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Abstract 

Reducing forwarding state overhead of multicast routing protocols is an im­

portant issue towards a scalable global multicast solution. In this paper, we propose 

a new approach, Dynamic Tunnel Multicast, which utilizes dynamically established 

tunnels on unbranched links of a multicast distribution tree to eliminate unneces­

sary multicast forwarding states. Analysis and simulation results show promising 

reduction in the state overhead of sparse mode multicast routing protocols. 
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Chapter 1 

Introduction 

Multicast service can deliver packets to a set of destinations identified by a multicast 

group, rather than a single destination. The IP multicast model [1], developed in 

1988 by Stephen Deering, is an effort to provide multicast service over the Internet. 

In this model, neither the senders nor the receivers need to know the location of 

each other, and the membership can evolve dynamically. It is the responsibility 

of the multicast routing protocols to keep track of the membership information of 

a multicast group, and to establish multicast distribution trees to deliver packets 

from a sender to all the receivers. The multicast routing protocol is the center 

component of this model. In this chapter, we will first give out a brief overview of 

the IP multicast model. 

1.1 IP multicast Model 

The IP multicast model [1] was proposed in late 80's to support multi-point commu­

nication within a Wide Area Network(WAN). It did not gain the momentum until 

early 90's when multimedia conferencing over the Internet became possible. Before 
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that, only two types of delivery were supported on the Internet: unicast delivery 
which is used in traditional point-to-point communication, and limited broadcast 
delivery which is used to reach every node on a subnet. 

Multicast, as a new type of delivery, is implemented as an extension to 
the Internet Protocol (IP) [2]. In this model, class D IP addresses(224.0.0.0 to 
239.255.255.255) are allocated to multicast traffic. Each multicast session will oc­
cupy a class D multicast address. New socket Application Programming Inter-
faces(APIs) are designed to let the application join or leave a multicast group. The 
sender of a group can simply send packets to the class D address of the session, and 
the packets will be delivered, using the traditional best effort delivery mechanisms, 
to all the receivers that have joined the multicast group. 

A multicast router is a router that supports multicast forwarding service, 
i.e. forwarding packets that arrived on one incoming interface to more than one 
outgoing interface. Multicast routers use multicast routing protocols to exchange 
membership information and to build distribution trees that connect each sender to 
all the receivers. One multicast router must be selected as the Designated Router 
for each subnet that have potential multicast senders or receivers. An auxiliary 
protocol, the Internet Group Management Protocol (IGMP) [3] is used for the end 
hosts to convey the group membership information to their Designated Routers. 
Two types of distributions trees can be built for a group: shared trees or source 
specific trees. A shared tree for a group has its root at a special center point, with 
all the members at its leaves. All the sources of a multicast group can use the same 
shared tree to deliver packets to the receivers. A source specific tree be built for 
each source and is used only to deliver traffic from that source. 

In order to support the multicast forwarding service, each multicast router 
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must maintain a multicast forwarding table. The entries in the table are also referred 
to as multicast forwarding states. Each entry in the table has an incoming interface 
and one or more outgoing interfaces. When a packet arrives at a router, first the 
multicast forwarding table entry with matching group address (for shared trees) or 
with matching group address and source address (for source specific trees) is found, 
then the packet is forwarded onto all the outgoing interfaces stored in the entry. The 
multicast forwarding table entries on all the multicast routers collectively define the 
multicast distribution tree. The key differences between multicast forwarding and 
unicast forwarding are: in unicast the forwarding table lookup is based on the 
unicast address of the destination node and the packet is forwarded only onto one 
outgoing interface, while in multicast the lookup is based largely on the multicast 
group address and the packet may be forwarded to more than one outgoing interface. 

1.2 Existing Multicast Routing Protocols 

There are several multicast routing protocols currently available, namely Distance 

Vector Multicast Routing Protocol (DVMRP) [4], Multicast Extension to OSPF 

(MOSPF) [5], Core Based Trees (CBT) [6], Protocol Independent Multicasting 

Sparse Mode (PIM-SM) [7], and Protocol Independent Multicasting Dense Mode 

(PIM-DM) [8]. 

These multicast routing protocols can be classified into two categories: dense 

mode protocols and sparse mode protocols. Dense mode protocols such as DVMRP 

and PIM-DM are designed for the situation where group members are densely pop­

ulated. On the other hand, sparse mode protocols, such as PIM-SM and CBT, are 

designed for the case in which group members are sparsely located. More detailed 

introductions of various multicast routing protocols are given in the next chapter. 
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1.3 Motivation and Problem Definition 

When multicast service is to be provided globally, the scalability of multicast routing 
protocols becomes an important issue. The scalability of a protocol can be defined 
as its ability to maintain an acceptable performance level when some parameters of 
the network or application become very large. The scalability of a multicast routing 
protocol can be evaluated in two aspects: scalability with respect to the number of 
receivers and scalability with respect to the number of multicast groups. Although 
dense mode multicast routing protocols can handle a large number of receivers, 
all the existing multicast routing protocols will face scalability problems when the 
number of groups becomes very large. 

The multicast forwarding table explosion is one of the major reasons that 
caused the scalability problem with the growth in the number of groups. According 
to the current multicast routing protocols, each multicast router has to maintain 
a multicast forwarding table entry for every group whose distribution tree passes 
through the router. When there are numerous groups, the forwarding table will be 
very large, which will directly lead to high router cost and low forwarding perfor­
mance. 

In unicast, clever hierarchical address assignment which reflects the geomet­
rical proximity of the network nodes in their address prefixes can lead to significant 
reduction of the routing table size [9]. For example, if all the routers and hosts in 
US bear the same address prefix, then the routers in Canada will only need one 
forwarding table entry for all the destinations in US. However, in multicast there is 
no restrictions on the physical location of the host that can join a group. The group 
membership can also change dynamically. So one can not make any assumption 
about the locations of the receivers of a group, and hence forwarding table entries 
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for different multicast groups can not be aggregated. 

In this thesis, we will provide a solution to reduce the size of multicast 

forwarding tables, and therefore improve the scalability of sparse mode multicast 

routing protocols. 

1.4 Observation and Proposal 

Most of the multicast groups are sparse when looked at on a global scope. A lot of 

the locally dense groups will become sparse in the backbone. This situation is not 

uncommon. In fact, we estimate that most of the medium or small scale conferencing 

groups will be very sparse in the backbone. 

One observation we have is that, when the members of a group are sparsely 

located, the distribution tree of the group is likely to contain some long, unbranched 

paths. Routers on these paths are unnecessarily using the multicast forwarding 

mechanism to achieve an unicast forwarding function. We call the multicast for­

warding state that has only one immediate downstream receiver "uni-multicast" 

forwarding state. 

Based on this observation, we propose a new approach, namely the Dynamic 

Tunnel Multicast, as a general optimization of the existing sparse mode multicast 

routing protocols. Our approach can eliminate the uni-multicast forwarding states 

by using the dynamically established tunnels between the start and end points of 

those unbranched paths. After dynamic tunnels are established, usually only the 

root node, branching nodes and leave nodes of the original multicast distribution 

tree need to maintain state information about the group. The unbranched nodes 

are bypassed by the tunnel, and do not have to know about the group since the 

packets sent to the group are forwarded via unicast between tunnel end points. 
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The elimination of the uni-multicast states on the unbranched nodes can greatly 

reduce the overall forwarding state requirement and hence considerably improve the 

scalability of existing multicast routing protocols. 

For example, two researchers at U B C , Vancouver and one researcher at 

E T H , Zurich want to have a video conference as shown in figure 1.1. There are 

20 routers on the multicast distribution tree, but 17 of them (router a,b, - • • ,q) are 

uni-multicast routers. In the this example, a dynamic tunnel can be established 

17 hops 

Figure 1.1: Dynamic Tunnel Example 

between router a and r, bypassing 16 uni-multicast routers. Before the tunnel is 

established, all the 20 routers have to know about the multicast group, but after the 

tunnel is established, only four of them (router a,r,s and t) have to keep this in­

formation. Dynamic tunnels can thus lead to great savings on multicast forwarding 

states on the routers. 

1.5 Thesis Contributions 

My thesis is that, unicast IP forwarding will significantly reduce multicast state in­

formation and there by make large numbers of very sparse multicast groups feasible. 

Following is a list of the contributions of this thesis: 

1. Investigate the reasons that are causing scalability problems in current mul­

ticast routing protocols when the number of active groups in a network is 
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large. 

2. Propose a Dynamic Tunnel Multicast model, which can greatly reduce the 

state information in multicast routers. It is compatible with both PIM-SM 

and CBT. 

3. Present the protocol specification for PIM-Dynamic Tunnel(PIM-DT), the Dy­
namic Tunnel Multicast protocol with PIM-SM as the underlying multicast 
routing protocol. 

4. Implement PIM-DT on LBNL network simulator and verified the state reduc­
tion through simulation results. 

5. Discuss solutions for containing control packet overhead. 

1.6 Thesis Outline 

The rest of this thesis is organized as follows: Chapter 2 introduces some re­

lated works on multicast routing, including DVMRP, PIM and CBT. Chapter 3 

presents the basic concepts and the operational model of the dynamic tunnel mul­

ticast scheme. Chapter 4 contains the protocol specification for PIM-DT. Chapter 

5 includes an analysis and simulation of the Dynamic Tunnel Multicast. Chapter 6 

concludes the thesis and discusses the future work. 
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C h a p t e r 2 

Related Work 

The Dynamic Tunnel Multicast that we propose is designed as a general optimiza­

tion on top of some other existing multicast mechanisms. Before presenting our 

work, we first examine some of the existing multicast routing protocols. We start 

with a classification of the multicast routing protocols, and then discuss the basic 

mechanisms behind D V M R P [4], C B T [6] and P I M - S M [7]. 

2.1 Classification of Multicast Routing Protocols 

A key role of a multicast routing protocol is to rendezvous the sender with the 

receivers by constructing a multicast distribution tree. Existing multicast routing 

protocols can be classified into two categories, dense mode protocols and sparse 

mode protocols, according to the way the distribution trees are constructed. 

Dense mode protocols assume receivers or senders exist on each subnet, unless 

otherwise indicated. In order to rendezvous the senders with the receivers, either 

the data from each sender have to be flooded to all the possible receivers, or the 

membership information has to be flooded to all the possible senders. D V M R P and 
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P I M - D M [8] choose the former, and M O S P F [5] chooses the latter. 

In D V M R P and P I M - D M , the data from each sender are periodically flooded 

to all the subnets, and a distribution tree rooted at the sender with leaves on each 

subnet is established during the flooding process. Subnets that do not have receivers 

later prune themselves off the distribution tree to improve the forwarding efficiency. 

In M O S P F , when a host joins a group, the membership information is flooded to all 

the routers in the network. A source specific distribution tree rooted at each sender 

can be constructed since each multicast router in the network knows the location of 

every receiver of a group. 

Sparse mode routing protocols on the other hand, do not assume the mem­

bership of any subnet. A Rendezvous Point(RP) or Core is defined for each group 

to help the senders meet with the receivers. When a receiver joins a group, it talks 

to its Designated Router(DR) using IGMP, and the D R will send an explicit Join 

message towards the R P or Core of the group. A distribution tree rooted at the 

RP/Core can be established as the Join messages are forwarded. Senders will send 

data to the R P or Core of the group, which will further forward the data in the 

reverse direction along the paths that the Join messages have traversed. 

2.2 Examples of Multicast Routing Protocols 

In this section, we will look at three multicast routing protocols. The first one is 

D V M R P , which is the first and the most widely deployed multicast routing protocol 

in the world. We will explain in more detail some of the fundamental techniques, 

such as Reverse Path Forwarding(RPF), and the static tunnels that are used in 

the protocol. Then we will look at C B T and P I M - S M , which can be used as the 

underlying multicast support for our Dynamic Tunnel Multicast. 
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2.2.1 D V M R P 

The Distance Vector Multicast Routing Protocol [4] is the earliest development in 

multicast routing. It is a dense mode protocol and uses flood and prune strategy 

to establish the distribution tree from the source to the receivers. When a receiver 

joins the group, the membership information is only propagated to its Designated 

Router via IGMP. The first packet from a sender is flooded to all the subnets in 

the same domain, and the distribution tree is built using a technique called Reverse 

Path Forwarding (RPF) . During this process, when each router receives a packet, 

it will first check if the packet arrives on the interface that it uses to send packets 

in the reverse direction towards the source. If it is, the packet is forwarded to all 

the other interfaces. A multicast forwarding table entry is created for the group 

and the source. The incoming interface of the entry is just the interface on which 

the packet arrived, and the outgoing interface contains all the other interfaces. If 

a packet does not arrive on the "correct" interface, it is discarded. A message is 

also sent to the previous hop router of the discarded packet, telling that router to 

remove the interface on which this message arrives from its outgoing interface list 

in the multicast forwarding table entry. Designated Routers that do not have any 

member on the local subnet or downstream routers sends prune messages upstream 

to prune themselves off the distribution tree. 

In D V M R P , only source specific trees are built, and the trees are uni-directional. 

This implies data can only flow from the root to the leaves. Each link in the network 

is configured with a cost and threshold value. Packets transmitted on the link will 

have the T T L field in the IP header of the packet decreased by the cost value of the 

link. A packet with remaining T T L value less than the threshold value of the link 

will not be forwarded onto the link. The threshold is used to control the scope that 
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a packet can reach. 

Static tunnels can be established as a virtual link to interconnect multicast 

routers separated by non-multicast-capable routers. The topology map maintained 

by multicast routers can be different from the map maintained by unicast routers. 

Each tunnel is manually established, and configured with a cost and threshold. A 

tunnel can be used by all the groups. It is bi-directional, but different direction can 

have different cost and threshold values. 

2.2.2 C B T 

Core Based Tree is designed for sparse groups and it establishes shared trees only. 

A Core router is defined for each group. Each Designated Router with members 

on its local subnet sends a Join-Request messages towards the Core. Each C B T 

router forwards the Join-Request towards the Core and records a transient state if 

it does not have the forwarding state for the group. When the Join-Request reaches 

the first router that is already part of the corresponding distribution tree, a Join-

Acknowledgment is sent hop by hop back to the requesting D R . Each C B T router 

will change the transient state for the group into a fixed multicast forwarding state 

as the Join-Acknowledgment traverse it. 

In C B T , the tree branches are bidirectional. Data received on any valid 

interface of the multicast forwarding state will be forwarded onto all the other 

interfaces except the incoming one. 

2.2.3 P I M - S M 

P I M - S M is designed for sparse groups. It supports both shared trees and source 

specific trees. Distribution trees are uni-directional. 
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A Designated Router (DR) that has local member sends Join message to­

wards the Rendezvous Point (RP) of the group, which is similar to the Core in 

C B T . A shared tree rooted at R P can thus be built. Sources of the group send data 

encapsulated directly to the RP, and the R P forwards the data further down the 

distribution tree to all the receivers. If the data rate for a source is high, the D R 

can switch to join the source specific tree of the source by sending Joins towards 

the source. Once the D R starts to receive data from the source specific tree, it can 

inform the shared tree not to deliver packets from that particular source to the D R 

to avoid duplicates. 

Joins need to be sent upstream periodically in order to keep the forwarding 

state alive on the parent router. If a Join is not received on an outgoing interface for 

a certain period of time, then that outgoing interface is deleted from the outgoing 

interface list of the routing table entry. When sending the periodical Joins, multiple 

Joins for different groups/sources can be sent in a single packet. 
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Chapter 3 

Tunnel Operations 

In this chapter, we introduce the operational model of the Dynamic Tunnel M u l t i ­

cast. The major roles of the D T M include: 

• establish and destroy dynamic tunnels on demand. 

• maintain the tunnel states on the end points of tunnels. 

• adjust the dynamic tunnels in case of membership changes. 

• adjust the dynamic tunnels to cope with route changes and various failure 

conditions. 

Since D y n a m i c Tunnel Mul t i cas t is designed to be an opt imizat ion of the 

existing sparse state multicast routing protocols, we wi l l clarify the functions that 

are necessary to support Dynamic Tunnel Mul t i cas t . 

3.1 Assumptions 

We assume there exists some form of underlying multicast mechanism on all the 

routers that want to support dynamic tunnels. In this section we summarize our 
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assumptions about the underlying multicast support. 

Although only Protocol Independent Multicast Sparse Mode(PIM-SM) and 

Core Based Tree(CBT) are considered in this document, the dynamic tunnel mul­

ticast can also work with other multicast routing protocols as long as the following 

assumptions hold. 

• The distribution tree of a group can be either a shared center based tree or 

a source specific shortest path tree. Each distribution tree must have a root 

node. In P I M - S M , the root node is either the Rendezvous Point(RP) or the 

designated router of the source; in C B T , the root node is the Core router. 

• We define upstream to be in the direction towards the root, and downstream 

to be in the direction away from the root (or towards the leaves). Each router 

participating in the routing protocol must have some mechanism to determine 

which is the upstream interface towards the root. In Reverse Path Forward-

ing(RPF), a commonly used multicast distribution tree construction method, 

the interface towards the root, as per unicast routing, is selected as the up­

stream interface. In the Multicast Extension to B G P ( M B G P ) [10], the up­

stream interface towards the root can be determined by explicit policies, and 

R P F is not used. 

• Routers that want to join the group must explicitly send Join messages on the 

upstream interface towards the root. The message will be forwarded further 

upstream until a router already on the distribution tree is reached. A successful 

join operation can be confirmed by the fact that the downstream receiver 

receives data on the native tree(in P IM-SM) , or from the fact that an explicit 

Join-Acknowledgment is received (in C B T ) . 
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• Processing of the Join messages at the routers installs multicast forwarding 

state on the routers. A l l the forwarding states on the routers collectively 

define the multicast distribution tree. The multicast forwarding state contains 

at least the group address, an upstream interface, and a list of downstream 

interfaces. 

• Each interface in the forwarding state can be either uni-directional or bi­

directional. In P I M - S M , the interfaces are uni-directional as the data can only 

be forwarded from the upstream interface onto the downstream interfaces. In 

P I M - S M , the upstream interface can be also referred to as the incoming inter­

face, and downstream interface can be referred to as the outgoing interface. 

In C B T , the interfaces are bi-directional, and data can be forwarded from any 

interface to all the other interfaces except the incoming one. In C B T the terms 

"incoming interface" and "outgoing interface" make sense only when packets 

are being forwarded. 

3.2 Concepts 

Following are the basic concepts that are used in the definition of Dynamic Tunnel 

Multicast model. 

Native Multicast Distribution Tree (Native Tree) We define the Native Mul ­

ticast Distribution Tree, or simply the native tree, to be the distribution tree 

constructed by the underlying multicast routing protocol. The native tree 

may not exist in some part of the network after the dynamic tunnels are es­

tablished. In this case, we use the term native tree to refer to the tree that 

would have been established by the multicast routing protocol, if there had 

15 



been no dynamic tunnels. 

Uni-multicast Forwarding State A multicast forwarding state that has only one 

immediate downstream receiver and has no local member for a distribution 

tree is called an Uni-multicast Forwarding state for the distribution tree. A 

router that has uni-multicast forwarding state for a distribution tree is called 

an uni-multicast router on the distribution tree. 

Potential Tunnel End Points Potential tunnel end points on a multicast dis­

tribution tree include branching nodes(non-uni-multicasting nodes), the root 

node, the leaf nodes, and all the nodes that cannot be bypassed by dynamic 

tunnels due to reasons specific to the underlying multicast routing protocol, 

or due to administrative concerns. 

Dynamic Tunnel Dynamic tunnels can be established between adjacent potential 

tunnel end points to eliminate the uni-multicast forwarding states. Dynamic 

tunnels are different from the static tunnels in some existing multicast routing 

protocols (i.e. D V M R P ) . In the following discussion, the term tunnel always 

refers to dynamic tunnel unless otherwise specified. Following are some of the 

unique properties of dynamic tunnels: 

• Dynamic tunnels are distribution tree specific. Each tunnel is created for 

a certain distribution tree, which can be either source specific or shared. 

Only packets for the corresponding distribution tree can be forwarded 

into the tunnel. When source specific distribution trees are used, only 

packets generated from a certain source can be forwarded into the tunnel. 

• Each dynamic tunnel has two end points, an upstream tunnel end point 

and a downstream tunnel end point. 
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• Dynamic tunnels are created and destroyed on demand. 

• Dynamic tunnels can be either uni-directional or bi-directional depending 

on the nature of the interface in the forwarding states of the underlying 

multicast routing protocol running on the tunnel end points. Dynamic 

tunnels are uni-directional in PIM-SM, and bi-directional in C B T . 

• Dynamic tunnels do not affect route calculations. The establishment of 

tunnels does not change the topology map used in the underlying unicast 

or multicast routing protocol. 

• Dynamic tunnels can have dynamically assigned costs and thresholds that 

can be derived from the underlying multicast or unicast routing protocol. 

• A dynamic tunnel is not used as a new virtual interface, instead, it is 

treated as a new attribute associated with an existing interface. The 

associated interface of a dynamic tunnel is defined below. 

Native Path Each dynamic tunnel has a corresponding native path, which is the 

path on the native tree between the tunnel end points. Routers on the native 

path are bypassed by the tunnels and may no longer keep state information 

for the group. 

Associated Interface of a Dynamic Tunnel The upstream (or downstream) as­

sociated interface of a dynamic tunnel is the interface through which the native 

path of the tunnel is connected to the upstream (or downstream) tunnel end 

point. The tunnel is also said to be associated with that interface. For any 

distribution tree, there is at most one tunnel associated with any interface. 

Interface States An interface in a multicast forwarding table entry can be in one 

of the following four states: Idle, Native, Tunnel or Dual. An interface in 
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Idle state may not be included in the forwarding table entry. An interface is 

in Native state if it is performing the normal multicast forwarding function. 

Data can be sent and received on Native state interfaces in native format. An 

interface is in Tunnel state if there is a dynamic tunnel associated with it. 

Data can be sent and received from the tunnel associated with the interface 

in encapsulated format. An interface in Dual state operates as if it is in 

both Native and Tunnel states. Data can be received in both native and 

encapsulated format for an interface in Dual state. Data will be sent twice for 

an interface in Dual state, once in native format, once in encapsulated format 

for the tunnel. The Dual state is introduced to minimize the interruption in 

data delivery caused by tunnel establishment, tear-down and adjustment. 

Dynamic Tunnel Tree A Dynamic Tunnel Tree, or Tunnel Tree, is the distribu­

tion tree with some branches replaced by dynamic tunnels. 

3.3 Optimization Goals 

The primary goal of the dynamic tunnel approach is to reduce the uni-multicast 

state while at the same time keeping the tunnel tree topology as close as possible to 

the native tree. It is always assumed the native multicast distribution tree created 

by the underlying multicast routing protocol to be the optimum. 

We are aware that dynamic tunnels also introduce data processing and con­

trol overheads. Containing these overheads are also part of our ultimate goals, but 

they are not considered primary goals in the operational model of the dynamic 

tunnels. Additional mechanisms can be devised later to achieve these goals. 
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3.4 Uni-multicast State Detection 

Each of the routers on the distribution tree can detect the existence of uni-multicast 

forwarding states from the fact that the router has only one direct downstream 

receiver for a multicast group. If all the out-going links of a router are non-multi­

access links, the uni-multicast state can be determined from the fact that the router 

has only one downstream interface in the multicast forwarding state. 

It is slightly more difficult to determine the number of direct downstream 

receivers on a multi-access link since some multicast routing protocol such as PIM 

supports join suppression, which allows only one of the direct downstream receivers 

on the multi-access links to send Join messages. The problem does not exist in C B T 

since it does not support join suppression. 

There are a number of ways to solve the problem. First, we can disallow 

tunnels to span across multi-access links. In this case, if the uni-multicast state 

exists on the link, it will never be deleted. Though this solution might potentially 

reduce the average length of tunnels, it is actually not a bad choice since its simple, 

and since most of the dynamic tunnels are established in the backbone where the 

multi-access links are rare. It has the additional advantage of not having to worry 

about Early Tunnel Terminations as discussed later in section 3.11. Second, we can 

disable the join suppression on the multi-access link. On multi-access links with 

join suppression disabled, the number of downstream receivers can be determined 

from the number of different downstream routers that are sending Join messages. 

This works best when the number of routers on the link is small. Third, we can 

modify the join suppression algorithm on multi-access links in order to determine 

whether a router is in uni-multicast state. Basically we allow at most two of the 

downstream receivers to send Join messages instead of at most one as in the original 

19 



join suppression algorithm. In this case, a uni-multicasting router will receive Join 

messages only from one downstream receiver, while a real multicasting(non uni-

multicasting) router will receive from two. 

3.5 Tunnel Tree Establishment 

One way to establish a tunnel is to start from the potential downstream tunnel 

end points; that is, either from the leaf nodes or from the branching nodes on the 

native distribution tree. Once the multicast distribution tree becomes stable, these 

potential downstream tunnel end points start sending Tunnel Request messages 

upstream towards the root. The Request messages are sent on the same interface 

as the Join messages are sent in the underlying multicast routing protocol. The 

Request message includes the multicast group, the downstream tunnel end point, 

the original T T L value used in the IP header when the packet is sent, a cost and 

a threshold value which indicate the cost and threshold of the path through which 

the Request message has traversed. 

Each router on the distribution tree that receives the message first checks if 

the Request can be further forwarded. If the router is not a potential tunnel end 

point, then it tries to forward the Request message further upstream. The cost and 

threshold values in the outgoing Request message are updated. 

If the router that receives the Request message is a potential tunnel end 

point, then the request is not forwarded any further. The router will check if a 

tunnel can be established. The router can impose a lower limit on tunnel lengths to 

contain the maintenance overheads of the tunnels. The router can derive the length 

of the native path from the original T T L value in the message and the current T T L 

value in the IP header. If the length can not meet the minimum length requirement, 
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the router that receives the request can optionally send a tunnel reject message back 

to the requesting router indicating the reason. Otherwise, the router becomes the 

upstream tunnel end point. It sends a tunnel Setup message back to the downstream 

tunnel end point and the tunnel state is recorded. 

The newly created tunnel is associated with the interface on which the Re­

quest message arrives. The interface is set to Dual state. The interface changes to 

Tunnel state if a Prune/Quit message is received. The interface reverts to Native 

state when the associated tunnel is torn down. 

When the tunnel is established, data packets that arrive at the upstream 

tunnel end point are forwarded onto all the outgoing interfaces according to the 

forwarding rule of the underlying multicast routing protocol. If an outgoing interface 

is in Native state, packets are forwarded in native format as usual. If an outgoing 

interface is in Tunnel state, packets are encapsulated and sent unicast directly to 

the other end point of the associated tunnel. If an outgoing interface is in Dual 

state, the packets are sent twice on the interface, once in native format and once 

encapsulated. 

If the tunnels are uni-directional, data packets can only come from the up­

stream tunnel and be forwarded into downstream tunnels. If the tunnels are bi­

directional, data coming from a tunnel will be forwarded into all the other tunnels 

except the incoming one. 

When the potential downstream tunnel end point receives the tunnel Setup 

message, it first checks if the interface towards the upstream tunnel end point is the 

same as the interface towards the root. If R P F is used to construct the multicast 

distribution tree, unicast routing can be used to determine the interface towards the 

root and the interface towards the upstream tunnel end point. If the two interfaces 

21 



are not the same, the tunnel Setup message is discarded. Although passing this 

check will not guarantee that the upstream tunnel end point is on the path towards 

the root, it can reduce the chance of forming routing loops. If the two interfaces are 

the same, the tunnel state is recorded and the tunnel is established. The associated 

interface of the tunnel is set to be in Dual state. Join messages are no longer sent 

towards the root by the downstream tunnel end point. Instead, tunnel Request 

messages are sent periodically towards the root to refresh the tunnel state on the 

upstream tunnel end point. 

In PIM-SM, since the intermediate uni-multicast routers are bypassed by the 

tunnel and no longer receive Join messages, their unnecessary multicast forwarding 

state will eventually timeout and be deleted. The downstream tunnel end point 

can send Prune message upstream to speed up the process. In C B T , explicit Quit 

messages are sent upstream to remove the uni-multicast states. 

When the upstream tunnel end point stops receiving Join messages or receives 

Prune/Quit messages on the interface associated with the tunnel, the interface is 

set to be in Tunnel state. The Prune or Quit messages are not forwarded further. 

Figure 3.1 illustrates the tunnel tree establishment procedure with PIM-SM 

as the underlying multicast routing protocol. Here A, B, C are three routers on a 

distribution tree. A and C are branching points that have more than one immediate 

downstream receivers, B is a uni-multicasting router that has only one immediate 

downstream receiver. C sends tunnel Request messages upstream, and B forwards 

them on. When A receives the tunnel Request message, it replies with a tunnel 

Setup message and sets the interface on which the request message arrives to be 

in Dual state. This will cause the subsequent data in the downstream direction to 

be forwarded twice for that interface: once in Native state, once in encapsulated 
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3. Potential tunnel end point A 
change {4} to Dual mode 

2. Unimulticasting router 
forwards Request upstream 

1. Potential tunnel end point C 
sends tunnel Request upstream 

4. A sends setup unicast to C 
Data are sent twice on {4} 

7. A changes {4} to Tunnel mode 
Data are sent only via the tunnel 

6. forward Prune, unimulticast 
state deleted 

5. C change {1} to Tunnel mode 
.sends prune upstream 

Figure 3.1: Tunnel Establishment 

state. When C receives the tunnel Setup message, it sets the interface on which 

the tunnel Request messages are sent to be in Tunnel state, and sends a Prune 

message upstream. The multicast forwarding state on B will be deleted as the 

Prune message propagates along the way. When A receives the Prune message, the 

interface on which the Prune message is received is set to be in Tunnel state, and 

subsequent data in the downstream direction are forwarded only once through the 

tunnel on that interface. 

3.6 Tunnel Encapsulation 

Several encapsulation techniques can be used when sending data in the dynamic 

tunnels, namely IP in IP Tunneling [11], Generic Routing Encapsulation (GRE) [12], 

and Minimal Encapsulation within IP [13]. The IP in IP Tunneling is a strait forward 
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encapsulation technique. It wraps the original IP packet directly in another standard 

IP header. G R E is a general purpose solution which can be used to encapsulate any 

type of network layer packet in any other type of network layer packet. The Minimal 

Encapsulation within IP minimizes the encapsulation overhead by compressing the 

inner IP header. Since the dynamic tunnels are expected to be used extensively, it 

is important to reduce the encapsulation overhead. Under this consideration, the 

Minimal Encapsulation within IP is selected as the default encapsulation mechanism 

for Dynamic Tunnel Multicast. 

3.7 Tunnel State Maintenance 

Dynamic Tunnels use soft tunnel state. A downstream tunnel end point periodically 

sends tunnel Request messages to the upstream tunnel end point in order to keep the 

tunnel state alive. The upstream tunnel end point timeouts and deletes the tunnel 

state if no more tunnel Request messages are received within a certain timeout 

period. 

The periodic Request messages can also be used to detect route changes. The 

message will simply be forwarded if the router that receives it has no forwarding 

state for the group, or if the router is uni-multicasting and the message arrives at 

the downstream interface of the multicast forwarding state. A tunnel Request mes­

sage arriving at a router under other conditions is an indication of route change or 

membership change which usually will trigger tunnel adjustments. Those conditions 

will be discussed later in section 3.13. 

If there is no route change or membership change, the Request message 

arrives at the upstream tunnel end point and the tunnel state is refreshed. The 

message is not forwarded any further by the upstream tunnel end point. 
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3 . 8 Tunnel Tear Down 

When a downstream tunnel end point no longer has downstream receivers, it can 

discard the tunnel by not sending tunnel Request messages to the upstream tunnel 

end point. The tunnel state information at the upstream tunnel end point will 

eventually expire and be deleted. The downstream tunnel end point can speed up 

the tear down process by sending an explicit tunnel Destroy message to the upstream 

tunnel end point. 

3 . 9 Tunnel Splice 

After a member leaves the group, the upstream end of an existing tunnel, which was 

previously a branching node in the tunnel tree, now may have only one downstream 

interface left in the multicast forwarding state, and becomes an uni-multicasting 

router on the distribution tree of the group. In this case the upstream tunnel and 

the downstream tunnel of the former branching point can be spliced. The router at 

the splice point that connects the upstream tunnel and the downstream tunnel stops 

sending tunnel Request messages upstream since it is no longer a potential tunnel 

end point. When it receives the tunnel Request messages from the downstream 

tunnel, the router at the splice point no longer sends back tunnel Setup messages. 

Instead, it appends a tunnel Destroy message at the end of the received tunnel 

Request message, and forwards the new message upstream. When the upstream 

end point of the upstream tunnel receives the tunnel Request/Destroy message, it 

destroys the old tunnel to the splice point, and sends a tunnel Setup message back 

to the requesting router to establish a new tunnel. 

Figure 3.2 illustrates this procedure. Originally there were three tunnels 
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4. A changes downstream 
tunnel end point to C, 
and sends Setup to C 

3. B appends a Destroy msg 
after the Request msg and 
forwards it upstream 

I 2. C sends next periodic 
I Request upstream 

6. B sends stand alone 
{ Destroy msg to A 

1. Member D leaves group, 
B enters uni-multicast state 

5. C sends Destroy msg to B, 
changes upstream tunnel end 
point to A 

Figure 3.2: Tunnel Splice 

established, A - B , B - C , and B - D . Now the B - D tunnel is destroyed, and tunnel 

A - B and B - C can be spliced. When router B at the splice point receives the tunnel 

Request message from C, it appends a tunnel Destroy message in the received tunnel 

Request message indicating the old A - B tunnel can be replaced, and forwards the 

new message towards the root. When router A receives the message, it sends a 

tunnel Setup message back directly to the requesting router C, and the spliced 

tunnel is established. Then A stops sending packets via the old A - B tunnel. After 

C receives the Setup message of A - C , tunnel, it can send a tunnel Destroy message 

to B to remove the old A - B tunnel. 
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3.10 Tunnel Split 

When a new member joins the group, it might be necessary to add branches in the 

middle of the tunnel. Consider the case shown in figure 3.3: 

I 7. set {2} in tunnel mode only, 
t data are sent only in native format 

5. set {2} in tunnel mode 
only, send setup msg to C 

6. associate B-C tunnel with {1}, 
send destroy msg to A 

4. send periodic request 1 
msg upstream 

\ 1/ 

3. set {2} in both native and 
tunnel mode, data are sent 
twice on {2} 

2. G, B and E forward join 
msg upstream and install 
multicast forwarding states 

1. New member sends 
join msg upstream 

Figure 3.3: Tunnel Split 

There is a tunnel established from A to C for a multicast distribution tree. 

Router E, B and F are on the native path of the A-C tunnel, but they do not have 

any forwarding state information for the distribution tree since they are bypassed. 

Router D is a new member that wants to join the group. It sends a Join message 

towards the root. The Join message would have stopped at B if there were no 

tunnels set up and B would have been the branching node of the distribution tree. 

Since now the forwarding states on routers between B and E have already been 

deleted, the Join message propagates all the way to the upstream tunnel end point 

A. Processing of the Join message reinstalls forwarding states on all the routers 
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between B and A. 

Now the topology of the tunnel tree and the topology of the native tree are 
no longer aligned. If the routes are symmetric, packets might be sent twice on some 
of the links between A and B, once in native format on the native tree to D, the 
other in encapsulated format through the tunnel between A and C. If the routes 
are asymmetric, duplicates may still occur on some of the links. In most cases, 
duplicates do exist. In order to avoid duplicates, we need the ability to add a new 
branch in the middle of the A-C tunnel. 

The situation can be corrected when C sends the next periodic tunnel Re­
quest message upstream. When the Request message reaches B, B will not forward 
it further since the Request message arrives on an interface other than the one on 
which the Join message arrives. B sends back a tunnel Setup message to the re­
questing router C setting up the new tunnel. When C receives the Setup message, 
it changes the upstream end point of the tunnel from A to B and sends a tunnel 
Destroy message to A. Tunnels between A,B and between B,C can be established 
later following the tunnel establishment procedure described in section 3.5. 

The tunnel request from C may be rejected by router B because the tunnel is 
too short. In this case, router B sends a tunnel reject message back to C indicating 
the reason. When router C receives the rejection, it changes the upstream interface 
to Native state, and starts sending normal Join messages upstream to reinstall 
multicast forwarding state between C and B. The old A-C tunnel can be torn down 
either when C starts receiving data from the native tree, or after a timeout. 
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3.11 Early Tunnel Termination 

A problem may occur when tunnels are allowed to span across multi-access links and 
a router on a multi-access link has more than one immediate downstream members 
on the link forwarding tunnel Requests. Allowing multiple tunnels to be associated 
with a multi-access interface not only complicates the implementation, but also 
generates duplicates since packets are sent multiple times for each of the outgoing 
tunnels on the multi-access link. This problem only occurs when the join suppression 
on the link is disabled or modified as discussed in section 3.4. 

To solve this problem, the downstream routers on the multi-access link should 
listen on the link for Join or Request messages from other routers. If there are other 
sibling members on the multi-access link, then the router should become a potential 
tunnel end point and respond to tunnel Requests from routers further downstream. 
Downstream routers on multi-access links should not generate Request message 
upstream. 

3.12 Dynamic Tunnels in PIM-SM 

Some problems are unique to PIM-SM since it allows a source specific tree and a 

shared tree to exist at the same time for a given multicast group. These problems 

include tunnel sharing among the source specific trees and the shared tree of a 

multicast group, and source specific prune state on the shared tree. 

In most cases dynamic tunnels are established separately for source specific 

trees and shared tree of the same multicast group. Within the part where a source 

specific tree and the shared tree overlap, the tunnel can be shared among the dif­

ferent trees of the same multicast group. 
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Source specific prunes, i.e. the (S ,G)RPT forwarding states, are filters on 

the shared tree used to prevent packets from being delivered to members that have 

already switched to source specific trees. They always coexist with (*,G) forwarding 

states, and no separate tunnels are established for them. These states are gener­

ated at the point where a source specific tree and the shared tree diverge, and are 

propagated upstream along the shared tree until the next branching point. When 

dynamic tunnels are established, this diverging point may be shifted downstream 

to the next tunnel end point. On a router where both (S,G) and (*,G) forwarding 

states exist, if the incoming interfaces of the two forwarding states are the same 

but are associated with different tunnels, the two interfaces should be considered 

different. Source specific prunes should be sent upstream along the shared tree, via 

the dynamic tunnel, if one has been established. 

3.13 Fault Tolerance 

In this section, various failure conditions are considered. The goal of our approach 

is to reduce as much as possible the interruptions in data delivery. 

3.13.1 Failure in the Middle of a Tunnel 

If a link or a router on the native path is down, it will be automatically routed around 

by the unicast forwarding mechanism. If the route change caused by the failure does 

not affect the location of tunnel end points, no adjustment is necessary. If the native 

tree is changed, as long as the tunnel end points are still mutually reachable, the 

data delivery via the tunnels will not be disturbed. However, the topology of the 

tunnel tree may no longer be the optimum. This situation is discussed in more detail 

in section 3.13.3. 
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3.13.2 Failure of the Tunnel End Point 

Failed upstream tunnel end point will be detected by the unicast or multicast routing 

protocol running on its neighbors. The branching point of the tunnel tree must be 

adjusted accordingly, otherwise the tunnel tree topology and the native tree topology 

are no longer aligned. The next Request message sent towards the root will be sent 

via a different route resulting in a "upstream branching point shift" as described in 

section 3.13.3. 

If a downstream tunnel end point only has Native state downstream inter­

faces, its failure can be detected by the underlying multicast or unicast routing 

protocols running on its immediate downstream receivers. The next Join messages 

from those receivers are sent on an alternative path towards the root, and new 

tunnels can be established later. 

3.13.3 Branching Point Changes 

Route changes can alter the branching points and hence the topology of the na­

tive tree. The branching points of the native tree can be moved either upstream 

or downstream. The branching points of the tunnel tree have to be adjusted ac­

cordingly, otherwise the tunnel tree topology will not be optimal. Here we assume 

that the native tree constructed by the underlying multicast routing protocol is the 

optimum. 

In this section we introduce several mechanisms that can align the topology 

of the tunnel tree with that of the changed native tree. There is always a trade 

off between the tunnel tree efficiency and the control overhead. Since most of the 

routes on the Internet are expected to be fairly stable, route changes are considered 

scarce events. Under this assumption, the simple mechanisms are actually favored. 
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In this document we simply point out the problems and their possible solutions. 

Branching Point Downstream Shift 

After a route change, tunnel Request may arrive at a different interface of the 

upstream tunnel end point. If the new interface has no tunnel associated with it, the 

upstream tunnel end point simply changes the upstream associated interface of that 

tunnel. If the new interface is associated with another tunnel which indicates the 

native paths of the two tunnels now share some common prefix, then the branching 

point of the native tree has moved somewhere downstream. 

2.request from C arrives on (3), 
which is already associated with 
A - D tunnel; a reject msg is 
returned to C 

1. after route change, request 
msg of A - C tunnel is forwarded 

[on {2} instead of on {1} 

3. change {1} from tunnel only 
mode to tunnel and native mode, 

I send join msg upstream 

5. receive join confirm, 
which can be either data 
or join acknowledgement, 

[set {1} to native mode only J 

4. receive join, change (3} from 
tunnel only mode to tunnel and 

[native mode, data are sent twice on {3} J 

9. set {3} to tunnel mode only, 
[data are sent only in native format J 

(7. send setup to D J 

8. change upstream tunnel end 
[point to B; send destroy msg to A 

6. send request msg 
upstream 

Figure 3.4: Route Change: Branching Point Shift Downstream 

Figure 3.4 shows an example that illustrates the situation. Two tunnels A-

C and A-D are already established. Their native paths were completely different 

before the route change. The native path of tunnel A-C is A - H — F — C while the 

native path of tunnel A-D \s A - E — B — G — D. After the route change, tunnel 
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A-C's native path passes through B, which is also on the native path of A-D tunnel. 

Now tunnel Request messages of the two tunnels arrive at the same interface of A. 

The branching point of the native tree has moved from A to B. 

In order to find the new location of the branching point, we tear down the 

tunnel whose native path has changed. The upstream tunnel end point sends a 

tunnel reject message to the downstream end point of the tunnel about to be torn 

down. When the downstream tunnel end point receives the rejection, it changes 

its upstream interface to native and Tunnel state, and starts sending Join message 

upstream to reinstall multicast forwarding state on all the routers on the native 

path of the tunnel. When the downstream end of the tunnel that is about to be 

torn down starts receiving data from the native tree, it destroys the tunnel. The 

next tunnel Request message from the remaining tunnel will trigger a tunnel split 

operation as described in section 3.10, and the new branching point is found. 

In our example, A sends rejection to C, C switches to Dual state, and sends a 

Join message upstream. When C starts receiving data from the native tree or when 

C receives join acknowledgment, it sends a Destroy message to A, tearing down the 

A-C tunnel. The next tunnel request message from D will trigger a split of the A-D 

tunnel, a situation already discussed in section 3.10, and the new branching point 

B will be found. 

Branching Point Upstream Shift 

The changes in the route may cause the upstream tunnel send point to be no longer 

on the correct path from the downstream tunnel end point towards the root. In this 

case, the periodic tunnel Request message can no longer reach the current upstream 

tunnel end point. The message will be propagated towards the root until it reaches 
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8. receive request; send 
setup back to C 

7. B appends a destroy msg on 
the request and passes it on, 
since it is in uni-multicast state 

(lO. destroy A-B tunnel ) 

6. send next request 
I msg upstream 

9. receive setup, 
[̂ destroy B-C tunnel j 

2. B-D tunnel's request arrives on {2}, 
which is associated with A-B tunnel; 

la reject msg is returned to D 

4. receive join, set {2} to native and 
tunnel mode, data are sent twice on {2} J 

1. after route change, G forward B-D 
[̂ tunnel's request on {2} instead of {1} J 

3. receive the reject, change 
^ {1} to native and tunnel mode j 

5. receive join confirmation, 
D destroys B-D tunnel 

Figure 3.5: Route Change: Branching Point Shift Upstream 

a node that already has multicast forwarding state for the distribution tree. The 

interface on which the message arrives can be in either Native state, Tunnel state, 

or Dual state. The message arriving at an interface in Native state causes a tunnel 

Setup or Reject message to be returned. The message arriving at an interface in 

Tunnel state causes a tunnel Reject message to be returned. The message arriving 

at an interface in Dual state is discarded. 

If the downstream end point of the tunnel being affected by the route change 

receives a Setup message, it sets up the new tunnel and destroys the old upstream 

tunnel. The upstream end point of the new tunnel is the correct new branching 

point. If the downstream end point of the affected tunnel receives a reject message, 

it switches its upstream interface to Dual state and sends Join messages upstream. 

The old upstream tunnel can be torn down after its downstream end point receives 
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confirmation of the join, which can be either data from the native tree or explicit 

acknowledgment. The new branching point subsequently can be found after another 

tunnel split. 

In the example shown in figure 3.5, a route change causes Request message 

of tunnel B-D no longer to pass through its upstream tunnel end point B. Instead, 

it reaches router A. From the point of view of router A, the request comes from a 

brand new requesting router, but the request arrives on an interface that is already 

associated with another tunnel. A then sends a tunnel reject message back to 

D. When D receives the rejection, it sets interface {1} to Native state, and starts 

sending Join messages upstream. In this example, the Join message is propagated all 

the way to A. When A receives the join, it sets interface {2} to Dual state and starts 

sending data in both native format and in encapsulated format on interface {2}. 

When D receives data from the native tree or receives explicit join acknowledgment, 

it destroys the old B-D tunnel. The next periodic tunnel Request message from C 

will trigger a new round of combined tunnel splice and split. When B receives 

the tunnel Request message from C, it appends a Destroy message in the request 

and forwards it upstream according to the tunnel splice procedure described in 

section 3.9. When E receives this Request/Destroy message, it ignores the destroy 

part since it has no tunnel established to B. E processes the Request message and 

sends a tunnel Setup message to C following the tunnel split procedure described in 

section 3.10. When C receives the tunnel Setup message, it destroys the B-C tunnel 

following the tunnel splice procedure. When B receives the tunnel Destroy message 

from C, it transitively destroys the A-B tunnel in which the old A-C tunnel will be 

split into A-E and E-C tunnel. Tunnel E-D can also be established later. 
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Chapter 4 

Protocol Specification 

In this chapter, we describe the specification of the P I M - D T protocol, and the Dy­

namic Tunnel Multicast protocol with P I M - S M as the underlying multicast support. 

4.1 Message Types 

A D T M P control message contains a common message header followed by one or 

more Tunnel Control Objects. There are four objects defined in this document: 

request, setup, reject and destroy. The objects that are included in the control 

message is indicated in the common message header. 

4.1.1 C o m m o n Header 

7 15 23 31 

Ver Flags MsgType MsgCheckSum 

Group 

Source/RP 
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The contents of each fields are: 

Ver (4 bits) 

Protocol version number. This document defines D T M P version 1.0. 

Flag (4 bits) 

Control flags. Reserved. 

MsgType (8 bits) 

Message type. There are five message types related to tunnel management in 

D T M P : 

1. MsgType 0 = Tunnel Request 

2. MsgType 1 = Tunnel Setup 

3. MsgType 2 = Tunnel Reject 

4. MsgType 3 = Tunnel Destroy 

A Tunnel Request message contains one Tunnel Request object followed by an 

optional Tunnel Destroy object. A Tunnel Setup message contains one Tunnel 

Setup object. A Tunnel Reject message contains one Tunnel Reject object, 

and a Tunnel Destroy message contains one Tunnel Destroy object. 

MsgCheckSum (16 bits) The message checksum. Although U D P header has a 

checksum field, the calculation of checksum is optional. So we need our own 

checksum to ensure message integrity. 

Group 32 bits The address of the multicast group. 

Source/RP (32 bits) This field contains the address of the source if the router is 

on a source specific tree, and contains the address of the Rendezvous Point(RP) 
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if the router is on a shared tree. 

Following are the definition of each tunnel control objects. Each object may 

contain an optional Authentication field at the end, which is used by the receiver 

to verify the validity of the object. Only valid object from a trusted router will be 

accepted. 

4.1.2 Tunnel Request Object 

The format of a Tunnel Request Object is: 

15 23 31 

T T L Cost Threshold Flags 

Requesting Router 

(Authentication) 

• TTL (8 bits): The initial T T L value of the IP packet when it is originated 

from the source. This is used to calculate the distance between the message 

sender and receiver in terms of hop count. 

• Cost (8 bits): This field contains an estimation of the cost of the path from the 

router where the request message has last traversed to the requesting router. 

The field is updated at each hop. When the Request message is forwarded 

further upstream, the value of the cost field in the outgoing message should 

be the value in the incoming Request message plus the cost of the link on 

which the Request message is received. If a tunnel is established, the updated 

estimation will be used as the cost of the tunnel. 
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Threshold (8 bits): This field contains the threshold value for the path between 

the router where the request message has last traversed and the requesting 

router. This value is also updated by each router as the request message is 

forwarded upstream. The updated Threshold value should be the larger of the 

threshold value of the link on which the request message has arrived, and the 

threshold value in the incoming request message plus the cost of the last link 

on which the massage has traversed. If the request is forwarded upstream, the 

threshold field of the outgoing message should contain the updated value. If a 

tunnel is established, the updated value will be used as the threshold for the 

tunnel. An incoming data packet will not be forwarded on the tunnel if its 

remaining T T L value is less than the tunnel's threshold value. 

Flags (8 bits): 

Requesting Host (32 bits): The address of the originator of the Request mes­

sage. The originator will become the downstream tunnel end point if a Setup 

message is received later. 

Authentication (variable length, optional): This field is used to authenticate 

the request and is optional. The format of the Authentication Object is yet 

to be determined. 
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4.1.3 T u n n e l S e t u p O b j e c t 

7 15 23 31 

T T L Cost Threshold Flags 

Upstream Tunnel End Point 

(Authentication) 

• TTL (8 bits): The T T L value of the IP packet when it is originated. 

• Cost (8 bits) 

• Threshold (8 bits): 

• Flags (8 bits): 

• Upstream Tunnel End Point (32 bits): The address of the originator of the 

Setup message. The originator now is the upstream tunnel end point. 

• Authentication (variable length, optional): Used to authenticate the setup. 

4.1.4 T u n n e l R e j e c t O b j e c t 

7 15 23 31 

Rejecting Router 

Reason 

(Authentication) 

Rejecting Router (32 bits): The address of the originator of the Reject message. 

Reason (32 bits): Indicate the reason why the request is rejected. 

Authentication (variable length, optional): Used to authenticate the reject. 
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4.1.5 Tunnel Destroy Object 

7 15 23 31 

Downstream Tunnel End Point 

(Authentication) 

• Downstream Tunnel End Point (32 bits): The address of the originator of the 

Destroy message, which was the downstream end of the tunnel. 

• Authentication (variable length, optional): Used to authenticate the destroy. 

4.2 Message Processing 

4.2.1 State Transition 

Each routing table entry has one incoming interface, iif , and n outgoing interface, 

oifs . In order to describe the processing of the control messages, two state machines 

are used, one for the iif and one for the oif . Usually, the iif state machine of an 

upstream router exchange messages with the oif state machine of a downstream 

router. Sometimes events on an oif state machine will trigger transitions on the 

iif state machine of the same router. 

Outgoing Interface States 

An outgoing interface (oif ) of a multicast routing table entry can be in one of the 

following four states: Idle, Native, Tunnel or Dual state. 

An oif in Idle state has no downstream member. Data are not forwarded 

on Idle oifs . oifs in Idle state can be deleted from the oif list of the routing table 

entry. An oif in Native state has a downstream member requesting native data 
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on the link connected to the oif . The oif should keep receiving Join messages in 

order to stay in the Native state. Incoming data will be forwarded on to a Native 

oif in native format. An oif in Tunnel state has an outgoing tunnel established to 

a downstream receiver. The oif should keep receiving Request messages in order 

to stay in the Tunnel state. Incoming data are forwarded in encapsulated format 

to the downstream end point of the outgoing tunnel associated with the oif . An 

oif in Dual state has both outgoing tunnels and immediate downstream router that 

are requesting native data. Data are sent twice for an oif in Dual state: once in 

native format to the immediate downstream member, once in encapsulated format 

to the downstream end point of the tunnel associated with the oif . 

Outgoing Interface State Transition 

Figure 4.1 describes the transitions among the four oif states. In the labels beside 

transitions, inputs from downstream routers are shown above the bar, and outputs 

to downstream routers are shown below the bar. Forwarded messages to upstream 

routers are also put below the bar but with a prefix "F:". conditions are shown 

in square brackets. There are two conditions defined in the diagram, [U] and [M]. 

Condition [U] holds when the routing table entry of the distribution tree does not 

have other oifs than the interface on which the input message arrives, and when 

there is no local member for the group and source. Condition [M] holds when the 

entry has other oifs or has local member. 

When the first Join message for the distribution tree arrives on an interface 

in Idle state, i.e., on an interface that is not in the oif list of the routing table entry 

for the group, the interface is inserted in the oif list of the routing table entry. The 

oif changes to Native state from Idle state. If the Join arrives on a router that does 
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Join 

Destroy 

Request&[U] 
F: Request 

Join 

Destroy/Prune 

Prune 

Idle 

Input 

Request&[U] 
F: Request 

Request&[M] 
Setup 

Destroy 

Request&[M] 
Setup 

Destroy 
Prune 

Join/Request 

Dual 

Join Prune 

Request&[U] 
F:Request+Destroy 

Tunnel 

Prune/Request & [M] 
Request+Destroy 

Setup 

Output 
[U] :have no local member and no other oif than the arriving interface 
[M]:have local member or other oif than the arriving interface 

Figure 4.1: Outgoing Interface State Transition Diagram 

not have a routing table entry for the group and source, an entry will be created, 

and the Join will be forwarded upstream. When a Request message arrives on an 

interface in Idle state, and the associated routing table entry has oif other than the 

one on which the Request arrives, a Setup message is sent back to the requesting 

router and a tunnel is established. The interface changes from Idle state to Tunnel 

state. When a Request message arrives on a router that does not have associated 

routing table entry for the distribution tree, i.e.. when the [U] condition holds, then 

the Request is forwarded further upstream. 

An oif in Native state enters Dual state when a Request message is received 
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on the oif and condition [M] holds, i.e., the entry either has more than one oifs or 

has local member. A Setup message is returned to the requesting router, and a 

tunnel is established. If the Request arrives on an oif in Native state and the 

condition [U] holds, i.e.. the entry has only one oif and no local member, then the 

entry remains in Native state and the request is forwarded further upstream. An 

oif in Native state changes to Idle state if a Prune is received on the interface. The 

oif can be deleted from the oif list. If the oif list hence becomes empty and there 

is no local member, a prune is sent further upstream. 

An oif in Tunnel state changes to Dual state when a Join is received. It 

changes to Idle state when a Destroy message is received and there is no local 

member, and the oif can be deleted from the oif list. If the oif being deleted was 

the last in the list and there are no local members, a Prune or Destroy message is 

sent upstream depending on the state of the iif . If a Request message is received 

on a Tunnel state oif and condition [U] holds, a Destroy object is appended in the 

Request message and the combined message is sent upstream. If a Request arrives 

on an oif and condition [M] holds, the tunnel is refreshed. If a combined Request 

and Destroy message is received and the tunnel associated with the oif is the same 

as the one in the Destroy message, then that tunnel is destroyed, and the new tunnel 

is setup as requested. The combined Request and Destroy message is used in tunnel 

splice operation. 

An oif in Dual state changes to Tunnel state if a Prune is received on the oif . 

An oif in Dual state changes to Native state if a Destroy is received. Other messages 

are discarded. It is designed primarily to avoid interruptions in data delivery during 

the tunnel setup and destroy. An entry should stay in Dual state as short as possible, 

since the router very likely is generating duplicated data packets on the same link. 
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Incoming Interface States 

The incoming interface(n/ ) of a multicast routing table entry can be in one of four 

states: Idle, Native, Tunnel or Dual. 

A routing table entry with iif in Idle state will not accept any incoming 

data. Routing table entries with Idle iif can be deleted. A routing table entry in 

Native state can accept incoming data in unencapsulated format, i.e., native format. 

Data will be forwarded on to all the outgoing interfaces of the entry. Data arrived in 

encapsulated format will be discarded, and a tunnel Destroy message may optionally 

be sent back to the originator of the encapsulated tunnel data. If the routing table 

entry for a distribution tree is not an uni-multicast entry, i.e., it either has local 

member, or has more than one different immediate downstream receiver, then a 

tunnel Request message is sent periodically on the iif , trying to establish a tunnel. 

A routing table entry with iif in Tunnel state has an incoming tunnel as­

sociated with it. Only packets from the correct upstream tunnel end point can be 

accepted and forwarded on. Incoming data in native format will be discarded and 

optionally a Prune message can be sent upstream. Incoming encapsulated data from 

a router other than the upstream tunnel end point will be discarded and a tunnel 

Destroy message may be sent to the originator of the encapsulated data. 

Incoming Interface State Transition 

Figure 4.2 illustrates the transitions among the four iif states. The conventions 

used here are the same as those in the oif state transition diagram. The two new 

conditions are defined here. Condition [J] holds when there is some downstream 

receiver or there is local member. Condition [P] is the opposite of [J]. 

When the first Join message for the distribution tree arrives on an oif or 
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Input [J] : The oif list is non-empty 
Output or has local member 

Destroy 

Figure 4.2: Incoming Interface State Transition Diagram 

when the first local member joins the group, a routing table entry is created, a Join 

message is sent upstream, and the iif of the entry becomes in Native state. 

When the last downstream or local member leaves the distribution tree, the 

iif of the multicast routing table entry for the group changes to Idle state. A Prune 

is sent upstream if the iif is in Native state, a Destroy is sent if the iif is in Tunnel 

state. The entry itself can then be deleted. Other messages received when iif is in 

Idle state are discarded. 

If a Setup message is received for a iif in Native state, a tunnel is established 

and the iif changes to Tunnel state. An iif in Dual state changes to Native mode 

when data in native format starts to arrive on the iif . If a Reject message is 

received for a iif in Tunnel state, a Destroy and a Join are sent upstream, and the 

iif changes to Dual state. Unexpected Setup message received in any state should 
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always trigger a Destroy message being sent back to the originator of the Setup 

message. 

4.2.2 Pseudo Codes 

Following we present the pseudo codes for the message processing. They gives more 

accurate definitions for the state machine. Real implementations can be derived 

strait forward from the pseudo code. 

Process of Join Message 

process_join(Join message) 
•C 

determine the arriving interface aif of request_message; 
lookup the routing table entry i of the requested group; 
i f ( no such entry ) { 

create a new entry for the group; 
insert aif in the oif l i s t ; 
set the aif in Native state; 
set i i f in Native state; 
send Join message further upstream; 
return; 

} 

i f ( aif in Tunnel state ) { 
set aif in Dual state; 

} 

i f ( i i f in Tunnel state ) 
return; 

old_iif = i i f ; 
calculate the new i i f ; 
i f ( i i f != old_iif ) { // i i f has changed 

send Join message further upstream; 
> 
return; 
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Process of Prune Message 

process_prune(Prune message) 
•C 

determine the arriving interface aif of request_message 
lookup the routing table entry i of the requested group 
i f ( no such entry ) 

return; 

i f ( aif in Dual state ) {_ 
set aif in Tunnel state; 

} else i f ( aif in Tunnel state ) 
return; 

} else { 
// native state, delete the oif 
set aif to Idle state and delete aif from oif l i s t ; 
i f ( oif l i s t is empty ) { 

if ( i i f in Native state ) 
send Prune upstream; 

else 
send Destroy upstream; 

} 

> 

Process of Request Message 

process_request(Request message) 
{ 

determine the arriving interface aif of request_message 
lookup the routing table entry i of the requested group 

if (no routing table entry) { 
if (tunnel bypassing is allowed) 

// forward the request further upstream; 
forward_request(group, source, pkt); // exit #1 

else return; // exit #2 
> 

i f (a Destroy object is included in the message) 

48 



process_destroy(Destroy object); 

determine the outgoing interfaces o i f _ l i s t of the routing table entry 
i f ( aif is in Idle state ) { 

i f ( distance(requesting_router, this_router) < 
minimum tunnel length requirement) { 

discard Request message and return; // exit 3 . 5 
} 

i f ( there exists another tunnel t l to the requesting router ) 
delete_tunnel(tl); 

// performing tunnel split operation 
set aif in Tunnel state and insert aif into o i f _ l i s t ; 
setup a tunnel to the requesting_router on aif; 
return; // exit #3 

} 

// aif is in o i f _ l i s t , trying to forward the request further upstream 
// check i f the router is doing uni-multicast for the group 
// is_umcast() returns true i f the group has no local member and 
// has only one immediate downstream receiver; 
/ / i t tests the Ul condition 
i f ( is_umcast(group, source) && is_bypass_allowed() ) { 

if ( no incoming tunnel for i ) { 
forward the Request upstream; 
return; // exit #5 

} else { 
// exist incoming tunnel t i for i 
append a destroy_object in the request_message; 
forward the new Request message upstream; 
return; // exit #6 

} 

} 

// can't forward the request upstream, check the length limit 
i f ( distance(requesting_host, local_host) < 

minimum tunnel length requirement) { 
discard Request message and return; // exit 6 .5 

} 

i f ( aif in Tunnel state ) { 
determine aif's associated tunnel t2 
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i f ( the other end of tunnel t2 is the requesting_router ) { 
reset the tunnel_refresh_timer of t2; 
return; // exit #9 

} 

} else { aif in Native state or the requesting router is 
i f ( there exists another tunnel t3 to the requesting_router ) 

delete_tunnel(t3); 
i f ( aif in Native state ) { 

setup a tunnel to the requesting_router on aif; 
return; // exit #7 8 

} 

// reject the request since the aif is occupied by another tunnel 
send_reject to the requesting router 
return; // exit #10 11 

} 

> 

Process of Setup Message 

Process_setup(Setup message) 
•c 

lookup the routing table entry i of the group; 

i f ( no routing table entry found ) { // no such group 
send Destroy message to the sender of the Setup message 

} else { 
setup the tunnel; 
i f ( i i f in Native state) { 

send Prune message upstream; 
} else { // i i f is in Tunnel state 

send Destroy to the upstream end point of the old tunnel; 
} 

} 

> 

Process of Reject Message 

Process_reject(Reject message) 
lookup the routing table entry i of the group; 
i f ( no routing table entry found ) 
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return; // discard the message 

// st a r t i n g send joins again i f there was a tunnel established 
i f ( i i f i n Tunnel state ) { 

set i i f to Native state; // discard incoming tunnel 
i f ( have l o c a l member or have downstream receiver ) { 

send Join message upstream; 
> 
send Destroy message upstream; 

> 

> 

Process of Destroy Message 

Process_destroy(Destroy message/object) 
{ 

determine the arr i v i n g interface a i f of request_message; 
lookup the routing table entry i of the requested group; 

i f (no routing table entry) 
return; //no such group, discard the Destroy 

i f ( a i f i n Tunnel or Dual state ) { 
i f ( requesting router == 

downstream end point of the tunnel associated with a i f ) {. 
delete the tunnel; 
i f ( a i f i n Tunnel state ) { 

set a i f to Idle state and delete the a i f from the o i f l i s t of i ; 
i f ( o i f l i s t i s empty ) { 

i f ( i i f i n Native state ) 
send Prune upstream; 

else 
send Destroy upstream; 

} 
} else { 

set a i f to Native state; 
} 

} 

} 

} 
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4.3 Timers and Refresh Message Generation 

In PIM-SM, there are three types of required timers related to a source specific for­

warding table entry: Join/Prune-Timer, Oif-Timer, and Entry-Timer. One Join/Prune-

Timer is maintained for each entry to generate periodic Join/Prune messages. When 

the Join/Prune-Timer goes off, all the routing entries are checked, and aggregated 

Join/Prune packets that may contain multiple Join or Prune messages are sent up­

stream, n Oif-Timer, one for each oif in the entry, are used to timeout each oif . 

When an Oif Timer goes off, the associated oif is removed from the forwarding table 

entry. The timer is refreshed (the timer value is set to its initial value) each time 

a Join message arrives on the oif . One Entry-Timer is used to timeout the entry 

itself. When this timer goes off, the associated multicast forwarding table entry is 

deleted. The timer is refreshed each time a data packet is received. 

In PIM-DT, all these three timers are kept and the processing of the timer 

events remains largely unchanged. The differences in the timer event processing 

between PIM-SM and PIM-DT are: 1) When a valid request message is received on 

an oif that is in Tunnel or Dual state, the Oif-Timer of the interface is refreshed. 

The timer values used can be different from the values selected in PIM [14]. 2) 

When the entry timer goes off and the iif of the entry is in Tunnel state, a Destroy 

message instead of a Prune message is sent upstream. 

In PIM-DT a new Request/Destroy timer is introduced to generate the pe­

riodic Request messages from the downstream tunnel endpoints to keep the tunnel 

state on the upstream tunnel end point. When this timer goes off, for each entry 

that either has more than one immediate downstream receiver or has local member 

and with iif in Tunnel state, a Request message is sent upstream. 
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Chapter 5 

Analysis and Simulation 

PIM-DT is intended to be implemented as an optimization on top of PIM-SM. In 

this chapter, we will evaluate the effectiveness of Dynamic Tunnel by comparing the 

performance of PIM-DT to that of PIM-SM. The performance of the protocols is 

measured through both analysis and simulation. 

5.1 Performance Analysis 

The efficiency of the Dynamic Tunnel Multicast routing protocol can be evaluated 

in terms of state information requirement, tree cost, data processing efficiency and 

control overhead. The state information requirement can be measured using the 

average multicast routing table size or the average multicast forwarding cache size. 

In the existing multicast routing protocols the two sizes are the same in most cases. 

The tree cost can be evaluated using the total cost of the links traversed by all the 

copies of a packet when it is delivered to all the receivers. The data processing 

overhead can be measured in terms of average number of instructions executed at 

each router in order to forward the packet. The control overhead can be measured 

53 



using the total number of control packets sent to all the links in order to maintain 

the correct protocol behavior. 

In this analysis, we will focus on the states information requirement and 

control overhead of the Dynamic Tunnel Multicast protocol. The state information 

requirement can be measured using the average multicast forwarding table size. The 

control overhead can be measured using the total number of control packets sent on 

all the links that are needed to maintain the protocol states. 

For simplicity, we only analyze and simulate the behavior of P I M - D T , the Dy­

namic Tunnel Multicast with P I M - S M as the underlying multicast routing protocol, 

and we only consider the case in which all the traffic is delivered on source specific 

shortest path trees (SPT). Dynamic tunnels with shared trees and bi-directional 

trees are likely to have similar behavior as those with source specific trees. The tree 

cost, data processing efficiency, control overhead and detailed tunnel dynamics on a 

full fledged version of P I M or C B T will be analyzed in our future work. 

5.1.1 N e t w o r k m o d e l 

In the following analysis, each node in the network topology represents a router. 

Each router can be viewed as being connected to a local network omitted in the 

topology map. Routers are considered having local members if some hosts in its 

connected local network want to receive traffic. The receivers of a multicast group 

always join the source specific trees, thus no shared trees will be created in the 

network. 
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5.1.2 Evaluation Matrix 

Average multicast routing table size 

In P I M terminology, the multicast routing table entries on a source specific tree of 

a multicast group G rooted at a source S is a (S, G) entry. 

First, let us define an a parameter of a distribution tree t to be the average 

number of multicast routing table entries per router for the tree: 

where Ne is sum of the total number of multicast routing table entries, i.e., the 

total number of (S,G) entries, on all the routers for distribution tree i , and Nt is 

the number of routers on the tree. 

When no tunnels are established, each router on a source specific distribution 

tree has one (S,G) routing table entry for the distribution tree, in which case Ne = Nt 

and the value of the a parameter is always 1.0. 1.0 is the maximum a value for 

source specific trees. The minimum a value for any particular tree is defined by the 

following equation: 

where Nf, is the number of branching points on tree t, Ni is the number of leaf nodes 

on the tree, JVr is the number of root node of the tree which is always 1, and Nt is 

the total number of nodes in tree t. The a parameter of a tree reaches its minimum 

when all the uni-multicast routers on the tree are bypassed by dynamic tunnels. In 

conclusion, for source specific trees, the following condition holds: 

Ne 
Nt 

(5.1) 

Nb + N, + Nr 

Nt 

(5.2) 

0 < 
Nb + N, + Nr 

Nt 

< a < 1.0 
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The a value shows what fraction of the routers on the distribution tree still have 

the state information after the tunnels are established. 

Now we can use following formula to calculate the average number of multi­

cast routing table entries in the entire network: 

where T is the average number of active multicast groups in the network, Ne, Nt and 

a are the average Ne, Nt and a values for all the distribution trees in the network 

respectively, and N is the total number of nodes in the network. 

When no tunnels are established, the average number of multicast routing 

table entries E' is: 

E' = f - ^ (5.4) 

The percentage of multicast routing table entries saved due to the establish­

ment of dynamic tunnels can be calculated as the follows: 

7 = ^ ^ = ( l - 5 ) (5-5) 

Thus the effectiveness of the dynamic tunnels in terms of reduction in multicast 

routing state is directly related to the a parameter of the distribution trees. The 

smaller the a value is, the more effective the tunnels are. 

The 
amin value of some example distribution trees 

In this section, we will look at a number of distribution trees, and calculate their 

minimum possible a values. The minimum a values reveal the potentials of dynamic 

tunnels. 

In the example shown in figure 1.1, the a parameter is 1.0 for the native 

tree. Since there are only 4 routers that are aware of the multicast group on the 
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0.2 when the tunnel is established. The 

O O U of Montreal 

O U of Waterloo 

O O O U of Ottawa 

O U of Toronto 
U of Alberta 

O O O O O O O O O 

Figure 5.1: A Conference Example 

In another example, 6 researchers from 6 universities in Canada want to have 
a video conference. The distribution tree rooted at UBC is shown in figure 5.1. There 
are 32 routers involved, including 1 root node, 5 leaf nodes, and 3 branching nodes. 
If tunnels are established, only 9 of them have to remember the forwarding state. 
Therefore the a m i n parameter of the tunnel tree is 9/32 = 0.28. The maximum 
reduction in forwarding state is 72%. 

Finally we consider the real network routes collected by Vern Paxon in his 
Internet routing research [15], and analyze the possible a parameters of the trees. 
In Paxon's work, traces between 37 sites located all over the world are recorded 
using the traceroute utility. We pick one site as the sender, n other sites as the 
receivers, and construct a distribution tree based on the traces. One such tree rooted 
at Advanced Network and Services, NY, is shown in figure 5.2. The leaf nodes are 
labeled in the figure. The x axis is the distance in hop count between each site and 
the Advanced Networks and Services. 

The minimum a parameter can be calculated using formula 5.2. The average 
value of the minimum a values with the number of receivers varying from 2 to 20 
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tunnel tree, the a m t- n parameter is 4/20 

reduction in routing table size is 80%. 

UBC 
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adv 

Figure 5.2: One distribution tree constructed from the traces 

are shown in figure 5.3. 

From the figure we can see that when the tunnels are all established, the 

a values are constantly smaller than 20%, which indicate over 80% reductions in 

forwarding table size. 

5.2 Simulation 

In the previous section the performance of PIM-DT is analyzed theoretically. In this 

section, we will use the LBNL Network Simulator, ns , to validate the basic protocol 
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Figure 5.3: Average Q t o for the trees 

design presented in chapter 3 and the analysis given in the previous section. 

5.2.1 Overview of ns 

The LBNL Network Simulator, ns [16], is a simulation tool developed by the Net­

work Research Group at the Lawrence Berkeley National Laboratory. It is an event-

driven network simulator implemented as an extension to the Tool Command Lan­

guage. The simulation engine is written in C++, and the simulation is controlled 

and configured via a Tel interface. 

There are three primitive building blocks in ns : nodes, links and agents. 

The nodes and links collectively define the network topology which is configurable 

through a Tel script. Agents can generate and consume packets. Protocol entities 

such as sources, sinks and relays are implemented as agents which can be deployed 

among the nodes. Each node has an unique address and each agent is attached to 

a unique port on that node. A central scheduler keeps track of all the events such 

as packet arrivals and timeouts that occur on all the nodes, links or agents. 
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Statistics in the network such as byte or packet counts can be collected 

at any time during the simulation using Tel commands. The simulated network 

behavior can also be recorded in the traces, which can be analyzed in detail after 

simulation. The traces can be visualized using the L B N L Network Animator where 

different message types, message sizes, and protocol states can all have different 

visual representations. 

A new version of ns , ns version 2, is currently under development in the 

L B N L . We did not choose it because it was not stable at the time when we developed 

our simulations, ns has already been used as a powerful tool in many research 

areas, such as in the analysis and comparison of several flavors of T C P [17], in the 

analysis of router queuing and scheduling behavior [18], and in multimedia multicast 

delivery [19]. 

5.2.2 ns Multicast Extensions: PIMLite and SPIM 

Our simulation of PIM-DT is developed based on Daniel Zappala's multicast-extensions 

for ns version 1.0b4 [20]. Daniel's extension includes a extremely simplified version 

of PIM called PIMLite. PIMLite supports only Joins but no Prunes. Joins are not 

sent periodically, and are not aggregated. 

In our simulation, first, SPIM, another simplified version of PIM is imple­

mented. SPIM supports many PIM functions that are not available in PIMLite, 

such as Prunes, aggregated Join/Prune messages, periodic timeout and refresh of 

routing table entries. In SPIM, all the receivers join the source specific tree from 

the very beginning and all the data are delivered via source specific trees. The 

implementation is also ported to ns version 1.4, the latest development of ns ver­

sion 1. SPIM serves as the basis of implementation and the target of comparison 
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for PIM-DT. 

The PIMLite/SPIM protocol entities are implemented as agents in ns . They 

are deployed on all the nodes in the network. The address space is partitioned 

and part of it is allocated to multicast. Nodes in PIMLite/SPIM are modified 

so that they can forward multicast traffic. Each PIMLite/SPIM agent maintains 

a multicast routing table and each node maintains a multicast forwarding cache, 

which is installed by the PIMLite agent attached to it. Management and look up 

functions for multicast routing tables and multicast forwarding caches are provided. 

Simple multicast sources and sinks are also implemented in the extension. 

5.2.3 P I M - D T Simulation 

Our simulation of PIM-DT focuses on two aspects of the protocol behavior: state 

information requirement and control overhead. Some protocol details which have 

no or little impact on these two parameters are omitted. 

In our simulation, PIM-DT is implemented as a new type of agent derived 

from SPIM. It preserves all the functions in SPIM, and supports all the protocol 

features that are described in Chapter 2 and 3. Current implementation of PIM-DT 

does not support shared trees. This simplification will not significantly affect the 

evaluation of the dynamic tunnel mechanism. 

Basic Test Network for Protocol Validation 

The basic protocol features of PIM-DT are validated on a 15-node basic test network 

shown in figure 5.4. In this network, four receivers r l , r2, r3 and r4 on node 0, 1, 13 

and 14 respectively join two source specific trees rooted at node 13 and 14, where 

two low bit rate Constant Bit Rate sources s i and s2 are located. All the basic 
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Figure 5.4: Basic Test Network Topology 

tunnel operations such as tunnel establishment, tear down, split, splice, branching 

,.point shifts are tested on this configuration. 

Experiment Setup for Performance Evaluation 

The network topologies used in the simulation are n x n gird mesh topologies with 

n = 8. All the links in the network are identical bidirectional links whose bandwidth 

is 10Mb and delay is 3ms. T sources and Ni receivers are randomly deployed in the 

network. The duration of the test multicast session, i.e. the time between the first 

receiver joins the session and the last receiver leaves the session is Ds seconds. The 

average duration a receiver participate in a session is Dr seconds. Table 5.2.3 

summarize the parameters used in the simulation. 

5.2.4 Experiment Result 

First of all, the simulation result obtained on the basic test network given in figure 5.4 

is visualized using the L B N L network animator nam. The basic protocol operations 
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Figure 5.5: Experiment Network Topology 

N 64 number of nodes in the network = n x n 
T 8,16,24,32,40 number of sources(distribution trees) in the network 
Ni 4,8,16,32 number of receivers(leaves) for each source 
Ds 500 sec duration of the session 

400 sec duration that each receiver stays in the session 

Table 5.1: Summary of simulation parameters 

are all verified. We observed Requests and Setups being exchanged and tunnels 

being established. Next, several simulations are run on a 8 X 8 experimental network 

topology. Communication statistics of various links and nodes are logged to files, 

which were analyzed to verify if the alleged state reduction is achieved. In the 

experiment, we have only one sender for each group. 

63 



Routing Table Size 

The routing table size on each router is sampled every 6 seconds. The average of 

the sampled value are calculated for both S P I M and P I M - D T . The average table 

size is shown in figure 5.6. 
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Figure 5.6: Average Routing Table Size 

The horizontal axis is the number of groups that are active in the test net­

work, and the vertical axis is the average routing table size. The poly-lines labeled 

PIM-4 and PIM-8 show the average routing table sizes for S P I M protocol when 

the maximum number of receiver per group are 4 and 8 respectively, and the poly­

lines labeled Tunnel-4 and Tunnel-8 are the average routing table size for P I M - D T 

protocol with maximum number of receivers being 4 and 8. 

From the figure we can see that when the number of receivers are the same, 

the routing table size of P I M - D T is much smaller than S P I M . The absolute routing 

table size grows with number of active groups and number of receivers, as predicted 

64 



in formula 5.3. 
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Figure 5.7: Reduction in Routing Table Size 

Figure 5.7 shows the relative state information reduction achieved by PIM-

D T . The horizontal axis is again the number of active groups, the vertical axis is 

the 7 value as defined in formula 5.5. The figure shows a roughly 50% reduction in 

forwarding state information. 

We manually checked the shape of some of the distribution trees generated 

during the simulation, and calculated their amin parameters. The aT O,-n values of the 

trees are around 0.5, which agrees with the 7 values shown in figure 5.7 according 

to formula 5.5. 

We believe running the simulation on a larger topology map can lead to 

more significant reductions in multicast forwarding states, we run one simulation 

on a 20 X 20 grid mesh network and observed around 80% reduction in forwarding 

states. However, further experimentations are necessary to confirm this result. 
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Control Overhead 
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Figure 5.8: Control Overhead vs. Number of Groups 

After we confirmed the routing table reduction, we performed several exper­

iments to analyze the control overhead of PIM-DT. Usually the control overhead is 

measured as a ratio between total bandwidth spent on control bits and total band­

width spent on data bits [21]. Since we are comparing the performance of PIM-DT 

and SPIM, and the total bandwidth consumed by data bits are roughly the same 

for PIM-DT and SPIM in our experiments, we simply use the absolute number of 

control packets to measure the control overhead. The differences in packet sizes are 

not considered in the simulation. 

Figure 5.8 shows the ratio of the number of control packets generated in PIM-

DT relative to the number of control packets generated in SPIM. It demonstrates 

that PIM-DT with a simple fixed rate refreshing strategy increases the total number 

of control packets faster than SPIM as the number of active groups grows. The total 
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number of control messages generated in PIM-DT almost tripled when there are 32 

distribution trees in the network and each tree has 8 receivers. 

The main cause of the extra overhead is the periodic Request messages sent 

from the downstream tunnel end point to the upstream end point. In PIM, though 

the Join messages are also sent periodically, the number of control packets are much 

less, since multiple Joins can be aggregated and sent in a single packet. In PIM-DT, 

refresh packets for different tunnels are sent individually. For simplicity, the Joins 

are not aggregated in the current version of PIM-DT. 

The result indicates more sophisticated refreshing strategies are needed in 

order to contain the control overhead, otherwise the gains in state reduction may 

be overshadowed by the cost of excessive control packets. The next stage of the dy­

namic tunnel protocol design focuses on the reduction of control overhead. Possible 

solutions to the problem are discussed in the next section. 

5.2.5 Containing Control Overhead 

In this section, we discuss 3 methods that can reduce the control overhead. 

Adaptive Refresh Period 

Currently, the refresh period for Request messages is fixed. It is possible to adapt 

the refresh period to the data rate of the flow, and perhaps extend it to consider 

the length of the tunnel as well. The basic idea of this method is the same as that 

of the Scalable Timer approach [22], which "fixes the control bandwidth instead of 

refresh interval". 

The periodical Request message has two major functions: first it serves as 

a "keep alive" message, to inform the upstream tunnel end that the receiver still 
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requires the data; second it ensures the route is correct and the tunnel tree is aligned 

with the native tree. A higher refresh rate together with a shorter timeout period 

will generate more control overhead, but will ensure tree branches that lead to no 

receiver to be pruned quickly and will cause the tunnel tree to react more promptly 

to route changes. Lower refresh rates and longer timeout periods can have just the 

opposite result. 

If we assume that the real control overhead should be measured using the 

ratio between the total number of control bits and total number of data bits, then 

frequent refresh messages will not be a problem for high bit rate flows. In this case, 

it is actually desirable to have frequent refresh messages and shorter timeout periods 

to ensure quick termination of the data flow when the receiver quit from the group, 

and quicker convergence of tunnel tree topology to native tree topology when the 

route changes. 

For low bit rate flow, the refresh interval can be increased. An upper limit 

on the percentage of control traffic in the total traffic can be defined, in order to 

guarantee that low bit rate flows always have even lower bit rate control traffic. 

Request Aggregation 

Request messages can be divided into two classes, the initial Request messages which 

are used to setup tunnels, and refresh Request messages which are used to keep the 

tunnels alive. In the current PIM-DT simulation, the request messages are always 

forwarded immediately by the intermediate routers. 

In fact, it is desirable to forward the initial request quickly, as it may con­

tain digital signatures and time stamps from the downstream requesting router for 

security purposes which may not be valid if excessive delay is encountered. The 
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initial Request message can carry an "Urgent" flag to indicate that it should not 
be delayed. The refresh Request messages on the other hand, usually are not so 
urgent. We can introduce a "holding time" on each router to let the routers hold 
the refresh Request packets for some time before forwarding them upstream, trying 
to aggregate multiple Request Objects into the same packet to reduce overhead. 

If the refresh Request messages are to be delayed, we need to change the 
DTM protocol to make the refresh Request messages untrusted, which means refresh 
Request messages arriving on a wrong interface or wrong router will not cause new 
tunnels being established. Instead, a Tunnel Adjust message is returned to the 
downstream tunnel end point, to trigger another Request Message being sent with 
the Urgent flag set. 

Piggy-back Initial Request in Joins 

Another way to reduce the Request packets is to request tunnels from the beginning 
of the session. Originally we introduced some delay before a router starts sending 
Request packets to avoid the case that at the beginning of a session, multiple users 
join the same group at approximately the same time and tunnels are being estab­
lished and adjusted frequently. As for sparse groups, the chances for two receivers 
to join the same distribution tree at the same time is very small. In which case, we 
can allow tunnels to be established immediately after the members join the session. 
If a combined Join and Request message is received by a router, the join is processed 
first, then the Request is processed. The processing of the Join and Request are 
still the same as the procedure defined in chapter 3. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we proposed that by establishing dynamic tunnels, unnecessary uni-

multicast forwarding states can be erased. Thus significantly reduce multicast for­

warding states, and thereby making large number of sparse multicast groups feasible. 

The general architecture of Dynamic Tunnel Multicast is defined. P I M - D T , 

an instance of D T M with P I M - S M as the underlying multicast support, is specified 

and is validated using simulation. We confirm, via simulation, that dynamic tunnels 

can reduce multicast forwarding states. 

Simulations also reveals that a more sophisticated refreshing strategy is 

needed to contain the control overhead. 

6.2 Future Works 

Following is a list of Future works: 

1. Containing Control Overhead 
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Suggestions for containing control overhead are already discussed in section 
5.2.5. Further work is needed to determine which strategy or combination of 
strategies is best. 

2. More Complete Simulations and Tests 

How will the tunnels behave under a full fledged PIM-SM implementation is 
yet to be examined. Dynamic tunnel over CBT also needs to be analyzed. 
Simulations of more realistic scenarios are needed. The test network can be 
larger, have more groups and participants, and can be generated using some 
existing topology generation packages. The simulation implementation may 
also need to be ported to ns version 2 at some point. 

3. Security Issues 

Control messages such as tunnel Request and tunnel Setup can be digitally 
signed, so that tunnels can be established only between trusted routers. The 
most suitable security measurement to be used with DTM is yet to be identi­
fied. 

4. Dynamic Tunnels with RSVP 

Dynamic tunnels works best for best effort flows and for networks where the 

bandwidth is abundant. Dynamic tunnels should not be established for flows 

that require fine grained resource reservations, since for these flows state in­

formation has to be remembered by all the routers on the distribution tree 

anyhow. An interesting question is how dynamic tunnels interacts with RSVP 

to provide QoS guarantee while at same time keep the state requirement low. 

This question should be investigated in the future. 
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