at the neighbor. Note that even with the lookaround
scheme, the caching algorithm is stateless and backward compatible; a mix of active and non-
active nodes may exist in the network, and the active cache functions may fail at any time
without disrupting the routing functions.

We compare our self-organizing caching scheme to the following (location dependent)
caching schemes:



e Cache at Transit Nodes (“Transit-Only”). Transit nodes have to be traversed for
every non local stub domain access; a large fraction of (shortest) paths in the network
have to go through transit routers. This ubiquity of transit nodes in network paths
make them prime candidates for caches.

e Cache at Stub Nodes Connected to Transit Nodes (“SCT”). Stub nodes con-
nected to transit nodes have to be traversed in order to access the transit network. Thus,
these stub nodes form good locations for network caches. This scheme is similar to the
Harvest [4] scheme for placing caches.

In addition, we consider an approach in which caches are located in every node (like
self-organizing caches), but without any self-organizing mechanisms enabled. This case corre-
sponds to a “null” active function in an active network. This is referred to as “No AN”.

Comparison of Self Organizing Caches to Traditional Caches Many traditional
caching schemes do not explicitly minimize latency, but, rather minimize bandwidth con-
sumption on transit links. The classic example is the Harvest cache in which several different
queries may be initiated within caches in a domain before either the request is satisfied, or
the query is sent to the original server. In many cases, this results in higher latency, but
no bandwidth consumption in the transit network. In contrast, our schemes are designed to
reduce latency — the bandwidth savings are secondary to reducing pure latency. Thus, both
traditional and the self-organizing schemes can be implemented in conjunction in a network.
Within a stub network, caches could be set up in a hierarchy aimed towards saving bandwidth,
while in the wide area, the self-organizing schemes could be used to reduce latency.

We now develop an analytic model to evaluate in-network caching, and the self-organizing
algorithms.

4 Analysis of Cache Performance

4.1 Network Caching Performance Model

We present an analytic model for the expected one-way latency in accessing an item in a
network that has intra-network caching. We introduce variations on the basic model to en-
compass a wide range of caching locations and policies. The basic model makes the following
assumptions:

1. The set of items is partitioned into “popular” items and “unpopular” items. Initially,
this division is independent of the client requesting the item; in a refinement of the basic
model, we consider local client preferences.

2. Only popular items are cached.

3. The items cached at a particular node are unique; i.e., no node caches the same item in
more than one of its cache slots at a given point in time.

4. Every cache is full.



5. The cached items encountered from one client access to the next are independent. This
independence assumption keeps the model tractable, though it clearly departs from
reality.

Consider an access from a client to an item. If the item is unpopular, the one-way latency
is simply the average client-server path length. If the item is popular, it may be encountered
at a cache in the network. Let L denote the average one-way latency, measured in hop count,
when a client accesses an item. Let ¢ denote the probability that the item is popular; thus the
item is unpopular with probability (1 —¢). Let L, denote the average length of a client-server
path and L, denote the average length of a path from a client to a popular item (possibly
encountered at a cache). Then:

L=(1-q)Lu+qL,

The expression for L, is straightforward. Let N, denote the average path length from a
stub node to the transit node for a stub domain. Let N; denote the average path length across
transit domains. Then L, = 2N, + Ny, since a client-server path traverses two stub domains
(client and server domains) and a path through the transit domains.

We focus the rest of the discussion on deriving an expression for L,. Let H; denote the
event “a hit occurred at distance ¢ from the client”; let M; denote the event “a miss occurred
at every distance up to and including ¢ from the client”. Let d denote the distance from the
client to the server. Then

d
L, = Y iPr{H;NM;_}

=1

d
— ZiPr{Hi | M;—q yPr{M;_1}
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The probabilities in this expression are affected by details of the locations of the caches, the
cache policy and the client access pattern. We develop variations on the basic model to handle
different instances of these details.

Model A. In this model, we assume that the items stored in different caches are indepen-
dent. This is reasonable when the access pattern is uniform and the caching policy does not
attempt to eliminate duplicates along a particular path. We further assume that each cache
is equally likely to store any popular item. This is reasonable for caching at locations in the
middle of the network, at nodes that will “see” all popular items with equal probability.

Since the caches are independent, Pr{H; | M;_1} = Pr{H;}. We are focusing on the
latency when accessing popular items; the probability of a hit when accessing a popular item
and examining a cache of size S is S/P, where P denotes the number of popular items.
Obviously, the probability of a hit is 1.0 if the request reaches the server. Thus, if S; denotes
the size of the cache at distance i, then:

d
L, = Y iPr{H}Pr{M;_}
=1

o-3)

J=1

d—1 , d—1
= d(l:[(l—%)) +%Zi5i(



Note that the first term accounts for the boundary condition where the request reaches the
server. A caching policy that increases .5;, for example by checking the contents of the caches
at one’s neighbors, can significantly improve the one-way latency.

Model B. In this model, we assume the best possible conditions regarding duplication in
items stored in caches along the path. Namely, we assume that the items stored in different
caches are different. Though this is difficult to achieve in a distributed environment, it provides
an upper bound on cache performance (which is a lower bound on average round-trip length).
We keep the assumption from Model A that each cache is equally likely to store any popular
item.

Since all items are different, the probability of a hit when accessing a popular item and
examining S cache locations (potentially distributed over multiple nodes) is S/P. If we know
that a miss has occurred at locations at every distance up to and including ¢« — 1, then we
know that the item we are looking for is in a reduced set of popular items, namely reduced
by the number of cache locations we have already checked. Let T;_1 denote the total number
of items checked at distances up to and including 7 — 1 '. Then

i—1
Tioy = >.S;
i=1
d
L, = Y iPr{H;| M;_y}Pr{M;_}
=1

) B (1)
:d( Td1)+2—

Again, the first term is the boundary condition for the request reaching the server. For clarity,
we omit this term in the remaining model development.

An effective cache policy should eliminate duplicates on the path, to the extent possible.
We can modify this model to reflect a caching policy that provides some (though not complete)
elimination of duplicates. Let U;_; denote the total number of unique items in caches at
distances up to and including ¢ — 1. Then

(Ui = Ui Ui—l)
L, = et il B I R §
v ;’<P—Ui_1)( P
_ Zi<Ui_Ui—1)
N P

k3
Model C. We now relax the assumption that each cache is equally likely to store any
popular item. While this is reasonably accurate for caches in the middle of the network, it
is not accurate for caches located, for example, in the same domain as servers. These caches
will be more likely to store popular items from the nearby servers, rather than popular items
from other servers.

'We assume that 7} < P for all i. If this assumption does not hold, then at some point in the path, all popular
items will have been encountered, and the hit probability will go to 1.0.

-~



We restrict this model to the case where the caches on the path up to distance k are all
equally likely to store any popular item. After distance k, the path crosses into the stub
domain containing the desired server. At this point, we assume that all caches (until we reach
the server) will store from a set of R popular items, and will not store any of the other P — R
popular items. R might be determined, for example, by the number of popular items at servers
in this domain. We further assume that each cache in the domain selects independently from
the R locally popular items.

Until we reach distance k, the equations derived earlier for Pr{H; | M;_1} and Pr{M;_}
are accurate. After distance &, we must consider that the caches contain only items from
the R locally popular, and further that this request is for one of the locally popular items,
otherwise the path would not be entering this domain. Since each cache in the stub domain
selects independently from the R locally popular items, Pr{H; | M;_1} = S;/R. Further,
Pr{M;_1} = Pr{M;_3}(1 — S;/R). Thus,

k
L, = Y iPr{H;| M;_1}Pr{M;_,}

=1
Sl o S;
+ ZZE H(—EJ) Pr{My}
i=k+1 ]:k-l—l

Caches within stub domains containing servers are likely to contain mostly items from the
local servers. While the hit probability will be high at these caches, the savings in latency is
fairly small: the query has nearly reached the server. It may be reasonable to impose a cache
policy that explicitly does not cache these local items.

Model D. In the final variation, we extend the idea of locally popular items to include the
caches at nodes in the same domain as a client. This local popularity will result, for example,
if the clients in the domain have a skewed access pattern.

Again, let R denote the number of locally popular items. Let k denote the number of
nodes encountered within the stub domain of the client. Assume each cache within the stub
domain independently caches items from the R locally popular. Further, assume that the
client is requesting one of these locally popular items. Then,

k - fi-1 )
L, = 21% (1:[1(1—%))

+ > iPr{H;| Mi_}Pr{M;_}
1=k+1

Caches within stub domains containing clients are likely to contain mostly items of local
interest to the clients. We expect a significant performance gain with caches in these locations,
especially when client access patterns are skewed.

4.2 Model Validation

The analytic models contain assumptions that we know are simplifications of reality. We have
developed a wide-area caching simulator to study more complex and realistic scenarios 2. We

2The simulator is described in detail in Section 5.
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can use this simulator to determine how well the analytic model can predict latency for the
various caching schemes of interest. We use Model A with equal size caches at all nodes to
model “No-AN” caching. We use Model A with equal size caches at transit nodes (and no
caches at stub nodes) to model Transit-only caching. Since the Modulo caching scheme makes
an attempt to reduce duplicates on a path, we use Model B to represent Modulo caching, and
increase the effective cache size per node to represent the effect of lookaround.

In Figures 1 and 2 we compare the round trip latency as predicted by the model to the
latency measured in a simulation. The simulated graph had 1500 nodes, an average degree of
3.71, and an average server-client round trip latency of 13.1. There were 7200 popular items.
In the analytic model, we assumed that the path from client to server traversed two nodes in
the client domain, three transit nodes, and two nodes in the server domain. Thus the round
trip latency in the analytic model was 14 hops.

The model is not particularly accurate for the No-AN and Modulo caching schemes, gener-
ally predicting much larger round trip times than are reported by the simulation. The model
is somewhat more accurate for the Transit-only caching scheme. There are fewer caches en-
countered in the Transit-only scheme; a hit either occurs at one of the three transit nodes, or
the access goes all the way to the server. Some inaccuracy is introduced by the discrepancy
in the round trip latencies, but the simplifications inherent in the model are also relevant.

Thus, the model in this basic form is useful only for rough approximations of the latency.
As we will see in the next section, more careful analysis can be used to refine the model and
achieve much more accurate predictions.

4.3 Optimal cache partitioning

As discussed in Section 3, unlike in traditional caches, the identifier for a location (typically a
network address of length between four and ten bytes) in a network cache is much smaller than
an actual cached object (which can be thousands of bytes). It may, therefore, be beneficial to
use some of the network cache’s memory to store locations of nearby objects. We investigate



— Size of each cache

—  Maximum number of objects in cache of size S

Number of object locations that can be stored instead of one object
— Average degree of the graph

— Average one-way length of server—client path

AL W
|

—  Fraction of cache memory used for storing objects

Table 1: Definitions and Notation

the effect of partitioning a node’s cache memory into two parts. The object cache is a fraction
of the cache the node uses to store objects (as before), and the remaining memory is used as
a location cache, where the node stores locations of nearby objects. During a cache check at
a node, if the local object cache misses, the node will look for the object in its location cache.
Assume there is a hit in the location cache at location (say /). The location [ is presumably
a nearby node where the object is cached. The request would be redirected towards the node
! (which may not be on the shortest path to the request’s original destination). The request
would then either be served at the node [, or if the node [ does not have the requested object
(due to a recent cache flush), the request would be redirected towards the original destination.
In this way, even small network caches can be used to check many items and locations at once,
and object latency may be decreased®. As the amount of memory allocated to the location
cache increases, the length of the detours increase, and the actual number of objects stored
at the network nodes decrease. In the rest of this section, we analyze the optimal partition of
the network caches into object and location caches.

We assume that in its location cache, each cache stores the names of objects stored at its
neighbors. Let cache lookaround denote the checking of the location cache at a given node.
We generalize the concept of cache lookaround by associating with it a level of lookaround —
a lookaround of level z means that the node stores cache information of nodes at a distance
of z from itself, and during a cache search, can determine whether the item being searched
for is cached within a distance z from itself (modulo recent cache updates). Thus, storing
the names of items of direct neighbors correspond to a lookaround of level one, and normal
caching with no location caches is equivalent to a lookaround of level zero.

Let the size of each cache be identical and equal to S, assume that each object is the same
size. Let the maximum number of objects in each cache be C. Let the ratio of the size of an
object and the size of a location be «, i.e. a locations can be stored in the cache instead of
one object. Let the average one-way length of server—client paths be d. We assume paths are
symmetric, and as such, the average client—server round trip latency is 2d. Starting from a
given cache, as the level of lookaround is increased, the number of caches searched increases.
For most graphs, this increase is exponential. As a simplification, we assume that the number
of caches searched at a lookaround level of z is exponential in § — 1, where § is the average

4, In general, a fraction 7 of the cache memory is used for

degree of the topology graph.
caching objects and the rest is used for caching location information.

We now derive the value of fraction 5 such that the round trip latency is minimized. The

3The protocols to update the location cache and the frequency of updates are considered orthogonal to and
independent of the partitioning of a node’s cache.

4The exponent is § — 1 because after the first levellaf lookaround, at least one node has already been searched
at the previous lookaround depth



precise fraction that minimizes the latency depends on the size of the network, the size of the
caches, and the number of locations that can be stored instead of each object. Using the basic
caching model developed before, the expected latency is

L, = Y iPr{H;| M;_1}Pr{M;_}

Using our model of memory usage, the expected latency can be calculated as follows. For
the local objects (in the object cache), the latency after traveling ¢ hops is 7. If at node 1,
there is a hit in the location cache, then a detour has to be made. We can approximate the
one-way length of the detour as follows:

We know that if  fraction of the memory is used for caching objects, then (1—7)S amount
of memory is used for storing locations. This is equal to (1 — 7)C'a number of locations. As
each cache stores nC' number of objects, the (1 — )C'a number of locations correspond to
locations from ﬁl;nnE number of nodes. Under the assumption that the number of nodes

(1-n)o
n

increase exponentially as the level of lookaround increases, nodes imply a maximum

detour of length logs_, ﬁl;nnE Let f be the expected value of the length of this detour, and

let ¥ =logs_, (=me At each level  of lookaround, (§ — 1)*nC' number of items are cached.

Thus, the expected one way detour length is:

& (- yEe
I = Lo ca
F

T —7777)04 %:x((s -

_ U ((1+F)(5—1)F_(5—1)F“—1
- (1-ne 6-1)-1 (0-1)-1)?

If we assume that the lookaround memory is arranged such that the content of nearest
caches are searched first (i.e. caches at level 1 are searched before caches at level 2, and so
on), then we can derive a simpler expression for the the expected value of the detour. Under
this case, on average, half of the cache will be checked before a hit (if any) occurs in the
lookaround cache. Thus, the expected length of a detour in this case is:

(1-nCa
2nC

(1-na
27

J = logs
= logs_,

As previously defined, let P be the total number of popular items, and let T;_; be the total
number of items checked till distance 7 — 1 from the source of the request. In our case, as the
cache sizes are assumed to be identical and equal to S, S; = S (for all ¢), and Ty, = (d—1)5.
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Thus, the expected value of the one way latency (using Model B developed above) is:

d
L, = Y iPr{H;| M;_1}Pr{M;_}

d .
= d(1—(d- 1)%)+Zi%

d
nC + (1 —n)Ca) ‘|‘Z nC(i)_}_ (1 _n)CQ(i+f)

= d(1-(d-1) 5 % 5
_ nC+d-nCa, nC  (A-nCadd+1) ({A-nCa
= d(l-(d-1) Iz (G t+—F )=+t ——F5 )

As caches are updated independently, the location caches at each node may not point to
all unique items across all the nodes. Thus, we can define a fraction of items, u, that are
unique in each location cache. Thus, the number of items checked at each node in this case is
nC' number of local items, and u(1 — )C'« number of unique remote items.

The one way latency is this case is again:

nC (I1-n)Ca dd+ 1)+ (1-n)Ca

nC+u(l—n)Ca
Ly = Cptev—"p 1773 P e

() +d(1 - (a - )T

Minimizing the numerator with respect to n gives the optimal amount of cache to be used
for storing location information such that the expected latency is minimized.

In Figure 3, we compare the result of the analysis of lookaround caching with a simulation
with similar parameters. The simulated graph had 1500 nodes, an average degree of 3.71,
aequal to 50, and and average server-client round trip latency of 13.1. In the simulation,
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the lookahead was fixed to 2 levels, and the radius of caching at 3. The two analytic curves
were generated by setting the one-way client-server path length(d) to 6 and 7, respectively.
This corresponds to the average length of client—server round trip lengths being 12 and 14,
respectively. Thus, in general, we would expect the curve generated by simulation to be
bounded (on either side) by the two curves generated by the analysis. For small cache sizes
(C' < 500), this is the case. The refinements to the basic model generate an extremely accurate
measure of the cache latency. When the cache sizes are larger, the analysis overestimates the
number of unique items that are cached.

In Figure 4, we use the expression for expected round trip latency to evaluate the benefits
of lookahead caching. The x-axis shows the size of each cache, the y axis denotes the amount
of the cache memory devoted to caching local objects. The round trip latency is shown on
the z-axis. We use the nearer caches are checked earlier assumption to evaluate the length of
the detour. In this plot, we set the number of popular objects in the network to 80,000, and
again, ads set to 50. the topology, the large number of popular objects map to a topology
that may be too large to simulate at even a coarse scale. The average client—server round trip
path length was set to 14. However, the plot clearly shows the benefit of lookaround caching
— the valley in the plot is directly due to the benefits of lookaround caching. In the plot, the
expected round trip latency decreases as the amount of memory devoted to the lookaround
cache is increased (.99 < 7 < 0.5). However, after a point, as more memory is dedicated to the
lookaround cache, the number of objects cached in the network decreases, and the round trip
latency increases sharply (0 < 1 < 0.3), as there are not enough objects cached in the network,
and each lookaround hit causes a large detour. It is interesting to note that at very small
values of 7, the round trip latency can increase to greater than the average latency without
caching—this is again expected, as there are not enough objects cached, and each detour is
greater then the remaining path length to the server. Of course, a trivial optimization, that
forbids detours greater than the remaining path length can easily be incorporated.

Thus, we with some extensions to the basic cache model, we can accurately predict the
cache behavior. However, the models do not represent the sizes of different transit and stub
domains, and the interaction between different domains. Also, the model is devoid of inter-
actions due to different access patterns. In order to study these phenomena in greater detail,
we present a set of detailed simulation results in the next section.

5 Simulation Environment

5.1 Experimental Methodology

The wide area caching behavior was simulated using a locally developed discrete event network
simulator called AN-Sim. AN-Sim simulates an active network as defined in [3], and allows
for variation of the network topology. This section discusses the various parameters of our
simulations.

Network Topologies. We simulated several topologies, differing in number of nodes, di-
ameter, average node degree, ratio of transit nodes to stub nodes, etc. Table 2 summarizes
the properties for a list of topologies for which we present results. All of these graphs have
1500 nodes, of which 60 are transit nodes.
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Average | Avg. Num. of S-Domains | Avg. Num of S-nodes
Graph Degree per Transit node per S-domain
Base 3.71 4 6
More Stub Domains 3.14 6 4
Fewer Stub Domains 4.11 2 12
Higher Degree 4.53 4 6
Lower Degree 3.06 4 6

Table 2: Simulated Topologies

Cache and Server Distributions. A subset of stub nodes, chosen uniformly at random,
was designated to host popular servers. The fraction of servers that were popular, and cor-
responding accesses to the popular servers was varied using a Zipf distribution, i.e. a small
fraction € of the servers received a large fraction 1 — € of the requests. We varied ¢ between
0.1 and 0.2, resulting in a number of popular servers between 150 and 300. The remain-
ing accesses (to non-popular servers) were chosen uniformly at random from the remaining
stub nodes. There were 4 billion (2%?) unique objects in each simulation, the vast majority
of which were not accessed. Each object was associated with a particular server, thus each
server’s content was unique. A subset of objects at each server was designated to be popular,
and popular objects were requested 95% of the time. The number of popular objects was fixed
at 48 per server (for a total number of popular objects that ranged between 7200 and 14400.
The remaining objects were served uniformly at random the remaining 5% of the time.

Access Patterns We simulated several different access patterns at clients. Accesses are only
generated at stub nodes. In the uniform access pattern, a server is chosen using the server
distribution given above, and an object is chosen at the server, again using the distribution
given above. We also simulated a more skewed access pattern. In this case, correlated accesses
originated at clients with a given probability. Each set of correlated accesses have an average
length of 16. During correlated accesses, the source-destination pair was fixed. The probability
that a particular datagram is accessed more than once within the correlated access sequence
was varied. Correlated accesses are not consecutive, but are generated with a random temporal
offset (from current time). In the third access pattern simulated, a set of servers is associated
with each node. A fraction of all accesses from the node is then directed towards servers in
this (per node) set. We also simulated the case in which the set of servers is associated with
a particular domains, instead of individual nodes.

These access patterns —and indeed all of our simulation parameters— are consistent with
what is known about access to objects in the World Wide Web. Among the “invariants”
found by Arlitt and Williamson in their study of server logs [2] was that the number of
distinct objects requested is between .3% and 2.1% of the total number of requests, i.e. each
requested object is requested 50 to 300 times in a trace on the average. They also found that
the vast majority of all requests are for objects that would fit inside a single IP datagram,
and that at least 75% of all requests to each server they studied are nonlocal.
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Cache Sizes The size of the cache at each caching node is proportional to the node degree.
This is equivalent to having a fixed amount of caching per edge (interface) incident upon
the node. For each caching simulation, the total number of cache slots in the network was
held constant. Thus, in cases where the total number of caching nodes were small (like in
Transit-Only caching, or caching only in stub nodes connected to transit nodes), the relative
size of the cache (compared to cache size when each node has a cache) is large. We should
note that equal number of cache slots in the network is not equivalent to equal number of
cache slots on any given path. Also, when each node in the network maintains a cache, there
may be a substantial fraction of caches, that are only on leaf nodes, useful only when there
is a repeat request from a host on the leaf. However, we did not endeavor to equalize the
number of cache slots encountered on individual paths.

Limitations of Experiments. Our experimental setup has some known limitations. The
simulator does not enforce link rates, and thus lost datagrams due to full buffers are not
represented in the results. The lookaround algorithm does not generate actual packet traffic
in the simulation. Also, the space required for storing the list of cached items at neighbors is
not accounted for. None of these is particularly serious.

5.2 Performance Metrics

We use the following metrics to evaluate the performance of network caches.

e Round trip length. We measure the request-response round trip length, i.e. the
number of nodes of the network traversed in completing a transaction. This is perhaps
the simplest and “truest” measure of network cache performance.

e Fraction of queries that generate cache hits After an initial start up period, the
cache performance stabilizes. We measure the fraction of queries that are serviced by
cache hits. Note that queries served by caches not only reduce access latencies and
conserve bandwidth, but also reduce server load.

e Fraction of thrashing nodes We define a node ¢ to be thrashing if the number of
flushes at ¢ is greater than a certain fraction of hits at ¢. Precisely, if flushes outnumber
hits by greater than 10%, then a node is marked as thrashing.

6 Simulation Results

6.1 Summary of results

We have simulated cache performance for the topologies specified in table 2 across a wide
range of cache sizes, server distributions, and access parameters. Transit nodes are not able
to take advantage of correlated accesses from particular stubs. Thus, in general, the active
mechanisms outperform all other methods (including Transit-Only caching) for correlated
accesses. For non-correlated accesses Transit-Only caching scheme performs best (in terms of
average round trip length).when there is low or no correlation in accesses. However, the AN
schemes are always within 10% of the round trip length of the Transit-Only caching scheme.
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For the base graph, there are on average 4.92 stub nodes, and 3.32 transit nodes on each path.
In this graph, there are 60 transit nodes, and 1440 stub nodes. Thus, in general, a much larger
fraction of total transit nodes and transit caches are traversed for each access. Also, under
Transit-Only caching, the average cache is 25 times larger than the average cache under AN
caching. Thus, the large caches lead to large gains due to multiplexing at the transit nodes—
especially if the accesses are not correlated. In the subsequent sections, we present plots, and
details of a small cross section of results from our experiments. Except where otherwise noted,
our results are for the base graph topology, and the cache replacement policy is LRU.

6.2 Variation in Cache Size

We consider the performance of the caching schemes, as we vary the nominal cache size between
4-48 cache slots per interface. The modulo, and no AN methods use nominal cache size, as
these methods cache at all nodes. The corresponding cache sizes for Transit-Only caching are
33 to 397, and for Stubs-connected-to-Transit (SCT) caching are 15 to 188. All of the caching
mechanisms, except SCT, show a smooth decrease in number of hops traversed per round trip
as the cache size is increased. In section 5.1, we defined a set of correlated accesses to be
a set of accesses in which the source-destination pair is fixed. Such correlated accesses are
not consecutive, but are generated with a temporal offset. Thus, between correlated accesses,
there can be other accesses generated from the client. The average size of a set of correlated
accesses was 8, and the probability of initiating a set of correlated accesses was 0.25. Note
that just correlated access do not imply better caching performance, as there are suflicient
items in each server to fill up caches in any path. In Figure 5, the probability of repeating
an accesses within a set of correlated accesses is 0.1. The modulo cache radius was fixed
at 3. The improvement due to modulo caching is seen for small sizes cache. For cache size
48, the “no AN” (cache everywhere) mechanism performs better than the modulo caching as
there are enough cache slots available, such that 3 is too large a radius for modulo caching.
The lookaround schemes perform better than all but the transit-only caching scheme, and the
performance of the two-level lookaround scheme® is within 10% of the Transit-Only scheme
in all cases. It should be noted that the number of cache slots per interface for the two-level
lookaround scheme is an order of magnitude smaller than the transit-only scheme. Also, the
average degree of the transit nodes is much greater than the average degree of the graph.
Thus the total size of the transit nodes caches are 25 times larger than the total size of the
modulo caches. Comparatively, the average total size of the SCT caches are 4.25 times greater
than the modulo caches. As the access are more correlated, as shown in Figure 6, the modulo
caches with lookaround outperform all other cache mechanisms—including the transit-only
caching. Also significant in Figures 5 and 6 is the behavior of the caches located only at the
stubs connected to transit nodes. Their performance improvements are negligible beyond 12
cache slots per interface, and as such this method does not scale well with increase in cache
size.

For the same variation in cache sizes experiment, Figure 7 shows the fraction of queries
that generate cache hits. Once again, all the methods except caching at stub nodes connected
to transit nodes show increases with increase in cache size. The SCT method actually results
in a proportionately large fraction of hits—but the large number of hops in the round trip
suggests that more hits occur in the stub node to which the server is connected, and not the

5In all cases, the lookaround is restricted to within the same domain.
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client. This is not unexpected—the gateway stub node connected to the transit domain for a
busy server will experience a lot of traffic due to the busy server, and as such, will cache a
large part of that data as well. Figure 8 shows the fraction of thrashing nodes for the same
experiment with high access correlation. In general a higher fraction of AN caches thrash
compared Transit-Only and SCT caches. This is partly due to the mismatch in individual
cache sizes. However, in this case, less thrashing does not translate to better performance, as
the AN caches outperform all other cache mechanisms under high access correlation.

6.3 Variation in Server Distribution

We have used a Zipf distribution on accesses to popular servers (i.e. 100-z% of the accesses
are to ©% of the nodes). However, it is not clear exactly what fraction of the nodes should
be considered to be servers. In this experiment (Figure 9), we vary the fraction of nodes
that are servers from 1-50%. Even when a large fraction of nodes are servers, the cache
performances are not affected. Thus, wide-area caching seems robust in face of widely varying
server locations, and distributions. It is interesting to note that round trip latencies for
Transit-Only cache schemes do not improve much when the server distributions are extremely
skewed—Iless than 10% of the nodes are servers. The other schemes improve as the number
of popular objects (which is a multiple of the number of servers) decrease, but in case of
Transit-Only caches, even if all the objects are cached everywhere, the query has to reach the
transit nodes before it is serviced.

6.4 Variation in Topology

We consider the effectiveness of the various cache policies as the underlying topologies are
varied. The round trip latency is inversely proportional to the graph degree, and directly
proportional to the average size of the stub domains. The two level lookaround algorithm
performs equal to the Transit-Only cache method for the base graph (with probability of
a repeat equal to 0.3). As topologies are varied, the performances are comparable—with
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the AN methods performing better as the number of stub domains increase. As the repeat
probabilities increase, the AN mechanisms perform better than all other mechanisms in all

topologies.

6.5 Spatial Access Patterns

In these experiments, we consider a different access pattern. Associated with stub node is a
set of preferred servers, and a fraction of queries generated by the node is always directed to
the preferred set. Figure 11 shows the round trip latencies as the number of servers in the
preferred set is varied from 2-12. The probability of accessing a server in the preferred set
was 0.25, and the probability of a repeat access was 0.3. The two level lookaround and the
Transit-Only cache schemes perform the best, with the lookaround schemes being better if
the number of preferred servers are small. In fact, the round trip latency for Transit-Only
caching is nearly constant in this case for any number of servers in the preferred groups as
the accesses are nearly uniform at the transit domains. The performance of the lookaround
schemes deteriorate as the number of servers increase because the locality in accesses are lost,
and even inside the stub domains the accesses seem nearly uniform.

We also consider spatial access patterns in cases when the preferred set is common to
the entire stub domain. In Figure 12, there is a 0.5 probability of accessing a server in the
preferred set, but the probability of repeat is nil. The effect of the number of servers in the
preferred set is clear: the round trip latencies increase with increase in the number of preferred
servers. In these cases when there is a per domain preference for certain data, the caching at
stub nodes connected to transit node scheme works quite well: within 1 hop per round trip

of optimal in all cases.
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7 Concluding Remarks

We have developed and evaluated mechanisms for caching objects within the network. Our
active caching mechanisms allow transparent, self-organizing, location of objects where they
can be of benefit to reduce access latency. These methods contrast with traditional wide-area
network caching that relies on fixed and limited locations for caches.

We have used both simulation and an analytic model to evaluate performance. The simu-
lation uses access patterns that are consistent with studies of Web access; the analytic models
are simplified for tractability, though still provide reasonable estimates of access latency. The
models could be extended using information about uniqueness of items and /or more complex
mathematical modeling to remove simplifying assumptions.

Our results show that active caching is beneficial across a range of network topologies and
access patterns, and is especially effective when access patterns exhibit significant locality
characteristics.

Our work on network caching has been motivated by the development of applications for
active networking. For active networking to succeed, application drivers are critical to demon-
strate performance benefits that outweigh the development and deployment costs. Caching
represents an example of an application that may be well suited to active networking, since
active caching can exploit access patterns indicated by the request-response paths that pass
through the network. We have also considered active networking for application-specific con-
gestion control in the context of a specific service architecture [3].
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