
Forwarding State Reduction for Sparse Mode Multicast
Communication

by

Jining Tian

B . E . , Tsinghua University, China

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming
_toJhe required standard

The University of British Columbia
August 1997

© Jining Tian, 1997

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or by

his or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

The University of British Columbia

2366 Main Mall

Vancouver, Canada

V6T 1Z4

Date:
/

Abstract

Reducing forwarding state overhead of multicast routing protocols is an im­

portant issue towards a scalable global multicast solution. In this paper, we propose

a new approach, Dynamic Tunnel Multicast, which utilizes dynamically established

tunnels on unbranched links of a multicast distribution tree to eliminate unneces­

sary multicast forwarding states. Analysis and simulation results show promising

reduction in the state overhead of sparse mode multicast routing protocols.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements viii

1 Introduction 1

1.1 IP multicast Model 1

1.2 Existing Multicast Routing Protocols 3

1.3 Motivation and Problem Definition 4

1.4 Observation and Proposal 5

1.5 Thesis Contributions 6

1.6 Thesis Outline 7

2 Related Work 8

2.1 Classification of Multicast Routing Protocols 8

2.2 Examples of Multicast Routing Protocols 9

iii

2.2.1 D V M R P 10

2.2.2 C B T 11

2.2.3 P I M - S M 11

3 Tunnel Operations 13

3.1 Assumptions 13

3.2 Concepts 15

3.3 Optimization Goals 18

3.4 Uni-multicast State Detection 19

3.5 Tunnel Tree Establishment 20

3.6 Tunnel Encapsulation 23

3.7 Tunnel State Maintenance 24

3:8 Tunnel Tear Down .25

3.9 Tunnel Splice 25

3.10 Tunnel Split 27

3.11 Early Tunnel Termination 29

3.12 Dynamic Tunnels in P I M - S M 29

3.13 Fault Tolerance 30

3.13.1 Failure in the Middle of a Tunnel 30

3.13.2 Failure of the Tunnel End Point 31

3.13.3 Branching Point Changes 31

4 Protocol Specification 36

4.1 Message Types 36

4.1.1 Common Header 36

4.1.2 Tunnel Request Object 38

iv

4.1.3 Tunnel Setup Object 40

4.1.4 Tunnel Reject Object 40

4.1.5 Tunnel Destroy Object 41

4.2 Message Processing 41

4.2.1 State Transition 41

4.2.2 Pseudo Codes 47

4.3 Timers and Refresh Message Generation 52

5 Analysis and Simulation 53

5.1 Performance Analysis 53

5.1.1 Network model 54

5.1.2 Evaluation Matrix 55

5.2 Simulation • • • • • 58

5.2.1 Overview of ns 59

5.2.2 ns Multicast Extensions: PIMLite and S P I M 60

5.2.3 P I M - D T Simulation 61

5.2.4 Experiment Result 63

5.2.5 Containing Control Overhead 67

6 Conclusion and Future Work 70

6.1 Conclusion 70

6.2 Future Works 70

Bibliography 72

v

List of Tables

5.1 Summary of simulation parameters 62

vi

List of Figures

1.1 Dynamic Tunnel Example 6

3.1 Tunnel Establishment 23

3.2 Tunnel Splice 26

3.3 Tunnel Split : 27

3.4 Route Change: Branching Point Shift Downstream 32

3.5 Route Change: Branching Point Shift Upstream 34

4.1 Outgoing Interface State Transition Diagram 43

4.2 Incoming Interface State Transition Diagram 46

5.1 A Conference Example 57

5.2 One distribution tree constructed from the traces 58

5.3 Average amin for the trees 59

5.4 Basic Test Network Topology 62

5.5 Experiment Network Topology 63

5.6 Average Routing Table Size 64

5.7 Reduction in Routing Table Size 65

5.8 Control Overhead vs. Number of Groups 66

vii

Acknowledgements

I would like to thank my supervisor, Dr. Gerald Neufeld, for his guidance, encour­

agement, and support during my thesis work. I would also like to thank Dr . Alan

Wagner, who kindly accepted to be my second reader, and provided many valuable

comments to this thesis. I'm also grateful to Dr. Norm Hutchinson and Dr. Son

Vuong for their advises on various topics.

I'm particularly grateful to Mark McCutcheon, who provided many construc­

tive comments throughout my research and writing of the thesis.

I would also like to thank folks in the Distributed Systems Group: David

Finkelstein, Dwight Makaroff, Roland Mechler, Peter Smith, and Alistair Veitch for

their generous help during the past two years.

J I N I N G T I A N

The University of British Columbia

August 1997

viii

Chapter 1

Introduction

Multicast service can deliver packets to a set of destinations identified by a multicast

group, rather than a single destination. The IP multicast model [1], developed in

1988 by Stephen Deering, is an effort to provide multicast service over the Internet.

In this model, neither the senders nor the receivers need to know the location of

each other, and the membership can evolve dynamically. It is the responsibility

of the multicast routing protocols to keep track of the membership information of

a multicast group, and to establish multicast distribution trees to deliver packets

from a sender to all the receivers. The multicast routing protocol is the center

component of this model. In this chapter, we will first give out a brief overview of

the IP multicast model.

1.1 IP multicast Model

The IP multicast model [1] was proposed in late 80's to support multi-point commu­

nication within a Wide Area Network(WAN). It did not gain the momentum until

early 90's when multimedia conferencing over the Internet became possible. Before

1

that, only two types of delivery were supported on the Internet: unicast delivery
which is used in traditional point-to-point communication, and limited broadcast
delivery which is used to reach every node on a subnet.

Multicast, as a new type of delivery, is implemented as an extension to
the Internet Protocol (IP) [2]. In this model, class D IP addresses(224.0.0.0 to
239.255.255.255) are allocated to multicast traffic. Each multicast session will oc­
cupy a class D multicast address. New socket Application Programming Inter-
faces(APIs) are designed to let the application join or leave a multicast group. The
sender of a group can simply send packets to the class D address of the session, and
the packets will be delivered, using the traditional best effort delivery mechanisms,
to all the receivers that have joined the multicast group.

A multicast router is a router that supports multicast forwarding service,
i.e. forwarding packets that arrived on one incoming interface to more than one
outgoing interface. Multicast routers use multicast routing protocols to exchange
membership information and to build distribution trees that connect each sender to
all the receivers. One multicast router must be selected as the Designated Router
for each subnet that have potential multicast senders or receivers. An auxiliary
protocol, the Internet Group Management Protocol (IGMP) [3] is used for the end
hosts to convey the group membership information to their Designated Routers.
Two types of distributions trees can be built for a group: shared trees or source
specific trees. A shared tree for a group has its root at a special center point, with
all the members at its leaves. All the sources of a multicast group can use the same
shared tree to deliver packets to the receivers. A source specific tree be built for
each source and is used only to deliver traffic from that source.

In order to support the multicast forwarding service, each multicast router

2

must maintain a multicast forwarding table. The entries in the table are also referred
to as multicast forwarding states. Each entry in the table has an incoming interface
and one or more outgoing interfaces. When a packet arrives at a router, first the
multicast forwarding table entry with matching group address (for shared trees) or
with matching group address and source address (for source specific trees) is found,
then the packet is forwarded onto all the outgoing interfaces stored in the entry. The
multicast forwarding table entries on all the multicast routers collectively define the
multicast distribution tree. The key differences between multicast forwarding and
unicast forwarding are: in unicast the forwarding table lookup is based on the
unicast address of the destination node and the packet is forwarded only onto one
outgoing interface, while in multicast the lookup is based largely on the multicast
group address and the packet may be forwarded to more than one outgoing interface.

1.2 Existing Multicast Routing Protocols

There are several multicast routing protocols currently available, namely Distance

Vector Multicast Routing Protocol (DVMRP) [4], Multicast Extension to OSPF

(MOSPF) [5], Core Based Trees (CBT) [6], Protocol Independent Multicasting

Sparse Mode (PIM-SM) [7], and Protocol Independent Multicasting Dense Mode

(PIM-DM) [8].

These multicast routing protocols can be classified into two categories: dense

mode protocols and sparse mode protocols. Dense mode protocols such as DVMRP

and PIM-DM are designed for the situation where group members are densely pop­

ulated. On the other hand, sparse mode protocols, such as PIM-SM and CBT, are

designed for the case in which group members are sparsely located. More detailed

introductions of various multicast routing protocols are given in the next chapter.

3

1.3 Motivation and Problem Definition

When multicast service is to be provided globally, the scalability of multicast routing
protocols becomes an important issue. The scalability of a protocol can be defined
as its ability to maintain an acceptable performance level when some parameters of
the network or application become very large. The scalability of a multicast routing
protocol can be evaluated in two aspects: scalability with respect to the number of
receivers and scalability with respect to the number of multicast groups. Although
dense mode multicast routing protocols can handle a large number of receivers,
all the existing multicast routing protocols will face scalability problems when the
number of groups becomes very large.

The multicast forwarding table explosion is one of the major reasons that
caused the scalability problem with the growth in the number of groups. According
to the current multicast routing protocols, each multicast router has to maintain
a multicast forwarding table entry for every group whose distribution tree passes
through the router. When there are numerous groups, the forwarding table will be
very large, which will directly lead to high router cost and low forwarding perfor­
mance.

In unicast, clever hierarchical address assignment which reflects the geomet­
rical proximity of the network nodes in their address prefixes can lead to significant
reduction of the routing table size [9]. For example, if all the routers and hosts in
US bear the same address prefix, then the routers in Canada will only need one
forwarding table entry for all the destinations in US. However, in multicast there is
no restrictions on the physical location of the host that can join a group. The group
membership can also change dynamically. So one can not make any assumption
about the locations of the receivers of a group, and hence forwarding table entries

4

for different multicast groups can not be aggregated.

In this thesis, we will provide a solution to reduce the size of multicast

forwarding tables, and therefore improve the scalability of sparse mode multicast

routing protocols.

1.4 Observation and Proposal

Most of the multicast groups are sparse when looked at on a global scope. A lot of

the locally dense groups will become sparse in the backbone. This situation is not

uncommon. In fact, we estimate that most of the medium or small scale conferencing

groups will be very sparse in the backbone.

One observation we have is that, when the members of a group are sparsely

located, the distribution tree of the group is likely to contain some long, unbranched

paths. Routers on these paths are unnecessarily using the multicast forwarding

mechanism to achieve an unicast forwarding function. We call the multicast for­

warding state that has only one immediate downstream receiver "uni-multicast"

forwarding state.

Based on this observation, we propose a new approach, namely the Dynamic

Tunnel Multicast, as a general optimization of the existing sparse mode multicast

routing protocols. Our approach can eliminate the uni-multicast forwarding states

by using the dynamically established tunnels between the start and end points of

those unbranched paths. After dynamic tunnels are established, usually only the

root node, branching nodes and leave nodes of the original multicast distribution

tree need to maintain state information about the group. The unbranched nodes

are bypassed by the tunnel, and do not have to know about the group since the

packets sent to the group are forwarded via unicast between tunnel end points.

5

The elimination of the uni-multicast states on the unbranched nodes can greatly

reduce the overall forwarding state requirement and hence considerably improve the

scalability of existing multicast routing protocols.

For example, two researchers at U B C , Vancouver and one researcher at

E T H , Zurich want to have a video conference as shown in figure 1.1. There are

20 routers on the multicast distribution tree, but 17 of them (router a,b, - • • ,q) are

uni-multicast routers. In the this example, a dynamic tunnel can be established

17 hops

Figure 1.1: Dynamic Tunnel Example

between router a and r, bypassing 16 uni-multicast routers. Before the tunnel is

established, all the 20 routers have to know about the multicast group, but after the

tunnel is established, only four of them (router a,r,s and t) have to keep this in­

formation. Dynamic tunnels can thus lead to great savings on multicast forwarding

states on the routers.

1.5 Thesis Contributions

My thesis is that, unicast IP forwarding will significantly reduce multicast state in­

formation and there by make large numbers of very sparse multicast groups feasible.

Following is a list of the contributions of this thesis:

1. Investigate the reasons that are causing scalability problems in current mul­

ticast routing protocols when the number of active groups in a network is

6

large.

2. Propose a Dynamic Tunnel Multicast model, which can greatly reduce the

state information in multicast routers. It is compatible with both PIM-SM

and CBT.

3. Present the protocol specification for PIM-Dynamic Tunnel(PIM-DT), the Dy­
namic Tunnel Multicast protocol with PIM-SM as the underlying multicast
routing protocol.

4. Implement PIM-DT on LBNL network simulator and verified the state reduc­
tion through simulation results.

5. Discuss solutions for containing control packet overhead.

1.6 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 introduces some re­

lated works on multicast routing, including DVMRP, PIM and CBT. Chapter 3

presents the basic concepts and the operational model of the dynamic tunnel mul­

ticast scheme. Chapter 4 contains the protocol specification for PIM-DT. Chapter

5 includes an analysis and simulation of the Dynamic Tunnel Multicast. Chapter 6

concludes the thesis and discusses the future work.

7

C h a p t e r 2

Related Work

The Dynamic Tunnel Multicast that we propose is designed as a general optimiza­

tion on top of some other existing multicast mechanisms. Before presenting our

work, we first examine some of the existing multicast routing protocols. We start

with a classification of the multicast routing protocols, and then discuss the basic

mechanisms behind D V M R P [4], C B T [6] and P I M - S M [7].

2.1 Classification of Multicast Routing Protocols

A key role of a multicast routing protocol is to rendezvous the sender with the

receivers by constructing a multicast distribution tree. Existing multicast routing

protocols can be classified into two categories, dense mode protocols and sparse

mode protocols, according to the way the distribution trees are constructed.

Dense mode protocols assume receivers or senders exist on each subnet, unless

otherwise indicated. In order to rendezvous the senders with the receivers, either

the data from each sender have to be flooded to all the possible receivers, or the

membership information has to be flooded to all the possible senders. D V M R P and

8

P I M - D M [8] choose the former, and M O S P F [5] chooses the latter.

In D V M R P and P I M - D M , the data from each sender are periodically flooded

to all the subnets, and a distribution tree rooted at the sender with leaves on each

subnet is established during the flooding process. Subnets that do not have receivers

later prune themselves off the distribution tree to improve the forwarding efficiency.

In M O S P F , when a host joins a group, the membership information is flooded to all

the routers in the network. A source specific distribution tree rooted at each sender

can be constructed since each multicast router in the network knows the location of

every receiver of a group.

Sparse mode routing protocols on the other hand, do not assume the mem­

bership of any subnet. A Rendezvous Point(RP) or Core is defined for each group

to help the senders meet with the receivers. When a receiver joins a group, it talks

to its Designated Router(DR) using IGMP, and the D R will send an explicit Join

message towards the R P or Core of the group. A distribution tree rooted at the

RP/Core can be established as the Join messages are forwarded. Senders will send

data to the R P or Core of the group, which will further forward the data in the

reverse direction along the paths that the Join messages have traversed.

2.2 Examples of Multicast Routing Protocols

In this section, we will look at three multicast routing protocols. The first one is

D V M R P , which is the first and the most widely deployed multicast routing protocol

in the world. We will explain in more detail some of the fundamental techniques,

such as Reverse Path Forwarding(RPF), and the static tunnels that are used in

the protocol. Then we will look at C B T and P I M - S M , which can be used as the

underlying multicast support for our Dynamic Tunnel Multicast.

9

2.2.1 D V M R P

The Distance Vector Multicast Routing Protocol [4] is the earliest development in

multicast routing. It is a dense mode protocol and uses flood and prune strategy

to establish the distribution tree from the source to the receivers. When a receiver

joins the group, the membership information is only propagated to its Designated

Router via IGMP. The first packet from a sender is flooded to all the subnets in

the same domain, and the distribution tree is built using a technique called Reverse

Path Forwarding (RPF) . During this process, when each router receives a packet,

it will first check if the packet arrives on the interface that it uses to send packets

in the reverse direction towards the source. If it is, the packet is forwarded to all

the other interfaces. A multicast forwarding table entry is created for the group

and the source. The incoming interface of the entry is just the interface on which

the packet arrived, and the outgoing interface contains all the other interfaces. If

a packet does not arrive on the "correct" interface, it is discarded. A message is

also sent to the previous hop router of the discarded packet, telling that router to

remove the interface on which this message arrives from its outgoing interface list

in the multicast forwarding table entry. Designated Routers that do not have any

member on the local subnet or downstream routers sends prune messages upstream

to prune themselves off the distribution tree.

In D V M R P , only source specific trees are built, and the trees are uni-directional.

This implies data can only flow from the root to the leaves. Each link in the network

is configured with a cost and threshold value. Packets transmitted on the link will

have the T T L field in the IP header of the packet decreased by the cost value of the

link. A packet with remaining T T L value less than the threshold value of the link

will not be forwarded onto the link. The threshold is used to control the scope that

10

a packet can reach.

Static tunnels can be established as a virtual link to interconnect multicast

routers separated by non-multicast-capable routers. The topology map maintained

by multicast routers can be different from the map maintained by unicast routers.

Each tunnel is manually established, and configured with a cost and threshold. A

tunnel can be used by all the groups. It is bi-directional, but different direction can

have different cost and threshold values.

2.2.2 C B T

Core Based Tree is designed for sparse groups and it establishes shared trees only.

A Core router is defined for each group. Each Designated Router with members

on its local subnet sends a Join-Request messages towards the Core. Each C B T

router forwards the Join-Request towards the Core and records a transient state if

it does not have the forwarding state for the group. When the Join-Request reaches

the first router that is already part of the corresponding distribution tree, a Join-

Acknowledgment is sent hop by hop back to the requesting D R . Each C B T router

will change the transient state for the group into a fixed multicast forwarding state

as the Join-Acknowledgment traverse it.

In C B T , the tree branches are bidirectional. Data received on any valid

interface of the multicast forwarding state will be forwarded onto all the other

interfaces except the incoming one.

2.2.3 P I M - S M

P I M - S M is designed for sparse groups. It supports both shared trees and source

specific trees. Distribution trees are uni-directional.

11

A Designated Router (DR) that has local member sends Join message to­

wards the Rendezvous Point (RP) of the group, which is similar to the Core in

C B T . A shared tree rooted at R P can thus be built. Sources of the group send data

encapsulated directly to the RP, and the R P forwards the data further down the

distribution tree to all the receivers. If the data rate for a source is high, the D R

can switch to join the source specific tree of the source by sending Joins towards

the source. Once the D R starts to receive data from the source specific tree, it can

inform the shared tree not to deliver packets from that particular source to the D R

to avoid duplicates.

Joins need to be sent upstream periodically in order to keep the forwarding

state alive on the parent router. If a Join is not received on an outgoing interface for

a certain period of time, then that outgoing interface is deleted from the outgoing

interface list of the routing table entry. When sending the periodical Joins, multiple

Joins for different groups/sources can be sent in a single packet.

12

Chapter 3

Tunnel Operations

In this chapter, we introduce the operational model of the Dynamic Tunnel M u l t i ­

cast. The major roles of the D T M include:

• establish and destroy dynamic tunnels on demand.

• maintain the tunnel states on the end points of tunnels.

• adjust the dynamic tunnels in case of membership changes.

• adjust the dynamic tunnels to cope with route changes and various failure

conditions.

Since D y n a m i c Tunnel Mul t i cas t is designed to be an opt imizat ion of the

existing sparse state multicast routing protocols, we wi l l clarify the functions that

are necessary to support Dynamic Tunnel Mul t i cas t .

3.1 Assumptions

We assume there exists some form of underlying multicast mechanism on all the

routers that want to support dynamic tunnels. In this section we summarize our

13

assumptions about the underlying multicast support.

Although only Protocol Independent Multicast Sparse Mode(PIM-SM) and

Core Based Tree(CBT) are considered in this document, the dynamic tunnel mul­

ticast can also work with other multicast routing protocols as long as the following

assumptions hold.

• The distribution tree of a group can be either a shared center based tree or

a source specific shortest path tree. Each distribution tree must have a root

node. In P I M - S M , the root node is either the Rendezvous Point(RP) or the

designated router of the source; in C B T , the root node is the Core router.

• We define upstream to be in the direction towards the root, and downstream

to be in the direction away from the root (or towards the leaves). Each router

participating in the routing protocol must have some mechanism to determine

which is the upstream interface towards the root. In Reverse Path Forward-

ing(RPF), a commonly used multicast distribution tree construction method,

the interface towards the root, as per unicast routing, is selected as the up­

stream interface. In the Multicast Extension to B G P (M B G P) [10], the up­

stream interface towards the root can be determined by explicit policies, and

R P F is not used.

• Routers that want to join the group must explicitly send Join messages on the

upstream interface towards the root. The message will be forwarded further

upstream until a router already on the distribution tree is reached. A successful

join operation can be confirmed by the fact that the downstream receiver

receives data on the native tree(in P IM-SM) , or from the fact that an explicit

Join-Acknowledgment is received (in C B T) .

14

• Processing of the Join messages at the routers installs multicast forwarding

state on the routers. A l l the forwarding states on the routers collectively

define the multicast distribution tree. The multicast forwarding state contains

at least the group address, an upstream interface, and a list of downstream

interfaces.

• Each interface in the forwarding state can be either uni-directional or bi­

directional. In P I M - S M , the interfaces are uni-directional as the data can only

be forwarded from the upstream interface onto the downstream interfaces. In

P I M - S M , the upstream interface can be also referred to as the incoming inter­

face, and downstream interface can be referred to as the outgoing interface.

In C B T , the interfaces are bi-directional, and data can be forwarded from any

interface to all the other interfaces except the incoming one. In C B T the terms

"incoming interface" and "outgoing interface" make sense only when packets

are being forwarded.

3.2 Concepts

Following are the basic concepts that are used in the definition of Dynamic Tunnel

Multicast model.

Native Multicast Distribution Tree (Native Tree) We define the Native Mul ­

ticast Distribution Tree, or simply the native tree, to be the distribution tree

constructed by the underlying multicast routing protocol. The native tree

may not exist in some part of the network after the dynamic tunnels are es­

tablished. In this case, we use the term native tree to refer to the tree that

would have been established by the multicast routing protocol, if there had

15

been no dynamic tunnels.

Uni-multicast Forwarding State A multicast forwarding state that has only one

immediate downstream receiver and has no local member for a distribution

tree is called an Uni-multicast Forwarding state for the distribution tree. A

router that has uni-multicast forwarding state for a distribution tree is called

an uni-multicast router on the distribution tree.

Potential Tunnel End Points Potential tunnel end points on a multicast dis­

tribution tree include branching nodes(non-uni-multicasting nodes), the root

node, the leaf nodes, and all the nodes that cannot be bypassed by dynamic

tunnels due to reasons specific to the underlying multicast routing protocol,

or due to administrative concerns.

Dynamic Tunnel Dynamic tunnels can be established between adjacent potential

tunnel end points to eliminate the uni-multicast forwarding states. Dynamic

tunnels are different from the static tunnels in some existing multicast routing

protocols (i.e. D V M R P) . In the following discussion, the term tunnel always

refers to dynamic tunnel unless otherwise specified. Following are some of the

unique properties of dynamic tunnels:

• Dynamic tunnels are distribution tree specific. Each tunnel is created for

a certain distribution tree, which can be either source specific or shared.

Only packets for the corresponding distribution tree can be forwarded

into the tunnel. When source specific distribution trees are used, only

packets generated from a certain source can be forwarded into the tunnel.

• Each dynamic tunnel has two end points, an upstream tunnel end point

and a downstream tunnel end point.

16

• Dynamic tunnels are created and destroyed on demand.

• Dynamic tunnels can be either uni-directional or bi-directional depending

on the nature of the interface in the forwarding states of the underlying

multicast routing protocol running on the tunnel end points. Dynamic

tunnels are uni-directional in PIM-SM, and bi-directional in C B T .

• Dynamic tunnels do not affect route calculations. The establishment of

tunnels does not change the topology map used in the underlying unicast

or multicast routing protocol.

• Dynamic tunnels can have dynamically assigned costs and thresholds that

can be derived from the underlying multicast or unicast routing protocol.

• A dynamic tunnel is not used as a new virtual interface, instead, it is

treated as a new attribute associated with an existing interface. The

associated interface of a dynamic tunnel is defined below.

Native Path Each dynamic tunnel has a corresponding native path, which is the

path on the native tree between the tunnel end points. Routers on the native

path are bypassed by the tunnels and may no longer keep state information

for the group.

Associated Interface of a Dynamic Tunnel The upstream (or downstream) as­

sociated interface of a dynamic tunnel is the interface through which the native

path of the tunnel is connected to the upstream (or downstream) tunnel end

point. The tunnel is also said to be associated with that interface. For any

distribution tree, there is at most one tunnel associated with any interface.

Interface States An interface in a multicast forwarding table entry can be in one

of the following four states: Idle, Native, Tunnel or Dual. An interface in

17

Idle state may not be included in the forwarding table entry. An interface is

in Native state if it is performing the normal multicast forwarding function.

Data can be sent and received on Native state interfaces in native format. An

interface is in Tunnel state if there is a dynamic tunnel associated with it.

Data can be sent and received from the tunnel associated with the interface

in encapsulated format. An interface in Dual state operates as if it is in

both Native and Tunnel states. Data can be received in both native and

encapsulated format for an interface in Dual state. Data will be sent twice for

an interface in Dual state, once in native format, once in encapsulated format

for the tunnel. The Dual state is introduced to minimize the interruption in

data delivery caused by tunnel establishment, tear-down and adjustment.

Dynamic Tunnel Tree A Dynamic Tunnel Tree, or Tunnel Tree, is the distribu­

tion tree with some branches replaced by dynamic tunnels.

3.3 Optimization Goals

The primary goal of the dynamic tunnel approach is to reduce the uni-multicast

state while at the same time keeping the tunnel tree topology as close as possible to

the native tree. It is always assumed the native multicast distribution tree created

by the underlying multicast routing protocol to be the optimum.

We are aware that dynamic tunnels also introduce data processing and con­

trol overheads. Containing these overheads are also part of our ultimate goals, but

they are not considered primary goals in the operational model of the dynamic

tunnels. Additional mechanisms can be devised later to achieve these goals.

18

3.4 Uni-multicast State Detection

Each of the routers on the distribution tree can detect the existence of uni-multicast

forwarding states from the fact that the router has only one direct downstream

receiver for a multicast group. If all the out-going links of a router are non-multi­

access links, the uni-multicast state can be determined from the fact that the router

has only one downstream interface in the multicast forwarding state.

It is slightly more difficult to determine the number of direct downstream

receivers on a multi-access link since some multicast routing protocol such as PIM

supports join suppression, which allows only one of the direct downstream receivers

on the multi-access links to send Join messages. The problem does not exist in C B T

since it does not support join suppression.

There are a number of ways to solve the problem. First, we can disallow

tunnels to span across multi-access links. In this case, if the uni-multicast state

exists on the link, it will never be deleted. Though this solution might potentially

reduce the average length of tunnels, it is actually not a bad choice since its simple,

and since most of the dynamic tunnels are established in the backbone where the

multi-access links are rare. It has the additional advantage of not having to worry

about Early Tunnel Terminations as discussed later in section 3.11. Second, we can

disable the join suppression on the multi-access link. On multi-access links with

join suppression disabled, the number of downstream receivers can be determined

from the number of different downstream routers that are sending Join messages.

This works best when the number of routers on the link is small. Third, we can

modify the join suppression algorithm on multi-access links in order to determine

whether a router is in uni-multicast state. Basically we allow at most two of the

downstream receivers to send Join messages instead of at most one as in the original

19

join suppression algorithm. In this case, a uni-multicasting router will receive Join

messages only from one downstream receiver, while a real multicasting(non uni-

multicasting) router will receive from two.

3.5 Tunnel Tree Establishment

One way to establish a tunnel is to start from the potential downstream tunnel

end points; that is, either from the leaf nodes or from the branching nodes on the

native distribution tree. Once the multicast distribution tree becomes stable, these

potential downstream tunnel end points start sending Tunnel Request messages

upstream towards the root. The Request messages are sent on the same interface

as the Join messages are sent in the underlying multicast routing protocol. The

Request message includes the multicast group, the downstream tunnel end point,

the original T T L value used in the IP header when the packet is sent, a cost and

a threshold value which indicate the cost and threshold of the path through which

the Request message has traversed.

Each router on the distribution tree that receives the message first checks if

the Request can be further forwarded. If the router is not a potential tunnel end

point, then it tries to forward the Request message further upstream. The cost and

threshold values in the outgoing Request message are updated.

If the router that receives the Request message is a potential tunnel end

point, then the request is not forwarded any further. The router will check if a

tunnel can be established. The router can impose a lower limit on tunnel lengths to

contain the maintenance overheads of the tunnels. The router can derive the length

of the native path from the original T T L value in the message and the current T T L

value in the IP header. If the length can not meet the minimum length requirement,

20

the router that receives the request can optionally send a tunnel reject message back

to the requesting router indicating the reason. Otherwise, the router becomes the

upstream tunnel end point. It sends a tunnel Setup message back to the downstream

tunnel end point and the tunnel state is recorded.

The newly created tunnel is associated with the interface on which the Re­

quest message arrives. The interface is set to Dual state. The interface changes to

Tunnel state if a Prune/Quit message is received. The interface reverts to Native

state when the associated tunnel is torn down.

When the tunnel is established, data packets that arrive at the upstream

tunnel end point are forwarded onto all the outgoing interfaces according to the

forwarding rule of the underlying multicast routing protocol. If an outgoing interface

is in Native state, packets are forwarded in native format as usual. If an outgoing

interface is in Tunnel state, packets are encapsulated and sent unicast directly to

the other end point of the associated tunnel. If an outgoing interface is in Dual

state, the packets are sent twice on the interface, once in native format and once

encapsulated.

If the tunnels are uni-directional, data packets can only come from the up­

stream tunnel and be forwarded into downstream tunnels. If the tunnels are bi­

directional, data coming from a tunnel will be forwarded into all the other tunnels

except the incoming one.

When the potential downstream tunnel end point receives the tunnel Setup

message, it first checks if the interface towards the upstream tunnel end point is the

same as the interface towards the root. If R P F is used to construct the multicast

distribution tree, unicast routing can be used to determine the interface towards the

root and the interface towards the upstream tunnel end point. If the two interfaces

21

are not the same, the tunnel Setup message is discarded. Although passing this

check will not guarantee that the upstream tunnel end point is on the path towards

the root, it can reduce the chance of forming routing loops. If the two interfaces are

the same, the tunnel state is recorded and the tunnel is established. The associated

interface of the tunnel is set to be in Dual state. Join messages are no longer sent

towards the root by the downstream tunnel end point. Instead, tunnel Request

messages are sent periodically towards the root to refresh the tunnel state on the

upstream tunnel end point.

In PIM-SM, since the intermediate uni-multicast routers are bypassed by the

tunnel and no longer receive Join messages, their unnecessary multicast forwarding

state will eventually timeout and be deleted. The downstream tunnel end point

can send Prune message upstream to speed up the process. In C B T , explicit Quit

messages are sent upstream to remove the uni-multicast states.

When the upstream tunnel end point stops receiving Join messages or receives

Prune/Quit messages on the interface associated with the tunnel, the interface is

set to be in Tunnel state. The Prune or Quit messages are not forwarded further.

Figure 3.1 illustrates the tunnel tree establishment procedure with PIM-SM

as the underlying multicast routing protocol. Here A, B, C are three routers on a

distribution tree. A and C are branching points that have more than one immediate

downstream receivers, B is a uni-multicasting router that has only one immediate

downstream receiver. C sends tunnel Request messages upstream, and B forwards

them on. When A receives the tunnel Request message, it replies with a tunnel

Setup message and sets the interface on which the request message arrives to be

in Dual state. This will cause the subsequent data in the downstream direction to

be forwarded twice for that interface: once in Native state, once in encapsulated

22

3. Potential tunnel end point A
change {4} to Dual mode

2. Unimulticasting router
forwards Request upstream

1. Potential tunnel end point C
sends tunnel Request upstream

4. A sends setup unicast to C
Data are sent twice on {4}

7. A changes {4} to Tunnel mode
Data are sent only via the tunnel

6. forward Prune, unimulticast
state deleted

5. C change {1} to Tunnel mode
.sends prune upstream

Figure 3.1: Tunnel Establishment

state. When C receives the tunnel Setup message, it sets the interface on which

the tunnel Request messages are sent to be in Tunnel state, and sends a Prune

message upstream. The multicast forwarding state on B will be deleted as the

Prune message propagates along the way. When A receives the Prune message, the

interface on which the Prune message is received is set to be in Tunnel state, and

subsequent data in the downstream direction are forwarded only once through the

tunnel on that interface.

3.6 Tunnel Encapsulation

Several encapsulation techniques can be used when sending data in the dynamic

tunnels, namely IP in IP Tunneling [11], Generic Routing Encapsulation (GRE) [12],

and Minimal Encapsulation within IP [13]. The IP in IP Tunneling is a strait forward

23

encapsulation technique. It wraps the original IP packet directly in another standard

IP header. G R E is a general purpose solution which can be used to encapsulate any

type of network layer packet in any other type of network layer packet. The Minimal

Encapsulation within IP minimizes the encapsulation overhead by compressing the

inner IP header. Since the dynamic tunnels are expected to be used extensively, it

is important to reduce the encapsulation overhead. Under this consideration, the

Minimal Encapsulation within IP is selected as the default encapsulation mechanism

for Dynamic Tunnel Multicast.

3.7 Tunnel State Maintenance

Dynamic Tunnels use soft tunnel state. A downstream tunnel end point periodically

sends tunnel Request messages to the upstream tunnel end point in order to keep the

tunnel state alive. The upstream tunnel end point timeouts and deletes the tunnel

state if no more tunnel Request messages are received within a certain timeout

period.

The periodic Request messages can also be used to detect route changes. The

message will simply be forwarded if the router that receives it has no forwarding

state for the group, or if the router is uni-multicasting and the message arrives at

the downstream interface of the multicast forwarding state. A tunnel Request mes­

sage arriving at a router under other conditions is an indication of route change or

membership change which usually will trigger tunnel adjustments. Those conditions

will be discussed later in section 3.13.

If there is no route change or membership change, the Request message

arrives at the upstream tunnel end point and the tunnel state is refreshed. The

message is not forwarded any further by the upstream tunnel end point.

24

3 . 8 Tunnel Tear Down

When a downstream tunnel end point no longer has downstream receivers, it can

discard the tunnel by not sending tunnel Request messages to the upstream tunnel

end point. The tunnel state information at the upstream tunnel end point will

eventually expire and be deleted. The downstream tunnel end point can speed up

the tear down process by sending an explicit tunnel Destroy message to the upstream

tunnel end point.

3 . 9 Tunnel Splice

After a member leaves the group, the upstream end of an existing tunnel, which was

previously a branching node in the tunnel tree, now may have only one downstream

interface left in the multicast forwarding state, and becomes an uni-multicasting

router on the distribution tree of the group. In this case the upstream tunnel and

the downstream tunnel of the former branching point can be spliced. The router at

the splice point that connects the upstream tunnel and the downstream tunnel stops

sending tunnel Request messages upstream since it is no longer a potential tunnel

end point. When it receives the tunnel Request messages from the downstream

tunnel, the router at the splice point no longer sends back tunnel Setup messages.

Instead, it appends a tunnel Destroy message at the end of the received tunnel

Request message, and forwards the new message upstream. When the upstream

end point of the upstream tunnel receives the tunnel Request/Destroy message, it

destroys the old tunnel to the splice point, and sends a tunnel Setup message back

to the requesting router to establish a new tunnel.

Figure 3.2 illustrates this procedure. Originally there were three tunnels

25

4. A changes downstream
tunnel end point to C,
and sends Setup to C

3. B appends a Destroy msg
after the Request msg and
forwards it upstream

I 2. C sends next periodic
I Request upstream

6. B sends stand alone
{ Destroy msg to A

1. Member D leaves group,
B enters uni-multicast state

5. C sends Destroy msg to B,
changes upstream tunnel end
point to A

Figure 3.2: Tunnel Splice

established, A - B , B - C , and B - D . Now the B - D tunnel is destroyed, and tunnel

A - B and B - C can be spliced. When router B at the splice point receives the tunnel

Request message from C, it appends a tunnel Destroy message in the received tunnel

Request message indicating the old A - B tunnel can be replaced, and forwards the

new message towards the root. When router A receives the message, it sends a

tunnel Setup message back directly to the requesting router C, and the spliced

tunnel is established. Then A stops sending packets via the old A - B tunnel. After

C receives the Setup message of A - C , tunnel, it can send a tunnel Destroy message

to B to remove the old A - B tunnel.

26

3.10 Tunnel Split

When a new member joins the group, it might be necessary to add branches in the

middle of the tunnel. Consider the case shown in figure 3.3:

I 7. set {2} in tunnel mode only,
t data are sent only in native format

5. set {2} in tunnel mode
only, send setup msg to C

6. associate B-C tunnel with {1},
send destroy msg to A

4. send periodic request 1
msg upstream

\ 1/

3. set {2} in both native and
tunnel mode, data are sent
twice on {2}

2. G, B and E forward join
msg upstream and install
multicast forwarding states

1. New member sends
join msg upstream

Figure 3.3: Tunnel Split

There is a tunnel established from A to C for a multicast distribution tree.

Router E, B and F are on the native path of the A-C tunnel, but they do not have

any forwarding state information for the distribution tree since they are bypassed.

Router D is a new member that wants to join the group. It sends a Join message

towards the root. The Join message would have stopped at B if there were no

tunnels set up and B would have been the branching node of the distribution tree.

Since now the forwarding states on routers between B and E have already been

deleted, the Join message propagates all the way to the upstream tunnel end point

A. Processing of the Join message reinstalls forwarding states on all the routers

27

between B and A.

Now the topology of the tunnel tree and the topology of the native tree are
no longer aligned. If the routes are symmetric, packets might be sent twice on some
of the links between A and B, once in native format on the native tree to D, the
other in encapsulated format through the tunnel between A and C. If the routes
are asymmetric, duplicates may still occur on some of the links. In most cases,
duplicates do exist. In order to avoid duplicates, we need the ability to add a new
branch in the middle of the A-C tunnel.

The situation can be corrected when C sends the next periodic tunnel Re­
quest message upstream. When the Request message reaches B, B will not forward
it further since the Request message arrives on an interface other than the one on
which the Join message arrives. B sends back a tunnel Setup message to the re­
questing router C setting up the new tunnel. When C receives the Setup message,
it changes the upstream end point of the tunnel from A to B and sends a tunnel
Destroy message to A. Tunnels between A,B and between B,C can be established
later following the tunnel establishment procedure described in section 3.5.

The tunnel request from C may be rejected by router B because the tunnel is
too short. In this case, router B sends a tunnel reject message back to C indicating
the reason. When router C receives the rejection, it changes the upstream interface
to Native state, and starts sending normal Join messages upstream to reinstall
multicast forwarding state between C and B. The old A-C tunnel can be torn down
either when C starts receiving data from the native tree, or after a timeout.

28

3.11 Early Tunnel Termination

A problem may occur when tunnels are allowed to span across multi-access links and
a router on a multi-access link has more than one immediate downstream members
on the link forwarding tunnel Requests. Allowing multiple tunnels to be associated
with a multi-access interface not only complicates the implementation, but also
generates duplicates since packets are sent multiple times for each of the outgoing
tunnels on the multi-access link. This problem only occurs when the join suppression
on the link is disabled or modified as discussed in section 3.4.

To solve this problem, the downstream routers on the multi-access link should
listen on the link for Join or Request messages from other routers. If there are other
sibling members on the multi-access link, then the router should become a potential
tunnel end point and respond to tunnel Requests from routers further downstream.
Downstream routers on multi-access links should not generate Request message
upstream.

3.12 Dynamic Tunnels in PIM-SM

Some problems are unique to PIM-SM since it allows a source specific tree and a

shared tree to exist at the same time for a given multicast group. These problems

include tunnel sharing among the source specific trees and the shared tree of a

multicast group, and source specific prune state on the shared tree.

In most cases dynamic tunnels are established separately for source specific

trees and shared tree of the same multicast group. Within the part where a source

specific tree and the shared tree overlap, the tunnel can be shared among the dif­

ferent trees of the same multicast group.

29

Source specific prunes, i.e. the (S ,G)RPT forwarding states, are filters on

the shared tree used to prevent packets from being delivered to members that have

already switched to source specific trees. They always coexist with (*,G) forwarding

states, and no separate tunnels are established for them. These states are gener­

ated at the point where a source specific tree and the shared tree diverge, and are

propagated upstream along the shared tree until the next branching point. When

dynamic tunnels are established, this diverging point may be shifted downstream

to the next tunnel end point. On a router where both (S,G) and (*,G) forwarding

states exist, if the incoming interfaces of the two forwarding states are the same

but are associated with different tunnels, the two interfaces should be considered

different. Source specific prunes should be sent upstream along the shared tree, via

the dynamic tunnel, if one has been established.

3.13 Fault Tolerance

In this section, various failure conditions are considered. The goal of our approach

is to reduce as much as possible the interruptions in data delivery.

3.13.1 Failure in the Middle of a Tunnel

If a link or a router on the native path is down, it will be automatically routed around

by the unicast forwarding mechanism. If the route change caused by the failure does

not affect the location of tunnel end points, no adjustment is necessary. If the native

tree is changed, as long as the tunnel end points are still mutually reachable, the

data delivery via the tunnels will not be disturbed. However, the topology of the

tunnel tree may no longer be the optimum. This situation is discussed in more detail

in section 3.13.3.

30

3.13.2 Failure of the Tunnel End Point

Failed upstream tunnel end point will be detected by the unicast or multicast routing

protocol running on its neighbors. The branching point of the tunnel tree must be

adjusted accordingly, otherwise the tunnel tree topology and the native tree topology

are no longer aligned. The next Request message sent towards the root will be sent

via a different route resulting in a "upstream branching point shift" as described in

section 3.13.3.

If a downstream tunnel end point only has Native state downstream inter­

faces, its failure can be detected by the underlying multicast or unicast routing

protocols running on its immediate downstream receivers. The next Join messages

from those receivers are sent on an alternative path towards the root, and new

tunnels can be established later.

3.13.3 Branching Point Changes

Route changes can alter the branching points and hence the topology of the na­

tive tree. The branching points of the native tree can be moved either upstream

or downstream. The branching points of the tunnel tree have to be adjusted ac­

cordingly, otherwise the tunnel tree topology will not be optimal. Here we assume

that the native tree constructed by the underlying multicast routing protocol is the

optimum.

In this section we introduce several mechanisms that can align the topology

of the tunnel tree with that of the changed native tree. There is always a trade

off between the tunnel tree efficiency and the control overhead. Since most of the

routes on the Internet are expected to be fairly stable, route changes are considered

scarce events. Under this assumption, the simple mechanisms are actually favored.

31

In this document we simply point out the problems and their possible solutions.

Branching Point Downstream Shift

After a route change, tunnel Request may arrive at a different interface of the

upstream tunnel end point. If the new interface has no tunnel associated with it, the

upstream tunnel end point simply changes the upstream associated interface of that

tunnel. If the new interface is associated with another tunnel which indicates the

native paths of the two tunnels now share some common prefix, then the branching

point of the native tree has moved somewhere downstream.

2.request from C arrives on (3),
which is already associated with
A - D tunnel; a reject msg is
returned to C

1. after route change, request
msg of A - C tunnel is forwarded

[on {2} instead of on {1}

3. change {1} from tunnel only
mode to tunnel and native mode,

I send join msg upstream

5. receive join confirm,
which can be either data
or join acknowledgement,

[set {1} to native mode only J

4. receive join, change (3} from
tunnel only mode to tunnel and

[native mode, data are sent twice on {3} J

9. set {3} to tunnel mode only,
[data are sent only in native format J

(7. send setup to D J

8. change upstream tunnel end
[point to B; send destroy msg to A

6. send request msg
upstream

Figure 3.4: Route Change: Branching Point Shift Downstream

Figure 3.4 shows an example that illustrates the situation. Two tunnels A-

C and A-D are already established. Their native paths were completely different

before the route change. The native path of tunnel A-C is A - H — F — C while the

native path of tunnel A-D \s A - E — B — G — D. After the route change, tunnel

32

A-C's native path passes through B, which is also on the native path of A-D tunnel.

Now tunnel Request messages of the two tunnels arrive at the same interface of A.

The branching point of the native tree has moved from A to B.

In order to find the new location of the branching point, we tear down the

tunnel whose native path has changed. The upstream tunnel end point sends a

tunnel reject message to the downstream end point of the tunnel about to be torn

down. When the downstream tunnel end point receives the rejection, it changes

its upstream interface to native and Tunnel state, and starts sending Join message

upstream to reinstall multicast forwarding state on all the routers on the native

path of the tunnel. When the downstream end of the tunnel that is about to be

torn down starts receiving data from the native tree, it destroys the tunnel. The

next tunnel Request message from the remaining tunnel will trigger a tunnel split

operation as described in section 3.10, and the new branching point is found.

In our example, A sends rejection to C, C switches to Dual state, and sends a

Join message upstream. When C starts receiving data from the native tree or when

C receives join acknowledgment, it sends a Destroy message to A, tearing down the

A-C tunnel. The next tunnel request message from D will trigger a split of the A-D

tunnel, a situation already discussed in section 3.10, and the new branching point

B will be found.

Branching Point Upstream Shift

The changes in the route may cause the upstream tunnel send point to be no longer

on the correct path from the downstream tunnel end point towards the root. In this

case, the periodic tunnel Request message can no longer reach the current upstream

tunnel end point. The message will be propagated towards the root until it reaches

33

8. receive request; send
setup back to C

7. B appends a destroy msg on
the request and passes it on,
since it is in uni-multicast state

(lO. destroy A-B tunnel)

6. send next request
I msg upstream

9. receive setup,
[̂ destroy B-C tunnel j

2. B-D tunnel's request arrives on {2},
which is associated with A-B tunnel;

la reject msg is returned to D

4. receive join, set {2} to native and
tunnel mode, data are sent twice on {2} J

1. after route change, G forward B-D
[̂ tunnel's request on {2} instead of {1} J

3. receive the reject, change
^ {1} to native and tunnel mode j

5. receive join confirmation,
D destroys B-D tunnel

Figure 3.5: Route Change: Branching Point Shift Upstream

a node that already has multicast forwarding state for the distribution tree. The

interface on which the message arrives can be in either Native state, Tunnel state,

or Dual state. The message arriving at an interface in Native state causes a tunnel

Setup or Reject message to be returned. The message arriving at an interface in

Tunnel state causes a tunnel Reject message to be returned. The message arriving

at an interface in Dual state is discarded.

If the downstream end point of the tunnel being affected by the route change

receives a Setup message, it sets up the new tunnel and destroys the old upstream

tunnel. The upstream end point of the new tunnel is the correct new branching

point. If the downstream end point of the affected tunnel receives a reject message,

it switches its upstream interface to Dual state and sends Join messages upstream.

The old upstream tunnel can be torn down after its downstream end point receives

34

confirmation of the join, which can be either data from the native tree or explicit

acknowledgment. The new branching point subsequently can be found after another

tunnel split.

In the example shown in figure 3.5, a route change causes Request message

of tunnel B-D no longer to pass through its upstream tunnel end point B. Instead,

it reaches router A. From the point of view of router A, the request comes from a

brand new requesting router, but the request arrives on an interface that is already

associated with another tunnel. A then sends a tunnel reject message back to

D. When D receives the rejection, it sets interface {1} to Native state, and starts

sending Join messages upstream. In this example, the Join message is propagated all

the way to A. When A receives the join, it sets interface {2} to Dual state and starts

sending data in both native format and in encapsulated format on interface {2}.

When D receives data from the native tree or receives explicit join acknowledgment,

it destroys the old B-D tunnel. The next periodic tunnel Request message from C

will trigger a new round of combined tunnel splice and split. When B receives

the tunnel Request message from C, it appends a Destroy message in the request

and forwards it upstream according to the tunnel splice procedure described in

section 3.9. When E receives this Request/Destroy message, it ignores the destroy

part since it has no tunnel established to B. E processes the Request message and

sends a tunnel Setup message to C following the tunnel split procedure described in

section 3.10. When C receives the tunnel Setup message, it destroys the B-C tunnel

following the tunnel splice procedure. When B receives the tunnel Destroy message

from C, it transitively destroys the A-B tunnel in which the old A-C tunnel will be

split into A-E and E-C tunnel. Tunnel E-D can also be established later.

35

Chapter 4

Protocol Specification

In this chapter, we describe the specification of the P I M - D T protocol, and the Dy­

namic Tunnel Multicast protocol with P I M - S M as the underlying multicast support.

4.1 Message Types

A D T M P control message contains a common message header followed by one or

more Tunnel Control Objects. There are four objects defined in this document:

request, setup, reject and destroy. The objects that are included in the control

message is indicated in the common message header.

4.1.1 C o m m o n Header

7 15 23 31

Ver Flags MsgType MsgCheckSum

Group

Source/RP

36

The contents of each fields are:

Ver (4 bits)

Protocol version number. This document defines D T M P version 1.0.

Flag (4 bits)

Control flags. Reserved.

MsgType (8 bits)

Message type. There are five message types related to tunnel management in

D T M P :

1. MsgType 0 = Tunnel Request

2. MsgType 1 = Tunnel Setup

3. MsgType 2 = Tunnel Reject

4. MsgType 3 = Tunnel Destroy

A Tunnel Request message contains one Tunnel Request object followed by an

optional Tunnel Destroy object. A Tunnel Setup message contains one Tunnel

Setup object. A Tunnel Reject message contains one Tunnel Reject object,

and a Tunnel Destroy message contains one Tunnel Destroy object.

MsgCheckSum (16 bits) The message checksum. Although U D P header has a

checksum field, the calculation of checksum is optional. So we need our own

checksum to ensure message integrity.

Group 32 bits The address of the multicast group.

Source/RP (32 bits) This field contains the address of the source if the router is

on a source specific tree, and contains the address of the Rendezvous Point(RP)

37

if the router is on a shared tree.

Following are the definition of each tunnel control objects. Each object may

contain an optional Authentication field at the end, which is used by the receiver

to verify the validity of the object. Only valid object from a trusted router will be

accepted.

4.1.2 Tunnel Request Object

The format of a Tunnel Request Object is:

15 23 31

T T L Cost Threshold Flags

Requesting Router

(Authentication)

• TTL (8 bits): The initial T T L value of the IP packet when it is originated

from the source. This is used to calculate the distance between the message

sender and receiver in terms of hop count.

• Cost (8 bits): This field contains an estimation of the cost of the path from the

router where the request message has last traversed to the requesting router.

The field is updated at each hop. When the Request message is forwarded

further upstream, the value of the cost field in the outgoing message should

be the value in the incoming Request message plus the cost of the link on

which the Request message is received. If a tunnel is established, the updated

estimation will be used as the cost of the tunnel.

38

Threshold (8 bits): This field contains the threshold value for the path between

the router where the request message has last traversed and the requesting

router. This value is also updated by each router as the request message is

forwarded upstream. The updated Threshold value should be the larger of the

threshold value of the link on which the request message has arrived, and the

threshold value in the incoming request message plus the cost of the last link

on which the massage has traversed. If the request is forwarded upstream, the

threshold field of the outgoing message should contain the updated value. If a

tunnel is established, the updated value will be used as the threshold for the

tunnel. An incoming data packet will not be forwarded on the tunnel if its

remaining T T L value is less than the tunnel's threshold value.

Flags (8 bits):

Requesting Host (32 bits): The address of the originator of the Request mes­

sage. The originator will become the downstream tunnel end point if a Setup

message is received later.

Authentication (variable length, optional): This field is used to authenticate

the request and is optional. The format of the Authentication Object is yet

to be determined.

39

4.1.3 T u n n e l S e t u p O b j e c t

7 15 23 31

T T L Cost Threshold Flags

Upstream Tunnel End Point

(Authentication)

• TTL (8 bits): The T T L value of the IP packet when it is originated.

• Cost (8 bits)

• Threshold (8 bits):

• Flags (8 bits):

• Upstream Tunnel End Point (32 bits): The address of the originator of the

Setup message. The originator now is the upstream tunnel end point.

• Authentication (variable length, optional): Used to authenticate the setup.

4.1.4 T u n n e l R e j e c t O b j e c t

7 15 23 31

Rejecting Router

Reason

(Authentication)

Rejecting Router (32 bits): The address of the originator of the Reject message.

Reason (32 bits): Indicate the reason why the request is rejected.

Authentication (variable length, optional): Used to authenticate the reject.

40

4.1.5 Tunnel Destroy Object

7 15 23 31

Downstream Tunnel End Point

(Authentication)

• Downstream Tunnel End Point (32 bits): The address of the originator of the

Destroy message, which was the downstream end of the tunnel.

• Authentication (variable length, optional): Used to authenticate the destroy.

4.2 Message Processing

4.2.1 State Transition

Each routing table entry has one incoming interface, iif , and n outgoing interface,

oifs . In order to describe the processing of the control messages, two state machines

are used, one for the iif and one for the oif . Usually, the iif state machine of an

upstream router exchange messages with the oif state machine of a downstream

router. Sometimes events on an oif state machine will trigger transitions on the

iif state machine of the same router.

Outgoing Interface States

An outgoing interface (oif) of a multicast routing table entry can be in one of the

following four states: Idle, Native, Tunnel or Dual state.

An oif in Idle state has no downstream member. Data are not forwarded

on Idle oifs . oifs in Idle state can be deleted from the oif list of the routing table

entry. An oif in Native state has a downstream member requesting native data

41

on the link connected to the oif . The oif should keep receiving Join messages in

order to stay in the Native state. Incoming data will be forwarded on to a Native

oif in native format. An oif in Tunnel state has an outgoing tunnel established to

a downstream receiver. The oif should keep receiving Request messages in order

to stay in the Tunnel state. Incoming data are forwarded in encapsulated format

to the downstream end point of the outgoing tunnel associated with the oif . An

oif in Dual state has both outgoing tunnels and immediate downstream router that

are requesting native data. Data are sent twice for an oif in Dual state: once in

native format to the immediate downstream member, once in encapsulated format

to the downstream end point of the tunnel associated with the oif .

Outgoing Interface State Transition

Figure 4.1 describes the transitions among the four oif states. In the labels beside

transitions, inputs from downstream routers are shown above the bar, and outputs

to downstream routers are shown below the bar. Forwarded messages to upstream

routers are also put below the bar but with a prefix "F:". conditions are shown

in square brackets. There are two conditions defined in the diagram, [U] and [M].

Condition [U] holds when the routing table entry of the distribution tree does not

have other oifs than the interface on which the input message arrives, and when

there is no local member for the group and source. Condition [M] holds when the

entry has other oifs or has local member.

When the first Join message for the distribution tree arrives on an interface

in Idle state, i.e., on an interface that is not in the oif list of the routing table entry

for the group, the interface is inserted in the oif list of the routing table entry. The

oif changes to Native state from Idle state. If the Join arrives on a router that does

42

Join

Destroy

Request&[U]
F: Request

Join

Destroy/Prune

Prune

Idle

Input

Request&[U]
F: Request

Request&[M]
Setup

Destroy

Request&[M]
Setup

Destroy
Prune

Join/Request

Dual

Join Prune

Request&[U]
F:Request+Destroy

Tunnel

Prune/Request & [M]
Request+Destroy

Setup

Output
[U] :have no local member and no other oif than the arriving interface
[M]:have local member or other oif than the arriving interface

Figure 4.1: Outgoing Interface State Transition Diagram

not have a routing table entry for the group and source, an entry will be created,

and the Join will be forwarded upstream. When a Request message arrives on an

interface in Idle state, and the associated routing table entry has oif other than the

one on which the Request arrives, a Setup message is sent back to the requesting

router and a tunnel is established. The interface changes from Idle state to Tunnel

state. When a Request message arrives on a router that does not have associated

routing table entry for the distribution tree, i.e.. when the [U] condition holds, then

the Request is forwarded further upstream.

An oif in Native state enters Dual state when a Request message is received

43

on the oif and condition [M] holds, i.e., the entry either has more than one oifs or

has local member. A Setup message is returned to the requesting router, and a

tunnel is established. If the Request arrives on an oif in Native state and the

condition [U] holds, i.e.. the entry has only one oif and no local member, then the

entry remains in Native state and the request is forwarded further upstream. An

oif in Native state changes to Idle state if a Prune is received on the interface. The

oif can be deleted from the oif list. If the oif list hence becomes empty and there

is no local member, a prune is sent further upstream.

An oif in Tunnel state changes to Dual state when a Join is received. It

changes to Idle state when a Destroy message is received and there is no local

member, and the oif can be deleted from the oif list. If the oif being deleted was

the last in the list and there are no local members, a Prune or Destroy message is

sent upstream depending on the state of the iif . If a Request message is received

on a Tunnel state oif and condition [U] holds, a Destroy object is appended in the

Request message and the combined message is sent upstream. If a Request arrives

on an oif and condition [M] holds, the tunnel is refreshed. If a combined Request

and Destroy message is received and the tunnel associated with the oif is the same

as the one in the Destroy message, then that tunnel is destroyed, and the new tunnel

is setup as requested. The combined Request and Destroy message is used in tunnel

splice operation.

An oif in Dual state changes to Tunnel state if a Prune is received on the oif .

An oif in Dual state changes to Native state if a Destroy is received. Other messages

are discarded. It is designed primarily to avoid interruptions in data delivery during

the tunnel setup and destroy. An entry should stay in Dual state as short as possible,

since the router very likely is generating duplicated data packets on the same link.

44

Incoming Interface States

The incoming interface(n/) of a multicast routing table entry can be in one of four

states: Idle, Native, Tunnel or Dual.

A routing table entry with iif in Idle state will not accept any incoming

data. Routing table entries with Idle iif can be deleted. A routing table entry in

Native state can accept incoming data in unencapsulated format, i.e., native format.

Data will be forwarded on to all the outgoing interfaces of the entry. Data arrived in

encapsulated format will be discarded, and a tunnel Destroy message may optionally

be sent back to the originator of the encapsulated tunnel data. If the routing table

entry for a distribution tree is not an uni-multicast entry, i.e., it either has local

member, or has more than one different immediate downstream receiver, then a

tunnel Request message is sent periodically on the iif , trying to establish a tunnel.

A routing table entry with iif in Tunnel state has an incoming tunnel as­

sociated with it. Only packets from the correct upstream tunnel end point can be

accepted and forwarded on. Incoming data in native format will be discarded and

optionally a Prune message can be sent upstream. Incoming encapsulated data from

a router other than the upstream tunnel end point will be discarded and a tunnel

Destroy message may be sent to the originator of the encapsulated data.

Incoming Interface State Transition

Figure 4.2 illustrates the transitions among the four iif states. The conventions

used here are the same as those in the oif state transition diagram. The two new

conditions are defined here. Condition [J] holds when there is some downstream

receiver or there is local member. Condition [P] is the opposite of [J].

When the first Join message for the distribution tree arrives on an oif or

45

Input [J] : The oif list is non-empty
Output or has local member

Destroy

Figure 4.2: Incoming Interface State Transition Diagram

when the first local member joins the group, a routing table entry is created, a Join

message is sent upstream, and the iif of the entry becomes in Native state.

When the last downstream or local member leaves the distribution tree, the

iif of the multicast routing table entry for the group changes to Idle state. A Prune

is sent upstream if the iif is in Native state, a Destroy is sent if the iif is in Tunnel

state. The entry itself can then be deleted. Other messages received when iif is in

Idle state are discarded.

If a Setup message is received for a iif in Native state, a tunnel is established

and the iif changes to Tunnel state. An iif in Dual state changes to Native mode

when data in native format starts to arrive on the iif . If a Reject message is

received for a iif in Tunnel state, a Destroy and a Join are sent upstream, and the

iif changes to Dual state. Unexpected Setup message received in any state should

46

always trigger a Destroy message being sent back to the originator of the Setup

message.

4.2.2 Pseudo Codes

Following we present the pseudo codes for the message processing. They gives more

accurate definitions for the state machine. Real implementations can be derived

strait forward from the pseudo code.

Process of Join Message

process_join(Join message)
•C

determine the arriving interface aif of request_message;
lookup the routing table entry i of the requested group;
i f (no such entry) {

create a new entry for the group;
insert aif in the oif l i s t ;
set the aif in Native state;
set i i f in Native state;
send Join message further upstream;
return;

}

i f (aif in Tunnel state) {
set aif in Dual state;

}

i f (i i f in Tunnel state)
return;

old_iif = i i f ;
calculate the new i i f ;
i f (i i f != old_iif) { // i i f has changed

send Join message further upstream;
>
return;

47

Process of Prune Message

process_prune(Prune message)
•C

determine the arriving interface aif of request_message
lookup the routing table entry i of the requested group
i f (no such entry)

return;

i f (aif in Dual state) {_
set aif in Tunnel state;

} else i f (aif in Tunnel state)
return;

} else {
// native state, delete the oif
set aif to Idle state and delete aif from oif l i s t ;
i f (oif l i s t is empty) {

if (i i f in Native state)
send Prune upstream;

else
send Destroy upstream;

}

>

Process of Request Message

process_request(Request message)
{

determine the arriving interface aif of request_message
lookup the routing table entry i of the requested group

if (no routing table entry) {
if (tunnel bypassing is allowed)

// forward the request further upstream;
forward_request(group, source, pkt); // exit #1

else return; // exit #2
>

i f (a Destroy object is included in the message)

48

process_destroy(Destroy object);

determine the outgoing interfaces o i f _ l i s t of the routing table entry
i f (aif is in Idle state) {

i f (distance(requesting_router, this_router) <
minimum tunnel length requirement) {

discard Request message and return; // exit 3 . 5
}

i f (there exists another tunnel t l to the requesting router)
delete_tunnel(tl);

// performing tunnel split operation
set aif in Tunnel state and insert aif into o i f _ l i s t ;
setup a tunnel to the requesting_router on aif;
return; // exit #3

}

// aif is in o i f _ l i s t , trying to forward the request further upstream
// check i f the router is doing uni-multicast for the group
// is_umcast() returns true i f the group has no local member and
// has only one immediate downstream receiver;
/ / i t tests the Ul condition
i f (is_umcast(group, source) && is_bypass_allowed()) {

if (no incoming tunnel for i) {
forward the Request upstream;
return; // exit #5

} else {
// exist incoming tunnel t i for i
append a destroy_object in the request_message;
forward the new Request message upstream;
return; // exit #6

}

}

// can't forward the request upstream, check the length limit
i f (distance(requesting_host, local_host) <

minimum tunnel length requirement) {
discard Request message and return; // exit 6 .5

}

i f (aif in Tunnel state) {
determine aif's associated tunnel t2

49

i f (the other end of tunnel t2 is the requesting_router) {
reset the tunnel_refresh_timer of t2;
return; // exit #9

}

} else { aif in Native state or the requesting router is
i f (there exists another tunnel t3 to the requesting_router)

delete_tunnel(t3);
i f (aif in Native state) {

setup a tunnel to the requesting_router on aif;
return; // exit #7 8

}

// reject the request since the aif is occupied by another tunnel
send_reject to the requesting router
return; // exit #10 11

}

>

Process of Setup Message

Process_setup(Setup message)
•c

lookup the routing table entry i of the group;

i f (no routing table entry found) { // no such group
send Destroy message to the sender of the Setup message

} else {
setup the tunnel;
i f (i i f in Native state) {

send Prune message upstream;
} else { // i i f is in Tunnel state

send Destroy to the upstream end point of the old tunnel;
}

}

>

Process of Reject Message

Process_reject(Reject message)
lookup the routing table entry i of the group;
i f (no routing table entry found)

50

return; // discard the message

// st a r t i n g send joins again i f there was a tunnel established
i f (i i f i n Tunnel state) {

set i i f to Native state; // discard incoming tunnel
i f (have l o c a l member or have downstream receiver) {

send Join message upstream;
>
send Destroy message upstream;

>

>

Process of Destroy Message

Process_destroy(Destroy message/object)
{

determine the arr i v i n g interface a i f of request_message;
lookup the routing table entry i of the requested group;

i f (no routing table entry)
return; //no such group, discard the Destroy

i f (a i f i n Tunnel or Dual state) {
i f (requesting router ==

downstream end point of the tunnel associated with a i f) {.
delete the tunnel;
i f (a i f i n Tunnel state) {

set a i f to Idle state and delete the a i f from the o i f l i s t of i ;
i f (o i f l i s t i s empty) {

i f (i i f i n Native state)
send Prune upstream;

else
send Destroy upstream;

}
} else {

set a i f to Native state;
}

}

}

}

51

4.3 Timers and Refresh Message Generation

In PIM-SM, there are three types of required timers related to a source specific for­

warding table entry: Join/Prune-Timer, Oif-Timer, and Entry-Timer. One Join/Prune-

Timer is maintained for each entry to generate periodic Join/Prune messages. When

the Join/Prune-Timer goes off, all the routing entries are checked, and aggregated

Join/Prune packets that may contain multiple Join or Prune messages are sent up­

stream, n Oif-Timer, one for each oif in the entry, are used to timeout each oif .

When an Oif Timer goes off, the associated oif is removed from the forwarding table

entry. The timer is refreshed (the timer value is set to its initial value) each time

a Join message arrives on the oif . One Entry-Timer is used to timeout the entry

itself. When this timer goes off, the associated multicast forwarding table entry is

deleted. The timer is refreshed each time a data packet is received.

In PIM-DT, all these three timers are kept and the processing of the timer

events remains largely unchanged. The differences in the timer event processing

between PIM-SM and PIM-DT are: 1) When a valid request message is received on

an oif that is in Tunnel or Dual state, the Oif-Timer of the interface is refreshed.

The timer values used can be different from the values selected in PIM [14]. 2)

When the entry timer goes off and the iif of the entry is in Tunnel state, a Destroy

message instead of a Prune message is sent upstream.

In PIM-DT a new Request/Destroy timer is introduced to generate the pe­

riodic Request messages from the downstream tunnel endpoints to keep the tunnel

state on the upstream tunnel end point. When this timer goes off, for each entry

that either has more than one immediate downstream receiver or has local member

and with iif in Tunnel state, a Request message is sent upstream.

52

Chapter 5

Analysis and Simulation

PIM-DT is intended to be implemented as an optimization on top of PIM-SM. In

this chapter, we will evaluate the effectiveness of Dynamic Tunnel by comparing the

performance of PIM-DT to that of PIM-SM. The performance of the protocols is

measured through both analysis and simulation.

5.1 Performance Analysis

The efficiency of the Dynamic Tunnel Multicast routing protocol can be evaluated

in terms of state information requirement, tree cost, data processing efficiency and

control overhead. The state information requirement can be measured using the

average multicast routing table size or the average multicast forwarding cache size.

In the existing multicast routing protocols the two sizes are the same in most cases.

The tree cost can be evaluated using the total cost of the links traversed by all the

copies of a packet when it is delivered to all the receivers. The data processing

overhead can be measured in terms of average number of instructions executed at

each router in order to forward the packet. The control overhead can be measured

53

using the total number of control packets sent to all the links in order to maintain

the correct protocol behavior.

In this analysis, we will focus on the states information requirement and

control overhead of the Dynamic Tunnel Multicast protocol. The state information

requirement can be measured using the average multicast forwarding table size. The

control overhead can be measured using the total number of control packets sent on

all the links that are needed to maintain the protocol states.

For simplicity, we only analyze and simulate the behavior of P I M - D T , the Dy­

namic Tunnel Multicast with P I M - S M as the underlying multicast routing protocol,

and we only consider the case in which all the traffic is delivered on source specific

shortest path trees (SPT). Dynamic tunnels with shared trees and bi-directional

trees are likely to have similar behavior as those with source specific trees. The tree

cost, data processing efficiency, control overhead and detailed tunnel dynamics on a

full fledged version of P I M or C B T will be analyzed in our future work.

5.1.1 N e t w o r k m o d e l

In the following analysis, each node in the network topology represents a router.

Each router can be viewed as being connected to a local network omitted in the

topology map. Routers are considered having local members if some hosts in its

connected local network want to receive traffic. The receivers of a multicast group

always join the source specific trees, thus no shared trees will be created in the

network.

54

5.1.2 Evaluation Matrix

Average multicast routing table size

In P I M terminology, the multicast routing table entries on a source specific tree of

a multicast group G rooted at a source S is a (S, G) entry.

First, let us define an a parameter of a distribution tree t to be the average

number of multicast routing table entries per router for the tree:

where Ne is sum of the total number of multicast routing table entries, i.e., the

total number of (S,G) entries, on all the routers for distribution tree i , and Nt is

the number of routers on the tree.

When no tunnels are established, each router on a source specific distribution

tree has one (S,G) routing table entry for the distribution tree, in which case Ne = Nt

and the value of the a parameter is always 1.0. 1.0 is the maximum a value for

source specific trees. The minimum a value for any particular tree is defined by the

following equation:

where Nf, is the number of branching points on tree t, Ni is the number of leaf nodes

on the tree, JVr is the number of root node of the tree which is always 1, and Nt is

the total number of nodes in tree t. The a parameter of a tree reaches its minimum

when all the uni-multicast routers on the tree are bypassed by dynamic tunnels. In

conclusion, for source specific trees, the following condition holds:

Ne
Nt

(5.1)

Nb + N, + Nr

Nt

(5.2)

0 <
Nb + N, + Nr

Nt

< a < 1.0

55

The a value shows what fraction of the routers on the distribution tree still have

the state information after the tunnels are established.

Now we can use following formula to calculate the average number of multi­

cast routing table entries in the entire network:

where T is the average number of active multicast groups in the network, Ne, Nt and

a are the average Ne, Nt and a values for all the distribution trees in the network

respectively, and N is the total number of nodes in the network.

When no tunnels are established, the average number of multicast routing

table entries E' is:

E' = f - ^ (5.4)

The percentage of multicast routing table entries saved due to the establish­

ment of dynamic tunnels can be calculated as the follows:

7 = ^ ^ = (l - 5) (5-5)

Thus the effectiveness of the dynamic tunnels in terms of reduction in multicast

routing state is directly related to the a parameter of the distribution trees. The

smaller the a value is, the more effective the tunnels are.

The
amin value of some example distribution trees

In this section, we will look at a number of distribution trees, and calculate their

minimum possible a values. The minimum a values reveal the potentials of dynamic

tunnels.

In the example shown in figure 1.1, the a parameter is 1.0 for the native

tree. Since there are only 4 routers that are aware of the multicast group on the

56

0.2 when the tunnel is established. The

O O U of Montreal

O U of Waterloo

O O O U of Ottawa

O U of Toronto
U of Alberta

O O O O O O O O O

Figure 5.1: A Conference Example

In another example, 6 researchers from 6 universities in Canada want to have
a video conference. The distribution tree rooted at UBC is shown in figure 5.1. There
are 32 routers involved, including 1 root node, 5 leaf nodes, and 3 branching nodes.
If tunnels are established, only 9 of them have to remember the forwarding state.
Therefore the a m i n parameter of the tunnel tree is 9/32 = 0.28. The maximum
reduction in forwarding state is 72%.

Finally we consider the real network routes collected by Vern Paxon in his
Internet routing research [15], and analyze the possible a parameters of the trees.
In Paxon's work, traces between 37 sites located all over the world are recorded
using the traceroute utility. We pick one site as the sender, n other sites as the
receivers, and construct a distribution tree based on the traces. One such tree rooted
at Advanced Network and Services, NY, is shown in figure 5.2. The leaf nodes are
labeled in the figure. The x axis is the distance in hop count between each site and
the Advanced Networks and Services.

The minimum a parameter can be calculated using formula 5.2. The average
value of the minimum a values with the number of receivers varying from 2 to 20

57

tunnel tree, the a m t- n parameter is 4/20

reduction in routing table size is 80%.

UBC
o—o- - o — Q — a

adv

Figure 5.2: One distribution tree constructed from the traces

are shown in figure 5.3.

From the figure we can see that when the tunnels are all established, the

a values are constantly smaller than 20%, which indicate over 80% reductions in

forwarding table size.

5.2 Simulation

In the previous section the performance of PIM-DT is analyzed theoretically. In this

section, we will use the LBNL Network Simulator, ns , to validate the basic protocol

58

0.19

0.11 1 ' 1 ' 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
Number of receivers

Figure 5.3: Average Q t o for the trees

design presented in chapter 3 and the analysis given in the previous section.

5.2.1 Overview of ns

The LBNL Network Simulator, ns [16], is a simulation tool developed by the Net­

work Research Group at the Lawrence Berkeley National Laboratory. It is an event-

driven network simulator implemented as an extension to the Tool Command Lan­

guage. The simulation engine is written in C++, and the simulation is controlled

and configured via a Tel interface.

There are three primitive building blocks in ns : nodes, links and agents.

The nodes and links collectively define the network topology which is configurable

through a Tel script. Agents can generate and consume packets. Protocol entities

such as sources, sinks and relays are implemented as agents which can be deployed

among the nodes. Each node has an unique address and each agent is attached to

a unique port on that node. A central scheduler keeps track of all the events such

as packet arrivals and timeouts that occur on all the nodes, links or agents.

59

Statistics in the network such as byte or packet counts can be collected

at any time during the simulation using Tel commands. The simulated network

behavior can also be recorded in the traces, which can be analyzed in detail after

simulation. The traces can be visualized using the L B N L Network Animator where

different message types, message sizes, and protocol states can all have different

visual representations.

A new version of ns , ns version 2, is currently under development in the

L B N L . We did not choose it because it was not stable at the time when we developed

our simulations, ns has already been used as a powerful tool in many research

areas, such as in the analysis and comparison of several flavors of T C P [17], in the

analysis of router queuing and scheduling behavior [18], and in multimedia multicast

delivery [19].

5.2.2 ns Multicast Extensions: PIMLite and SPIM

Our simulation of PIM-DT is developed based on Daniel Zappala's multicast-extensions

for ns version 1.0b4 [20]. Daniel's extension includes a extremely simplified version

of PIM called PIMLite. PIMLite supports only Joins but no Prunes. Joins are not

sent periodically, and are not aggregated.

In our simulation, first, SPIM, another simplified version of PIM is imple­

mented. SPIM supports many PIM functions that are not available in PIMLite,

such as Prunes, aggregated Join/Prune messages, periodic timeout and refresh of

routing table entries. In SPIM, all the receivers join the source specific tree from

the very beginning and all the data are delivered via source specific trees. The

implementation is also ported to ns version 1.4, the latest development of ns ver­

sion 1. SPIM serves as the basis of implementation and the target of comparison

60

for PIM-DT.

The PIMLite/SPIM protocol entities are implemented as agents in ns . They

are deployed on all the nodes in the network. The address space is partitioned

and part of it is allocated to multicast. Nodes in PIMLite/SPIM are modified

so that they can forward multicast traffic. Each PIMLite/SPIM agent maintains

a multicast routing table and each node maintains a multicast forwarding cache,

which is installed by the PIMLite agent attached to it. Management and look up

functions for multicast routing tables and multicast forwarding caches are provided.

Simple multicast sources and sinks are also implemented in the extension.

5.2.3 P I M - D T Simulation

Our simulation of PIM-DT focuses on two aspects of the protocol behavior: state

information requirement and control overhead. Some protocol details which have

no or little impact on these two parameters are omitted.

In our simulation, PIM-DT is implemented as a new type of agent derived

from SPIM. It preserves all the functions in SPIM, and supports all the protocol

features that are described in Chapter 2 and 3. Current implementation of PIM-DT

does not support shared trees. This simplification will not significantly affect the

evaluation of the dynamic tunnel mechanism.

Basic Test Network for Protocol Validation

The basic protocol features of PIM-DT are validated on a 15-node basic test network

shown in figure 5.4. In this network, four receivers r l , r2, r3 and r4 on node 0, 1, 13

and 14 respectively join two source specific trees rooted at node 13 and 14, where

two low bit rate Constant Bit Rate sources s i and s2 are located. All the basic

61

Figure 5.4: Basic Test Network Topology

tunnel operations such as tunnel establishment, tear down, split, splice, branching

,.point shifts are tested on this configuration.

Experiment Setup for Performance Evaluation

The network topologies used in the simulation are n x n gird mesh topologies with

n = 8. All the links in the network are identical bidirectional links whose bandwidth

is 10Mb and delay is 3ms. T sources and Ni receivers are randomly deployed in the

network. The duration of the test multicast session, i.e. the time between the first

receiver joins the session and the last receiver leaves the session is Ds seconds. The

average duration a receiver participate in a session is Dr seconds. Table 5.2.3

summarize the parameters used in the simulation.

5.2.4 Experiment Result

First of all, the simulation result obtained on the basic test network given in figure 5.4

is visualized using the L B N L network animator nam. The basic protocol operations

62

® — © — — ©

© — © — — ©

Figure 5.5: Experiment Network Topology

N 64 number of nodes in the network = n x n
T 8,16,24,32,40 number of sources(distribution trees) in the network
Ni 4,8,16,32 number of receivers(leaves) for each source
Ds 500 sec duration of the session

400 sec duration that each receiver stays in the session

Table 5.1: Summary of simulation parameters

are all verified. We observed Requests and Setups being exchanged and tunnels

being established. Next, several simulations are run on a 8 X 8 experimental network

topology. Communication statistics of various links and nodes are logged to files,

which were analyzed to verify if the alleged state reduction is achieved. In the

experiment, we have only one sender for each group.

63

Routing Table Size

The routing table size on each router is sampled every 6 seconds. The average of

the sampled value are calculated for both S P I M and P I M - D T . The average table

size is shown in figure 5.6.

12

10

N in 8
a>
n S 6
ai
c 1 4
o

GC
2 +

10 20 , 30

Number of groups

- 0 - - - PIM-4

- 0 Tunnel-4

- - - X - - - PIM-8

— * — T u n n e l - 8

Figure 5.6: Average Routing Table Size

The horizontal axis is the number of groups that are active in the test net­

work, and the vertical axis is the average routing table size. The poly-lines labeled

PIM-4 and PIM-8 show the average routing table sizes for S P I M protocol when

the maximum number of receiver per group are 4 and 8 respectively, and the poly­

lines labeled Tunnel-4 and Tunnel-8 are the average routing table size for P I M - D T

protocol with maximum number of receivers being 4 and 8.

From the figure we can see that when the number of receivers are the same,

the routing table size of P I M - D T is much smaller than S P I M . The absolute routing

table size grows with number of active groups and number of receivers, as predicted

64

in formula 5.3.

0.6 j -

" g 0.5 u
T3
» 0.4 - -
a>
N

0.3 •
a>

£1
S 0.2 -m c

g 0.1 -

0 -

0 10 20 30 40

Number of Groups

Figure 5.7: Reduction in Routing Table Size

Figure 5.7 shows the relative state information reduction achieved by PIM-

D T . The horizontal axis is again the number of active groups, the vertical axis is

the 7 value as defined in formula 5.5. The figure shows a roughly 50% reduction in

forwarding state information.

We manually checked the shape of some of the distribution trees generated

during the simulation, and calculated their amin parameters. The aT O,-n values of the

trees are around 0.5, which agrees with the 7 values shown in figure 5.7 according

to formula 5.5.

We believe running the simulation on a larger topology map can lead to

more significant reductions in multicast forwarding states, we run one simulation

on a 20 X 20 grid mesh network and observed around 80% reduction in forwarding

states. However, further experimentations are necessary to confirm this result.

65

Control Overhead

3.5

c
0 -I 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35

number of groups

Figure 5.8: Control Overhead vs. Number of Groups

After we confirmed the routing table reduction, we performed several exper­

iments to analyze the control overhead of PIM-DT. Usually the control overhead is

measured as a ratio between total bandwidth spent on control bits and total band­

width spent on data bits [21]. Since we are comparing the performance of PIM-DT

and SPIM, and the total bandwidth consumed by data bits are roughly the same

for PIM-DT and SPIM in our experiments, we simply use the absolute number of

control packets to measure the control overhead. The differences in packet sizes are

not considered in the simulation.

Figure 5.8 shows the ratio of the number of control packets generated in PIM-

DT relative to the number of control packets generated in SPIM. It demonstrates

that PIM-DT with a simple fixed rate refreshing strategy increases the total number

of control packets faster than SPIM as the number of active groups grows. The total

66

number of control messages generated in PIM-DT almost tripled when there are 32

distribution trees in the network and each tree has 8 receivers.

The main cause of the extra overhead is the periodic Request messages sent

from the downstream tunnel end point to the upstream end point. In PIM, though

the Join messages are also sent periodically, the number of control packets are much

less, since multiple Joins can be aggregated and sent in a single packet. In PIM-DT,

refresh packets for different tunnels are sent individually. For simplicity, the Joins

are not aggregated in the current version of PIM-DT.

The result indicates more sophisticated refreshing strategies are needed in

order to contain the control overhead, otherwise the gains in state reduction may

be overshadowed by the cost of excessive control packets. The next stage of the dy­

namic tunnel protocol design focuses on the reduction of control overhead. Possible

solutions to the problem are discussed in the next section.

5.2.5 Containing Control Overhead

In this section, we discuss 3 methods that can reduce the control overhead.

Adaptive Refresh Period

Currently, the refresh period for Request messages is fixed. It is possible to adapt

the refresh period to the data rate of the flow, and perhaps extend it to consider

the length of the tunnel as well. The basic idea of this method is the same as that

of the Scalable Timer approach [22], which "fixes the control bandwidth instead of

refresh interval".

The periodical Request message has two major functions: first it serves as

a "keep alive" message, to inform the upstream tunnel end that the receiver still

67

requires the data; second it ensures the route is correct and the tunnel tree is aligned

with the native tree. A higher refresh rate together with a shorter timeout period

will generate more control overhead, but will ensure tree branches that lead to no

receiver to be pruned quickly and will cause the tunnel tree to react more promptly

to route changes. Lower refresh rates and longer timeout periods can have just the

opposite result.

If we assume that the real control overhead should be measured using the

ratio between the total number of control bits and total number of data bits, then

frequent refresh messages will not be a problem for high bit rate flows. In this case,

it is actually desirable to have frequent refresh messages and shorter timeout periods

to ensure quick termination of the data flow when the receiver quit from the group,

and quicker convergence of tunnel tree topology to native tree topology when the

route changes.

For low bit rate flow, the refresh interval can be increased. An upper limit

on the percentage of control traffic in the total traffic can be defined, in order to

guarantee that low bit rate flows always have even lower bit rate control traffic.

Request Aggregation

Request messages can be divided into two classes, the initial Request messages which

are used to setup tunnels, and refresh Request messages which are used to keep the

tunnels alive. In the current PIM-DT simulation, the request messages are always

forwarded immediately by the intermediate routers.

In fact, it is desirable to forward the initial request quickly, as it may con­

tain digital signatures and time stamps from the downstream requesting router for

security purposes which may not be valid if excessive delay is encountered. The

68

initial Request message can carry an "Urgent" flag to indicate that it should not
be delayed. The refresh Request messages on the other hand, usually are not so
urgent. We can introduce a "holding time" on each router to let the routers hold
the refresh Request packets for some time before forwarding them upstream, trying
to aggregate multiple Request Objects into the same packet to reduce overhead.

If the refresh Request messages are to be delayed, we need to change the
DTM protocol to make the refresh Request messages untrusted, which means refresh
Request messages arriving on a wrong interface or wrong router will not cause new
tunnels being established. Instead, a Tunnel Adjust message is returned to the
downstream tunnel end point, to trigger another Request Message being sent with
the Urgent flag set.

Piggy-back Initial Request in Joins

Another way to reduce the Request packets is to request tunnels from the beginning
of the session. Originally we introduced some delay before a router starts sending
Request packets to avoid the case that at the beginning of a session, multiple users
join the same group at approximately the same time and tunnels are being estab­
lished and adjusted frequently. As for sparse groups, the chances for two receivers
to join the same distribution tree at the same time is very small. In which case, we
can allow tunnels to be established immediately after the members join the session.
If a combined Join and Request message is received by a router, the join is processed
first, then the Request is processed. The processing of the Join and Request are
still the same as the procedure defined in chapter 3.

69

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed that by establishing dynamic tunnels, unnecessary uni-

multicast forwarding states can be erased. Thus significantly reduce multicast for­

warding states, and thereby making large number of sparse multicast groups feasible.

The general architecture of Dynamic Tunnel Multicast is defined. P I M - D T ,

an instance of D T M with P I M - S M as the underlying multicast support, is specified

and is validated using simulation. We confirm, via simulation, that dynamic tunnels

can reduce multicast forwarding states.

Simulations also reveals that a more sophisticated refreshing strategy is

needed to contain the control overhead.

6.2 Future Works

Following is a list of Future works:

1. Containing Control Overhead

70

Suggestions for containing control overhead are already discussed in section
5.2.5. Further work is needed to determine which strategy or combination of
strategies is best.

2. More Complete Simulations and Tests

How will the tunnels behave under a full fledged PIM-SM implementation is
yet to be examined. Dynamic tunnel over CBT also needs to be analyzed.
Simulations of more realistic scenarios are needed. The test network can be
larger, have more groups and participants, and can be generated using some
existing topology generation packages. The simulation implementation may
also need to be ported to ns version 2 at some point.

3. Security Issues

Control messages such as tunnel Request and tunnel Setup can be digitally
signed, so that tunnels can be established only between trusted routers. The
most suitable security measurement to be used with DTM is yet to be identi­
fied.

4. Dynamic Tunnels with RSVP

Dynamic tunnels works best for best effort flows and for networks where the

bandwidth is abundant. Dynamic tunnels should not be established for flows

that require fine grained resource reservations, since for these flows state in­

formation has to be remembered by all the routers on the distribution tree

anyhow. An interesting question is how dynamic tunnels interacts with RSVP

to provide QoS guarantee while at same time keep the state requirement low.

This question should be investigated in the future.

71

Bibliography

[1] Stephen Edward Deering. "Multicast Routing in a Datagram Internetwork".

PhD thesis, Stanford University, December 1991.

[2] "Internet Protocol". R F C 791, 1981.

[3] William C. Fenner. "Internet Group Management Protocol, Version 2", May

1996.

[4] T. Pusateri. "Distance Vector Multicast Routing Protocol", draft-ietf-idmr-

dvmrp-v3-03.ps, sep 1996.

[5] J . Moy. "Multicast Extensions to O S P F " . RFC1584, March 1994.

[6] A . Ballardie. "Core Based Tree(CBT) Multicast Routing Architecture", draft-

ietf-idmr-cbt-arch-**.txt, 1997.

[7] Deborah Estrin, Stephen Deering, Van Jacobson, and etc. "Protocol Inde­

pendent Multicast-Sparse Mood(PIM-SM): Protocol Specification", draft-ietf-

idmr-PIM-SM-spec-09.ps, Sep 1996.

[8] Deborah Estrin, Van Jacobson, and etc. "Protocol Independent Multicast-

Dense Mood(PIM-DM): Protocol Specification". draft-ietf-idmr-PIM-DM-spec-

01.ps, Jan 1996.

72

[9] Y . Rekhter and C. Topolcic. "Classless Inter-Domain Routing(CIDR)". R F C

1520, September 1993.

[10] A . Ballardie and M . Tatham. "Extending B G P to Support Inter-Domain Mul ­

ticast Routing (M - B G P) " , Apri l 1997.

[11] W . Simpson. "IP in IP Tunneling". R F C 1853, October 1995.

[12] S. Hanks, T. L i , D . Farinacci, and P. Traina. " Generic Routing Encapsula-

t ion(GRE)". R F C 1701, October 1994.

[13] C. Perkins. "Minimal Encapsulation within IP". R F C 2004, October 1996.

[14] Ahmed Helmy. "Protocol Independent Multicast-Sparse Mode(PIM-SM): Im­

plementation Document", August 1996.

[15] Vern Paxson. "End-to-End Routing Behavior in the Internet". In SIGCOMM.

A C M , 1996.

[16] S. McCanne and S. Floyd. The L B N L Network Simulator. software

online(http://www-nrg.ee.lbl.gov/ns).

[17] Kevin Fall and Sally Floyd. "Simulation-based Comparisons of Tahoe, Reno,

and S A C K T C P " . Computer Communications Review, July 1996.

[18] Sally Floyd. "Ns Version 1 Simulator Tests for Class-Based Queueing".

[19] Steven McCanne and Van Jacobson. "Receiver-driven Layered Multicast". In

SIGCOMM'96. A C M , 1996.

[20] Dianiel Zappala. Ns Version 1 Multicast Extension. software on-

line(http: / / netweb.usc.edu/daniel/research/sims/).

73

http://www-nrg.ee.lbl.gov/ns
http://netweb.usc.edu/

[21] Tom Billhartz, J . Bibb, Ellen Farrey-Goudreau, Doug Fieg, and Stephen Gor­

don Batsell. "Performance and Resource cost Comparisons for the C B T and

P I M Multicast Routing Protocols". IEEE Journal on Selected Areas in Com­

munications, 15(3):304-315, Apri l 1997.

[22] Puneet Sharma, Deborah Estrin, Sally Floyd, and Van Jacobson. "Scalable

Timers for Soft State Protocols". In INFOCOM. I E E E , Apri l 1997.

[23] "Introduction to IP Multicast Routing", March 1996.

[24] Stephen Deering, Deborah Estrin, and etc. "The P I M Architecture for Wide-

Area Multicast Routing". IEEE/ACM Transaction on Networking, 4(2):153-

162, Apri l 1996.

[25] Stephen Deering and etc. "Protocol Independent Multicast-Sparse Mode (PIM-

SM): Motivation and Architecture", draft-ietf-idmr-pim-arch-04.ps, Oct. 1996.

74

