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Abstract— Clearly this particular autocorrelation structure has a major im-

In this paper we derive an expression for the asymptotics of the buffer pacton the performance ofa gueue to which this type of trafficis

length distribution of a discrete-time infinite capacity single server queue . . . .
with deterministic service time and its input process belonging to a class of offered. Measurements, simulations and analytical studies have

long range dependent discrete-time M/Gdo processes. This class of arrival shown that the property of exponential decay rate of the tail of
process is defined as follows. At each time slot sequences of back-to-backhe queue length distribution observed for Markovian traffic, is
customers are generated according to a Poisson distribution with parame- not valid any longer when dealing with LRD input traffic. In this
ter X\. The length of such a sequence is assumed to asymptotically behave L L .
like a Pareto distribution with parameter s, i.e. the probability that a se- cas€, the queue length distribution may have a heavy tail which,
guence consists of; customers is given byck—¢ for k — oo, with ¢ > 0 when ignored, may lead to important underprovisioning of the
and 2 < s < 3. Due to the heavy tail of the members of this class of required buffer size. Hence, in order to quantitatively investigate
distributions, the presented class of M/Géo processes has the long range . . .
dependence property (i.e. the autocorrelation function decays as a power the |nfluenge ofthe LRD property on the queueing behavior, we
of the lag time). We show that in this case the asymptotic behavior of the need a traffic model which has the LRD property and we have to
tail probabilities of tzhe stationary distribution of the buffer occupancy is  investigate the tail of the buffer of a single server deterministic
given by =557 " for n — oo, with p representing the load  queue whose input consists of this traffic. This is exactly the
of the system. This result is obtained using a generating function approach goa| of this study.

and the Tauberian theorem for power series. Furthermore, an application . . . . .
towards traffic management and simulation results are presented. In this paper, we consider the discrete-time MiGihput pro-

Keywords—M/G/o arrival process, long range dependence, buffer asymp- C€SS. Intuitively, this process consists of sequences of baf3k't0'
totics back customers. These sequences are generated at each time slot

according to a Poisson distribution. The distribution of the num-
|. INTRODUCTION ber of customers in a train has a heavy tail, in order to ensure the

. ) ) RD property. Back-to-back customers mean that the customers
In the past five years, traffic measurement studies on real pa

ks, includi h i , sequence arrive in consecutive time slots. This Mé@fo-
networks, including Ethernet LAN traffic (see €.g. [1]), Varizogg naturally arises when considering an infinite superposition

able Bit Rate video over the Asynchronous Transfer Mode (38 dentical on/off sources [3], [4], [5]. Furthermore, the MG/

e.g.[2]), etc., haV(_a Sho‘_’V” th‘_”‘t aIt_hough the autocorrelauqnqu cess studied in this paper is in several cases consistent with
the number of arrivals in a time interval decreases for highgL i 1 aasurements. See e 9. [6]

Iags:[, thte|r _(;rlljmlulatl_veleffec(:jt ?lvergzs_. '[h||stchf?ratchterlst|c ﬁWe study the tail probabilities of the stationary buffer distribu-
contrast with classical Models used In teletratlic tneory w gfign of a statistical multiplexer fed by a class of long range de-
the autocorrelation function exhibits an expontial decay. Traffic, | 11t discrete-time M/Gd input processes. More precisely

for which the autocorrelation function decays as a power of t obtain the exact asymptotics describing the tail of the buffer

lag time, is referred to as long range dependent (LRD), in CO%stribution for the Pareto case. Several other papers, e.g. [7],

trast Wit_h the more classical short range dependent traffic (e[f% [9],[10], [3], address this topic, but most of them rely on
_I\I{It?rkowan modeIT). ival h large deviation techniques or focus on the continuous time case.
h er(; arlt_aRsSvera equwient Wayshto e;(press that a} pr mefSSBased on the approach presented in [11] and [12], we obtain the
1as th N proplerty.d ssume that the autocggrre at|o?] ungéymptotics of the buffer occupancy using generating functions
t!on as a power-law gecay, L.eCx (k) ~ [k|77. In_t € and the elementary form of the Tauberian theorem for power
time domain, LRD implies nonsummable autocorrelations, I-€aries as presented in [13]

<k=1 CX(k) = oo, while n the frequency domain, I‘RDThe paper is organized as follows. In the second section the in-
gives rise to a spectral density that obeys a power-law near Elﬁ process is defined. In section Ill, an expression for the gen-

origin. The degree by which a process has the LRD prope yating function of the buffer occupancy of the queueing system

is expressed by means of thizirst parameter It is given by under study is derived. Section IV contains the main result of
H =1- /2, whereg is the exponent of the power-law deca

fih ¢ lation functi dd e11/2. 1 Xhis paper: the asymptotics of the tail distribution of the buffer

of the autocorrelation function arid €]1/2,1]. occupancy. Section V is devoted to the superposition of LRD
The first author is aspirant with the Fonds voor Wetenschappelif’ﬁnd SRD traffic streams and t_o the Conseque_nces W'th respect

Onderzoek—Vlaanderen to traffic management. In section VI several simulation results
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are presented. Some of them point out that the results obtaii//oco processA defined above. Denote this queueing system
in section IV may be applicable in a more general setting thég QT. In order to derive an expression for the generating func-

presented in this paper. tion of the buffer occupancy in this queueing system, we need to
resort to a limit process in which two sequences of two different
Il. THE DISCRETETIME M/G/00 ARRIVAL PROCESS types of queueing systems are involved. The first sequence is

Since we are working in a discrete-time setting, time is dividetenoted by[QT "] , the second one bjQB™] . Details
in time slots. The discrete-time M/&/ arrival process can be about these sequences are given below.

defined as follows. At thé-th timeslot a number;, of new (n)
so-called sequences are generated according to a Poisson‘dis "€ sequencgQT ]n

tribution with parameteA. The random variables, are inde- The queueing syste@T ™ is the single server infinite capacity
pendent. Each sequence consists of a number of back-to-bgg&ue with deterministic service time equal to one time slot and
customers (i.e. the customers belonging to a sequence argMgal processA (™). Let X ), resp.Xs be the random vari-

in consecutive time slots). Denote the random variable regyles representing the stationary buffer occupation distribution
resenting the length of a sequence, in number of customersy,o systenQT(”), resp.QT. Denote bys,(c"), resp.sy, the

by 74. Let the probability of a sequence bfcgstomers_ be.grobability that the buffer in the queueing systhI‘(”), resp.
ar, = P{r4 = k}. The corresponding generating function i , s (n) K
QT, containsk customers. Hencg(™ (z) = "7 5,™ 2% and

given byA(z) = Y",2, axz*. Denote byb;, the number of cus- ~ P : : ;
tomers arriving at thé-th timeslot. The customer arrival rateS(z) = Dy 512" are the generating functions corresponding

is given byp = E[b;] = AE[r4] = AA'(1). In order for this ©0Xst andX's respectively. ,
M/Gloo process, which we denote by, to be long range de- By following the outline given in [11] or [12] we obtain

pendent, it is required for, to have a heavy tail. Hence we n i
assume that, is asymptotically distributed like a Pareto distri- g(n) () :p(()”) (z—1) Z H B(Ar(2)
bution with parametes with 2 < s < 3, i.e. il b1 z

(1)

P{rqa =k} ~ck ?fork — oo, +

T BAR) | ) B(An(2))
kl;[l s | SR TN E))

with ¢ > 0. This distribution results in an arrival process with
a finite mean and an infinite variance. As shown in e.g. [7] agg, B(z) = exp [)\(z—l)] andp(()”) =1-p = 1-AE[r4,]-

[4], Before we are able to determine an analytically tractable ex-
0o pression forS(z), we need to introduce the queueing systems
CoV(br, brsj) = A D P{ra > n}, QB andQB.
n=j

B. The sequenckB™]
which implies the following power-law for the covariance func-

n

tion: The queueing systel®@B(™ is the single server infinite capac-
ity queue with deterministic service time equal to one time slot
CoM(by, iy ;) ~ Lj%s_ and with input the arrival proce8(™ which is derived from
(s —1)(s —2) A in the following way: all customers belonging to a se-

quence generated by(™ enter the buffer simultaneously, i.e.
as a batch. The queueing syst@ is defined in the same way.
It is clear that the process& "™ andB generate the same ar-
rival rate asA (") and A, but the covariance structure of the lat-
ter two is lost. Denote by,(C”), resp.v, the probability that the
Plry =i} ifi<n, buffer in the queueing syste®B ™, resp.QB, containsk cus-
p R o tomers. Hence the generating functions of the stationary buffer
{Tamy =i} = P{TA > n} if i =n, . T, . oo (n)_k
0 i occupation distributions are given B§™ (2) = 32 v,z
Lo andV (z) = > pe, vk 2.
'Bpe following results for these generating functions are well

Hence the Hurst paramet&r = (4 — s) /2.

In the next section we need a sequence of MdéGrrival pro-
cessesA (™ which converges weakly té. Consider therefor
the sequence of random variabteg., defined by

The corresponding generating functions are denoted

AM(z) = 72 o™i, hencedD)(z) = z, ..., A (z) = KNOWN:
arz+az’+.. .+ an_12"" 4+ (ap+any +...)2"% Itis clear (n) B(A(”)(z))
that the sequence, ., converges weakly te,. Starting from Va(2) =po (2 — )m
T4 iNStead ofr4 we can now use the method for constructing
A to obtainA("). Hence[A ("] converges weakly ta. and
[1l. THE GENERATING FUNCTION OF THE BUFFER V(z) = polz — 1)M
OCCUPANCY DISTRIBUTION z — B(A(z))

Consider a single server infinite capacity queue with determinith po = 1 — p.
istic service time equal to one time slot and arrival process the
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C. Determination o5 (z) Proof: Considerz € D(0,1).

(n—k)l Z ak]z - Z apz"
k=n+1

k=n+1

A straightforward approach to obtain an expression §¢t) (n)
- olek(z) =0 (2)] =

would be to take the limit o5(")(z), expressed by equation k

(1), forn — oco. However, this method does not lead to a well-

. . o0
defined expression. For example n Z a’“] St _ Z a2
k=n-+2 k=n+2
T B(A4k(2)) o o
H P + Z ak]z”“— Z akzk—f—...‘
k=1 k=n+3 k=n+3
. < .
would diverge or0, 1) becauser < B(4,(z)) forj > 1 and = 2k_2:+1 kax

€ [0,1). Therefor, we transform equation (1). First of all,
using the following equality, which holds on some open disk
contained in the open unit digk(0, 1) of the complex plane,  Hence the uniform convergence is a consequengef, kay <

0. |
B(An(2) i K Lemma I11.3: For each: € D(0,1) the inequalities
2= B(A,(z)) ~  “~ B(A, ()%’ (n)
k=0 ¢r, (2)
porm) < 2mz>kmam <24'(1)
equation (1) can be rewritten as
and
n—2 i @k(z) /
n <2 m < 24'(1
Su@) =n =D Y [(H B(Ak<z>>> x et | S22, mam <24
i=1 k=1
n—1 n—1 hold forl < & < n — landl < k < oo respectively.
1 B(Ay B(Ayg
7(1 - H #)] + H B(Ak(z Va(2). (2) Proof Analogousto the proof of lemma Ill.2. |
o kips BAn(2)) i1 B(An(2) Lemma IIl.4: For eachz € C the inequality|exp(z) — 1] <
|z| exp(]z]) holds.
with the right hand side now representing a holomorphic func- Proof: Straightforward. u
tion onU/(0, 1). Now we are able to proof the main result of this section.

To keep the notation simple, we introduce the following defi nTheorem Ill.1:The generating functio is given by

tions,
S(z) = po(z— 12[(1_[31% ) (1 Oit1(2 )) +
n—1 i=1
o (2) = Y Aj(2) — Anl(2), 6,(2)V(2)
j=k Proof: We will proof the pointwise convergence ¢ 1]
> of S, to S. By the uniform convergence Qﬁ") to 1 on [0,
vr(z) = Z[AJ'(Z) —A(2)], 1] and by the pointwise convergenceldf to V' on [0, 1], we
i=k ) ( o) immediately obtain,
(n) _BAkZ ...BAnflz - (n)
K 7 B T A lim 67 (Vi) = 62V (2)

n—oo

for eachz € [0,1]. FurthermoreS, (1) = S(1) andS,(1) =
p(()”) which converges t&'(0) = po. By these observations we

can now restrict our attention to the pointwise convergence of

Before we are able to proof the main result of this section we i
need the following lemmas. B®(0, 1) we denote the closed To(z) = p(n) B(Ax(z _pn (2)
unit disk in the complex plane. 0 ; H ( o )

Lemma lll.1: Foreachr € D(0, 1) theinequalityB(A4;(z))| <
exp[A(|z| — 1)] holds.

to
Proof: A straightforward calculation using the inequality - ;
A; < 1on [0, 1] constitutes the proof. | T(2) = polz — 1) Z KH B(A, (z))> l (1 Bii1 ( ))]
Lemma lll.2: The sequencépgc”)] ,, converges uniformly tgy, i=1 L \k=1 ?

on D(0,1) for eachk > 1.
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n(0,1). Lete > 0. We will show uniform convergence of IV. THE BUFFER ASYMPTOTICS

; ; 1
T o T on each intervaly,1 — ) with 0 < v < 3. Take Now we determine the asymptotics of the tail probabilities of
z € (y,1 — ). By lll.3 we have that

the buffer occupancy, i.e. the asymptotic behavioP¢fXs >
n} = Y%, sk forn — oco. Atthe same time we obtain the

1 ,
(1 - 95_?1( N| < 2AA" (1) () asymptotic behavior of the buffer occupancy for the queueing
systemQB.

and Note that, using the formula

1 5 ’ n

(1= 6i11()| < A4/ (1)) B[] = B/ |4 - 2| ¢
fori =1,...,n—2andl < i < oo respectively. Hence, by B”(l)[A’(l)]2+B’(1)A”(1)
choosingN large enough, one obtains, by using Ill.1, 2(1 - p) ’

- j n . derived in [11], one has
Py (z—1) Zl(HB Ap(z ) ( 0H_1(z)) <3 hI{l S'(2) = 0.
z—1—

Determining the exact way in whic# (z) diverges forz — 1—
for eachn > N + 2 and is the key step in determining the asymptotic behavior of the

' buffer distribution.
mz-1)Y (H B(4y (z))) S (1-6)
i=1 k=1

Lemma IV.1:
<

| ™

_ s—2
8'(2) ~ 1 _ A3 —-s+1)p
(=2 (1= p)(s - DB —s)
Proof: See appendix. ]
By the uniform convergence 09611 to 81 on [0, 1], a con- nyt;t]he foregoing lemma IV.1 we are able to proof the key result
. . of this paper.
s;zquencle of lemma :]”t'z’ S?d mg — po, itis possible to Theorem IV.1:The asymptotic behavior of the tail probabili-
choose: farge enough o obtain ties of the stationary distribution of the buffer occupancy of the
gueueing syster®T is given by

(7)o~ Z[(HB (Ate > (160 ))H > s A — P

i=N 5_2 S_]-)(]-_p)

forz — 1—

N-1 k>n
1 € Proof: By IV.1 and by [13, theorem 5, pg. 423] we have
poZ 1 E [Zi(l+1 z+1 )HBAk <§. .
i=1 . )\Cps_2 N
. . ) . E Js5 ~ n .
Hence we have pointwise convergence @yl ), combined with = (I=p)(s=1)(B—s)

the convergence at the endpoints, we h&yéz) — S(z) for
eachz € [0,1].

To simplify forthcoming calculations we rewrite the formula fo
S. The following definitions are used:

An application of [14, 3.3 (c), pg. 59] concludes the proofll
|From this theorem we conclude that the buffer occupancy dis-
tribution has a power-law decay with exponent s, with s the
parameter used in the Pareto distributed length of trains. Be-

Or(2) = Ay (2) — A(2) + ... + Ap(z) — A(z) sidgs the slope of the distributi_on, we a_llso obtain thg constant
. which determines the asymptotic behavior exactly. This asymp-
0i(2) = exp[Agj(2)] totic behavior was postulated, for the fluid flow approach, in [3,
. . , . theorem 6].
Using them enables us to obtain the following result In the same way it is possible to determine the asymptotic be-
) havior for the queueing syste@®B.
Sz =plz-1)Y [B(A(z))ie,.*(z) (1- 9,-(z))] Lemma IV.2:
i=1 , 1 Ael(3 =5 +1)
+61(2)V(2) Ve~ s o e -ne- O
- ® prof:'s d m
))z roof: See appendix. _ _
=V(z)0 Z 07 (= X Theorem IV.2:The asymptotic behavior of the tail probabilities
of the stationary distribution of the buffer occupancy of @B
lexp(Ait1(2) — Az )) -1]. is given by
Again, it is clear that the last formula represents a holomorphic Z Vg ~ Ac n2=%forn — oo.
function ont/ (0, 1), and so it is a valid and useful representation /=, (s=2)(s = 1)(1-p)
of S(z). Proof: Analogous to the proof of theoremlV.1. |
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V. APPLICATION TO TRAFFIC MANAGEMENT V1. NUMERICAL RESULTS

The M/Gho arrival process can be used as a first approxima- M/Gho simulations

tion when modeling TELNET and FTP sessions. As examing® get an idea about how fast the asymptotic regime sets in we

in [6] these sessions arrive according to a Poisson process giifulated the “Pareto” queue. For this queue the random vari-
their durations/sizes are in several cases consistent with Paggifer, is defined by

distributions. Hence, using the asymptotic expression (4) for the

buffer occupation, one can now explain the occurrence of the so- Plra=j}=7""-@G+1'".

called “buffer ineffectiveness” phenomenon. This phenomenon

stands for the fact that increasing the buffer sizes beyond a d@eéncec = s — 1 and the loag is given byp = A((s — 1). The
tain value results in only a slight decrease in loss rates when tagdom variable) represents in both examples the stationary
arriving traffic is LRD, see e.g. [15] and [16]. Clearly, “buffeduffer occupation distribution.

ineffectiveness” is a consequence of the very slowly decaying

tail probabilities given in (4). 0 | T

In this context we will now study what happens to the buffer 0.5 Simulation ¢ |
- Analytical —

asymptotics if we consider:

« the superposition of an SRD and an LRD traffic stream,
« the superposition of two LRD traffic streams.

First of all observe that a superposition of two M&Gprocesses
with sequence arrival ratek;, ¢ = 1,2 and sequence length
distributionsr,,, i = 1,2, ,is again a M/Géo process with\ =
A1 + A2 and7y determined byA(z) = A /(A1 + A2) A1 (2) +
Ag/(Al + /\2)A2 (Z)

logP{Q > k}

A. Superposition of SRD and LRD traffic streams

. . L L e . Fig. 1. Example 1
Consider an arbitrary distribution with finite variance and gen-

erating function4; (z). Itis clear that the M/Gk process, with
sequence arrival ratg; constructed from this distribution isA.1 Example 1
SRD. The LRD traffic stream is modeled b{ an NMG/p_r?_ Heres = 2.8 and\ = 0.4 resulting inp ~ 0.75. The simulation
cess constructed frotk, andr4, with P{r4, = k} ~ ck™°. 9

. ... length wasl0” time slots.
It is clear that for the sequence lengths of the superposition one
has

0 T T
L ol -1+ Simulation <& —
Plra =k} ~ck™ = Pyl Analytical — |
Hence I
c
O+ Aa)elpy + p)* 2 &
P{Q >k} ~ RS L ua S n*~% forn — oco. 80
0>~ G- DA = (1 + ) 2
()
with @ representing the buffer occupation gmdthe loads of- 0 50 100 150 200 2500 300 350 400
fered by the individual arrival processes. The contribution of k(x100)
the SRD arrivals is only reflected in the total load and the total
arrival rate. Fig. 2. Example 2
B. Superposition of two LRD traffic streams
A.2 Example 2

Here both the packet length distributions are Pareto Iikﬁ:ere

P{ra, =k} ~ck,i=1,2. Now s = 2.5 andX = 0.2 resulting inp ~ 0.78. The simula-

tion length wa2 x 10° time slots. The asymptotic formula for
Plra =k} ~ k" P{Q = k} can be derived from IV.1 and is given by
)\ps—2

k175 for k — .
1—p

with s = min(sy, s2) ande thec; corresponding to this. Again P{Q =k} ~
equation (5) describes the asymptotic behavior. As one expects

the “worst” behaving source determines the decay of the tait can be seen from the figures, the asymptotic formulas ap-
probabilities. proximate the buffer behavior well over the whole range.
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VII. CONCLUSION and

An exact asymptotic expression describing the tail probabili-
ties of a single server queue with LRD M&s/input is derived

by using a generating function approach. This result explain§(z)i exp P\(Z _ A(z))] FV(2)¥(2) + V()W (2). (6)
the occurrence of the “buffer ineffectiveness” phenomenon ob- = dz

served with LRD traffic streams. As pointed out by the SiMkiret of ail we study the behavior @ (z). Each term; is non-
ulation results, the obtained analytical results seem apphcamggative or{0, 1] sinceA;(z) — A(z) > 0 for eachj > 1 and

S'(z) = V'(z) exp[A(z — A(2))] +

in a more general setting. Therfore future work will focus of, "o ach, € [0,1]

generalizing these results.

. Furthermore, by lemma 1.4,

1
VIIl. A CKNOWLEDGMENT ¥i(z) < g/\(AiJrl(Z) — A(2)) exp[Ais1(2) — A(2)]
i 1
The authors would _Ilke to_thank Prof. Jan Van Casteren for the < _-/\(Ai+1( ) — A(z))e)‘
many and helpful discussions. zt
IX. APPENDIX = [( Z ak>z - Z akzk_n] e
k=n+2 k=n+2

First of all we are going to give the proof of Lemma IV.2, be-

cause this lemma will be used in the proof of Lemma IV.1.

Proof of 1V.2. Differentiating V' (z) and usingB(A(z)) =
> o [M(A(z) — 1)]%/(K!) we obtain

lim (1 —2)*73V'(2) =

- o 1= A() = (1= 2)A()
lim (1 —2)*"3poA 5 .
z—rl— P [z — B(A(z))]
Furthermore,
1—A(z) = (1—2)A'(2) = (1 —2)? Zk[ > aj] 2L
k=1 Lj=k+1
Since

> c
k a; ~ k2—*
Z J s—1
J=k+1

for k — oo and
_ 2
i 0= 1
1= 2 — B(A(2))] Do
we obtain by applying [13, theorem 5, pg. 423]
Acl'(3 —s+1)
1=p)(s=1)@B—s)

This last equality concludes the proof.

lim (1—2)*?V'(z) =

z—1—

Proof of IV.1.The proof is based on manipulating the expression

(3) for S. We introduce the following definitions:
Wi(2) = B(A())'0} () [exp (A () — A(2)) — 1],
U(z) = (a).
i=1

Hence, we can rewrite (3) as

S(z) =V(2)exp[A(z — A(2))] + V(2)¥(2)

Al this results in

0< ¥(z) <et [(i(k - 2)ak> z— i(k - 2)akzk] .

k=3 k=3
Hence,

lim ¥(z) =0.

z—1—

Using this result and other more elementary observations we
obtain

lim (1 —2)*7%5"(2) = lim (1 —2)>"°V'(2) +

z—1— z—1—

lim (1 —2)>7*¥'(2).

z2—1—

Furthermore,

o0

V() = 3 W),

because of the uniform convergence [@‘:f:l \IIZ] to ¥ on
k

compact subsets &f (0, 1). We will now focus on the behavior
of ¥’(z) since we already know the behavioriof(z). Define:

B(A())’

6(2) = = A (i () - A(2),

o A M) - A)]"
wi(z) =1 —I—; 1) .

Hence,

¥() = Y B 6w (2),

and
ORI HOIORIOR

o0

S8 (EHwi(2) + Y B2

i=1
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By observing the inequalities and
+ o0 o0 °°
liai*( ] <A () Y (k —1)(Zaj>z’“ 2 t(z)=—2<2a1>BAZ
dz P = k=0 \j>k
and One hag(l) = —A'(1) and
- = ‘ __r
[dilzo;(z)] < N2 (2) ];kakzk_l, Jim v(z) = 77 o
; Furthermore,
with [f(2)]" = max{0, f(2)}, [f(2)]” = — min{0, f(2)}, one ,
obtains 4 oe) = 1 - B(A(2)) — (1—2)[B(A(2))]
. dz [B(A(:) -2’ |
lim (1-2)*"* % [67(2)] & (2)wil2) = 0. _
= i=1 and since
Making use of similar techniques one also concludes 1-A(z) o(2) 1
N BAG) -z A+ X(AR) -1)+...
zliqlf(l -2 Z 0 (2)&i(2)wi2) = 0 one obtains
Proceeding in the same way one ultimately obtains lim (1 2)%" s d A A[B(A(2))] — A(2)
21— dz B(A(z)) —
lim (1 —2)*7%%/(z) = lim (1 - 2) l Zgl ] : _Ap’ P T(B—s+1) p Acp*?T(3—s+1)
el A (s —1)(3 - ) 1—p (s=1)(3-5s)
A @B-s+1)
1=p)(s=1B—s)

Observe thatt 7, &;(z) can be rewritten in a much more
tractable way:

EZ&(z) =\ Z( > ak> B(A(2))F +
i=1 k=1 \j=k-+1
Alz) -1 fa - A[B(A(z))] — A(2)
z B(A(2)) — =
First of all note that
[1]
lim (1-2)° ulZ( > a > (AR)*| = [2]
k=1 \j=k+1
Aep2T(3—s5+1) 3]
(s—=1)(3—2ys)
Furthermore
ABAE)] —AR)  ABAE)] -1 1-4p) O
B(A(z)) — = B(A(z)) — 2 B(A(z)) — =
[5]
and
A[B(A(2))] -1 .
B{A(2) —2 = v(2)t(z), [7]
with
o) = Lo BUAE) [8]
B(A(z)) — =

By taking a look at (6) one can now conclude

Acp (3 — s +1)
(1=p)(s—D@B-s)’

lim (1—2)37%5"(2) =

z—1—

which finishes the proof.
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