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Abstract- This paper reports on the design and the eval- 
uation of transmission control mechanisms specifically de- 
signed for multiplayer, distributed (serverless), interactive 
Internet applications. Distributed synchronization and dead 
reckoning are the main elements of this transmission control 
infrastructure. These mechanisms have been implemented 
in a fully distributed, multiplayer game application, i.e., one 
in which each entity in a game session computes its own local 
view of the session. The role of each entity is consequently 
to periodically send its own state to  all other session partic- 
ipants (using RTP/UDP/IP multicast) and to periodically 
compute its own local view of the global game state using in- 
formation received from the other participants. A detailed 
experimental analysis is provided using MBone and LAN 
experiments We investigate how the “quality” of the game 
is influenced by the frequency at which players exchange 
state information, as well as by network impairments such 
as packet loss and transmission delay. 

Keywords- Interactive Applications, Distributed Archi- 
tecture, Internet, Transmission Control, Multipoint Com- 
munication. 

I .  INTRODUCTION 

article describes the design and the evaluation 
THIS of an end- to-end transmission control infrastruc- 
ture for multiparty interactive applications. Such applica- 
tions include interactive distributed games and distributed 
VR environments [22], Distributed Interactive Simulations 
(DIS) [1][2] command-and-control applications, collabora- 
tive tools [27] and Air Traffic Control (ATC)[3][4]. This 
new generation of applications has data transmission re- 
quirements that are significantly different from those of 
traditional data applications, including a resiliancy to data 
loss, and the constraint that data be delivered within a 
certain amount of time in order to  preserve real-time in- 
teractivity among participants. These new data communi- 
cation requirements, as well as the possibility of leveraging 
communication-relatedl application-specific characteristics 
[20] of such interactive, multiparty environments (e.g., the 
fact that participant trajectories are often being computed) 
suggest that new transmission control mechanisms are re- 
quired. 

We have implemented a multi-player distributed game 
in order to  analyze the transmission control mechanisms 
we have designed. A distributed game was chosen because 
it is representative of this new generation of interactive 
multimedia applications. MIMAZE is inspired from iMaze 
[8].  iMaze is a bi-dimensional “Pacman” game with a 3D 

representation. Avatars (“Pacmen”) move in a labyrinth 
in which they try to  kill each other. Each player has a 3D 
representation of its vision domain and a 2D overhead view 
of the entire game. A detailed description of MIMAZE is 
given in [13]. Fkom a communication architecture point of 
view, MIMAZE is serverless, and uses an unreliable com- 
munication infrastructure based on RTP [9] over UDP/IP 
multicast [16]. Because the focus of our work is on trans- 
mission control mechanisms, the MIMAZE game rules and 
graphics are purposefully simple, as a more complex appli- 
cation would have made it difficult to  isolate the behavior 
of the transmission control mechanisms. 

In order to guarantee the real-time properties of the ap- 
plication (including interactivity) on the Internet, we have 
designed a synchronization mechanism to accommodate 
the heterogeneous transmission delays among the partic- 
ipants. To increase the efficiency of this synchronization 
mechanism, a dead reckoning based algorithm has also been 
implemented to cope with error control. We will see that 
dead reckoning provides a very natural way to  recover losses 
in such a real-time application, where retransmission is im- 
possible. These two mechanisms form the core of our ar- 
chitecture. They are analyzed later in this paper. 

The contribution of this paper is consequently to describe 
original communication-related mechanisms for multiparty 
interactive applications on the Internet and to  provide a de- 
tailed analysis of its transmission control parameters. We 
investigate how the “quality” of the game is influenced by 
the frequency at which players exchange state information, 
as well as by network impairments such as packet loss and 
delay’. Our results generally show the transmission con- 
trol infrastructure we describe can be used to provide an 
highly interactive, distributed game environment, even in 
the presence of significant network impairments. Our de- 
tailed analysis also reveals important insights into specific 
aspects of the transmission control infrastructure. We find 
that the tradeoff between the “quality” of the game and 
network resource used (rate of transmitting state updates) 
is such that there is a well-identified point on this tradeoff 
curve where it is desirable to operate, and that this point 

lscalability is not addressed in this paper. We decided that it was 
more important to first understand the behavior of this new type of 
application, before designing it to  scale to large numbers of partici- 
pants. 
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is relatively independent of loss rate. We show that an in- 
creased transmission rate can be used to refine one player's 
estimate of another player's location only up to a certain 
point; increasing the transmission beyond that rate only 
results in the transmission of redundant data. We show 
that the burstiness of the network packet loss process can 
effect the quality of the game as much as, or more than, 
the loss rate itself. 

I t  is clear that we are studying a very specific instance of 
a set of applications. Even if all results can not be general- 
ized, it was an important first step to understand how these 
applications will behave on the Internet. Consequently, we 
do not try to generalize our result, but we try to point out 
generalizable results. 

Before moving to the technical content of this paper, we 
define here some specific vocabulary introduced from [13]. 
The representation of a participant in the game is called an 
avatar. The exact description of an avatar (e.g., position, 
orientation) is called the avatar state. The exact descrip- 
tion of the game (including all avatars, score, terrain, etc.) 
is called the game's global state. Because the architecture 
is distributed, each participant computes its own view of 
the game global state, which we will refer to as the "local" 
view of the global state. Each participant location is called 
an entity. A game entity periodically sends its local state 
to all other entities. It also computes and displays peri- 
odically the global state of the game to the participant 2 .  

The game is perfectly "consistent" if all entities in the game 
compute and display the same global state. We elaborate 
further on these definitions in section 2. 

The remainder of this paper is structured as follows. Sec- 
tion 2 describes MIMAZE's end-to-end transmission con- 
trol infrastructure, which is based on distributed synchro- 
nization and dead reckoning. In section 3, we describe and 
analyze performance measurements realized on the Mbone 
and in a LAN. We then empirically investigate how game 
quality is influenced by the frequency at which players ex- 
change state information, and by various levels of packet 
loss and delay. Section 4 concludes the paper and discusses 
future work. 

11. END-TO-END TRANSMISSION CONTROL 
INFRASTRUCTURE 

In a multi-participant game played over a network with 
best effort service (such as the Internet), each player will 
experience varying and unpredictable network delays and 
packet loss. The goal of a transmission control infrastruc- 
ture that supports such an application is to mask this delay 
and loss, while providing a "consistent" and "timely" view 
of the game to the distributed participants. By "timely" 
and "consistent" we mean the following: 

Timeliness. When an action is played (or issued) by a 
player, it should be displayed to all participants within 
a relatively short amount of time. The DIS standard 
[1,2,3] recommends a maximum delay of 150 ms, while 
commercial networked game companies note that the 

2We will see later that the sending frequency and the display fre- 
quency are independent parameters. 

quality of game begins to degrade when the delay is 
on the order 200 milliseconds [22]. In practice, compa- 
nies offering networked games services insure that such 
delay constraints are always met by over-provisioning 
bandwidth to ensure that congestion and packet loss 
never occur. Our interest here, on the other hand, is 
in designing and evaluating robust transmission con- 
trol mechanisms that operate in the face of variable 
network delays and packet loss. 
Consistency. At any point in time, all players 
should ideally "see" the same information a t  the same 
time, in spite of network delay and losses. That is, 
if player X takes an action (e.g., makes a move) that 
should influence the current game view of players Y 
and Z, then consistency requires that Y and Z should 
display the results of X's action at approximately the 
same time. 

Note that consistency concerns the degree of similarity of 
displayed information, while timeliness concerns how soon 
that information is displayed at the various game sites af- 
ter its transmission from the sending site (interaction is an 
aspect of timeliness). In section 3 we formalize these no- 
tions and evaluate transmission control mechanisms with 
respect to these performance metrics. 

MIMAZE adopts a fully distributed architecture. Dis- 
tributed architectures have a number of advantages for 
interactive multi-participant games, including robustness 
(e.g., the failure of one entity has no effect on the others), 
and scalability (e.g., a distributed architecture more easily 
allows for natural partitioning of game computation as the 
number of players increases). A discussion of the advan- 
tages and disadvantages of a distributed architecture are 
beyond the scope of this paper and are covered in detail in 
[12]. For the purposes of this paper, we simply note that 
a distributed game has no server that computes a unique 
global state. Instead, each entity computes its own local 
view of the global state of the game using information re- 
ceived from other entities. This locally-computed view is 
that which is displayed to the local participant. 

The key challenge then is to provide as timely and as con- 
sistent a display as possible within the context of such a 
distributed architecture. The consistency requirement im- 
plies that even though each participant computes its own 
local view of the games state, a distributed synchroniza- 
tion technique is needed to ensure that the participants 
compute games states that are as similar as possible at a 
given time; such a technique is discussed in section 2.1. En- 
tities must also recover from lost or overly delayed messages 
from other players. The stringent timing constraints and 
relaxed reliability requirements of interactive games sug- 
gest that ARQ-based error recovery techniques developed 
for traditional data applications are not well-suited to our 
environment. We will see that the nature of the informa- 
tion exchanged in our application makes it possible to use 
interpolation and extrapolation techniques to recover miss- 
ing information. In section 2.2, we discuss such dead reck- 
oning techniques. Together, the techniques of distributed 
synchronization and dead reckoning form the cornerstone 
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of a transmission control architecture for  distributed, inter- 
active, multi-participant applications. 

A .  Distributed synchronization 

Given a distributed architecture in which each partici- 
pant computes its own local view of the global state, two 
complementary aspects of the synchronization problem can 
be identified: 

All entity local states issued (transmitted in an Ap- 
plication Data Units (ADU) [20] via the network) at 
nearly the "same time" (by various entities) must be 
processed "together" by a receiving entity when com- 
puting its local view of the global game state. 
All entities should display the same information (i.e., 
ideally, compute identical views of the global state) a t  
approximately the same time. 

The bucket synchronization mechanism described in sec- 
tion 2.1.1 meets these requirements. This approach re- 
quires the use of a global clock mechanism, an issue ad- 
dressed in section 2.1.2. 

A.l The bucket synchronization mechanism 

A consequence of the varying network delays between 
entities is that the timing/ordering of ADU reception at  
an entity need not (and typically will not) reflect the tim- 
ing/ordering in which those ADUs3 were actually sent. 
Thus, a mechanism is needed to  insure that events occur- 
ring at  "close" to  the same time at distributed entity sites 
are considered together whenever an entity computes its 
local view of the global state. The principle of the bucket 
synchronization mechanism is for all players to delay (for 
an amount of time, A )  their computation of their local view 
of the global state so that avatar state descriptions issued 
at the same time by remote entities (but received with dif- 
ferent delays) can be used together in the computation of 
the local view. 

The bucket mechanism (Figure 1) operates by consider- 
ing time to  be divided into intervals of length T ,  with 1/T 
being known as the bucket frequency. When computing its 
local view at the end of time interval i (which has a length 
of [i, i+T]), an entity uses all received ADUs that were gen- 
erated by the remote entities during interval [i-A, i-A+T], 
as well as its own local states during the same interval, to 
compute this local view. In this sense, actions occurring 
during the same interval of time (e.g., during interval [i-A, 
i-A+T]) at the various sites are grouped together in the 
same receiver "bucket" (e.g., the bucket a t  the end of in- 
terval i). The added delay, A, compensates for network de- 
lays - as long as an ADU is received within A time units of 
having been sent, it will be processed by the receiver in its 
state computation. The placement of ADUs into buckets 
assures that ADUs generated at approximately the same 
time (i.e., during the same time interval) are used at the 
same time at the receiver. An ADU that is received after 
its bucket has been processed is considered a late arrival; it 
is stored in his original destination bucket (as discussed in 

Thus, we often use the term "ADU" instead of "local state". 
3With ALF, each local state is encoded and carried as a single ADU. 

section 2.2). We note that the bucket mechanism is closely 
related to the buffering mechanisms used in packet audio 
playout algorithms [lo]. 

Figure 1 illustrates bucket synchronization, showing 
three entities (A, B, and C). The ADUs sent by entities 
A and C to entity B at  times t l  and t3 ,  respectively, and 
B's own local event information at t 2 ,  are used together by 
B at  the end of interval i to compute its local view of the 
global state. This synchronization occurs even though the 
information in the bucket is received by B during different 
intervals. It is worth explicitly noting that the event gen- 
erated at  t4  by C, is not used at the end of interval i, even 
though it has already been received. 

Fig. 1. Bucket Synchronization 

The bucket synchronization mechanism has two impor- 
tant parameters that will influence the perceived "quality" 
of the game: 

Playout delay. The value chosen for A will deter- 
mine the playout delay (the time between a packet's 
generation at  a sender and its playout at a receiver) as- 
sociated with a packet. I n  MIMAZE,  the value of the 
playout delay is 150 ms. The DIS standards [1,2,3] 
and commercial interactive games vendors [22] claim 
that game quality begins to degrade when the delay 
exceeds 200 ms. Note that with a larger playout delay, 
fewer ADU's will be "lost" due to  late arrival (ADU's 
that arrive after their bucket playout time are consid- 
ered lost, at least with respect to  the computations 
performed on that bucket). However, with a larger 
playout delay, the game becomes less "real-time" and 

Bucket frequency. The bucket frequency 1/T, con- 
trols the time scale over which events are aggregated 
and considered "simultaneous." It also defines the rate 
a t  which the view/display is updated. This should 
be high enough to  provide a natural fluidity in the 
displayed image. In the case of human perception, a 
frequency of 25 image refreshes per second (each im- 
age refresh corresponds to  the computation of a new 
global state) guarantees the smooth display of objects 
moving smoothly in the image sequence. Display flu- 
idity is not the only aspect of the game influenced 
by bucket frequency - the degree of synchronization 
among participants is affected as well. Even with per- 
fectly synchronized clocks, if the period between two 
buckets is T ,  all actions occurring within the same pe- 
riod will processed at the same time, and thus the 
consequences of two events that are separated by up 
to T time units will appear to have occurred simul- 

inter active. 'I 
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taneously. This problem can be even more significant 
when clocks are not synchronized. Finally, the bucket 
frequency is constrained by the CPU time needed for 
any message reception, computation, and display of 
the local view - all of which must be performed dur- 
ing each interval of length T .  
Note that the bucket frequency and playout delay are 
independent of each other, and independent of network 
characteristics. 

A.2 Global clock mechanism 

The bucket synchronization mechanism described above 
assumes a global clock mechanism (equivalently, synchro- 
nized clocks) that provides a common timing reference 
among the distributed entities. For distributed, interac- 
tive, real-time environments such as that considered in this 
paper, accurate and synchronized clocks are extremely im- 
portant. In [19], it is shown that all entity clocks should 
be within 10 ms of each other. In our implementation, we 
use NTP [6], and where NTP is not available, an NTP-like 
algorithm based on the evaluation of the round trip time 
[6]. Where possible, we used GPS receivers in our exper- 
iments to help with clock synchronization, as discussed in 
section 3.1.1. 

A number of issues arise when using NTP. We have found 
that it is difficult to maintain good synchronization among 
participants when level 3 NTP servers are involved. Lower 
stratum mechanisms (e.g., ntpdate) are also not sufficient. 
NTP does not provide a reference clock signal; instead, 
each participant must compute an offset for any other par- 
ticipant. In our current implementation, in order to in- 
crease the precision of NTP under stratum 2, we use both 
NTP and our NTP-like mechanisms to compute clock off- 
sets. In the experiments discussed later in this paper, al- 
most all hosts were synchronized on a GPS system. 

B. Dead reckoning 

Dead Reckoning (DR) is an extrapolation technique ini- 
tially developed in the aviation domain to estimate the cur- 
rent position of an airplane based on the last known posi- 
tion and on the motion vector. In our application, there 
are two different uses of DR: 

For lost or late ADU recovery. DR is used by 
an entity whenever it computes a new local view of 
the global state and finds that the bucket contains 
no updates from a remote entity. In this sense, DR 
is performed using information found in the most re- 
cent past bucket that contains the missing information 
by the receiver to evaluate the value of missing infor- 
mation. This information may be missing for several 
reasons. The ADU containing an update may have 
been lost or overly delayed in the network. It is also 
possible that a remote entity did not send an ADU 
that maps to  the current bucket in the first place. For 
example, that it may be advantageous for an entity 
to decrease its ADU transmission rate in the presence 
of network congestion. Additionally, an entity may 

change its ADU transmission rate due to  local (e.g., 
CPU) resource constraints. 
For collision detection. Before sending an ADU to 
other entities, a local entity dead reckons its position 
into the future. If a collision with another entity is 
determined to be likely in the near future, the results 
of this collision can be determined in advance of the 
collision itself. This allows the results of the collision 
to  be displayed in as close to  real-time as possible at 
the entity. We do not analyze this use of DR in this 
paper. 

Given the playout delay mechanism described in section 
2.1.1, DR can be used not only to extrapolate state infor- 
mation, but to  interpolate it as well. In the latter case, the 
receiver uses ADU's associated with past buckets, as well 
as already-received ADU's that have been mapped into fu- 
ture (yet-to-be-processed) buckets. to interpolate the state 
of an entity at a given point in time. 

A number of possible DR algorithms can be identified 
[1][2][26]. The simplest algorithm would be to simply re- 
play the last known position. This algorithm has minimal 
CPU cost for computing the missing information, but may 
not provide an accurate extrapolation of the missing posi- 
tion. 

In MIMAZE, the multicasted state description of a 
player includes the following information: its current po- 
sition, orientation (i.e., the direction the avatar is facing, 
which defines its instantaneous direction, if it is moving), 
velocity, and "angular speed" (i.e., the rate at which is di- 
rection is changing). With this state description, if a given 
ADU is received but the following one is lost, the receiver 
uses the information contained in the received ADU to ex- 
trapolate ("dead reackon") the missing information. In the 
current version of MIMAZE, when an avatar's future posi- 
tion is dead-reckoned based on its last known position, its 
direction and velocity at that time, and its angular speed 
are all used. It is assumed that velocity and angular speed 
remain constant over the period of time that a remote 
player's position is dead reckoned. Note that by includ- 
ing derivative information (velocity and angular speed), it 
is possible to dead-reckon a missing position based on a 
single ADU (a number of simpler DR algorithms requires 
two or more ADUs to dead-reckon a missing one). 

In section 2.1.1 we identified bucket frequency and play- 
out delay as two key parameters of the bucket synchroniza- 
tion mechanism. The dead reckoning algorithms discussed 
above highlight a third key parameter: the ADU trans- 
mission frequency, i.e., the rate at which an entity trans- 
mits state update ADUs to the other entities4. A high 
ADU transmission frequency is desirable from a number of 
standpoints. Because a remote entity is providing frequent 
updates of its position, its reported motion appears more 
"fluid." Also, if the transmission frequency is too slow, the 
receiver may not be able to  detect fast time-scale changes 
in the sender's trajectory. We examine this issue in more 
detail in section 3.3.2. A final consideration is that if an 

4The transmission frequency is thus also the rate at which a sender 
samples and sends its state. 
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ADU is lost, the change reported from one ADU to the 
next will be smaller than with a lower transmission fre- 
quency and a DR algorithm should consequently be more 
accurate. However, the higher bandwidth and CPU re- 
quirements associated with a higher ADU frequency make 
it undesirable from a resource consumption standpoint. 

In section 3.3 we evaluate the impact of the bucket fre- 
quency on the consistency of the game. We will not explic- 
itly consider CPU resource constraints. We note here, how- 
ever, that ADU transmission frequency is at the center of a 
number of interesting tradeoffs between CPU processing for 
DR and for protocol (message reception) processing. For 
example, while a high transmission frequency means that 
there is less change in state between ADU’s (and hence the 
quality of DR should be higher), it also results in a higher 
protocol processing load on a receiver and consequently 
fewer CPU cycles available for performing the actual DR 
calculation itself. Limits on the available computation time 
may, in turn, limit the type of DR algorithm that can be 
executed. 

C. Related work 

To our knowledge, MiMaze is unique in the area of Inter- 
net games, being based on a serverless architecture together 
with distributed synchronization and dead-reckoning based 
error control. It is clear that other applications use syn- 
chronization and dead-reckoning, but we could not identify 
one in a distributed environment context. 

Amaze can be considered as MIMAZE’s ancestor. 
Amaze was designed by Berglund and Cheriton in 1984 
[14] to be played on a LAN, using point to point communi- 
cation. MIMAZE and Amaze both have a distributed ar- 
chitecture but manage states differently. Amaze transmits 
the game state on the network, and maintains replicated 
copies of the game state. 

Distributed games on the Internet are now a real mar- 
ket for private companies. Microsoft, BT, Intel have 
their own game services. But the approach of these 
companies is to  over-engineer the network in order to 
maximize the quality of the game. There are also 
private companies such as Mpath [22] that develop 
more sophisticated transmission infrastructure (but 
still with network over-engineering) for distributed 
games. 
Spline [17][18] is a virtual distributed interactive world 
with 3D animation and spoken interaction. Spline has 
a distributed architecture which is based on the DIS 
standard. Most of the effort in Spline has been done 
on local flow synchronization. But there is no dis- 
tributed synchronization mechanism to deal with het- 
erogeneous network delays. 
The PARADISE project [21,26] a t  Stanford Univer- 
sity aims to  architect and build a large-scale internet- 
worked simulation environment that supports multi- 
player interactive, 3D-simulations running over a wide- 
area network. This project has produced very inter- 
esting results on group communication, dead reckon- 
ing, entity aggregation, and collision detection. Our 

work here differs from [26] in that our goal is to 
evaluate the MIMAZE architecture from a system 
standpoint, where the inter-related issues of bucket- 
synchronization, dead reckoning, and network impair- 
ments such as loss and delay are inextricably linked. 
By contrast, the work in [26] is aimed primarily at ag- 
gregation (not considered here) and specific dead reck- 
oning algorithms. It worth noting that dead reckoning 
is used in [26] primarily to decrease state transmis- 
sion frequency and smooth trajectories between state 
updates. This is reflected in their evaluation, which 
assumes no network loss or delay. 

111. PERFORMANCE ANALYSIS 

In this section we experimentally investigate the perfor- 
mance of various aspects of the MIMAZE architecture. 
Broadly speaking, our goal here is to examine how the 
“quality” of the game is influenced by the frequency at 
which players exchange state information (e.g. the so- 
called transmission frequency), and by network impair- 
ments such as packet loss and delay.5 

We begin by describing the experimental setting and 
methodology for the evaluation in section 3.1. In later sec- 
tions we present and analyze various measurements. 

Since MIMAZE currently has no congestion control algo- 
rithm, we decided to make the following experiments with 
no more that 5 participants, so that we limit the effect of 
MIMAZE-induced network congestion on the loss rate6. 

A .  Experimental framework 

Since the distributed MIMAZE architecture exploits IP  
multicast capabilities, our evaluation uses the MBone [ l l ] .  
The general experimental setup for our evaluations was as 
follows. Players were located at  4 MBone sites running 
variously on SUNS (SPARC 10, 20, ULTRA), DEC Alphas, 
and PCs. A single player was located at  the UCL (London), 
LAAS and LIP6 (France), while the number of participants 
a t  INRIA was varied, as discussed below. In certain cases 
(as noted later), subsets of this configuration were used in 
our experimental evaluation. 

The players themselves are so-called ‘hinjas” - software- 
directed (rather than human-controlled) avatars that are a 
standard component of the MIMAZE game. Each ninja’s 
behavior is simple - it chases other ninjas (using the infor- 
mation received from all the other ninjas) and attacks any 
other ninja that comes within its firing view. Each partici- 
pating computer runs a single ninja. We made a conscious 
decisions to  primarily use ninjas in our evaluation rather 
than human-controlled entities since our previous experi- 
ence [13] indicates that human players can introduce arti- 
facts (e.g., occasionally ignoring an on-going game to  focus 
on another activity, or varying skill levels ranging from a 
novice that has never played to an expert player) into the 

5We do not consider here the effects of the changing playout delay or 
display frequency, as these are primarily non-network-related, human 
factors considerations. 

6we remind here that MIMAZE scalability (i.e. varying the number 
of participants) is intentionally not addressed in this paper). 
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game. Such considerations can make it difficult to sepa- 
rate out the influence of variable human player behavior 
from the influence of game parameters and network per- 
formance on the quality of the game. This latter influence 
is of more interest to  us here and so we initially chose to 
perform the evaluation in a controlled setting with player 
(ninja) behavior that can be considered representative of 
typical human player behavior. We show that ninjas are a 
good model for human players in [13]. 

To quantitatively evaluate various aspects of the MI- 
MAZE transmission control infrastructure, we define here 
the notion of “drift” as follows. Recall that at the simplest 
level, the game consists of distributed players moving in 
a maze. Each player displays the view seen by its avatar 
in the maze, as well as an overhead (global) view of the 
maze. Thus, each player will have position information 
about each of the other players. Suppose now that en- 
tity A’s view of its own spatial location (as computed by 
A using the bucket synchronization algorithm pictured in 
Figure 1) at time t is (z,y) and that entity’s B’s view of A 
(computed by B using its own local bucket synchronization 
computation) at time t is (z’,y’). Then the drift (or error 
on the estimated position) associated with B’s view of A is 
simply the Cartesian distance between these two positions: 
J ( x  - x’)~ + (y - Y’)~. To give a feel for the magnitude 
of the drift values, we note that the MIMAZE game is a 
65Kx65K two dimensional grid in which a player moves at 
32 units every 40 milliseconds when in motion; the avatar 
itself has a radius of 32 units. 

In the following, we will only consider the drift asso- 
ciated with oneplayer’s view of another player’s position. 
That is, we will not average the drift over all players. This 
is because there will be different network delays and losses 
between each pair of players and it is precisely the effect of 
such impairments on game quality that we want to quan- 
tify. 

A.l Monitoring, trace synchronization, and trace filtering 

In order to evaluate the performance of our transmis- 
sion control mechanisms, each entity collects a trace of its 
activity (including application level, network level and syn- 
chronization data)during a game session. These traces are 
analyzed off-line. 

The main difficulty in analyzing these traces is trace re- 
synchronization. Note that as a result of the distributed 
system architecture, there is no absolute clock in a game 
session. Instead, each participant computes the clock offset 
between itself and any other participant in the session. To 
re- synchronize traces, we apply the least square algorithm 
to the clock offset measured to compute an approximation 
of the real offset. This offset approximation is used as a 
reference value for re-synchronization. 

We have shown in an early experiment that clock syn- 
chronization was an important aspect of game consistency 
and in determining traces usability [13]. The clock signal 
of the remote computers was carefully controlled and an 
acceptable clock synchronization was guaranteed by NTP 
stratum 1 and 2 implemented on any computer involved in 

the experiment. 
As discussed in section 3.3, we will occasionally break a 

single trace (e.g., of a single player in a 15-minute game) 
into a number of smaller traces, according to a well-defined 
criteria (e.g., the packet loss or delay experienced during 
various intervals of time). With a single large trace, widely 
disparate behaviors in the environment (e.g., a period of 
extremely high packet loss or delay, versus a period when 
such values are small) and their impact on performance 
of our transmission control mechanisms can be “washed 
out” by averaging performance over a long trace. Since 
one of the main goals of this paper is to understand the 
performance of our transmission control mechanisms as a 
function of specific network conditions, we will occasion- 
ally classify trace subintervals according to such conditions 
(and note when we do so). 

B. Illustrating the Impact of Packet Loss 
In today’s public Internet with its best-effort service, 

packet loss and delay are a fact of life; this is particularly 
true in the MBone. The situation is also aggravated by 
ADUs that reach their destination with a delay which is 
longer than the playout delay. In that case, the arriving 
data is stored in a past bucket, and the current bucket will 
process this information as if it was lost (section 2.1.1). 

In this section we illustrate the consequences of such net- 
work impairments on MIMAZE by analyzing traces of net- 
work and application-level activity. 

Previous measurements of MBone traffic [23] have noted 
periods of “outage” when no packets are received from the 
network. We also observed such outages throughout the 
course of this study. In particular, we observed long peri- 
ods of time (ranging from a few seconds to a few tens of 
minute) when the Mbone did not deliver any packets. It 
has been conjectured [23] that such outages result from in- 
stability in the underlying (unicast) routing protocols [25]. 
From a game-playing standpoint, such long periods of time 
with no ADU reception make dead reckoning difficult. In 
MIMAZE, based on previous observations [14], we have 
chosen to dead reckon up to 1 second, and then remove an 
avatar for which no information has been received for the 
past second. 

Figure 2 illustrates the impact of packet loss on MI- 
MAZE behavior. Figure 2 contains two plots. The upper 
graph shows the state drift (or distance) between site A’s 
actual avatar position and a remote site (B’s) estimate of 
that position as a function of time. The lower graph in 
Figure 2 plots the number of consecutive packet losses, i.e., 
consecutive ADUs not received from A by B. These traces 
were gathered in a configuration with five game partici- 
pants sending ADU’s7 at a rate of 25 ADU’s/sec. 

Several observations can be made from Figure 2: 
First, as discussed above, there are periods of time 
when the position of the remote avatar can not be 
computed. These periods of time are indicated by the 
absence of an “x” (upper graph) during an interval of 

7Recall that each ADU contains an update description of the avatar 
position 
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Fig. 2. Drift and consecutive packet loss as a function of time 

time. They correspond to periods where the avatar 
was dead (killed by another avatar). 
Figure 2 also indicates that when the loss rate is small, 
the drift is generally very small. In the best case, there 
is no drift (i.e., the estimate of a remote avatar’s po- 
sition is exactly correct). We note that for bursts of 3 
to  5 consecutive losses, our DR algorithm succeeds in 
estimating the remote avatar’s position with limited 
error. Specifically, with an error of less than 50 units 
in 90% of the cases. 

C. Impact of ADU transmission rate on game consistency 

In this section we analyze the impact of the frequency 
with which ADUs are sent (i.e. transmission frequency) 
on the consistency of the game. This parameter is the 
most important of the game (at least from a network point 
of view) as it has influences on game quality, and on the 
CPU and bandwidth requirements. Our goal here is con- 
sequently to understand the tradeoff between the trans- 
mission frequency and the consistency of the game under 
various network conditions. 

It is important to notice that in MiMaze, avatars are 32 
unit radius spheres, and that their displacement is constant 
speed, with a trajectory that can be either a straight line 
or a circle. 

C.l  Transmission frequency 

Figure 3 plots the average drift in one player’s estima- 
tion of another player’s avatar position as a function of 
the ADU transmission rate’. 90% confidence intervals are 
also shown in the figure. The drift values shown in Fig- 
ure 3 were obtained directly from our traces; whenever an 
avatar added its own state description to the trace file, it  
also added its computed position of the other players as 
well. 

Three curves are plotted in Figure 3, corresponding to  
the cases where (i) the two players are on the same LAN 
and hence there is negligible loss and very short delay be- 
tween the two players (the elvis-droopy curve), (ii) the two 
players are connected by a wide area MBone connection 
with a packet loss rate that is typically less than 5% and 

%he maximum frequency range of 30 corresponds to the human 
perception limits 

an average delay that is approximately 100 ms (the elvis- 
speedy curve), and (iii) the two players are connected by 
high loss and high delay MBone connection with a loss rate 
that averages approximately 40% and an average delay of 
approximately 175 ms (the speedy-elvis curve). The data 
for graphs was obtained from a series of 15 minute games 
(each played for 15 minutes at a given transmission rate) 
among five hosts. We divided each game into 100-second 
intervals and removed any interval where the receive rate 
was less than 20% of the ADU send rate and computed 
the drift over the remaining intervals (with the exception 
of the speedy-elvis curve, almost no intervals were filtered 
out in this manner). 

, 

Fig. 3. Average state drift versus transmission rate 

Two important observations can be drawn from Figure 3. 
First, we note that for a given pair of players, the drift re- 
mains relatively constant as the transmission rate decreases 
from 28 ADU’s per second down to a rate of approximately 
5 ADU’s per second. Clearly, the sender’s higher sampling 
frequency and ADU transmission rate are not resulting in 
a noticeable improvement of the game consistency. 

A related observation concerns the state drift associated 
with the flat portions of each of the curves. First, note that 
in the flat portions of the curves, the drift remains small 
(less than 50 units for a 64 units wide avatar moving a t  32 
units per 40 ms). From a qualitative standpoint, this is a 
small error indeed. Figure 3 also shows that, as expected, a 
low loss and low delay network connection results in smaller 
state drift. I t  might appear that the increase in drift from 
one curve to the next results from the higher loss associated 
with each curve. On the other hand, note that that halving 
the transmission rate (e.g., decreasing the ADU transmis- 
sion rate from 20 to 10) might be roughly considered to 
have the same effect as moving from a no loss regime to a 
50% loss regime. Yet moving from a transmission rate of 
20 to 10 on the elvis-droopy curve has no noticeable effect, 
while moving from the elvis-droopy curve to the speedy- 
elvis curve at the same value of 20 ADU’s per second has 
a noticeable change in the drift. We will resolve this issue 
shortly in section C.3, where we take a deeper look at the 
effects of loss on game quality. 

C.2 Avatar trajectories 

Clearly, we would like to choose the transmission fre- 
quency so that the drift can be minimized. However, in- 
creasing the transmission frequency increases the required 

1476 



bandwidth and can possibly lead to congestion and in- 
creased loss. The compromise is consequently to main- 
tain the transmission rate a t  a point where receivers have 
enough information to  display a relatively consistent view 
of the game. This point is not only defined by the op- 
erating conditions (loss rate, delay, etc.), but also by the 
game nature, and in particular by the characteristics of the 
avatars’ trajectory. 

I t  is thus of interest to characterize avatar trajectory 
within MIMAZE. Figure 4 plots the percentage of ADUs 
that can be dead reckoned depending on the transmission 
frequency. An ADU is said to be dead reckonable if it is on 
the same trajectory (which in MIMAZE must either be a 
line or a circle) as the previous ADU, and if the two ADUs 
are consecutive. Figure 4 shows that the transmission fre- 
quency has an important influence on the percentage of 
ADU that can be dead reckoned. As we would expect, the 
percentage of dead reckonable ADU’s increases with an in- 
creased transmission rate. Intuitively, the more frequently 
a trajectory is sampled, the more samples belong to the 
same trajectory, and hence the more likely it is that the 
points on that trajectory can be dead reckoned. 

Fig. 4. Percentage of states that are dead reckonable 

Figure 4 also shows that the higher loss rate curve (the 
curve labeled “pegase”) results in a smoother increase in the 
percentage of dead reckonable ADU’s. We conjecture this 
results from the ninja’s behavior. Recall that ninjas chase 
other ninjas. The more information they receive from other 
entities, the more opportunity there is to detect changes in 
the other ninjas’ trajectories, and consequently the more 
opportunity there is for a ninja’s own trajectory to change. 
If the number of avatars is high, and the loss rate is low, 
then ninjas will continuously change their direction. The 
droopy curve (plain line) illustrate this later point. On 
the other hand when the loss rate is high at one entity, 
the local ninja has less information to use in computing 
the remote ninjas’ trajectories (and consequently estimates 
fewer changes in the remote ninjas’ trajectories) and hence 
itself continues for longer periods of time without changing 
its own trajectory ’. 

We also analyze the peaks in droopy graph (recall that 
droopy experiences no loss in this graph). We conjecture 

9We have observed the same behavior for human players. The figure 
is not presented in this paper for readability. 

that the peaks under 18 times per second (around 5 and 
14) result from “errors” in the trajectory evaluation. 

Consequently, the results in Figure 4 would argue that 
the transmission frequency required to observe all the tra- 
jectory details should be 18 states per second. Sampling 
a t  lower frequencies than 18 is also possible, but the ob- 
served trajectory would be a “subset” of the real one (some 
of the trajectory details would not appear, but the overall 
direction would be visible). 

This very important result is specific to MIMAZE. We 
believe, however that similar types of observations can be 
made for other type of avatars, i.e., that the minimum 
transmission frequency depends primarily on the motion 
properties of the avatar, including its acceleration. 

C.3 Loss Analysis 

We have shown in the previous experiments that the net- 
work parameter that most dramatically affects the game 
consistency is the loss rate. Heterogeneous delays also in- 
crease loss as a side effect (since a late ADU has not yet 
arrived by the time its bucket is processed). In this section 
we thus provide a deeper analysis of the influence of losses 
on the game consistency. 

In order to study MIMAZE performance in a more sys- 
tematic way, we wanted to vary the network conditions in 
a more controlled manner - something not possible using 
an operational network such as the MBONE. We do so as 
follows. We begin with a trace from an actual live game 
of a player’s position, it ADU transmissions, and the re- 
ceipt (or loss) of its ADUs at a remote player. Given the 
set of received ADU’s and a player’s DR algorithm, we can 
reconstruct its view of each remote player’s position as a 
function of time (indeed, in a real game, all of a player’s in- 
formation about remote player positions is obtained via the 
received ADU’s). Given a trace of the actual positions of 
the remote player and the reconstructed view of these posi- 
tions, we can then compute the drift in one player’s view of 
another player’s position. We can also systematically vary 
network behavior by, for example, simulating the loss of 
transmitted ADUs and determine the reconstructed view 
given this simulated network behavior. We can also sim- 
ulate the variation in the transmission rate by “thinning” 
the set of transmitted ADUs. For example, by removing 
every other ADU from a trace, we can simulate the situ- 
ation in which the sending avatar would have transmitted 
its state updates at half the original frequency. By keep- 
ing only every fourth ADU in the trace, we can simulate a 
transmission rate of one fourth the original rate. 

But does such a thinning result in behavior similar to 
what we empirically observed in Figure 3? Figure 5 ad- 
dresses this question. The curve labeled “extrapolated: 
elvis-droopy ‘I (represented by a plain line) is obtained by 
taking the single set of elvis-droopy trace data at a trans- 
mission rate 28 ADUs/sec, thinning the transmissions (as 
discussed above) and applying the DR algorithm to the re- 
ceived ADUs. Thus, the entire curve was obtained f r om 
a single set of trace data taken at 28 ADUs/sec. This 
thinned curve is to compare to the curve that links the 
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x (the curve has not been drawn to keep the figure clear), 
where x where obtained by playing MiMaze at the different 
transmission frequencies. We see good agreement between 
the extrapolated performance curve obtained by thinning a 
single trace, and the performance computed from the sepa- 
rate individual traces. The agreement is not quite as good 
for the speedy-elvis curve (the thinned curve is represented 
by a doted line, and the experimental observations by the 
"0") , although the thinned data shows the characteristic 
sharp increase in drift at low transmission rates. We also 
note that the point-valued data (0's) obtained from the 
individual speedy-elvis traces is not very "smooth" in the 
first place - probably due to the high loss rate (see section 
3.4.1) between speedy and elvis". 
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Fig. 5.  Calculating drift: thinning one trace versus using separate 
traces 

Given our confidence that thinning will now allow us 
to  more systematically study the effects of loss on perfor- 
mance, we consider the following scenarios. We first begin 
with a no-loss trace and then thin the trace as discussed 
above. We introduce loss into the trace by modeling net- 
work loss as a memoryless process (that is, each packet is 
independently lost with a given probability). The results 
are shown in Figure 6 for no loss, 10% loss and 30% loss. 
We note that the curves have the same characteristic shape 
as in Figure 3 - a flat portion of the transmission rate ver- 
sus state drift tradeoff, with a marked increase in drift as 
the transmission rate fall below 5 ADU's/sec. We note, 
however, that the curves are not as separated from each 
other as in Figure 3. 

The curves in Figure 6 were each obtained under a mem- 
oryless loss model. That is, the loss probability for a 
given packet was independent of whether the previously 
sent packet was lost or not. Recent unicast and multicast 
measurements [28] suggest that end-end packet losses show 
correlation for times scales up to eight hundred millisec- 
onds. It is thus of interest to  examine performance under 
a bursty loss model. 

We thus next consider a two-state loss model. When in 
the no loss state, a transmitted packet will be received suc- 
cessfully; when in the loss state, a transmitted packet will 
be lost. We can vary the "burstiness" of the loss process by 

l0Note that  differences can also arise from the fact that in the case 
of trace based data  points taken from an actual game, networking 
conditions were different for each game. This was not the case for the 
thinned curved (that are obtained from a single trace). 

varying the transition probability from the loss state back 
to the loss state. 

Fig. 6. Drift: varying loss rates 

Figure 7 plots the state drift versus transmission rate 
tradeoff for 10% loss under different loss burstiness sce- 
narios. In one case, whenever a packet is lost, the next 
packet is successfully delivered (an average loss burst length 
of one) and in the second case, the average length of the 
burst of consecutively lost packets is 5 .  We note that with 
higher loss burstiness, the drift is significantly higher. In 
fact, comparing Figures 3 and 7 we see that the results 
of the bursty 10% loss model are similar to  those from the 
30% independent loss model - indicating the important role 
that loss burstiness plays in determining state drift. This 
also points out the flaw in our earlier conjecture in the dis- 
cussion of Figure 3, that decreasing the ADU transmission 
rate in half might be roughly considered to have the same 
effect as moving from a no loss regime to a 50% loss regime. 
The former approach smoothly removes packet receptions 
while the latter approach results in losses (packets being 
removed) in a more bursty manner. Figure 7 tells us that 
burstiness plays a key role in determining performance. 

4 \ 's 4 

Fig. 7. Drift: identical loss rates but different mean loss burst lengths 

Let us conclude with several observations regarding loss 
burstiness. First, in our distributed architecture, each 
player sends its own stream of ADU's. While bursty loss 
may affect some ADU streams (in which case, the drift 
associated with those players may be high), it will not af- 
fect other ADU streams. If game control were centralized, 
bursty loss from the central site would result in poor game 
performance for everyone. A second observation is that 
given the effects of bursty loss, it is important to consider 
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error recovery (and perhaps congestion control) algorithms 
that operate in the face of bursty loss. 

IV. CONCLUSION 
This paper has described the design, implementation 

and analysis of a distributed (serverless) interactive multi- 
participant game on the Internet. The architecture has 
two key mechanisms for end-to-end transmission control: 
the bucket algorithm and dead reckoning. 

We have shown that the real-time capabilities of the 
game can be maintainedgiven that a small error can be 
intriduced on the game consistency. We have also shown 
that the transmission frequency can be varied with a lim- 
ited influence on the game consistency. Finally, this paper 
suggests that a robust mechanism to control bursty losses 
would be useful. 

Several aspects of the our current transmission control 
infrastructure must still be enhanced to address the impor- 
tant problems of scalability (large number of participants), 
and application complexity (graphics, video, spatial audio). 
We are currently workinn on these moblems: - 

Incorporate a congestion control algorithm. Dis- 
tributed interactive application offers a very simple 
way to control the congestions by varying the local 
state transmission frequency. 
Developing a new mechanism to detect collisions be- 
tween avatars by "anticipation". We propose to use 
source dead reckoning to anticipate collisions. 
Study participant sub-grouping in order to improve the 
game scalability and quality. Such techniques, gener- 
ally based on grid subgrouping, are recommended by 
the DIS community [1][2][18]. 
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