
End-to-end Transmission Control Mechanisms for
Multiparty Interactive Applications on the Internet

Laurent Gautier Christophe Diot Jim Kurose
INRIA Sprint ATL Department of Computer Science

2004 route des Lucioles 1 Adrian Court University of Massachusetts
06902 Sophia Antipolis FRANCE Burlingame, CA 94010 USA Amherst, MA 01003-4610 USA

laurent .gautier@sophia.inria.fr cdiot@sprintlabs.com kurose@cs. umass.edu

Abstract- This paper reports on the design and the eval-
uation of transmission control mechanisms specifically de-
signed for multiplayer, distributed (serverless), interactive
Internet applications. Distributed synchronization and dead
reckoning are the main elements of this transmission control
infrastructure. These mechanisms have been implemented
in a fully distributed, multiplayer game application, i.e., one
in which each entity in a game session computes its own local
view of the session. The role of each entity is consequently
to periodically send its own state to all other session partic-
ipants (using RTP/UDP/IP multicast) and to periodically
compute its own local view of the global game state using in-
formation received from the other participants. A detailed
experimental analysis is provided using MBone and LAN
experiments We investigate how the “quality” of the game
is influenced by the frequency at which players exchange
state information, as well as by network impairments such
as packet loss and transmission delay.

Keywords- Interactive Applications, Distributed Archi-
tecture, Internet, Transmission Control, Multipoint Com-
munication.

I . INTRODUCTION

article describes the design and the evaluation
THIS of an end- to-end transmission control infrastruc-
ture for multiparty interactive applications. Such applica-
tions include interactive distributed games and distributed
VR environments [22], Distributed Interactive Simulations
(DIS) [1][2] command-and-control applications, collabora-
tive tools [27] and Air Traffic Control (ATC)[3][4]. This
new generation of applications has data transmission re-
quirements that are significantly different from those of
traditional data applications, including a resiliancy to data
loss, and the constraint that data be delivered within a
certain amount of time in order to preserve real-time in-
teractivity among participants. These new data communi-
cation requirements, as well as the possibility of leveraging
communication-relatedl application-specific characteristics
[20] of such interactive, multiparty environments (e.g., the
fact that participant trajectories are often being computed)
suggest that new transmission control mechanisms are re-
quired.

We have implemented a multi-player distributed game
in order to analyze the transmission control mechanisms
we have designed. A distributed game was chosen because
it is representative of this new generation of interactive
multimedia applications. MIMAZE is inspired from iMaze
[8]. iMaze is a bi-dimensional “Pacman” game with a 3D

representation. Avatars (“Pacmen”) move in a labyrinth
in which they try to kill each other. Each player has a 3D
representation of its vision domain and a 2D overhead view
of the entire game. A detailed description of MIMAZE is
given in [13]. Fkom a communication architecture point of
view, MIMAZE is serverless, and uses an unreliable com-
munication infrastructure based on RTP [9] over UDP/IP
multicast [16]. Because the focus of our work is on trans-
mission control mechanisms, the MIMAZE game rules and
graphics are purposefully simple, as a more complex appli-
cation would have made it difficult to isolate the behavior
of the transmission control mechanisms.

In order to guarantee the real-time properties of the ap-
plication (including interactivity) on the Internet, we have
designed a synchronization mechanism to accommodate
the heterogeneous transmission delays among the partic-
ipants. To increase the efficiency of this synchronization
mechanism, a dead reckoning based algorithm has also been
implemented to cope with error control. We will see that
dead reckoning provides a very natural way to recover losses
in such a real-time application, where retransmission is im-
possible. These two mechanisms form the core of our ar-
chitecture. They are analyzed later in this paper.

The contribution of this paper is consequently to describe
original communication-related mechanisms for multiparty
interactive applications on the Internet and to provide a de-
tailed analysis of its transmission control parameters. We
investigate how the “quality” of the game is influenced by
the frequency at which players exchange state information,
as well as by network impairments such as packet loss and
delay’. Our results generally show the transmission con-
trol infrastructure we describe can be used to provide an
highly interactive, distributed game environment, even in
the presence of significant network impairments. Our de-
tailed analysis also reveals important insights into specific
aspects of the transmission control infrastructure. We find
that the tradeoff between the “quality” of the game and
network resource used (rate of transmitting state updates)
is such that there is a well-identified point on this tradeoff
curve where it is desirable to operate, and that this point

lscalability is not addressed in this paper. We decided that it was
more important to first understand the behavior of this new type of
application, before designing it to scale to large numbers of partici-
pants.

0-7803-5417-6/99/$10.00 01999 IEEE. 1470

mailto:gautier@sophia.inria.fr
mailto:cdiot@sprintlabs.com
http://umass.edu

is relatively independent of loss rate. We show that an in-
creased transmission rate can be used to refine one player's
estimate of another player's location only up to a certain
point; increasing the transmission beyond that rate only
results in the transmission of redundant data. We show
that the burstiness of the network packet loss process can
effect the quality of the game as much as, or more than,
the loss rate itself.

I t is clear that we are studying a very specific instance of
a set of applications. Even if all results can not be general-
ized, it was an important first step to understand how these
applications will behave on the Internet. Consequently, we
do not try to generalize our result, but we try to point out
generalizable results.

Before moving to the technical content of this paper, we
define here some specific vocabulary introduced from [13].
The representation of a participant in the game is called an
avatar. The exact description of an avatar (e.g., position,
orientation) is called the avatar state. The exact descrip-
tion of the game (including all avatars, score, terrain, etc.)
is called the game's global state. Because the architecture
is distributed, each participant computes its own view of
the game global state, which we will refer to as the "local"
view of the global state. Each participant location is called
an entity. A game entity periodically sends its local state
to all other entities. It also computes and displays peri-
odically the global state of the game to the participant 2 .

The game is perfectly "consistent" if all entities in the game
compute and display the same global state. We elaborate
further on these definitions in section 2.

The remainder of this paper is structured as follows. Sec-
tion 2 describes MIMAZE's end-to-end transmission con-
trol infrastructure, which is based on distributed synchro-
nization and dead reckoning. In section 3, we describe and
analyze performance measurements realized on the Mbone
and in a LAN. We then empirically investigate how game
quality is influenced by the frequency at which players ex-
change state information, and by various levels of packet
loss and delay. Section 4 concludes the paper and discusses
future work.

11. END-TO-END TRANSMISSION CONTROL
INFRASTRUCTURE

In a multi-participant game played over a network with
best effort service (such as the Internet), each player will
experience varying and unpredictable network delays and
packet loss. The goal of a transmission control infrastruc-
ture that supports such an application is to mask this delay
and loss, while providing a "consistent" and "timely" view
of the game to the distributed participants. By "timely"
and "consistent" we mean the following:

Timeliness. When an action is played (or issued) by a
player, it should be displayed to all participants within
a relatively short amount of time. The DIS standard
[1,2,3] recommends a maximum delay of 150 ms, while
commercial networked game companies note that the

2We will see later that the sending frequency and the display fre-
quency are independent parameters.

quality of game begins to degrade when the delay is
on the order 200 milliseconds [22]. In practice, compa-
nies offering networked games services insure that such
delay constraints are always met by over-provisioning
bandwidth to ensure that congestion and packet loss
never occur. Our interest here, on the other hand, is
in designing and evaluating robust transmission con-
trol mechanisms that operate in the face of variable
network delays and packet loss.
Consistency. At any point in time, all players
should ideally "see" the same information a t the same
time, in spite of network delay and losses. That is,
if player X takes an action (e.g., makes a move) that
should influence the current game view of players Y
and Z, then consistency requires that Y and Z should
display the results of X's action at approximately the
same time.

Note that consistency concerns the degree of similarity of
displayed information, while timeliness concerns how soon
that information is displayed at the various game sites af-
ter its transmission from the sending site (interaction is an
aspect of timeliness). In section 3 we formalize these no-
tions and evaluate transmission control mechanisms with
respect to these performance metrics.

MIMAZE adopts a fully distributed architecture. Dis-
tributed architectures have a number of advantages for
interactive multi-participant games, including robustness
(e.g., the failure of one entity has no effect on the others),
and scalability (e.g., a distributed architecture more easily
allows for natural partitioning of game computation as the
number of players increases). A discussion of the advan-
tages and disadvantages of a distributed architecture are
beyond the scope of this paper and are covered in detail in
[12]. For the purposes of this paper, we simply note that
a distributed game has no server that computes a unique
global state. Instead, each entity computes its own local
view of the global state of the game using information re-
ceived from other entities. This locally-computed view is
that which is displayed to the local participant.

The key challenge then is to provide as timely and as con-
sistent a display as possible within the context of such a
distributed architecture. The consistency requirement im-
plies that even though each participant computes its own
local view of the games state, a distributed synchroniza-
tion technique is needed to ensure that the participants
compute games states that are as similar as possible at a
given time; such a technique is discussed in section 2.1. En-
tities must also recover from lost or overly delayed messages
from other players. The stringent timing constraints and
relaxed reliability requirements of interactive games sug-
gest that ARQ-based error recovery techniques developed
for traditional data applications are not well-suited to our
environment. We will see that the nature of the informa-
tion exchanged in our application makes it possible to use
interpolation and extrapolation techniques to recover miss-
ing information. In section 2.2, we discuss such dead reck-
oning techniques. Together, the techniques of distributed
synchronization and dead reckoning form the cornerstone

1471

of a transmission control architecture for distributed, inter-
active, multi-participant applications.

A . Distributed synchronization

Given a distributed architecture in which each partici-
pant computes its own local view of the global state, two
complementary aspects of the synchronization problem can
be identified:

All entity local states issued (transmitted in an Ap-
plication Data Units (ADU) [20] via the network) at
nearly the "same time" (by various entities) must be
processed "together" by a receiving entity when com-
puting its local view of the global game state.
All entities should display the same information (i.e.,
ideally, compute identical views of the global state) a t
approximately the same time.

The bucket synchronization mechanism described in sec-
tion 2.1.1 meets these requirements. This approach re-
quires the use of a global clock mechanism, an issue ad-
dressed in section 2.1.2.

A.l The bucket synchronization mechanism

A consequence of the varying network delays between
entities is that the timing/ordering of ADU reception at
an entity need not (and typically will not) reflect the tim-
ing/ordering in which those ADUs3 were actually sent.
Thus, a mechanism is needed to insure that events occur-
ring at "close" to the same time at distributed entity sites
are considered together whenever an entity computes its
local view of the global state. The principle of the bucket
synchronization mechanism is for all players to delay (for
an amount of time, A) their computation of their local view
of the global state so that avatar state descriptions issued
at the same time by remote entities (but received with dif-
ferent delays) can be used together in the computation of
the local view.

The bucket mechanism (Figure 1) operates by consider-
ing time to be divided into intervals of length T , with 1/T
being known as the bucket frequency. When computing its
local view at the end of time interval i (which has a length
of [i, i+T]), an entity uses all received ADUs that were gen-
erated by the remote entities during interval [i-A, i-A+T],
as well as its own local states during the same interval, to
compute this local view. In this sense, actions occurring
during the same interval of time (e.g., during interval [i-A,
i-A+T]) at the various sites are grouped together in the
same receiver "bucket" (e.g., the bucket a t the end of in-
terval i). The added delay, A, compensates for network de-
lays - as long as an ADU is received within A time units of
having been sent, it will be processed by the receiver in its
state computation. The placement of ADUs into buckets
assures that ADUs generated at approximately the same
time (i.e., during the same time interval) are used at the
same time at the receiver. An ADU that is received after
its bucket has been processed is considered a late arrival; it
is stored in his original destination bucket (as discussed in

Thus, we often use the term "ADU" instead of "local state".
3With ALF, each local state is encoded and carried as a single ADU.

section 2.2). We note that the bucket mechanism is closely
related to the buffering mechanisms used in packet audio
playout algorithms [lo].

Figure 1 illustrates bucket synchronization, showing
three entities (A, B, and C). The ADUs sent by entities
A and C to entity B at times t l and t3 , respectively, and
B's own local event information at t 2 , are used together by
B at the end of interval i to compute its local view of the
global state. This synchronization occurs even though the
information in the bucket is received by B during different
intervals. It is worth explicitly noting that the event gen-
erated at t4 by C, is not used at the end of interval i, even
though it has already been received.

Fig. 1. Bucket Synchronization

The bucket synchronization mechanism has two impor-
tant parameters that will influence the perceived "quality"
of the game:

Playout delay. The value chosen for A will deter-
mine the playout delay (the time between a packet's
generation at a sender and its playout at a receiver) as-
sociated with a packet. I n MIMAZE, the value of the
playout delay is 150 ms. The DIS standards [1,2,3]
and commercial interactive games vendors [22] claim
that game quality begins to degrade when the delay
exceeds 200 ms. Note that with a larger playout delay,
fewer ADU's will be "lost" due to late arrival (ADU's
that arrive after their bucket playout time are consid-
ered lost, at least with respect to the computations
performed on that bucket). However, with a larger
playout delay, the game becomes less "real-time" and

Bucket frequency. The bucket frequency 1/T, con-
trols the time scale over which events are aggregated
and considered "simultaneous." It also defines the rate
a t which the view/display is updated. This should
be high enough to provide a natural fluidity in the
displayed image. In the case of human perception, a
frequency of 25 image refreshes per second (each im-
age refresh corresponds to the computation of a new
global state) guarantees the smooth display of objects
moving smoothly in the image sequence. Display flu-
idity is not the only aspect of the game influenced
by bucket frequency - the degree of synchronization
among participants is affected as well. Even with per-
fectly synchronized clocks, if the period between two
buckets is T , all actions occurring within the same pe-
riod will processed at the same time, and thus the
consequences of two events that are separated by up
to T time units will appear to have occurred simul-

inter active. 'I

1472

taneously. This problem can be even more significant
when clocks are not synchronized. Finally, the bucket
frequency is constrained by the CPU time needed for
any message reception, computation, and display of
the local view - all of which must be performed dur-
ing each interval of length T .
Note that the bucket frequency and playout delay are
independent of each other, and independent of network
characteristics.

A.2 Global clock mechanism

The bucket synchronization mechanism described above
assumes a global clock mechanism (equivalently, synchro-
nized clocks) that provides a common timing reference
among the distributed entities. For distributed, interac-
tive, real-time environments such as that considered in this
paper, accurate and synchronized clocks are extremely im-
portant. In [19], it is shown that all entity clocks should
be within 10 ms of each other. In our implementation, we
use NTP [6], and where NTP is not available, an NTP-like
algorithm based on the evaluation of the round trip time
[6]. Where possible, we used GPS receivers in our exper-
iments to help with clock synchronization, as discussed in
section 3.1.1.

A number of issues arise when using NTP. We have found
that it is difficult to maintain good synchronization among
participants when level 3 NTP servers are involved. Lower
stratum mechanisms (e.g., ntpdate) are also not sufficient.
NTP does not provide a reference clock signal; instead,
each participant must compute an offset for any other par-
ticipant. In our current implementation, in order to in-
crease the precision of NTP under stratum 2, we use both
NTP and our NTP-like mechanisms to compute clock off-
sets. In the experiments discussed later in this paper, al-
most all hosts were synchronized on a GPS system.

B. Dead reckoning

Dead Reckoning (DR) is an extrapolation technique ini-
tially developed in the aviation domain to estimate the cur-
rent position of an airplane based on the last known posi-
tion and on the motion vector. In our application, there
are two different uses of DR:

For lost or late ADU recovery. DR is used by
an entity whenever it computes a new local view of
the global state and finds that the bucket contains
no updates from a remote entity. In this sense, DR
is performed using information found in the most re-
cent past bucket that contains the missing information
by the receiver to evaluate the value of missing infor-
mation. This information may be missing for several
reasons. The ADU containing an update may have
been lost or overly delayed in the network. It is also
possible that a remote entity did not send an ADU
that maps to the current bucket in the first place. For
example, that it may be advantageous for an entity
to decrease its ADU transmission rate in the presence
of network congestion. Additionally, an entity may

change its ADU transmission rate due to local (e.g.,
CPU) resource constraints.
For collision detection. Before sending an ADU to
other entities, a local entity dead reckons its position
into the future. If a collision with another entity is
determined to be likely in the near future, the results
of this collision can be determined in advance of the
collision itself. This allows the results of the collision
to be displayed in as close to real-time as possible at
the entity. We do not analyze this use of DR in this
paper.

Given the playout delay mechanism described in section
2.1.1, DR can be used not only to extrapolate state infor-
mation, but to interpolate it as well. In the latter case, the
receiver uses ADU's associated with past buckets, as well
as already-received ADU's that have been mapped into fu-
ture (yet-to-be-processed) buckets. to interpolate the state
of an entity at a given point in time.

A number of possible DR algorithms can be identified
[1][2][26]. The simplest algorithm would be to simply re-
play the last known position. This algorithm has minimal
CPU cost for computing the missing information, but may
not provide an accurate extrapolation of the missing posi-
tion.

In MIMAZE, the multicasted state description of a
player includes the following information: its current po-
sition, orientation (i.e., the direction the avatar is facing,
which defines its instantaneous direction, if it is moving),
velocity, and "angular speed" (i.e., the rate at which is di-
rection is changing). With this state description, if a given
ADU is received but the following one is lost, the receiver
uses the information contained in the received ADU to ex-
trapolate ("dead reackon") the missing information. In the
current version of MIMAZE, when an avatar's future posi-
tion is dead-reckoned based on its last known position, its
direction and velocity at that time, and its angular speed
are all used. It is assumed that velocity and angular speed
remain constant over the period of time that a remote
player's position is dead reckoned. Note that by includ-
ing derivative information (velocity and angular speed), it
is possible to dead-reckon a missing position based on a
single ADU (a number of simpler DR algorithms requires
two or more ADUs to dead-reckon a missing one).

In section 2.1.1 we identified bucket frequency and play-
out delay as two key parameters of the bucket synchroniza-
tion mechanism. The dead reckoning algorithms discussed
above highlight a third key parameter: the ADU trans-
mission frequency, i.e., the rate at which an entity trans-
mits state update ADUs to the other entities4. A high
ADU transmission frequency is desirable from a number of
standpoints. Because a remote entity is providing frequent
updates of its position, its reported motion appears more
"fluid." Also, if the transmission frequency is too slow, the
receiver may not be able to detect fast time-scale changes
in the sender's trajectory. We examine this issue in more
detail in section 3.3.2. A final consideration is that if an

4The transmission frequency is thus also the rate at which a sender
samples and sends its state.

1473

ADU is lost, the change reported from one ADU to the
next will be smaller than with a lower transmission fre-
quency and a DR algorithm should consequently be more
accurate. However, the higher bandwidth and CPU re-
quirements associated with a higher ADU frequency make
it undesirable from a resource consumption standpoint.

In section 3.3 we evaluate the impact of the bucket fre-
quency on the consistency of the game. We will not explic-
itly consider CPU resource constraints. We note here, how-
ever, that ADU transmission frequency is at the center of a
number of interesting tradeoffs between CPU processing for
DR and for protocol (message reception) processing. For
example, while a high transmission frequency means that
there is less change in state between ADU’s (and hence the
quality of DR should be higher), it also results in a higher
protocol processing load on a receiver and consequently
fewer CPU cycles available for performing the actual DR
calculation itself. Limits on the available computation time
may, in turn, limit the type of DR algorithm that can be
executed.

C. Related work

To our knowledge, MiMaze is unique in the area of Inter-
net games, being based on a serverless architecture together
with distributed synchronization and dead-reckoning based
error control. It is clear that other applications use syn-
chronization and dead-reckoning, but we could not identify
one in a distributed environment context.

Amaze can be considered as MIMAZE’s ancestor.
Amaze was designed by Berglund and Cheriton in 1984
[14] to be played on a LAN, using point to point communi-
cation. MIMAZE and Amaze both have a distributed ar-
chitecture but manage states differently. Amaze transmits
the game state on the network, and maintains replicated
copies of the game state.

Distributed games on the Internet are now a real mar-
ket for private companies. Microsoft, BT, Intel have
their own game services. But the approach of these
companies is to over-engineer the network in order to
maximize the quality of the game. There are also
private companies such as Mpath [22] that develop
more sophisticated transmission infrastructure (but
still with network over-engineering) for distributed
games.
Spline [17][18] is a virtual distributed interactive world
with 3D animation and spoken interaction. Spline has
a distributed architecture which is based on the DIS
standard. Most of the effort in Spline has been done
on local flow synchronization. But there is no dis-
tributed synchronization mechanism to deal with het-
erogeneous network delays.
The PARADISE project [21,26] a t Stanford Univer-
sity aims to architect and build a large-scale internet-
worked simulation environment that supports multi-
player interactive, 3D-simulations running over a wide-
area network. This project has produced very inter-
esting results on group communication, dead reckon-
ing, entity aggregation, and collision detection. Our

work here differs from [26] in that our goal is to
evaluate the MIMAZE architecture from a system
standpoint, where the inter-related issues of bucket-
synchronization, dead reckoning, and network impair-
ments such as loss and delay are inextricably linked.
By contrast, the work in [26] is aimed primarily at ag-
gregation (not considered here) and specific dead reck-
oning algorithms. It worth noting that dead reckoning
is used in [26] primarily to decrease state transmis-
sion frequency and smooth trajectories between state
updates. This is reflected in their evaluation, which
assumes no network loss or delay.

111. PERFORMANCE ANALYSIS

In this section we experimentally investigate the perfor-
mance of various aspects of the MIMAZE architecture.
Broadly speaking, our goal here is to examine how the
“quality” of the game is influenced by the frequency at
which players exchange state information (e.g. the so-
called transmission frequency), and by network impair-
ments such as packet loss and delay.5

We begin by describing the experimental setting and
methodology for the evaluation in section 3.1. In later sec-
tions we present and analyze various measurements.

Since MIMAZE currently has no congestion control algo-
rithm, we decided to make the following experiments with
no more that 5 participants, so that we limit the effect of
MIMAZE-induced network congestion on the loss rate6.

A . Experimental framework

Since the distributed MIMAZE architecture exploits IP
multicast capabilities, our evaluation uses the MBone [l l] .
The general experimental setup for our evaluations was as
follows. Players were located at 4 MBone sites running
variously on SUNS (SPARC 10, 20, ULTRA), DEC Alphas,
and PCs. A single player was located at the UCL (London),
LAAS and LIP6 (France), while the number of participants
a t INRIA was varied, as discussed below. In certain cases
(as noted later), subsets of this configuration were used in
our experimental evaluation.

The players themselves are so-called ‘hinjas” - software-
directed (rather than human-controlled) avatars that are a
standard component of the MIMAZE game. Each ninja’s
behavior is simple - it chases other ninjas (using the infor-
mation received from all the other ninjas) and attacks any
other ninja that comes within its firing view. Each partici-
pating computer runs a single ninja. We made a conscious
decisions to primarily use ninjas in our evaluation rather
than human-controlled entities since our previous experi-
ence [13] indicates that human players can introduce arti-
facts (e.g., occasionally ignoring an on-going game to focus
on another activity, or varying skill levels ranging from a
novice that has never played to an expert player) into the

5We do not consider here the effects of the changing playout delay or
display frequency, as these are primarily non-network-related, human
factors considerations.

6we remind here that MIMAZE scalability (i.e. varying the number
of participants) is intentionally not addressed in this paper).

1474

game. Such considerations can make it difficult to sepa-
rate out the influence of variable human player behavior
from the influence of game parameters and network per-
formance on the quality of the game. This latter influence
is of more interest to us here and so we initially chose to
perform the evaluation in a controlled setting with player
(ninja) behavior that can be considered representative of
typical human player behavior. We show that ninjas are a
good model for human players in [13].

To quantitatively evaluate various aspects of the MI-
MAZE transmission control infrastructure, we define here
the notion of “drift” as follows. Recall that at the simplest
level, the game consists of distributed players moving in
a maze. Each player displays the view seen by its avatar
in the maze, as well as an overhead (global) view of the
maze. Thus, each player will have position information
about each of the other players. Suppose now that en-
tity A’s view of its own spatial location (as computed by
A using the bucket synchronization algorithm pictured in
Figure 1) at time t is (z,y) and that entity’s B’s view of A
(computed by B using its own local bucket synchronization
computation) at time t is (z’,y’). Then the drift (or error
on the estimated position) associated with B’s view of A is
simply the Cartesian distance between these two positions:
J (x - x’)~ + (y - Y’)~. To give a feel for the magnitude
of the drift values, we note that the MIMAZE game is a
65Kx65K two dimensional grid in which a player moves at
32 units every 40 milliseconds when in motion; the avatar
itself has a radius of 32 units.

In the following, we will only consider the drift asso-
ciated with oneplayer’s view of another player’s position.
That is, we will not average the drift over all players. This
is because there will be different network delays and losses
between each pair of players and it is precisely the effect of
such impairments on game quality that we want to quan-
tify.

A.l Monitoring, trace synchronization, and trace filtering

In order to evaluate the performance of our transmis-
sion control mechanisms, each entity collects a trace of its
activity (including application level, network level and syn-
chronization data)during a game session. These traces are
analyzed off-line.

The main difficulty in analyzing these traces is trace re-
synchronization. Note that as a result of the distributed
system architecture, there is no absolute clock in a game
session. Instead, each participant computes the clock offset
between itself and any other participant in the session. To
re- synchronize traces, we apply the least square algorithm
to the clock offset measured to compute an approximation
of the real offset. This offset approximation is used as a
reference value for re-synchronization.

We have shown in an early experiment that clock syn-
chronization was an important aspect of game consistency
and in determining traces usability [13]. The clock signal
of the remote computers was carefully controlled and an
acceptable clock synchronization was guaranteed by NTP
stratum 1 and 2 implemented on any computer involved in

the experiment.
As discussed in section 3.3, we will occasionally break a

single trace (e.g., of a single player in a 15-minute game)
into a number of smaller traces, according to a well-defined
criteria (e.g., the packet loss or delay experienced during
various intervals of time). With a single large trace, widely
disparate behaviors in the environment (e.g., a period of
extremely high packet loss or delay, versus a period when
such values are small) and their impact on performance
of our transmission control mechanisms can be “washed
out” by averaging performance over a long trace. Since
one of the main goals of this paper is to understand the
performance of our transmission control mechanisms as a
function of specific network conditions, we will occasion-
ally classify trace subintervals according to such conditions
(and note when we do so).

B. Illustrating the Impact of Packet Loss
In today’s public Internet with its best-effort service,

packet loss and delay are a fact of life; this is particularly
true in the MBone. The situation is also aggravated by
ADUs that reach their destination with a delay which is
longer than the playout delay. In that case, the arriving
data is stored in a past bucket, and the current bucket will
process this information as if it was lost (section 2.1.1).

In this section we illustrate the consequences of such net-
work impairments on MIMAZE by analyzing traces of net-
work and application-level activity.

Previous measurements of MBone traffic [23] have noted
periods of “outage” when no packets are received from the
network. We also observed such outages throughout the
course of this study. In particular, we observed long peri-
ods of time (ranging from a few seconds to a few tens of
minute) when the Mbone did not deliver any packets. It
has been conjectured [23] that such outages result from in-
stability in the underlying (unicast) routing protocols [25].
From a game-playing standpoint, such long periods of time
with no ADU reception make dead reckoning difficult. In
MIMAZE, based on previous observations [14], we have
chosen to dead reckon up to 1 second, and then remove an
avatar for which no information has been received for the
past second.

Figure 2 illustrates the impact of packet loss on MI-
MAZE behavior. Figure 2 contains two plots. The upper
graph shows the state drift (or distance) between site A’s
actual avatar position and a remote site (B’s) estimate of
that position as a function of time. The lower graph in
Figure 2 plots the number of consecutive packet losses, i.e.,
consecutive ADUs not received from A by B. These traces
were gathered in a configuration with five game partici-
pants sending ADU’s7 at a rate of 25 ADU’s/sec.

Several observations can be made from Figure 2:
First, as discussed above, there are periods of time
when the position of the remote avatar can not be
computed. These periods of time are indicated by the
absence of an “x” (upper graph) during an interval of

7Recall that each ADU contains an update description of the avatar
position

1475

0 1 0 2 0 3 0 4 0 5 0 6 0

Fig. 2. Drift and consecutive packet loss as a function of time

time. They correspond to periods where the avatar
was dead (killed by another avatar).
Figure 2 also indicates that when the loss rate is small,
the drift is generally very small. In the best case, there
is no drift (i.e., the estimate of a remote avatar’s po-
sition is exactly correct). We note that for bursts of 3
to 5 consecutive losses, our DR algorithm succeeds in
estimating the remote avatar’s position with limited
error. Specifically, with an error of less than 50 units
in 90% of the cases.

C. Impact of ADU transmission rate on game consistency

In this section we analyze the impact of the frequency
with which ADUs are sent (i.e. transmission frequency)
on the consistency of the game. This parameter is the
most important of the game (at least from a network point
of view) as it has influences on game quality, and on the
CPU and bandwidth requirements. Our goal here is con-
sequently to understand the tradeoff between the trans-
mission frequency and the consistency of the game under
various network conditions.

It is important to notice that in MiMaze, avatars are 32
unit radius spheres, and that their displacement is constant
speed, with a trajectory that can be either a straight line
or a circle.

C.l Transmission frequency

Figure 3 plots the average drift in one player’s estima-
tion of another player’s avatar position as a function of
the ADU transmission rate’. 90% confidence intervals are
also shown in the figure. The drift values shown in Fig-
ure 3 were obtained directly from our traces; whenever an
avatar added its own state description to the trace file, it
also added its computed position of the other players as
well.

Three curves are plotted in Figure 3, corresponding to
the cases where (i) the two players are on the same LAN
and hence there is negligible loss and very short delay be-
tween the two players (the elvis-droopy curve), (ii) the two
players are connected by a wide area MBone connection
with a packet loss rate that is typically less than 5% and

%he maximum frequency range of 30 corresponds to the human
perception limits

an average delay that is approximately 100 ms (the elvis-
speedy curve), and (iii) the two players are connected by
high loss and high delay MBone connection with a loss rate
that averages approximately 40% and an average delay of
approximately 175 ms (the speedy-elvis curve). The data
for graphs was obtained from a series of 15 minute games
(each played for 15 minutes at a given transmission rate)
among five hosts. We divided each game into 100-second
intervals and removed any interval where the receive rate
was less than 20% of the ADU send rate and computed
the drift over the remaining intervals (with the exception
of the speedy-elvis curve, almost no intervals were filtered
out in this manner).

,

Fig. 3. Average state drift versus transmission rate

Two important observations can be drawn from Figure 3.
First, we note that for a given pair of players, the drift re-
mains relatively constant as the transmission rate decreases
from 28 ADU’s per second down to a rate of approximately
5 ADU’s per second. Clearly, the sender’s higher sampling
frequency and ADU transmission rate are not resulting in
a noticeable improvement of the game consistency.

A related observation concerns the state drift associated
with the flat portions of each of the curves. First, note that
in the flat portions of the curves, the drift remains small
(less than 50 units for a 64 units wide avatar moving a t 32
units per 40 ms). From a qualitative standpoint, this is a
small error indeed. Figure 3 also shows that, as expected, a
low loss and low delay network connection results in smaller
state drift. I t might appear that the increase in drift from
one curve to the next results from the higher loss associated
with each curve. On the other hand, note that that halving
the transmission rate (e.g., decreasing the ADU transmis-
sion rate from 20 to 10) might be roughly considered to
have the same effect as moving from a no loss regime to a
50% loss regime. Yet moving from a transmission rate of
20 to 10 on the elvis-droopy curve has no noticeable effect,
while moving from the elvis-droopy curve to the speedy-
elvis curve at the same value of 20 ADU’s per second has
a noticeable change in the drift. We will resolve this issue
shortly in section C.3, where we take a deeper look at the
effects of loss on game quality.

C.2 Avatar trajectories

Clearly, we would like to choose the transmission fre-
quency so that the drift can be minimized. However, in-
creasing the transmission frequency increases the required

1476

bandwidth and can possibly lead to congestion and in-
creased loss. The compromise is consequently to main-
tain the transmission rate a t a point where receivers have
enough information to display a relatively consistent view
of the game. This point is not only defined by the op-
erating conditions (loss rate, delay, etc.), but also by the
game nature, and in particular by the characteristics of the
avatars’ trajectory.

I t is thus of interest to characterize avatar trajectory
within MIMAZE. Figure 4 plots the percentage of ADUs
that can be dead reckoned depending on the transmission
frequency. An ADU is said to be dead reckonable if it is on
the same trajectory (which in MIMAZE must either be a
line or a circle) as the previous ADU, and if the two ADUs
are consecutive. Figure 4 shows that the transmission fre-
quency has an important influence on the percentage of
ADU that can be dead reckoned. As we would expect, the
percentage of dead reckonable ADU’s increases with an in-
creased transmission rate. Intuitively, the more frequently
a trajectory is sampled, the more samples belong to the
same trajectory, and hence the more likely it is that the
points on that trajectory can be dead reckoned.

Fig. 4. Percentage of states that are dead reckonable

Figure 4 also shows that the higher loss rate curve (the
curve labeled “pegase”) results in a smoother increase in the
percentage of dead reckonable ADU’s. We conjecture this
results from the ninja’s behavior. Recall that ninjas chase
other ninjas. The more information they receive from other
entities, the more opportunity there is to detect changes in
the other ninjas’ trajectories, and consequently the more
opportunity there is for a ninja’s own trajectory to change.
If the number of avatars is high, and the loss rate is low,
then ninjas will continuously change their direction. The
droopy curve (plain line) illustrate this later point. On
the other hand when the loss rate is high at one entity,
the local ninja has less information to use in computing
the remote ninjas’ trajectories (and consequently estimates
fewer changes in the remote ninjas’ trajectories) and hence
itself continues for longer periods of time without changing
its own trajectory ’.

We also analyze the peaks in droopy graph (recall that
droopy experiences no loss in this graph). We conjecture

9We have observed the same behavior for human players. The figure
is not presented in this paper for readability.

that the peaks under 18 times per second (around 5 and
14) result from “errors” in the trajectory evaluation.

Consequently, the results in Figure 4 would argue that
the transmission frequency required to observe all the tra-
jectory details should be 18 states per second. Sampling
a t lower frequencies than 18 is also possible, but the ob-
served trajectory would be a “subset” of the real one (some
of the trajectory details would not appear, but the overall
direction would be visible).

This very important result is specific to MIMAZE. We
believe, however that similar types of observations can be
made for other type of avatars, i.e., that the minimum
transmission frequency depends primarily on the motion
properties of the avatar, including its acceleration.

C.3 Loss Analysis

We have shown in the previous experiments that the net-
work parameter that most dramatically affects the game
consistency is the loss rate. Heterogeneous delays also in-
crease loss as a side effect (since a late ADU has not yet
arrived by the time its bucket is processed). In this section
we thus provide a deeper analysis of the influence of losses
on the game consistency.

In order to study MIMAZE performance in a more sys-
tematic way, we wanted to vary the network conditions in
a more controlled manner - something not possible using
an operational network such as the MBONE. We do so as
follows. We begin with a trace from an actual live game
of a player’s position, it ADU transmissions, and the re-
ceipt (or loss) of its ADUs at a remote player. Given the
set of received ADU’s and a player’s DR algorithm, we can
reconstruct its view of each remote player’s position as a
function of time (indeed, in a real game, all of a player’s in-
formation about remote player positions is obtained via the
received ADU’s). Given a trace of the actual positions of
the remote player and the reconstructed view of these posi-
tions, we can then compute the drift in one player’s view of
another player’s position. We can also systematically vary
network behavior by, for example, simulating the loss of
transmitted ADUs and determine the reconstructed view
given this simulated network behavior. We can also sim-
ulate the variation in the transmission rate by “thinning”
the set of transmitted ADUs. For example, by removing
every other ADU from a trace, we can simulate the situ-
ation in which the sending avatar would have transmitted
its state updates at half the original frequency. By keep-
ing only every fourth ADU in the trace, we can simulate a
transmission rate of one fourth the original rate.

But does such a thinning result in behavior similar to
what we empirically observed in Figure 3? Figure 5 ad-
dresses this question. The curve labeled “extrapolated:
elvis-droopy ‘I (represented by a plain line) is obtained by
taking the single set of elvis-droopy trace data at a trans-
mission rate 28 ADUs/sec, thinning the transmissions (as
discussed above) and applying the DR algorithm to the re-
ceived ADUs. Thus, the entire curve was obtained f r om
a single set of trace data taken at 28 ADUs/sec. This
thinned curve is to compare to the curve that links the

1477

x (the curve has not been drawn to keep the figure clear),
where x where obtained by playing MiMaze at the different
transmission frequencies. We see good agreement between
the extrapolated performance curve obtained by thinning a
single trace, and the performance computed from the sepa-
rate individual traces. The agreement is not quite as good
for the speedy-elvis curve (the thinned curve is represented
by a doted line, and the experimental observations by the
"0") , although the thinned data shows the characteristic
sharp increase in drift at low transmission rates. We also
note that the point-valued data (0's) obtained from the
individual speedy-elvis traces is not very "smooth" in the
first place - probably due to the high loss rate (see section
3.4.1) between speedy and elvis".

TlV.d."d *n ureI*.tm nlm .I.W,.d dl" U"_n

TI.'l*bU.. .P.*-.m
.nr.w,.a .P**.*r.

250

Fig. 5. Calculating drift: thinning one trace versus using separate
traces

Given our confidence that thinning will now allow us
to more systematically study the effects of loss on perfor-
mance, we consider the following scenarios. We first begin
with a no-loss trace and then thin the trace as discussed
above. We introduce loss into the trace by modeling net-
work loss as a memoryless process (that is, each packet is
independently lost with a given probability). The results
are shown in Figure 6 for no loss, 10% loss and 30% loss.
We note that the curves have the same characteristic shape
as in Figure 3 - a flat portion of the transmission rate ver-
sus state drift tradeoff, with a marked increase in drift as
the transmission rate fall below 5 ADU's/sec. We note,
however, that the curves are not as separated from each
other as in Figure 3.

The curves in Figure 6 were each obtained under a mem-
oryless loss model. That is, the loss probability for a
given packet was independent of whether the previously
sent packet was lost or not. Recent unicast and multicast
measurements [28] suggest that end-end packet losses show
correlation for times scales up to eight hundred millisec-
onds. It is thus of interest to examine performance under
a bursty loss model.

We thus next consider a two-state loss model. When in
the no loss state, a transmitted packet will be received suc-
cessfully; when in the loss state, a transmitted packet will
be lost. We can vary the "burstiness" of the loss process by

l0Note that differences can also arise from the fact that in the case
of trace based data points taken from an actual game, networking
conditions were different for each game. This was not the case for the
thinned curved (that are obtained from a single trace).

varying the transition probability from the loss state back
to the loss state.

Fig. 6. Drift: varying loss rates

Figure 7 plots the state drift versus transmission rate
tradeoff for 10% loss under different loss burstiness sce-
narios. In one case, whenever a packet is lost, the next
packet is successfully delivered (an average loss burst length
of one) and in the second case, the average length of the
burst of consecutively lost packets is 5 . We note that with
higher loss burstiness, the drift is significantly higher. In
fact, comparing Figures 3 and 7 we see that the results
of the bursty 10% loss model are similar to those from the
30% independent loss model - indicating the important role
that loss burstiness plays in determining state drift. This
also points out the flaw in our earlier conjecture in the dis-
cussion of Figure 3, that decreasing the ADU transmission
rate in half might be roughly considered to have the same
effect as moving from a no loss regime to a 50% loss regime.
The former approach smoothly removes packet receptions
while the latter approach results in losses (packets being
removed) in a more bursty manner. Figure 7 tells us that
burstiness plays a key role in determining performance.

4 \ 's 4

Fig. 7. Drift: identical loss rates but different mean loss burst lengths

Let us conclude with several observations regarding loss
burstiness. First, in our distributed architecture, each
player sends its own stream of ADU's. While bursty loss
may affect some ADU streams (in which case, the drift
associated with those players may be high), it will not af-
fect other ADU streams. If game control were centralized,
bursty loss from the central site would result in poor game
performance for everyone. A second observation is that
given the effects of bursty loss, it is important to consider

1478

error recovery (and perhaps congestion control) algorithms
that operate in the face of bursty loss.

IV. CONCLUSION
This paper has described the design, implementation

and analysis of a distributed (serverless) interactive multi-
participant game on the Internet. The architecture has
two key mechanisms for end-to-end transmission control:
the bucket algorithm and dead reckoning.

We have shown that the real-time capabilities of the
game can be maintainedgiven that a small error can be
intriduced on the game consistency. We have also shown
that the transmission frequency can be varied with a lim-
ited influence on the game consistency. Finally, this paper
suggests that a robust mechanism to control bursty losses
would be useful.

Several aspects of the our current transmission control
infrastructure must still be enhanced to address the impor-
tant problems of scalability (large number of participants),
and application complexity (graphics, video, spatial audio).
We are currently workinn on these moblems: -

Incorporate a congestion control algorithm. Dis-
tributed interactive application offers a very simple
way to control the congestions by varying the local
state transmission frequency.
Developing a new mechanism to detect collisions be-
tween avatars by "anticipation". We propose to use
source dead reckoning to anticipate collisions.
Study participant sub-grouping in order to improve the
game scalability and quality. Such techniques, gener-
ally based on grid subgrouping, are recommended by
the DIS community [1][2][18].

ACKNOWLEDGMENTS
The authors want to thank Mostafa Ammar, Jon

Crowcroft, Serge Fdida and Michel Diaz for having pro-
vided the experimental resource.

REFERENCES
[l] IEEE Standard for Distributed Interactive Simulation - Ap-

plication Protocols (IEEE Std 1278.1 -1995). IEEE Computer
Society. 1995.

[2] IEEE Standard for Distributed Interactive Simulation - Com-
munication Services and Profiles (IEEE Std 1278.2 -1995).
IEEE Computer Society. 1995.

[3] S. Seidensticker and W. Garth Smith and M. Myjak. "Scenar-
ios and Appropriate Protocols for Distributed Interactive Sim-
ulation". Working Internet Draft <draft-ietf-lsma-scenarios-
Ol.txt>. March 1997.

[4] J . M. Pullen and M. Myjak and C. Bouwens. "Limitations of
Internet Protocol Suite for Distributed Simulation in the Large
Multicast Environment". Working Internet Draft <draft-ietf-
Isma- limitations-Ol.txt>, March 1997.

[6] D. L. Mills, "Network Time Protocol (Version 3) Specification,
Implementation and Analysis", RFC-1305, March 1992.

[7] A. Cox, E. Luiijf, R. van Kampen, R. Ripley. "Time Synchro-
nization Experiments". Proceedings of the 14th DIS workshop
(dis-96-14-175). Spring 1996.

"Softwarepraktikum Netzwerkpro-
grammierung unter Unix am Beispiel des Spiels", 1993194,
http://www.tu-clausthal.de/student/iMaze/.

[9] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. "RTP:
A 'IYansport Protocol for Real-Time Applications", RFC-1889,
January 1996.

[SI J. Czeranski, H-U. Kiel.

[lo] R. Ramjee, J. Kurose, D. Towsley, H. Schulzrinne, "Adaptive
playout mechanisms for packetized audio applications in wide-
area networks", Proceedings of Infocom '94, Toronto, Canada,
pp. 680- 688, April 1994.

[I11 H. Eriksson. "MBONE: The Multicast Backbone". Commu-
nication of the ACM. Vol. 37. pp. 54-60. August 1994.

[12] A. Goscinsky. "Distributed Operating System, The Logical
Design". Addision-Wesley publishing company. 1991.

[I31 L. Gautier and C. Diot. "MiMaze, a Multiuser Game over
the Internet". INRIA Research Report 3248. INRIA Sophia
Antipolis (France). September 1997.

[14] E. Berglund and D. R. Cheriton. "Amaze: a multiplayer
computer game". IEEE Software. 2(3):30-39, May 1985.

[15] CRY0 Interactive. "le deuxieme monde".
www.cryointeractive.com/. 1997.

[IS] S. Deering. "Host Extensions for IP Multicasting". RFC
1112. 17. August 1989.

1171 D. B. Anderson, J . W. Barrus, D. C. Brogan, M. A. Casey,
S. G. McKeown, I. B. Sterns, R. C. Waters, and W. S. Yerazu-
nis. "Diamond Park and Spline: A Virtual Reality System with
3D animation, Spoken Interaction, and Runtime Modifiability".
MERL report TR96-02a. 1996.

'I Lo-
cales and Beacons: Efficient and precise Support for Large Scale
Multiuser Virtual Environments". IEEE Virtual reality Annual
International Symposium. Santa Clara (CA). March 1996.

1191 R. C. Waters. "Time synchronization in Spline". MERL
report TR96-09. April 1996.

1201 D. Clark and D. Tennenhouse. "Architectural Considerations
for a New Generation of Protocols". In ACM SIGCOMM '90,

1181 J. W. Barrus, R. C. Waters and D. B. Anderson.

(pp. 200-208).
[21] The PARADISE project web site. www-

DSG .S tanford.EDU/ paradise. html .
[22] J.Rothshild, "Designing and Writing Multiplayer

Games for the Internet: Technical Considerations",
www.mpath.com/news/white-paper.htm1.

[23] M. Yajnik, J. Kurose, and D. Towsley. "Packet Loss Corre-
lation in the Mbone Multicast Network". IEEE Global Internet
Conference. London. November 1996.

[24] L. Gautier, E. Lety, C. Diot. "The MiMaze web page".
Http://www.inria.fr/rodeo/MiMaze/.

[25] V. Paxson, "End-to-end Routing Behavior in the Internet,"
Proc. 1996 ACM SigComm, (Stanford University, California),

[26] S. Singhal, "Effective Remote Modeling in Large Scale
Distributed Simulation and Visualization Environments," PhD
thesis, Department of Computer Science, Stanford University,
Stanford, CA, August 1996.

(271 M. Handley and J . Crowcroft, "Network Text Editor (NTE):
A scalable shared text editor for the MBone", Proc. ACM Sig-
comm 1997, Cannes, France, Sept. 1997.

[28]. M. Yajnik, S. Moon, D. Towsley, J. Kurose, "Measurement
and Modeling of the Temporal Dependence in Packet Loss,"
submitted to IEEE Infocom99.

pp. 25-39.

14 79

http://www.tu-clausthal.de/student/iMaze
http://www.cryointeractive.com
http://tanford.EDU
Http://www.inria.fr/rodeo/MiMaze

