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Abstract—
In this paper we derive an expression for the asymptotics of the buffer
length distribution of a discrete-time infinite capacity single server queue
with deterministic service time and its input process belonging to a class of
long range dependent discrete-time M/G/1 processes. This class of arrival
process is defined as follows. At each time slot sequences of back-to-back
customers are generated according to a Poisson distribution with parame-
ter �. The length of such a sequence is assumed to asymptotically behave
like a Pareto distribution with parameter s, i.e. the probability that a se-
quence consists ofk customers is given byck�s for k ! 1, with c > 0

and 2 < s < 3. Due to the heavy tail of the members of this class of
distributions, the presented class of M/G/1 processes has the long range
dependence property (i.e. the autocorrelation function decays as a power
of the lag time). We show that in this case the asymptotic behavior of the
tail probabilities of the stationary distribution of the buffer occupancy is

given by �c�s�2

(s�2)(s�1)(1��)
n2�s for n ! 1, with � representing the load

of the system. This result is obtained using a generating function approach
and the Tauberian theorem for power series. Furthermore, an application
towards traffic management and simulation results are presented.
Keywords—M/G/1 arrival process, long range dependence, buffer asymp-
totics

I. I NTRODUCTION

In the past five years, traffic measurement studies on real packet
networks, including Ethernet LAN traffic (see e.g. [1]), Vari-
able Bit Rate video over the Asynchronous Transfer Mode (see
e.g. [2]), etc., have shown that although the autocorrelations of
the number of arrivals in a time interval decreases for higher
lags, their cumulative effect diverges. This characteristic is in
contrast with classical models used in teletraffic theory where
the autocorrelation function exhibits an expontial decay. Traffic
for which the autocorrelation function decays as a power of the
lag time, is referred to as long range dependent (LRD), in con-
trast with the more classical short range dependent traffic (e.g.
Markovian models).
There are several equivalent ways to express that a processXk

has the LRD property. Assume that the autocorrelation func-
tion has a power-law decay, i.e.CX(k) � jkj�� . In the
time domain, LRD implies nonsummable autocorrelations, i.e.P
1

k=1 CX(k) = +1, while in the frequency domain, LRD
gives rise to a spectral density that obeys a power-law near the
origin. The degree by which a process has the LRD property
is expressed by means of theHurst parameter. It is given by
H = 1� �=2, where� is the exponent of the power-law decay
of the autocorrelation function andH 2]1=2; 1].

The first author is aspirant with the Fonds voor Wetenschappelijk
Onderzoek—Vlaanderen

Clearly this particular autocorrelation structure has a major im-
pact on the performance of a queue to which this type of traffic is
offered. Measurements, simulations and analytical studies have
shown that the property of exponential decay rate of the tail of
the queue length distribution observed for Markovian traffic, is
not valid any longer when dealing with LRD input traffic. In this
case, the queue length distribution may have a heavy tail which,
when ignored, may lead to important underprovisioning of the
required buffer size. Hence, in order to quantitatively investigate
the influence of the LRD property on the queueing behavior, we
need a traffic model which has the LRD property and we have to
investigate the tail of the buffer of a single server deterministic
queue whose input consists of this traffic. This is exactly the
goal of this study.
In this paper, we consider the discrete-time M/G/1 input pro-
cess. Intuitively, this process consists of sequences of back-to-
back customers. These sequences are generated at each time slot
according to a Poisson distribution. The distribution of the num-
ber of customers in a train has a heavy tail, in order to ensure the
LRD property. Back-to-back customers mean that the customers
of a sequence arrive in consecutive time slots. This M/G/1 pro-
cess naturally arises when considering an infinite superposition
of identical on/off sources [3], [4], [5]. Furthermore, the M/G/1

process studied in this paper is in several cases consistent with
traffic measurements. See e.g. [6].
We study the tail probabilities of the stationary buffer distribu-
tion of a statistical multiplexer fed by a class of long range de-
pendent discrete-time M/G/1 input processes. More precisely,
we obtain the exact asymptotics describing the tail of the buffer
distribution for the Pareto case. Several other papers, e.g. [7],
[8], [9],[10], [3], address this topic, but most of them rely on
large deviation techniques or focus on the continuous time case.
Based on the approach presented in [11] and [12], we obtain the
asymptotics of the buffer occupancy using generating functions
and the elementary form of the Tauberian theorem for power
series as presented in [13].
The paper is organized as follows. In the second section the in-
put process is defined. In section III, an expression for the gen-
erating function of the buffer occupancy of the queueing system
under study is derived. Section IV contains the main result of
this paper: the asymptotics of the tail distribution of the buffer
occupancy. Section V is devoted to the superposition of LRD
and SRD traffic streams and to the consequences with respect
to traffic management. In section VI several simulation results
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are presented. Some of them point out that the results obtained
in section IV may be applicable in a more general setting than
presented in this paper.

II. T HE DISCRETE-TIME M/G/1 ARRIVAL PROCESS

Since we are working in a discrete-time setting, time is divided
in time slots. The discrete-time M/G/1 arrival process can be
defined as follows. At thek-th timeslot a number
k of new
so-called sequences are generated according to a Poisson dis-
tribution with parameter�. The random variables
k are inde-
pendent. Each sequence consists of a number of back-to-back
customers (i.e. the customers belonging to a sequence arrive
in consecutive time slots). Denote the random variable rep-
resenting the length of a sequence, in number of customers,
by �A. Let the probability of a sequence ofk customers be
ak = Pf�A = kg. The corresponding generating function is
given byA(z) =

P
1

k=1 akz
k. Denote bybk the number of cus-

tomers arriving at thek-th timeslot. The customer arrival rate
is given by� = E[bk] = �E[�A] = �A0(1). In order for this
M/G/1 process, which we denote byA, to be long range de-
pendent, it is required for�A to have a heavy tail. Hence we
assume that�A is asymptotically distributed like a Pareto distri-
bution with parameters with 2 < s < 3, i.e.

Pf�A = kg � ck�s for k !1;

with c > 0. This distribution results in an arrival process with
a finite mean and an infinite variance. As shown in e.g. [7] and
[4],

Cov(bk; bk+j) = �

1X
n=j

Pf�A > ng;

which implies the following power-law for the covariance func-
tion:

Cov(bk; bk+j) �
�c

(s� 1)(s� 2)
j2�s:

Hence the Hurst parameterH = (4� s)=2.
In the next section we need a sequence of M/G/1 arrival pro-
cessesA(n) which converges weakly toA. Consider therefor
the sequence of random variables�A(n) defined by

Pf�A(n) = ig =

8><
>:
Pf�A = ig if i < n;

Pf�A > ng if i = n;

0 if i > n:

The corresponding generating functions are denoted by
A(n)(z) =

P
1

i=1 a
(n)

i zi, henceA(1)(z) = z, : : : , A(n)(z) =
a1z+a2z

2+ : : :+an�1z
n�1+(an+an+1+ : : : )zn. It is clear

that the sequence�A(n) converges weakly to�A. Starting from
�A(n) instead of�A we can now use the method for constructing
A to obtainA(n). Hence

�
A(n)

�
n

converges weakly toA.

III. T HE GENERATING FUNCTION OF THE BUFFER

OCCUPANCY DISTRIBUTION

Consider a single server infinite capacity queue with determin-
istic service time equal to one time slot and arrival process the

M/G/1 processA defined above. Denote this queueing system
byQT. In order to derive an expression for the generating func-
tion of the buffer occupancy in this queueing system, we need to
resort to a limit process in which two sequences of two different
types of queueing systems are involved. The first sequence is
denoted by

�
QT(n)

�
n
, the second one by

�
QB(n)

�
n
. Details

about these sequences are given below.

A. The sequence
�
QT(n)

�
n

The queueing systemQT(n) is the single server infinite capacity
queue with deterministic service time equal to one time slot and
arrival processA(n). LetXS(n) , resp.XS be the random vari-
ables representing the stationary buffer occupation distribution
in the systemQT(n), resp.QT. Denote bys(n)

k
, resp.sk, the

probability that the buffer in the queueing systemQT(n), resp.
QT, containsk customers. HenceS(n)(z) =

P
1

k=0 s
(n)

k zk and
S(z) =

P
1

k=0 skz
k are the generating functions corresponding

toXS(n) andXS respectively.
By following the outline given in [11] or [12] we obtain

S(n)(z) =p
(n)
0 (z � 1)

nX
i=1

iY
k=1

B(Ak(z))

z

+

"
nY
k=1

B(Ak(z))

z

#
p
(n)
0 (z � 1)

B(An(z))

z �B(An(z))

(1)

withB(z) = exp
�
�(z�1)

�
andp(n)0 = 1��(n) = 1��E[�An

].
Before we are able to determine an analytically tractable ex-
pression forS(z), we need to introduce the queueing systems
QB

(n) andQB.

B. The sequence
�
QB

(n)
�
n

The queueing systemQB(n) is the single server infinite capac-
ity queue with deterministic service time equal to one time slot
and with input the arrival processB(n) which is derived from
A(n) in the following way: all customers belonging to a se-
quence generated byA(n) enter the buffer simultaneously, i.e.
as a batch. The queueing systemQB is defined in the same way.
It is clear that the processesB(n) andB generate the same ar-
rival rate asA(n) andA, but the covariance structure of the lat-
ter two is lost. Denote byv(n)k , resp.vk, the probability that the
buffer in the queueing systemQB(n), resp.QB, containsk cus-
tomers. Hence the generating functions of the stationary buffer
occupation distributions are given byV (n)(z) =

P
1

k=0 v
(n)

k zk

andV (z) =
P
1

k=0 vkz
k.

The following results for these generating functions are well
known:

Vn(z) = p
(n)
0 (z � 1)

B(A(n)(z))

z �B(A(n)(z))

and

V (z) = p0(z � 1)
B(A(z))

z �B(A(z))

with p0 = 1� �.
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C. Determination ofS(z)

A straightforward approach to obtain an expression forS(z)
would be to take the limit ofS(n)(z), expressed by equation
(1), forn ! 1. However, this method does not lead to a well-
defined expression. For example

1Y
k=1

B(Ak(z))

z

would diverge on[0; 1) becausez < B(Aj(z)) for j > 1 and
z 2 [0; 1). Therefor, we transform equation (1). First of all,
using the following equality, which holds on some open disk
contained in the open unit diskU(0; 1) of the complex plane,

B(An(z))

z �B(An(z))
= �

1X
k=0

zk

B(An(z))k
;

equation (1) can be rewritten as

Sn(z) = p
(n)

0 (z � 1)

n�2X
i=1

" 
iY

k=1

B(Ak(z))

!
�

1

zi

 
1�

n�1Y
k=i+1

B(Ak(z))

B(An(z))

!#
+

"
n�1Y
k=1

B(Ak(z))

B(An(z))

#
Vn(z): (2)

with the right hand side now representing a holomorphic func-
tion onU(0; 1).

To keep the notation simple, we introduce the following defini-
tions,

'
(n)

k (z) =

n�1X
j=k

Aj(z)�An(z);

'k(z) =

1X
j=k

�
Aj(z)�A(z)

�
;

�
(n)

k (z) =
B(Ak(z)) : : : B(An�1(z))

B(An(z))n�k
= exp

�
�'

(n)

k (z)
�
;

�k(z) = exp
�
�'k(z)

�
:

Before we are able to proof the main result of this section we
need the following lemmas. ByD(0; 1) we denote the closed
unit disk in the complex plane.

Lemma III.1: For eachz 2 D(0; 1) the inequalityjB(Aj(z))j 6
exp
�
�(jzj � 1)

�
holds.

Proof: A straightforward calculation using the inequality
Aj 6 1 on [0, 1] constitutes the proof.

Lemma III.2: The sequence
�
'
(n)

k

�
n

converges uniformly to'k
onD(0; 1) for eachk > 1.

Proof: Considerz 2 D(0; 1).

��'k(z)� '
(n)

k (z)
�� =

�����(n� k)

"
1X

k=n+1

ak

#
zn �

1X
k=n+1

akz
k

+

"
1X

k=n+2

ak

#
zn+1

�

1X
k=n+2

akz
k

+

"
1X

k=n+3

ak

#
zn+2

�

1X
k=n+3

akz
k + : : :

�����
6 2

X
k=n+1

kak:

Hence the uniform convergence is a consequence of
P
1

k=1 kak <
1.
Lemma III.3: For eachz 2 D(0; 1) the inequalities�����'

(n)

k (z)

zk�1

����� 6 2
X
m>k

mam 6 2A0(1)

and �����'k(z)zk�1

����� 6 2
X
m>k

mam 6 2A0(1)

hold for1 6 k 6 n� 1 and1 6 k <1 respectively.
Proof: Analogous to the proof of lemma III.2.

Lemma III.4: For eachz 2 C the inequality
��exp(z) � 1

�� 6
jzj exp(jzj) holds.

Proof: Straightforward.
Now we are able to proof the main result of this section.
Theorem III.1: The generating functionS is given by

S(z) = p0(z�1)

1X
i=1

" 
iY

k=1

B(Ak(z))

!
1

zi

�
1��i+1(z)

�#
+

�1(z)V (z)
Proof: We will proof the pointwise convergence on[0; 1]

of Sn to S. By the uniform convergence of'(n)1 to '1 on [0,
1] and by the pointwise convergence ofVn to V on [0, 1], we
immediately obtain,

lim
n!1

�
(n)

1 (z)Vn(z) = �1(z)V (z)

for eachz 2 [0; 1]. Furthermore,Sn(1) = S(1) andSn(1) =

p
(n)
0 which converges toS(0) = p0. By these observations we

can now restrict our attention to the pointwise convergence of

Tn(z) = p
(n)
0 (z � 1)

n�2X
i=1

" 
iY

k=1

B(Ak(z))

!
1

zi

�
1� �

(n)

i+1(z)
�#

to

T (z) = p0(z � 1)

1X
i=1

" 
iY

k=1

B(Ak(z))

!
1

zi

�
1� �i+1(z)

�#
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on (0; 1). Let � > 0. We will show uniform convergence of
Tn to T on each interval(
; 1 � 
) with 0 < 
 < 1

2
. Take

z 2 (
; 1� 
). By III.3 we have that���� 1zi (1� �
(n)

i+1(z))

���� 6 2�A0(1)e2�A
0(1))

and ���� 1zi (1� �i+1(z))

���� 6 2�A0(1)e2�A
0(1))

for i = 1; : : : ; n � 2 and1 6 i < 1 respectively. Hence, by
choosingN large enough, one obtains, by using III.1,�����p(n)0 (z � 1)

n�2X
i=N

" 
iY

k=1

B(Ak(z))

!
1

zi

�
1� �

(n)

i+1(z)
�#����� < �

4

for eachn > N + 2 and�����p0(z � 1)

1X
i=1

" 
iY

k=1

B(Ak(z))

!
1

zi

�
1� �i+1(z)

�#����� < �

4
:

By the uniform convergence of�(n)i+1 to �i+1 on [0, 1], a con-

sequence of lemma III.2, and byp(n)0 ! p0, it is possible to
choosen large enough to obtain

�����
�
p
(n)
0 �p0

�
(z�1)

n�2X
i=N

" 
iY

k=1

B(Ak(z))

!
1

zi

�
1��

(n)

i+1(z)
�#�����

+

�����p0(z�1)
N�1X
i=1

"
1

zi

�
�i+1(z)��

(n)

i+1(z)
� iY
k=1

B(Ak(z))

#����� < �

2
:

Hence we have pointwise convergence on(0; 1), combined with
the convergence at the endpoints, we haveSn(z) ! S(z) for
eachz 2 [0; 1].
To simplify forthcoming calculations we rewrite the formula for
S. The following definitions are used:

'?k(z) = A1(z)�A(z) + : : :+Ak(z)� A(z)

�?k(z) = exp
�
�'?k(z)

�
Using them enables us to obtain the following result:

S(z) = p0(z � 1)

1X
i=1

h
B(A(z))i�?i (z)

�
1� �i(z)

�i
+ �1(z)V (z)

= V (z)�?1(z) + V (z)

1X
i=1

�?i (z)
B(A(z))i

zi
�

�
exp
�
Ai+1(z)�A(z)

�
� 1
�
:

(3)

Again, it is clear that the last formula represents a holomorphic
function onU(0; 1), and so it is a valid and useful representation
of S(z).

IV. T HE BUFFER ASYMPTOTICS

Now we determine the asymptotics of the tail probabilities of
the buffer occupancy, i.e. the asymptotic behavior ofPfXS >
ng =

P
1

k>n sk for n ! 1. At the same time we obtain the
asymptotic behavior of the buffer occupancy for the queueing
systemQB.
Note that, using the formula

E
�
XS

�
= B0(1)

"
A0(1)�

A00(1)

2

#
+

B00(1)
�
A0(1)

�2
+B0(1)A00(1)

2(1� �)
;

derived in [11], one has

lim
z!1�

S0(z) =1:

Determining the exact way in whichS0(z) diverges forz ! 1�
is the key step in determining the asymptotic behavior of the
buffer distribution.
Lemma IV.1:

S0(z) �
1

(1� z)3�s
�c�(3� s+ 1)�s�2

(1� �)(s� 1)(3� s)
for z ! 1�

Proof: See appendix.
By the foregoing lemma IV.1 we are able to proof the key result
of this paper.
Theorem IV.1:The asymptotic behavior of the tail probabili-
ties of the stationary distribution of the buffer occupancy of the
queueing systemQT is given by

X
k>n

sk �
�c�s�2

(s� 2)(s� 1)(1� �)
n2�s for n!1. (4)

Proof: By IV.1 and by [13, theorem 5, pg. 423] we have

kX
j=1

jsj �
�c�s�2

(1� �)(s� 1)(3� s)
n3�s:

An application of [14, 3.3 (c), pg. 59] concludes the proof.
From this theorem we conclude that the buffer occupancy dis-
tribution has a power-law decay with exponent2� s, with s the
parameter used in the Pareto distributed length of trains. Be-
sides the slope of the distribution, we also obtain the constant
which determines the asymptotic behavior exactly. This asymp-
totic behavior was postulated, for the fluid flow approach, in [3,
theorem 6].
In the same way it is possible to determine the asymptotic be-
havior for the queueing systemQB.
Lemma IV.2:

V 0(z) �
1

(1� z)3�s
�c�(3� s+ 1)

(1� �)(s� 1)(3� s)
for z ! 1�

Proof: See appendix.
Theorem IV.2:The asymptotic behavior of the tail probabilities
of the stationary distribution of the buffer occupancy of theQB
is given byX

k>n

vk �
�c

(s� 2)(s� 1)(1� �)
n2�s for n!1.

Proof: Analogous to the proof of theoremIV.1.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE



5

V. A PPLICATION TO TRAFFIC MANAGEMENT

The M/G/1 arrival process can be used as a first approxima-
tion when modeling TELNET and FTP sessions. As examined
in [6] these sessions arrive according to a Poisson process and
their durations/sizes are in several cases consistent with Pareto
distributions. Hence, using the asymptotic expression (4) for the
buffer occupation, one can now explain the occurrence of the so-
called “buffer ineffectiveness” phenomenon. This phenomenon
stands for the fact that increasing the buffer sizes beyond a cer-
tain value results in only a slight decrease in loss rates when the
arriving traffic is LRD, see e.g. [15] and [16]. Clearly, “buffer
ineffectiveness” is a consequence of the very slowly decaying
tail probabilities given in (4).
In this context we will now study what happens to the buffer
asymptotics if we consider:

� the superposition of an SRD and an LRD traffic stream,
� the superposition of two LRD traffic streams.

First of all observe that a superposition of two M/G/1 processes
with sequence arrival rates�i, i = 1; 2 and sequence length
distributions�Ai

, i = 1; 2, ,is again a M/G/1 process with� =
�1 + �2 and�A determined byA(z) = �1=(�1 + �2)A1(z) +
�2=(�1 + �2)A2(z).

A. Superposition of SRD and LRD traffic streams

Consider an arbitrary distribution with finite variance and gen-
erating functionA1(z). It is clear that the M/G/1 process, with
sequence arrival rate�1 constructed from this distribution is
SRD. The LRD traffic stream is modeled by an M/G/1 pro-
cess constructed from�2 and�A2

with Pf�A2
= kg � ck�s.

It is clear that for the sequence lengths of the superposition one
has

Pf�A = kg � ck�s:

Hence

PfQ > kg �
(�1 + �2)c(�1 + �2)

s�2

(s� 2)(s� 1)(1� (�1 + �2))
n2�s for n!1.

(5)

with Q representing the buffer occupation and�i the loads of-
fered by the individual arrival processes. The contribution of
the SRD arrivals is only reflected in the total load and the total
arrival rate.

B. Superposition of two LRD traffic streams

Here both the packet length distributions are Pareto like:
Pf�Ai

= kg � ck�si , i = 1; 2. Now

Pf�A = kg � ck�s

with s = min(s1; s2) andc theci corresponding to thiss. Again
equation (5) describes the asymptotic behavior. As one expects
the “worst” behaving source determines the decay of the tail
probabilities.

VI. N UMERICAL RESULTS

A. M/G/1 simulations

To get an idea about how fast the asymptotic regime sets in we
simulated the “Pareto” queue. For this queue the random vari-
able�A is defined by

Pf�A = jg = j1�s � (j + 1)1�s:

Hencec = s� 1 and the load� is given by� = ��(s� 1). The
random variableQ represents in both examples the stationary
buffer occupation distribution.

-2.5

-2

-1.5

-1

-0.5

0

0 200 400 600 800 1000

lo
g
P
f
Q
>
k
g

k

Simulation 3

3

3
3
3
333333333333333333333333333333333333

Analytical

Fig. 1. Example 1

A.1 Example 1

Heres = 2:8 and� = 0:4 resulting in� � 0:75. The simulation
length was109 time slots.

-7

-6

-5

-4

-3

-2

-1

0

0 50 100 150 200 2500 300 350 400

lo
g
P
f
Q

=
k
g

k(�100)

Simulation 3
3

3
3
33333333333333333333333333333333333333

Analytical

Fig. 2. Example 2

A.2 Example 2

Heres = 2:5 and� = 0:2 resulting in� � 0:78. The simula-
tion length was2� 109 time slots. The asymptotic formula for
PfQ = kg can be derived from IV.1 and is given by

PfQ = kg �
��s�2

1� �
k1�s for k !1.

As can be seen from the figures, the asymptotic formulas ap-
proximate the buffer behavior well over the whole range.
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VII. CONCLUSION

An exact asymptotic expression describing the tail probabili-
ties of a single server queue with LRD M/G/1 input is derived
by using a generating function approach. This result explains
the occurrence of the “buffer ineffectiveness” phenomenon ob-
served with LRD traffic streams. As pointed out by the sim-
ulation results, the obtained analytical results seem applicable
in a more general setting. Therfore future work will focus on
generalizing these results.
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IX. A PPENDIX

First of all we are going to give the proof of Lemma IV.2, be-
cause this lemma will be used in the proof of Lemma IV.1.

Proof of IV.2. Differentiating V (z) and usingB(A(z)) =P
1

k=0[�(A(z)� 1)]k=(k!) we obtain

lim
z!1�

(1� z)s�3V 0(z) =

lim
z!1�

(1� z)s�3p0�
1�A(z)� (1� z)A0(z)�

z �B(A(z))
�2 :

Furthermore,

1�A(z)� (1� z)A0(z) = (1� z)2
1X
k=1

k

"
1X

j=k+1

aj

#
zj�1:

Since

k

1X
j=k+1

aj �
c

s� 1
k2�s

for k !1 and

lim
z!1�

(1� z)2�
z �B(A(z))

�2 =
1

p20
;

we obtain by applying [13, theorem 5, pg. 423]

lim
z!1�

(1� z)s�3V 0(z) =
�c�(3� s+ 1)

(1� �)(s� 1)(3� s)
:

This last equality concludes the proof.
Proof of IV.1.The proof is based on manipulating the expression
(3) forS. We introduce the following definitions:

	i(z) = B(A(z))i�?i (z)
1

zi

�
exp
�
Ai+1(z)�A(z)

�
� 1
�
;

	(z) =

1X
i=1

	i(z):

Hence, we can rewrite (3) as

S(z) = V (z) exp
�
�
�
z �A(z)

��
+ V (z)	(z)

and

S0(z) = V 0(z) exp
�
�
�
z �A(z)

��
+

V (z)
d

dz
exp
�
�
�
z �A(z)

��
+ V 0(z)	(z) + V (z)	0(z): (6)

First of all we study the behavior of	(z). Each term	i is non-
negative on[0; 1] sinceAj(z) � A(z) > 0 for eachj > 1 and
for eachz 2 [0; 1]. Furthermore, by lemma III.4,

	i(z) 6
1

zi
�
�
Ai+1(z)�A(z)

�
exp
�
Ai+1(z)�A(z)

�
6

1

zi
�
�
Ai+1(z)�A(z)

�
e�

=

" 
1X

k=n+2

ak

!
z �

1X
k=n+2

akz
k�n

#
e�

Al this results in

0 6 	(z) 6 e�

" 
1X
k=3

(k � 2)ak

!
z �

1X
k=3

(k � 2)akz
k

#
:

Hence,

lim
z!1�

	(z) = 0:

Using this result and other more elementary observations we
obtain

lim
z!1�

(1� z)3�sS0(z) = lim
z!1�

(1� z)3�sV 0(z) +

lim
z!1�

(1� z)3�s	0(z):

Furthermore,

	0(z) =

1X
i=1

	0i(z);

because of the uniform convergence of
hPk

i=1 	i

i
k

to 	 on

compact subsets ofU(0; 1). We will now focus on the behavior
of 	0(z) since we already know the behavior ofV 0(z). Define:

�i(z) =
B(A(z))i

zi
�
�
Ai+1(z)�A(z)

�
;

!i(z) = 1 +

1X
k=1

�
�
�
Ai+1(z)�A(z)

��k
(k + 1)!

:

Hence,

	(z) =

1X
i=1

�?i (z)�i(z)!i(z);

and

	0(z) =

1X
i=1

�
�?i (z)

�
0

�i(z)!i(z) +

1X
i=1

�?i (z)�
0

i(z)!i(z) +

1X
i=1

�?i (z)�i(z)!
0

i(z):

0-7803-5420-6/99/$10.00 (c) 1999 IEEE
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By observing the inequalities"
d

dz
�?i (z)

#+
6 ��?i (z)

1X
k=2

(k � 1)

 
1X
j=k

aj

!
zk�2

and "
d

dz
�?i (z)

#
�

6 ��?i (z)

1X
k=2

kakz
k�1;

with [f(z)]+ = maxf0; f(z)g, [f(z)]� = �minf0; f(z)g, one
obtains

lim
z!1�

(1� z)3�s
1X
i=1

�
�?i (z)

�
0

�i(z)!i(z) = 0:

Making use of similar techniques one also concludes

lim
z!1�

(1� z)3�s
1X
i=1

�?i (z)�i(z)!
0

i(z) = 0:

Proceeding in the same way one ultimately obtains

lim
z!1�

(1� z)3�s	0(z) = lim
z!1�

(1� z)3�s

"
1

z

1X
i=1

�i(z)

#
0

:

Observe that1
z

P
1

i=1 �i(z) can be rewritten in a much more
tractable way:

1

z

X
i=1

�i(z) = �

"
1X
k=1

 
1X

j=k+1

ak

!
B(A(z))k +

A(z)� 1

z
+ a1 �

A[B(A(z))] �A(z)

B(A(z))� z

#
:

First of all note that

lim
z!1�

(1� z)3�s�

"
1X
k=1

 
1X

j=k+1

ak

!
B(A(z))k

#
0

=

�c�s�2�(3� s+ 1)

(s� 1)(3� s)
:

Furthermore

A
�
B(A(z))

�
�A(z)

B(A(z)) � z
=

A
�
B(A(z))

�
� 1

B(A(z))� z
+

1�A(z)

B(A(z)) � z

and

A
�
B(A(z))

�
� 1

B(A(z))� z
= v(z)t(z);

with

v(z) =
1�B(A(z))

B(A(z))� z

and

t(z) = �

1X
k=0

 X
j>k

aj

!
B(A(z))k:

One hast(1) = �A0(1) and

lim
z!1�

v(z) =
�

1� �
:

Furthermore,

d

dz
v(z) =

1�B(A(z))� (1� z)
�
B(A(z))

�
0�

B(A(z))� z
�2 ;

and since

1�A(z)

B(A(z)) � z
= v(z)

1

�+ �2

2!

�
A(z)� 1

�
+ : : :

;

one obtains

lim
z!1�

(1� z)3�s
d

dz

"
�
A[B(A(z))] �A(z)

B(A(z))� z

#

=
�c�s�2�(3� s+ 1)

(s� 1)(3� s)
+

�

1� �

�c�s�2�(3� s+ 1)

(s� 1)(3� s)

�
�c�(3� s+ 1)

(1� �)(s� 1)(3� s)
:

By taking a look at (6) one can now conclude

lim
z!1�

(1� z)3�sS0(z) =
�c�s�2�(3� s+ 1)

(1� �)(s� 1)(3� s)
;

which finishes the proof.
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