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Abstract

We study fairness in arbitrary networks with multicast capabili-

ties. Multicast tra�c in internet and ATM provides a motivation for

studying these networks. A study of fairness in multicast networks

poses several interesting problems e.g., the issue of intra-session fair-

ness in addition to that of inter-session fairness in unicast networks.

We develop a mathematical framework to model the fair allocation of

bandwidth in multicast networks with minimum and maximum rate

constraints. We present distributed algorithms for computation of

maxmin fair rates allocated to various source-destination pairs.

1 Introduction

Multicasting provides an e�cient way of transmitting data from a sender
to a group of receivers. A single source node or a group of source nodes
sends identical messages simultaneously to multiple destination nodes. Sin-
gle destination or unicast and broadcast to the entire network are special
cases of multicast. Multicast applications include collaborative applications
like audio or video teleconferencing, video-on-demand services, distributed
databases, distribution of software, �nancial information, electronic newspa-
pers, billing records, medical images, weather maps and experimental data,
distributed interactive simulation (DIS) activities such as tank battle simu-
lations. Many distributed systems such as the V System[13] and the Andrew
distributed computing environment[28], popular protocol suites like Sun's
broadcast RPC service[23] and IBMs NetBIOS[19] are using multicasting.
Multicasting has been used primarily in the Internet, but future ATM net-
works are likely to deploy multicasting in a large scale, particularly in appli-
cations like broadcast video, video-conferencing, multiparty telephony and
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workgroup applications[12]. In general many multicast sessions simultane-
ously share the network resources. Ideally all sessions should have a fair
share of bandwidth. This issue of inter-session fairness have been studied
extensively in unicast networks. Multicasting poses some speci�c challenges
in this regard. This is because of network heterogenity. A single session may
have many destinations, and end systems can have widely varying bandwidth
connectivities. On one hand there are fast ethernets (100 Mbps) and on the
other hand there are slow modems (28:8 kbps). The paths to di�erent des-
tinations may have di�erent bandwidth capacities, e.g., one may consist of
multi-megabit links, such as, T3 (45 Mbps) and another may have a 128
kbps ISDN line (Refer to the network shown in �gure 1 for an example).
Every receiver would like to receive service at a rate commensurate with its
capabilities and the capacity of the path leading to it from the source inde-
pendent of the capabilities of the other receivers of the same session. This is
the issue of intra-session fairness. Besides, like in unicast, there is the issue
of inter-session fairness, that is fairness of members across multiple sessions.
So multicasting poses the issue of intra-session fairness in addition to that
of inter-session fairness.

As the Internet evolves to higher speed and larger size, the problems
caused by heterogenity will only get worse. A single rate of transmission per
session is likely to either overwhelm the slow receivers or starve the fast ones,
in absence of additional provisions. There are three alternative approaches,
simulcast, transcoding and layered transmission. Simulcast advocates that
every source maintains multiple streams carrying the same information but
transmitted at di�erent rates and quality, targetted at receivers with di�erent
capabilities[10]. Depending upon the individual capabilities, the receivers are
partitioned across groups and each group subscribes to one stream. The rate
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of the streams can be controlled to attain a fair share. However this is band-
width ine�cient as the same basic information is replicated across all streams
This contradicts the basic principle of multicast that messages need only be
replicated at forking nodes. Besides, unless there are as many groups as the
number of receivers, the problem of heterogenity remains to a limited extent.
The other two approaches are bandwidth e�cient. In transcoding, the source
transmits at a rate matching the fastest of its receivers. The transmission
rates are transcoded at the intermediate nodes to match the capabilities of
slower receivers downstream[31]. At every link, the transmission rate of a
session is equal to that of the fastest session receiver downstream of the link.
Video gateways are generally used for transcoding[2]. The last approach is
to have a hierarchical or a layered transmission scheme. In this approach, a
signal is encoded into a number of layers that can be incrementally combined
to provide progressive re�nement. The di�erent layers of a multicast group
are considered di�erent multicast groups and receivers adapt to congestion
by adding and dropping layers, where adding a layer is joining a multicast
group and dropping a layer is leaving a group[15]. Again the number of layers
of a session in a link is the maximum of the number of layers of the session
receivers downstream. This layered transmission scheme have been used for
both video[31] and audio[7] transmissions over the internet and has poten-
tials for use in ATM networks as well[16]. Transcoding (layered transmission)
schemes can be used to attain inter-session and intra-session fairness, in a
bandwidth e�cient manner, by having the receivers subscribe to a \fair" rate
( number of layers ). We assume that the network has either of these two
capabilities.

We have proposed a routing and scheduling policy in [29] which stabilizes
the system, if the network can accomodate all the tra�c demands, with-
out congestion. However, resource limitations may not permit this always.
Fairness of resource allocation becomes important in such a scenario. The
problem of fair allocation of bandwidths to multicast sessions under the con-
straint that all receivers of the same session must receive service at the same
rate has been investigated in [32]. Intra-session fairness can not be achieved
by a single rate of transmission per session on account of network heterogen-
ity. As [27] demonstrates formally, fairness properties of a multicast network
improves if multi-rate transmission is used instead of single rate transmis-
sion, as [32] advocates. [10] advocates simulcast, but that is bandwidth in-
e�cient. Fair allocation of layers (rates) in presence of layered transmission
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(transcoding) provisions have not been cultivated very systematically, until
recently[27]. There are two well known network protocols for layered trans-
mission, RLM (Receiver-driven Layered Multicast)[25] and LVMR (Layered
Video Multicast with Retransmissions)[20]. The goal of these approaches is
to achieve improved intra-session fairness. However, as [21] points out, nei-
ther handles inter-session fairness very well, when there are multiple sessions
competing for bandwidth. [21] proposes a scheme for fair allocation of layers
for multi-session layered video multicast which strives to rectify this defect
in RLM and LVMR. The authors present empirical evidence that the scheme
improves inter-session fairness for networks with multiple video sessions shar-
ing only one link. They mention that if M video streams share a link and
no stream has bandwidth constraint on other links or end systems, then the
layer di�erence between any two streams is either 0 or 1 in the steady state.
But typically, streams would have bandwidth constraint on other links as
well. There is no experimental or analytical evidence that the scheme works
well for more complex networks, with sessions sharing several links with each
other. In absence of further mechanisms, like elaborate scheduling policies,
it may not be possible to establish conclusively that the scheme attains fair
allocation of rates as per some well de�ned notion of fairness, like maxmin
fairness for example. Besides [21] does not make any e�ort towards the com-
putation of the actual rates or the number of layers allocated to the receivers
in an arbitrary network, under some well de�ned notion of fairness. An algo-
rithm for computation of maxmin fair rates in a multirate multicast network
has been proposed in [27]. However, this algorithm requires global knowledge
of system states for computation of the maxmin fair rates. Current networks
have large sizes. Thus global knowledge of system states may not be present
at any single point in the network. Distributed algorithms for computation
of fair rates are more useful in this context.

We start with a mathematical formulation of the problem. We adopt
the notion of maxmin fairness[6]. We would de�ne this notion more pre-
cisely later, but informally speaking a rate allocation is maxmin fair, if no
receiver can be allocated a higher rate without hurting another receiver hav-
ing equal or lower rate. Maxmin fairness is a good notion of fairness and as
[27] points out, maxmin fairness satis�es many intuitive fairness properties
in a multirate multicast network. We present an algorithm for computation
of maxmin fair rates in an arbitrary network with any number of multicast
sessions. This algorithm does not require global knowledge of system states
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during any stage and is thus amenable to distributed computation. We give
a framework for distributed computation of maxmin fair rates. It turns out
that the algorithms for computation of maxmin fair rates in unicast networks
or multicast networks with a single rate of transmission per session are special
cases of the algorithm we present here. However, the distributed framework
based on this algorithm makes certain assumptions which may not hold al-
ways. We present another distributed algorithm for computation of maxmin
fair rates which is slower than the �rst one in the worst case, but operates un-
der very general assumptions. We address generic mechanism for allocation
of the rates, once the rates are computed. Finally, we conclude with some
future directions of research. We think a uni�ed mathematical framework
can model the issue of intra-session and inter-session fairness for multicast
in both ATM and the internet. The modalities of the rate allocation and the
implementational details may di�er in the two scenario. As a �rst step, we
do not distinguish between the two. Thus our algorithms are applicable in
very general scenario. ATM sessions often have minimum rate requirements
and maximum rate constraints. These parameters are negotiated during con-
nection establishment phase. Our model is general enough to accomodate
these requirements. Internet sessions do not have these requirements because
there is no connection establishment phase. The minimum rate requirements
have not been incorporated in any existing model for multirate multicast
networks.

This report is organized as follows. Section 2 describes the problem of
maxmin fairness for multicast transmission and presents the mathematical
framework used to model the problem. This section also presents an inter-
esting property of the maxmin fair rate allocation. Section 3.1 presents an
algorithm for computation of the maxmin fair rates. Section 3.2 presents a
framework for distributed implementation of the above algorithm. Section 4
presents another distributed algorithm, which operates under more general
assumptions than the above implementation but has a slower convergence
time in the worst case. Section 5 discusses various multirate mechanisms
for allocation of maxmin fair rates to the receivers once the fair rates are
computed. The concluding section, section 6 identi�es some directions for
future research.
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2 Network Model

We consider an arbitrary topology network with N multicast sessions. A
multicast session is identi�ed by the triplet (n; v; U), n is a unique number
assigned to the session, v is the source node of the session and U is the
group of intended destination nodes (n has been incorporated to distinguish
between di�erent sessions with same source destination pair). We assume
that the tra�c from node v is transported across a prede�ned multicast tree
to nodes in U . The tree can be established during connection establish-
ment phase if the network is connection oriented or can be established by
some well known multicast routing protocol like DVMRP[14], MOSPF[22],
CBT[5], PIM[15] and MIP[26] in internet type network. The receivers may
have minimum rate constraints. Also some sources may not be able to trans-
mit at a rate higher than a certain threshold. Some receivers may have a low
processing ability. In that case, it is useless to allocate higher rates to that
session. So rate allocations can have peak rate constraints as well. These
parameters are useful for ATM like scenarios, where session establishment is
preceded by a negotiation stage and the network can be informed of these
requirements during the negotiation stage. In a connectionless network, ses-
sions can not have any such requirement as the network would never know
of these, and would have to make rate allocation irrespective of any such
requirement. Such a scenario can very well be accomodated in our model,
by assuming minimum rate requirement as 0 and maximum rate to be1 for
each receiver.

We call every source destination pair of a session a virtual session. For
example, if a session n has source v and destination set U , where U =
fu1; : : : ; utg, then this session would correspond to t virtual sessions, (n; v; u1);
: : : ; (n; v; ut). For example, the network shown in �gure 1 has a single ses-
sion, (1; v; U), with U = fu1; : : : ; u4g. This session corresponds to 4 virtual
sessions, (1; v; u1); (1; v; u2); (1; v; u3); (1; v; u4). Our objective would be to
achieve a maxmin fair rate allocation for the virtual sessions. We look at
rates attained by virtual sessions instead of those attained by the actual ses-
sions because our requirement is that every receiver of every session should
get a bandwidth commensurate with its fair share of the capacity of the path
between the source and the receiver. So ensuring maxmin fairness of the
session rate allocation and allocating the maxmin fair session rate to all the
virtual sessions would cause intra-session unfairness. We assume that ev-
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ery virtual session (source-destination pair) has a minimum and a maximum
rate.

At this point, we would like to mention that by \rate" of a virtual session,
we generally mean the average rate at which the corresponding receiver re-
ceives information. Because of the burstiness of tra�c, it may not be a good
idea to utilize the full capacity of the links. To prevent excessive delay and
severe performance degradation, the network designer may like to have the
average rates sum up to a certain fraction of the actual capacity of a link. In
this context, the term \capacity of a link" which we use henceforth, stands
for that fraction of the actual link capacity, which the network designer wants
the sessions to use.

Informally speaking a rate allocation for the virtual session is feasible, if
the rate for every virtual session is between the minimum and the maximum
possible rates for the virtual session. Besides if session n corresponds to vir-
tual sessions mn1; : : : ; mnt in link l, then the maximum of the rates allocated
to the virtual sessions mn1; : : : ; mnt is the bandwidth consumed by session n
in link l. Total bandwidth consumed by all sessions traversing through link
l can not exceed the capacity of link l. More formally let there be M virtual
sessions. A M -dimensional vector (r1; : : : ; rM) is a feasible rate allocation if

1. �i � ri � pi 8i, where �i and pi are respectively the minimum and
maximum rates of virtual session i, pi � �i � 0,

2. Let n(l) denote the set of sessions passing through link l and m(k; l)
denote the set of virtual sessions of session k passing through link l and
Cl denote the capacity of link l:

P
i2n(l)maxj2m(i;l) rj � Cl: �il denotes

the rate allocated to the session i on link l under rate allocation ~r. It
is actually the maximum of the rates allocated to the virtual sessions
in m(i; l), i.e., �il = maxj2m(i;l) rj: The capacity condition can also be
stated as X

i2n(l)

�il � Cl (capacity condition)

Figure 2 illustrates en example network with a few capacity and maximum
and minimum rate constraints.
Example 2.1: The capacity of edge ei is Ci: (C1; : : : ; C6) = (7; 3; 6:5; 3; 4; 6)
units. n(e1) = n(e3) = f1; 2g, n(e2) = n(e4) = n(e5) = f1g, n(e6) = f2g.
m(1; e1) = f1; 2g, m(2; e1) = f3g, m(1; e2) = f1g, m(1; e3) = f2g; m(2; e3) =
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Figure 2: Session 1 includes virtual sessions, 1; 2: Session 2 includes virtual
session 3: The �gure shows some sample n(ei) and m(i; ej)s. The numbers
in brackets, () denote the capacities of the respective links. The capacity
constraint for link e1 is max(r1; r2)+r3 � 7 and that for link e3 is r2+r3 � 6:5:
Virtual session 1 requires a minimum rate of 4 units and has a maximum rate
of 5 units. Virtual session 2 has a minimum rate of 1 unit and maximum
rate of 1 (no constraint on maximum rate). Virtual session 3 can have a
minimum rate of 0 and a maximum rate of 5 units. Thus minimum and
maximum rate constraints are 4 � r1 � 5; 1 � r2 � 1 and 0 � r3 � 5:

f3g, m(1; e4) = f1g, m(1; e5) = f2g, m(2; e6) = f3g: A rate vector (r1; r2; r3)
is feasible if

2 � r1 � 4
1 � r2 � 1
0 � r3 � 5

9>=
>;Minimum and Maximum rate constraints

max(r1; r2) + r3 � 7 (Link e1)
r1 � 3 (Link e2)
r2 + r3 � 6:5 (Link e3)
r1 � 3 (Link e4)
r2 � 4 (Link e5)
r3 � 6 (Link e6)

9>>>>>>>>=
>>>>>>>>;
Capacity constraints (1)

Informally, a feasible rate vector is maxmin fair if it is not possible to
maintain feasibility and increase the rate of a virtual session without de-
creasing that of any other virtual session which has equal or lower rate.
More formally, a feasible rate allocation vector ~r1 is maxmin fair if it satis�es
the following property with respect to any other feasible rate allocation vec-
tor ~r2: if there exists i such that the ith component of ~r2 is strictly greater
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than that of ~r1, then there exists j such that the jth component of ~r1, r1j
is less than or equal to the ith component of ~r1, r1i (r1j � r1i ) and the jth
component of ~r2 (r2j ) is strictly less than the jth component of ~r1 (r2j < r1j ).
The bandwidth allocations according to ~r2 are less even than those according
to ~r1 in some sense.

Example 2.2: The maxmin fair rate vector in Example 2.1 is (4; 3:5; 3): It is
easy to check that this rate vector is feasible. It is not possible to decrease
r1 below 4 because of the minimum rate constraint. This and the capacity
constraint of link e1 forces r3 to be at most 3: Any increase in r1 or r2 will
cause a decrease in r3 which is less than both. Thus (4; 3:5; 3) is the maxmin
fair rate vector.

Henceforth we shall ignore the maximum rate constraints. This does not
cause any loss in generality because maximum rate constraints can be in-
corporated by adding arti�cial links between receivers with maximum rate
constraints and the rest of the network, with capacities of the arti�cial links
equal to the maximum rates of the respective receivers. The size of the aug-
mented network is comparable to that of the given network. So complexity of
any algorithm for computation of the maxmin fair rates in a network should
remain the same, if we use the augmented network instead.

Next we present a signi�cant property of the maxmin fair rate vector.
We �rst introduce the concept of bottleneck links. A link l is said to be
bottlenecked with respect to a virtual session k traversing across it if the
following conditions are met:

� Capacity of the link is fully utilized, i.e., the sum of the rates allocated
to the sessions travelling across the link must be equal to the capacity
of the link:

P
i2n(l) �il = Cl

� The virtual session has the maximum rate amongst all virtual sessions
of the same session travelling through the link, i.e., rk = ��(k)l where
�(k) is the session corresponding to virtual session k.

� If any other virtual session j traversing through link l, has a rate higher
than that of virtual session k, then rate of virtual session j is less than or
equal to the minimum possible rate of some virtual session inm(�(j); l)
(set of virtual sessions travelling across link l and belonging to the
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same session as virtual session j). In other words, if rj > rk then rj �
��(j)l where ��(j)l = maxp2m(�(j);l) �p: The maximum of the minimum
rate requirements of the virtual sessions in m(i; l) is �il:

Example 2.3: Refer to the network of Example 2.1. Consider the rate vector
(4; 3:5; 3). Link e1 is bottlenecked w.r.t. virtual session (v; u1) and (v; u3) and
e3 is bottlenecked w.r.t. virtual session (v; u2). Link e6 is not bottlenecked
w.r.t. any virtual session because its capacity is not fully utilized. Consider
the rate vector (4; 4:5; 2). This is also a feasible rate vector. Now no link is
bottlenecked w.r.t. virtual session (v; u3).

The de�nition of a bottleneck link is similar to that in the unicast context.
In the unicast context, a link is bottlenecked w.r.t. a session i if its capacity
is fully utilized and if any other session j traversing the link has greater
bandwidth, then the rate of j is equal to its minimum required rate. In
multicast, the di�erence is that the rate of a di�erent virtual session j can
be more than that of s on the bottleneck link of s, not only because of its
minimum rate requirement, but because of the minimum rate requirement of
some other virtual session of the same session as j, traversing this bottleneck
link. In absence of minimum rate requirements, the bottleneck condition
becomes very simple for multicast networks as well. A link is bottlenecked
w.r.t. a virtual session if its capacity is fully utilized and no other virtual
session traversing the link has a greater rate.

Lemma 1 (Bottleneck Lemma) A feasible rate vector is maxmin fair i�

every virtual session has a bottleneck link.

Remark: Bottleneck Lemma serves as a test for maxmin fairness of a feasible
rate allocation vector. It indicates that if a rate vector is maxmin fair,
then the rate of receiver s is at least Cl=jn(l)j; for some link l on its path,
if there are no minimum rate requirements. In presence of minimum rate

requirements, this lower bound becomes
Cl�
P

i2�(l)
�il

jn(l)n�(l)j
; where �(l) is the set of

sessions traversing link l; whose session rates on link l are greater than the
rate of virtual session s: We will use this lemma in proving the correctness
of an algorithm for computation of a maxmin fair rate allocation. We have
proved this lemma in the appendix.
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3 A synchronous distributed algorithm for com-

putation of maxmin fair rates

We proceed to present a synchronous distributed algorithm for computing the
maxmin fair virtual session rates shortly. It is synchronous in the sense that
all sessions must start at the same time. We �rst give a generic description
of the algorithm and then discuss its distributed implementation.

3.1 Description of Algorithm

n(l); m(i; l); �(s) and �il are as de�ned in pages 7, 7, 9 and 10 respectively.
We introduce some additional terminologies.

Ls is the set of links traversed by virtual session s

rs(k) is the bandwidth allocated to virtual session s at the end of the kth
iteration. ~r(k) denotes the rate vector at the end of the kth iteration,
with components rs(k):

�il(k) is the rate allocated to the session i on link l at the end of the kth
iteration. It is actually the maximum of the rates allocated to the
virtual sessions in m(i; l) at the end of the kth iteration.

A virtual session s is saturated under rate vector ~r(k) if there exists a link l
on its path such that the capacity of the link is fully utilized and s has
the maximum rate amongst all virtual sessions of m(�(s); l), i.e.,

X
i2n(l)

�il(k) = Cl and rs(k) = ��(s)l(k):

A session is saturated on a link l if all the virtual sessions of the session
travelling through the link l are saturated.

S(k) denotes the set of unsaturated virtual sessions at the end of the kth
iteration.

�l(k) denotes the set of unsaturated sessions passing through link l at the
end of the kth iteration.
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Fl(k) denotes the total bandwidth consumed by the saturated sessions pass-
ing through link l at the end of the kth iteration.

�l(k) denotes the link control parameter of link l at the end of the kth
iteration. Link control parameter is the iterate which would be used
in computation of the maxmin fair rates. It is an estimate of the
fair share of the bandwidth of the link which can be allocated to the
unsaturated virtual sessions traversing the link. This bandwidth would
have been allocated to the unsaturated virtual sessions traversing the
link, if there were no bandwith constraints on other links and also if
the virtual sessions did not have any minimum rate constraints. As we
shall see later, if a virtual session is saturated, then its rate is already
determined.

�il(k) denotes the session link parameter of session i traversing through link
l. It is the bandwidth assigned to session i if there were no bandwidth
constraints for any of its virtual sessions on other links.

The following algorithm computes the maxmin fair rates for the virtual ses-
sions.

1. k = 0 �l(0) = 0, Fl(0) = 0, S(0) = f1; : : : ;Mg, �l(0) = n(l) 8 link l;
rs(0) = �s 8 virtual session s.

2. k ! k + 1

3. For every link l in the network compute the link control parameter. If
�l(k�1) 6= �, then �l(k) is the maximum possible �, which satis�es the
equation, Fl(k� 1) +

P
i2�l(k�1)max(�; �il) = Cl else �l(k) = �l(k� 1).

�il(k) = max(�l(k); �il):
�

4. Compute rs(k) for all virtual sessions s, where rs(k) = minl2Ls ��(s)l(k),
if s 2 S(k � 1), else rs(k) = rs(k � 1).

5. For every link l in the network compute the session rate in link l, for
every session in n(l), �il(k) = maxs2m(i;l) rs(k):

�This computation need be done for all unsaturated sessions traversing link l only.
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6. Compute the set of virtual sessions unsaturated after the kth iteration,
S(k) = S(k � 1) n fs : 9 l 2 Ls; s.t.

P
i2n(l) �il(k) = Cl and rs(k) =

��(s);l(k)g:

7. If S(k) = �, i.e., all virtual sessions are saturated, the algorithm ter-
minates, else go to next step.

8. For every link l, compute the set of unsaturated sessions passing through
the link l at the end of the kth iteration: �l(k) = fn : n 2 f1; : : : ; Ng;
m(n; l) \ S(k) 6= �g:

9. For every link l, for which �l(k) 6= �, compute the bandwidth consumed
by the saturated sessions passing through link l, Fl(k) =

P
i2n(l)n�l(k) �il(k).

10. Go to step (2).

At every iteration k, the algorithm computes a \fair share" of the link band-
width for every session, i, the session link parameter, �il(k). This bandwidth
is o�ered to all virtual sessions of session i traversing the link. If a virtual
session is constrained to have a rate less than its fair share because it is
assigned a lower bandwidth on another link, then it can not use some of
this bandwidth. If all virtual sessions of the same session release some band-
width because of constraints on other links, then there is residual bandwidth.
The residual bandwidth is split fairly among other sessions in the next it-
eration and the process continues. For deeper insight, ignore the minimum
rate constraints for the time being. Initially all the link control parameters
are assigned zero values. All sessions and virtual sessions are unsaturated.
Next the algorithm computes the link control parameters as per step (3).
The link control parameter for link l at 1st iteration, is the capacity of the
link per session traversing the link. If a virtual session traversing link l, had
no bandwidth constraint on other links, then it is assigned a rate equal to
the link control parameter. On account of the bandwidth constraint in other
links, the virtual session gets a rate equal to the minimum of the link control
parameters on its path. All virtual sessions traversing through the link with
the minimum link control parameter are saturated(this fact has been proved
later). A session is saturated if all its virtual sessions are saturated. The
bandwidth consumed by the saturated sessions, if any, are computed. This
bandwidth is subtracted from the link capacity, and the link control param-
eters are recomputed at the beginning of every iteration. The link control
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parameter in the next iteration is the residual capacity per unsaturated ses-
sion traversing the link, if any, else it is the same as the link control parameter
of the previous iteration. The virtual session bandwidths are assigned in the
same manner and the process continues. Since at least one virtual session is
saturated every iteration, the algorithm terminates in at most M iterations
(M is the number of virtual sessions).

In presence of nonzero minimum rates, link control parameter of link l
is computed as per step (3). In absence of bandwidth constraints on other
links, a virtual session s traversing through link l is assigned a rate equal to its
session link parameter on link l, ��(s)l(k), where �(s) is the session of virtual
session s. Session link control parameter is the maximum of the link control
parameter and the minimum allowable rates (�ss) of the virtual sessions of the
session traversing through the link. On account of the bandwidth constraint
in other links, the virtual session gets a rate equal to the minimum of the
above quantity, the minimum taken over all links in the path of the virtual
session. Again, at least one virtual session is saturated every iteration (proved
later), and the process continues till all virtual sessions are saturated.

We illustrate the operation of the algorithm with an example.

Example 3.1: Consider the network of Example 2.1. The minimum rate for
virtual session (v; u1) is now 4. The capacities of edges e2, e4 are now 4. The
maximum rate constraints do not exist. The rest of the constraints remain the
same. Virtual sessions (v; u1), (v; u2) and (v; u3) are named virtual sessions
1; 2; 3 respectively. Virtual sessions 1, 2 belong to session 1 and virtual session
3 belongs to session 2. L1 = fe1; e2; e4g, L2 = fe1; e3; e5g, L3 = fe1; e3; e6g:
Link control parameters are as follows. �e1(1) = 3, �e2(1) = 4, �e3(1) = 3:25,
�e4(1) = 4, �e5(1) = 4, �e6(1) = 6. Now, the session link control param-
eters are as follows. �1e1(1) = 4, �2e1(1) = 3, �1e2(1) = 4, �1e3(1) = 3:25,
�2e3(1) = 3:25, �1e4(1) = 4, �1e5(1) = 4, �2e6(1) = 6. Computing the
rs(1)s as per step 4, we have r1(1) = 4, r2(1) = 3:25, r3(1) = 3. Ob-
serve that virtual sessions 1 and 3 are saturated, while virtual session 2
is not. S(1) = f2g. Thus session 2 is saturated on all links. Session 1
is unsaturated on only those links which are on the path of virtual ses-
sion 2. �e1(1) = �e3(1) = �e5(1) = f1g, �l(1) = �, if l 62 fe1; e3; e5g.
Fe1(1) = Fe3(1) = 3, and Fe5(1) = 0. Computations for the next itera-
tion are as follows. �e1(2) = 4, �e3(2) = 3:5, �e5(2) = 4. �l(2) = �l(1)
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for the rest of the links. �1e1(2) = 4, �1e3(2) = 3:5, �1e5(2) = 4. Thus
r2(2) = 3:5. rs(2) = rs(1), s 2 f1; 3g. Now virtual session 2 is also satu-
rated. So S(2) = � and the algorithm terminates. The rates obtained upon
termination are (4; 3:5; 3).

The rates allocated to the virtual sessions, upon termination of the algo-
rithm are the maxmin fair rates. This follows from the following theorems.

Theorem 1 If the algorithm terminates in k iterations, then ~r(k) is the

max-min fair rate vector.

The formal proof is presented the appendix. The intuition behind the result
is as follows: max-min fair sharing implies that if there are k sessions sharing
a link, each session should get a \fair share" of the link bandwidth. If a
session is constrained to have a rate less than its fair share because it is
assigned a lower bandwidth on another link, then the residual bandwidth is
split fairly among other sessions. This is exactly what the algorithm does.
The last theorem ensures that the algorithm terminates in �nite number of
iterations.

Theorem 2 The algorithm terminates in at most M iterations, where M is

the number of virtual sessions.

We prove this theorem in appendix. The proof considers the link which
attains the minimum link control parameter in the kth iteration amongst
all those links which carry at least one unsaturated session. We show that
the capacity of the link is fully utilized, and at least one unsaturated virtual
session traversing the link has rate equal to its session rate on the link.
This virtual session saturates in the kth iteration. Thus all virtual sessions
saturate by M iterations.

Some well known algorithms for computation of maxmin fair rates in the
unicast scenario, e.g., [3], [6], are special cases of this algorithm. The sim-
plest version of this algorithm for unicast networks is in [6]. Later [3] and
[18] generalized this algorithm to take care of minimum rate constraints in
ATM ABR unicast networks. We have considered a multicast network with
minimum and maximum rate constraints. The introduction of multicast
complicates the problem signi�cantly. For example, the basic constraints for
feasibility are di�erent. We need to think in terms of virtual sessions instead
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of sessions. The condition for a link to be bottlenecked w.r.t. a virtual ses-
sion is di�erent from that of a link to be bottlenecked w.r.t. a session in the
unicast scenario. Also a virtual session can have a rate higher than the link
control parameter of a link it traverses, not only if its minimum bandwidth
requirement is higher, but also if the minimum bandwidth requirement of
some other virtual session of the same session traversing through the same
link is higher. The generalization and the proof need to take care of these
intricate details. For example, the algorithm for computation of maxmin fair
rates would terminate in at most jLj iterations, for unicast networks, where L
is the set of links. The same does not hold for multicast networks. Consider
the following example.

Example 3.2: Consider the network shown in Figure 3. There are 4 mul-
ticast sessions, all of them having node v as source and nodes u1 and u2
as destinations. Thus there are 8 virtual sessions, 1; : : : ; 8. Virtual session
j corresponds to session d j

2
e: Virtual sessions 1; 3; 5; 7 have u2 as destina-

tion and the rest have u1 as destination. Node v is the source of all vir-
tual sessions. The minimum rate requirements of virtual sessions 1; 3; 5; 7
are 1; 2; 2:25; 2:5 units. The rest of the virtual sessions have 0 as the mini-
mum rate requirement. Ce1 = 7:75, Ce2 = 7:6 and Ce3 = 16 units. With-
out going into the details of the computation, �e1(1) = 1, �e2(1) = 1:9,
�e3(1) = 4, ~r(1) = (1; 1; 2; 1:9; 2:25; 1:9; 2:5; 1:9): Virtual sessions (1; 2; 3; 5; 7)
are saturated at the end of the �rst iteration. �e1(2) = 2, �e2(2) = 2:2,
~r(2) = (1; 1; 2; 2; 2:25; 2:2; 2:5; 2:2): Virtual sessions 6 and 8 remain unsat-
urated. �e1(3) = 2:25, �e2(3) = 2:3, ~r(3) = (1; 1; 2; 2; 2:25; 2:25; 2:5; 2:3):
Virtual session 8 remains unsaturated. �e1(4) = 2:5, �e2(3) = 2:35; ~r(4) =
(1; 1; 2; 2; 2:25; 2:25; 2:5; 2:35): All virtual sessions are saturated at the end of
the 4th iteration. The algorithm terminates in 4 iterations, though there are
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3 links.

The algorithm terminates in at most jLj iterations for multicast networks,
if a speci�c condition is met, i.e., if all virtual sessions of the same session
sharing a link at some point, have the same minimum rate requirement (�i =
�j if �(i) = �(j) and Li \ Lj 6= �) (Lemma 2). Note that this condition on
minimum rates always holds in unicast networks because every session has
only one virtual session.

Lemma 2 The algorithm terminates in at most min(jLj;M) iterations, if

�i = �j for all i; j such that �(i) = �(j) and Li \ Lj 6= �:

We prove this lemma formally in appendix.
Every step of this algorithm has a complexity of O(jLjM). The algorithm

must terminate in M iterations (Theorem 2). Thus the overall complexity
of this algorithm is O(jLjM2):

We describe the distributed implementation of this algorithm in the next
subsection.

3.2 Distributed Implementation of the Synchronous

Algorithm

We describe a framework for synchronous distributed implementation of the
algorithm presented in the previous subsection. We will exploit the fact that
the computation of the session link control parameters of any link needs only
information about the saturation status of sessions traversing the link and
the previous iteration rates of the unsaturated sessions traversing the link.
A virtual session (receiver) can determine its rate if it knows its session link
control parameters of the links on its path. To know whether it is saturated
or unsaturated, it needs to know only the session link rates on its path.

Every node maintains an information �eld for every outgoing link. The
information �eld has an entry for the link control parameter and a separate
record for every session traversing the link. The record for session i traversing
link l maintains the session rate, the minimum required rate for the session,
session saturation map and a rate bitmap for the session. The session satu-
ration map has one entry for every virtual session of m(i; l). The entry for
virtual session s 2 m(i; l) indicates whether it is saturated or unsaturated or
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its status is not known. The rate bitmap has one bit for every virtual session
of m(i; l). The entry for virtual session s 2 m(i; l) indicates whether its rate
is known or not known.

At �rst every entry in the saturation maps indicates unsaturated, and
every entry in the rate bitmaps indicates that rate is known. All session
rates are initialized to the minimum rates. Source rates are initialized to the
minimum allowable rates (maximum of the minimum rates required by all
receivers of the session). Consider link l: Link control parameter is computed
as per step (3) at the origin of link l: Next the session link control parameters
are computed for every unsaturated session traversing the link. Next, the
entries for unsaturated virtual sessions in the saturation map and the rate
bitmap for the sessions are changed to \dont know" values. The link now
waits for \rate packets" from the virtual sessions with \dont know" rate
bits. The unsaturated virtual sessions send backward rate packets towards
the source with very high rate values. If a backward rate packet from a
receiver reaches a node while the receiver entry in the rate bitmap shows
that rate is known, then this means that the rate packet needs to know the
rate computed in the next iteration, while the node has not yet performed
the next iteration computation. In this case, the node holds the rate packet,
till the corresponding entry in the rate bitmap indicates that rate is not
known and then it decreases the rate value in the packet to the session
link control parameter, ��(s)l, if the rate packet reaches it through link l
and if the rate value of the packet is greater than the session link control
parameter. Subsequently, the node forwards the rate packet towards the
source. After the rate packet reaches the source, the source updates its rate
to the maximum of the current rate and the rate value in the rate packet
and subsequently generates a forward rate packet towards the receiver, with
the same rate value. The forward rate packet contains the minimum session
link control parameter on the path of the virtual session and this value is
the current iteration rate of the virtual session. When a forward rate packet
reaches the node, it updates the rate bit to indicate that rate is known, and
updates the session rate to maximum of the rate in the rate packet and the
existing session rate. When the forward rate packet reaches the receiver,
the receiver knows its current iteration rate and generates a probe message
to querry its saturation status. The probe message contains the current
iteration rate of the virtual session. The probe message travels towards
the source. When the probe message reaches a node through link l; the
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node holds the probe message till all entries in the rate bitmap for link l
indicates that the rates are known and then if the node determines that
link l satis�es the conditions for saturation, it updates the corresponding
entry in the saturation map in its information �eld and generates forward
and backward saturation messages. The forward message travels towards the
receiver and the backward message travels towards the source. If the node
determines that the link does not satisfy the conditions for saturation, it
forwards the probe message towards the source. If the probe message reaches
the source, then the source sends a forward unsaturation message towards
the receiver. Whenever a node receives a forward or backward, saturation or
unsaturation message, it updates its saturation bitnmap accordingly. After a
virtual session receives an unsaturation message, it sends a new backward rate
packet, because unsaturation message means that all nodes on its path know
the saturation status and rates of all virtual sessions and sessions respectively
and is thus ready for another iteration computation. Unsaturation message
also means that the virtual session has not received its �nal rate. If a virtual
session receives a saturation message, then it knows its �nal rate and it does
not generate any further rate packet. When all entries in the saturation maps
are updated to indicate saturation or unsaturation for all sessions traversing
a link, and at least one entry is unsaturated, then the origin node of the link
computes the link control parameter for another iteration and the process
repeats. If all entries are saturated, then the node does not make any further
computation.

The distributed implementation terminates in 2DM units of time where
D is the maximum round trip time from a source to a receiver in the network.
This is because after a link control parameter is computed, rates of all virtual
sessions traversing the node are known at the node in D units of time. A
probe is sent at or before this time and thus the saturation or unsaturation
message reaches the receivers and hence the nodes on the way at most D
units after this time. Thus a new iteration can start in 2D units of time
after the �rst. As Theorem 2 indicates, any node needs to perform at most
M iterations.

We have described only a framework for distributed computation. This
description gives the necessary intuition. Various optimizations can be in-
troduced to make the computation more e�cient. For example, it is not
actually necessary to maintain a separate entry for every virtual session of a
session in its saturation and rate maps. One entry per session per link for
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rate and saturation status of the session is su�cient. Besides, the rate and
probe packets of di�erent virtual sessions of the same session can be merged
at branching points, so that there is only one rate (probe) packet of a session
in a link. This prevents control information implosion at the source. We
describe an implementation with all the above modi�cations below.

Now every node maintains an information record for each of its outgo-
ing links l: The record maintains the following entries for every session i
traversing l :

Minimum session link rate: �il

Rate bit

Rate value

Saturation entry

Note that the entry does not maintain separate information about di�erent
session i virtual sessions traversing link l: If the rate bit is set, then the
current iteration session link rate is known at the node. The rate value is
the current iteration session link rate. The saturation entry has three posible
values to indicate whether the session is saturated or unsaturated in the link
or its status is not known. Initially, all rate bits indicate that rates are
known. Also all saturation entries indicate that sessions are not saturated.
All receivers are unsaturated. Consider link l: Link control parameter is
computed as before. Subsequently, all rate bits are reset and all saturation
entries which indicate \unsaturated" are updated to re
ect \dont know"
value. The origin of the link waits for backward rate packets of unsaturated
sessions. Unsaturated receivers transmit backward rate packets towards the
respecitive source, with very high rate values. When a node receives a session
i backward rate packet along link l, it holds it till session i rate bit on link l is
reset. After, the session i rate bit is reset, it updates the session i rate value
in link l to the minimum of the session link control parameter and the rate
value in the rate packet. The node waits for session i backward rate packets
on other links originating from the node on session i path. Once all of them
arrive, the node generates a backward rate packet with rate value equal to
the maximum of the session i rate values stored in the node. The backward
rate packet moves toward the source. When the source receives a backward
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rate packet, it sets its transmission rate value equal to the rate value in the
packet and sends a forward rate packet downstream with rate value equal to
that of the backward rate packet. When a node receives a session i forward
rate packet, it updates the session i rate values in each of its outgoing links
on the path of session i: The new session i rate value in a link is the minimum
of the old value and the rate value in the forward rate packet. Subsequently,
session i rate bits are set on all links on session i path. Also, the node sends
a forward rate packet on each of its outgoing links on session i path. The
rate value of the forward rate packet is equal to the new session i rate value
in the link. When a receiver receives a forward rate packet, it records its rate
and sends a probe packet towards the source to querry its saturation status.
The probe packet contains the following entries:

status

test bit

The status entry has three possible values: \saturation," \unsaturation" or
\dont know." If the status entry indicates saturation, then all downstream
receivers are saturated. If the status entry indicates \unsaturation", then
at least one downstream receiver is unsaturated and hence the session is
unsaturated on the link. If the status entry indicates \dont know," then
the saturation status of some downstream receiver is not known, and all
downstream receivers whose saturation status are known, are saturated. If
the test bit is set, then the node which receives the probe packet, must
test saturation condition. If the test bit is reset, then no such test need be
conducted as saturation status of all downstream receivers are known. If the
status indicates unsaturated, then one downstream receiver is unsaturated,
and hence the session is unsaturated on the link, but the saturation status of
all downstream receivers may not be known yet. The test bit becomes useful
in this scenario. It indicates whether saturation status of all downstream
receivers are known or not.

The receivers send probe packets with test bit set and status indicating
\dont know." When a node n receives a session i probe packet through link
l; it holds it till rate bits of all sessions traversing the link are set. Once all
other session rates are known on the link, if test bit of the probe packet is
set, the node determines whether the link capacity is fully utilized.
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1. If the link capacity is fully utilized, then it resets the test bit and
additionally if the status indicates \dont know" then it updates the
status to saturation.

2. If the link capacity is not fully utilized but the session link rate is
strictly less than the maximum of the session link rates for all links
originating from the node and on session i path, it resets the test bit
and additionally if the status indicates \dont know" it updates the
status to "unsaturation".

If the status indicates \saturation" or \unsaturation," then the status is not
altered in either of the two cases. If the test bit is reset, then the node
does not check for saturation and test bit and status are not altered. The
session i saturation entry in the link is set equal to the status of the probe
packet. Next the node waits for the arrival and similar operation on session
i probe packets on other links originating from n; on session i path and
whose saturation entry indicated \dont know" just after the last link control
parameter computation. Next, the node generates a session i probe packet
and sends it towards the source of session i: If the test bit of at least one of
the incoming probe packets remains set after modi�cation, then test bit of
the new probe packet is set. Otherwise, the test bit is reset. If

1. status entries of at least one incoming session i probe packet indicates
unsaturation after modi�cation or

2. status entry of at least one incoming session i probe packet indicates
\dont know" and session i rate in the respective link is strictly less
than the maximum of session i link rates for links on session i path and
originating from the node,

then the status entry of the new probe packet is set \unsaturated," else if
at least one of the session i incoming probe packets indicate \dont know"
after modi�cation, then the status entry of the new probe packet is set \dont
know". Otherwise, the status entry is set \saturated."

When the source receives the probe packet it generates a \saturation" or
an \unsaturation" message. A saturation message is generated if the test bit
is reset. Otherwise, an unsaturation message is generated. The message is
sent downstream. When a session i saturation or unsaturation message ar-
rives at a node, the node updates the saturation status of session i on the links
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on its path, showing \dont know" values. If a saturation message is received,
then the saturation status is modi�ed to indicate saturation on all such links.
If an unsaturation message is received, then the saturation status is modi�ed
to indicate \unsaturated" on all such links. If the saturation status does
not indicate \dont know" value on a link, then it is not altered. The node
generates a similar message on each of its outgoing links which are on the
path of session i: The message is a saturation(unsaturation) message if the
saturation status of session i on the link indicates saturation(unsaturation).

If a receiver receives an unsaturation message, it sends a new backward
rate packet, with a very high rate value. If it receives a saturation message,
then it does not send any further rate packet.

If a session is saturated in a link in an iteration, its saturation entry
indicates saturation and if it is not saturated then its saturation entry in-
dicates so. Also session link rates equal the rate values in the session �elds
in the links at the end of every iteration. Thus, this implementation exactly
emulates the algorithm of Section 3.1. Note that here the nodes maintain in-
formation about session link rates and session saturation status only. It does
not require explicit information about all virtual sessions which traverse the
node. Besides, there is only one forward rate packet, backward rate packet,
probe packet and saturation (unsaturation) message for a session in a link
in one iteration, independent of the number of receivers downstream. This
merger of control information prevents control information implosion. One
can also think of other modi�cations which should reduce the computation
time in most cases. For example, a saturation (unsaturation) message can
be generated immediately after the probe packet status re
ects saturation
(unsaturation), instead of waiting for the probe packet to reach the source.
This will not a�ect the worst case computation time, but should speed up
the computations in most cases. The worst case computation time is 2DM
units like the previous implementation.

An advantage of this algorithm is that the intermediate rates are always
feasible (Lemma 6). So during the computation period, sources can still
transmit at intermediate rates, without any huge queue buildup. The dis-
advantage of this distributed computation is that it requires all sessions to
start at the same time. Hence we call it a synchronous algorithm. That may
not be the case. Besides, multicast group membership is dynamic in inter-
net. Receivers join and leave during the lifetime of a session. We present
another distributed algorithm for computation of maxmin fair rates which is
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more suitable for a dynamic scenario. The essential principle behind the two
algorithms is the same, but there are certain philosophical di�erences. We
describe it in the next section.

4 An asynchronous distributed algorithm for

computation of maxmin fair rates

We brie
y describe the asynchronous algorithm below. For details, refer to
the pseudocode in the next subsection.

4.1 Generic Description

Every source sends a forward rate packet with a rate value (rp), which is
initialized to a very high value initially. The forward rate packet contains a
state bit (up). The state bit indicates whether the source should increase its
rate or not. The source sets the state bit to 0: Every node maintains a link
record for every outgoing link. The link record maintains an estimate of the
link control parameter ( l), and a session �eld for every session traversing the
link l: The session �eld of session i on link l on its path contains the forward
and backward session link rates (fil and bil respectively), and a session link
saturation bit (wil), for the session. Whenever a node receives a forward rate
packet of a session, it performs the following sequence of actions for each of its
outgoing links on the path of the session (for example, if a session traverses
links l1 and l2 originating from node n; then it performs this sequence of
actions for both l1 and l2):

1. Generates a forward rate packet. The rate value of the forward rate
packet on the link is equal to the minimum of the rate value of the
incoming forward rate packet and backward session link rate on the
link. State bit of the new forward rate packet is initially reset.

2. If the rate value in the newly generated rate packet is less than the
estimated link control parameter, then the session link saturation bit
is set. If the rate value in the newly generated rate packet is greater
than or equal to the estimated link control parameter, then the state
bit of the newly generated rate packet is set and the rate value of the
new rate packet is set equal to the estimated link control parameter.
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3. Copies the rate value of the new forward rate packet to the forward
session link rate entry and transmits the forward rate packet in the
respective outgoing link.

4. Computes a new estimate of the link control parameter. This computa-
tion is done as follows when there are no minimum rate requirements.
Refer to the pseudocode for the estimation procedure in presence of
minimum rate requirements. Available capacity of a link is the di�er-
ence between the link capacity and the sum of the forward session link
rates of saturated sessions (sessions with session link saturation bit set
to 1).

(a) If no session traverses a link, then link control parameter is equal
to the link capacity.

(b) If all sessions traversing the link have their session link saturation
bits set, then link control parameter is equal to the sum of the
available capacity of the link and the maximum session link rate,
the maximum taken over all sessions traversing the link.

(c) Otherwise, the link control parameter is the available capacity per
unsaturated session traversing the link ( a session is unsaturated
on a link if its session link saturation bit is reset).

After the link control parameter is computed, the session link saturation
bits of sessions with forward session link rate greater than or equal to
the link control parameter estimate are reset. Computation of link
control parameter is repeated with the new set of saturated sessions,
if the set of saturated sessions change. We do not need to repeat this
computation more than twice.

Once the forward rate packet reaches the receiver, it records the rate value in
the packet as its current iteration rate and generates a feedback rate packet.
The rate value of the feedback rate packet is equal to the maximum of the
rate value of the forward rate packet and the minimum rate of the receiver.
The state bit of the feedback rate packet is equal to that of the forward rate
packet. The minimum rate entry of the feedback rate packet contains the
receiver minimum rate. When a feedback rate packet reaches a node through
link l; the node updates the backward session link rate �eld for the session
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on the link l respectively. The backward session link rate �eld is set equal to
the rate value in the feedback rate packet, if the state bit of the backward
rate packet is set, otherwise the backward session link rate is set to 1: The
node also updates its estimated minimum session link rate to the minimum
rate value of the feedback rate packet. Then the node waits for the arrival
of feedback rate packets of the same session on other links originating from
the node. Once all of them arrive, the node generates a feedback rate packet
towards the source of the session. The rate value of this feedback rate packet
is equal to the maximum of the rate values of the incoming feedback rate
packets, if all the feedback rate packets have the state bit set, otherwise,
this rate value is set equal to the maximum of the rate value of the forward
rate packet which reached the node from the source of the session and the
minimum session link rates on the links which originate from the node and
are on on the path of the session. If the state bit of the same forward rate
packet were set or all of the state bits of the incoming feedback rate packets
are set, then the state bit of the new feedback rate packet is 1; otherwise it
is 0: When the feedback rate packet reaches the source, the source generates
another forward rate packet. If the state bit of the feedback rate packet is 0;
the new forward rate packet has a very high value of rate (ideally1). If the
state bit is 1; the rate value in the new forward rate packet is equal to the
rate value of the feedback rate packet.

Sessions can enter and exit, receivers can join existing sessions, or leave
continuing sessions and link capacities can change any time during the execu-
tion of the algorithm. When new sessions join, or links are added to the path
of an existing session on account of new receiver joins, the forward and the
backward session link rates are initialized to very high values, typically1: A
session is initially considered unsaturated on all newly added links on its path
and the link control parameter of the links on its path are computed. When
a session exits, or links are removed from its path on account of receiver leave
events, link control parameters on its path are also computed.

Theorem 3 If the system stabilizesy at time t = t0; then for all t � t0 +
2:5D + 5DM; the receiver rates are equal to the maxmin fair rates. The

forward session link rates are equal to the maxmin fair session link rates for

all t � t0 + 2:5D + 5DM:

ySystem stabilizes means link capacities and minimum rate requirements do not change

or sessions and their group members do not enter and exit any further.
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The intuition behind the convergence result is that the state bit in the rate
packet and the session link state bits indicate whether session link rates can
be increased or not. If the estimated rate (rate value in the rate packet), is
less than the fair share of the link capacities (link control parameters) on its
path, then the rate packet returns with state bit reset and the rate estimate is
increased next time. If the estimated rate is greater than or equal to the fair
share of some link on its path, then the estimated rate is reduced to this fair
share and the state bit is set, so that the next rate packet does not contain
a greater estimate of the rate. The session link rates recorded at the nodes
(forward session link rates) are set to the most recent value of the estimate
(rate value in the most recent forward rate packet). Initially, the estimate is
set to a very high value (typically, 1). Subsequently, increase and decrease
triggered by the state bits bring the convergence of the session link rates to
the fair shares and consequently the receiver rates converge to the respective
fair shares. In absence of minimum rate requirements, the convergence is
attained before t0 + 5DM: Theorem 3 is formally proved in the appendix.

The advantage of this algorithm is that, unlike the synchronous algorithm,
it need not restart every time there is a small change in the system. Thus,
in practice, the algorithm may be faster than the sysnchronous one in a
dynamic scenario, e.g., if multicast session membership changes frequently.
The disadvantage of this algorithm is that its worst case convergence time
is worse than that of the synchronous one. Besides, it needs to send control
packets and estimate link control parameters all along the operation of the
system. The synchronous algorithm need not send any control packets nor
make any computation after the virtual sessions are saturated, till any further
change in the system. So the synchronous algorithm is a better choice if
changes are infrequent. Another disadvantage of the asynchronous algorithm
is that the intermediate virtual session rates may not be feasible and this
may buildup huge queues in transience period. This does not happen for the
synchronous algorithm. Depending on the requirements of the system, any
one of the above algorithms may be chosen.

A distributed asynchronous algorithm for computation of maxmin fair
rates in unicast network, presented in [9], is a special case of ours. The
algorithm in [9] does not take care of minimum rate constraints. However, [3]
proposes a distributed asynchronous algorithm for computation of maxmin
fair rates in unicast networks with minimum rate requirements. But, the
algorithm is not guaranted to converge in �nite time. Another algorithm for
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the same objective has been proposed in [18]. The convergence proof for this
algorithm is in error. We point out the errors in the appendix. Our algorithm
computes maxmin fair rates in multirate multicast networks with minimum
rate requirements and is guaranted to converge in �nite time after the system
stabilizes. This is the �rst such algorithm in multirate multicast networks
with or without minimum rate constraints. If the network is unicast, then
it is not necessary to keep track of the backward session link rates at the
nodes at all. The algorithm in [9] maintains only the forward session link
rates and saturation bits for sessions at the nodes. However, we need to keep
track of this additional information for multicast networks (at least at nodes
where fanout is greater than 1) to account for the subtlety that a session rate
in a link may be greater than rates of some session receivers downstream.
Our algorithm di�ers from [9] in another aspect as well. We set a session
link saturation bit, only if forward session link rate is strictly less than the
link control parameter estimate. However, [9] \marks" a session on a link
(\marking" a session on a link is similar to setting the session link saturation
bit) if the session rate is less than or equal to the link control parameter
(advertized rate in their terminology). This di�erence is due to minimum rate
requirements. The algorithm oscillates if sessions are marked when session
rate is equal to the link control parameter in presence of minimum rate
requirements[18]. We follow the remedy suggested by [18], i.e., we \mark"
a session on a link only if the session link rate is strictly less than the link
control parameter. However, this complicates the approach. The proof in
[18] is not able to handle the complications in the unicast case. In view of
this, the unicast version of our algorithm (assuming bil = 1; all along) is
di�erent from [18].

4.2 Pseudocode for asynchronous distributed algorithm

First we introduce some terminologies.
�i is the rate of transmission of session i:
�s is the rate of reception of receiver s:

rp Rate Value of Rate Packet
up State Bit of Rate Packet
�p Minimum Rate

9>=
>;Rate Packet
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A forward rate packet has only the �rst two entries. A feedback rate packet
has all three of them.

vni Forward Session bit for session i
gni Incoming session rate for session i
xni Feedback Session bit for session i
yni Feedback outgoing session rate for session i
�ni Set of links originating from node n

on the path of session i
fil Forward Session link rate
bil Backward Session link rate
wil Session link saturation bit
hil Session link Hold bit
�̂il Minimum session link rate estimate

9>>>>>>=
>>>>>>;
(b)

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(a)

(a) gives the information �eld for session i on node n; if session i traverses
node n: (b) gives the information �eld for session i on outgoing link l of node
n; if session i traverses link l:

 l Estimate of link control parameter
�l Set of sessions traversing link l

)
Link l record

~f l is the forward session link rate vector, with components fils.
~wl is the session link saturation bits vector, with components wils.
~�l is the minimum session link rates vector, with components �̂ils.

j(&) indicates logical or (and) operation.
The pseudocode follows:

At source of session i:

1. If this is the �rst rate packet, �i =1:

2. Otherwise, when a feedback rate packet(rp; up; �p) is received,

(a) If up = 0; �i =1:

(b) If up = 1; �i = rp:

generate-forward-rate-packet(�i; 0) and send it downstream.
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At node n :
When session i forward rate packet(rp; up) is received:

1. gni = rp; vni = up; xni = 1; yni = 0; and 8l 2 �ni ; perform
the following actions:

2. hil = 1; zil1 = min(bil; rp); zil2 = 0;

3. If zil1 <  l; wil = 1 and if zil1 �  l; zil1 =  il and zil2 = 1: Here,
 il = max( l; �̂il):

4. fil = zil1;

5. generate-forward-rate-packet(zil1; zil2) and transmit it on link l;
and

6. estimate-link-control-parameter(~f l; ~wl; ~�l; Cl)

zil1 and zil2 are local variables.

When session i feedback rate packet(rp; up; �p) reaches node i via link l;

1. �̂il = �p;

2. If up = 1; bil = rp; else bil =1;

3. xni = xni &up;

4. If up = 0; yni = gni else yni = max(yni ; rp);

5. hil = 0;

6. If
P

l2�ni
hil = 0; generate-feedback-rate-packet

�
max(yni ;maxl2�ni �̂il); v

n
i jx

n
i ;maxl2�ni �̂il

�
and send this feedback rate packet towards the source of session i:

At a receiver s of session i :
When a forward rate packet(rp; up) is received, �s = max(rp; �s) and generate-
feedback-rate-packet(�s; up; �s) and send it towards the source of session i:

Let n be the origin node of link l and let link l be added to the path of
a session i: Session initiation can cause addition of links on its path. A link
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may also be added to the path of an existing session on account of some new
receiver joins.

1. �̂il = 0; wil = 0; �l = �l [ fig;

2. If session i was not traversing node n; prior to addition of link l; �ni =
flg; else �ni = �ni [ flg

3. estimate-link-control-parameter(~f l; ~wl; ~�l; Cl) (fil can be initial-
ized arbitrarily).

Note that we do not need to initialize other parameters because of the oper-
ation of the algorithm.

Let n be the origin node of link l and let link l be removed from the path
of a session i: Session exit can cause removal of all links on its path. A link
may also be removed from the path of a continuing session, if all receivers
downstream leave.

1. �ni = �ni n flg; �l = �l n fig;

2. estimate-link-control-parameter(~f l; ~wl; ~�l; Cl).

If capacity of a link changes anytime, then the link control parameter
need simply be recomputed, with the new link capacity.

Subroutine generate-forward-rate-packet(rp; up) (generate-feedback-
rate-packet(rp; up; �p)) simply generates a forward(feedback) rate packet
with rate value equal to rp and the state bit equal to up and minimum rate
equal to �p: Only a feedback rate packet has an entry for a minimum rate.

We describe estimate-link-control-parameter(~f l; ~wl; ~�l; Cl) below.

estimate-link-control-parameter(~f l; ~wl; ~�l; Cl) f

If �l = �;

f l = Cl

end subroutine;g

If wil = 1; 8 i 2 �l;
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f l = Cl �
P

i2�l fil +maxi2�l fil
While fil �  l; for some i 2 �l; wil = 0
If wil = 1 8 i 2 �l; end subroutine;g

If
P

i:wil=0 �̂il < Cl �
P

i:wil=1 fil

fSet wil = 0 for all i 2 �l:
If
P

i2�l �̂il = Cl;  l = 0
else determine  l s.t.

P
i2�l  il = Cl;

z where  il =
max( l; �̂il):

end subroutine;g

If
P

i:wil=0 �̂il = Cl �
P

i:wil=1 fil (minimum rate test)

fIf there does not exist i 2 �l; s.t. wil = 1 and
fil > �̂il then

fSet wil = 0 for all i 2 �l:
 l = 0
end subroutine;g

�l = maxi:fil>�̂il;wil=1 fil
Set wil = 0 8i for which fil � �l:g

determine  l s.t.
P

i:wil=0  il = Cl �
P

i:wil=1 fil; where  il =
max( l; �̂il):

If wil = 1; and fil >  l for some i 2 �l; then

f set wil = 0 8i 2 �l s.t. fil >  l:
determine  l s.t.

P
i:wil=0  il = Cl �

P
i:wil=1 fil;

where  il = max( l; �̂il):g

end subroutine; g

5 Allocation of Rates

In this section, we discuss the generic mechanisms for allocation of the fair
rates, once they are computed.

zIf
P

i2�l
�̂il < Cl; then there is a unique  l which satis�es

P
i2�l

 il = Cl: IfP
i2�l

�̂il = Cl; then  l = 0; satis�es
P

i2�l
 il = Cl:
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Once the fair rates are computed, the rate of a signal 
ow can be adjusted
from within the network. Video gateways are placed throughout the network
to transcode signal into a lower bit rate coding, using either the same coding
format with di�erent parameters or a di�erent coding scheme altogether[31].
Source transmits at a rate equal to the maximum of the fair rates allocated to
its receivers. Nodes know the maxmin fair session link rates in the outgoing
links on account of the distributed computation. At forking points, video
gateways transcode signal into a lower bit rate such that the rate in every
link is equal to the maxmin fair session link rate, which is the maximum of
the fair rates allocated to the session receivers downstream[31]. For instance,
the maxmin fair rates of virtual sessions 1; 2; 3 are 4; 3:5; 3 respectively in
Example 3.1.1. Virtual sessions 1; 2 belong to session 1 and virtual session 3
belongs to session 3: Source of session 1 transmits at rate 4: The video gate-
way at intermediate node I (Figure 2) transcodes session 1 signal to rate 3:5
for transmission through e3 and further downstream to u2: Session 1 signal
is transmitted at rate 4 units through e2 and e4; though. In this way, hetero-
genity is locally accomodated to �ne tune the transmission rate to exactly
match the fair share of link bandwidth allocated to receivers downstream.
Rate adaptive video gateways [2] can be used for this purpose. Rate con-
trol is attained by employing more agressive quantizers and by output frame
rate control (dropping frames as necessary from the input stream to meet a
given rate constraint). The latter attains �ne tuning of the output bit rate.
Active network architecture[33] provides a framework for deployment of rate
adaptive video gateways within the network.

A second solution to the problem of fair allocation of rates is multirate
transmission using hierarchical encoding. In this approach, an information
stream is partioned in to a base layer, comprising the information needed
to represent the lowest �delity media and a number of enhancement layers.
Some number of these enhancement layers are combined by the decoder with
the base layer to recover a signal of incremental �delity. An important char-
acteristic of hierarchical encoding is that the layers are generally ordered in
some manner. An enhancement layer yields useful information only when the
base layer and the lower layers have been successfully decoded. As each layer
is added, there is an improvement of quality of the received signal and addi-
tional bandwidth is needed to transport the combined stream. Hierarchical
coding was �rst suggested for packet voice transmission[7] and subsequently
several coding schemes have been proposed for video, e.g., [1], [17], [34], to
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name a few. Some of these are amenable to tuning of layer bandwidths.
Tuning of layer bandwidths become trivial if an embedded code is used. In
an embedded code, any pre�x of a valid codeword is a valid codeword and
if the code is chosen appropriately, the pre�x codeword corresponds to a
lower quality version of the longer codeword. Hence one can trivially form
a layered code from an embedded code by breaking up the longer code at
arbitrary boundaries. Moreover, one can generate as many layers as desired
and tune the rates of the di�erent layers since the embedded code can be bro-
ken at arbitrary points. A low complexity video codec is presented in [24].
It uses PVH(progressive video with hybrid transform) code, an instance of
an embedded code and is thus amenable to dynamic rate control. Embed-
ded code has also been used in speech coding[7]. A pyramidal video coding
scheme with two layers and a quality parameter to control the bit rate of the
enhancement layer has been suggested in [8]. This idea may be extended to
multilayer coding with 
exible layer bandwidths. Tuning of layer bandwidths
can be incorporated in many other codecs by using adaptive quantizers in-
stead of �xed ones. If the source coder is programmable, and the source can
modify its signals hierarchical structure, as in the cases discussed above, once
the fair rates are computed, the source partitions its signal to form as many
layers as there are distinct receiver rates and tunes the layer bandwidths to
match the receiver rates. Each receiver is allotted layers as per its fair share
of bandwidth. Total number of layers transmitted across a link is equal to
the maximum number of layers allotted to the session receivers downstream.
Layers are dropped or packets are replicated at forking points selectively.
For instance, the source of session 1 in Example 3.1.1 generates a code with
2 layers. The base layer will have bendwidth equal to 3:5 units, and the
enhancement layer will have bandwidth equal to :5 unit. Both layers are
transmitted across e1; e2; e4: Only the base layer is transmitted across e3; e5:
Only base layer packets are replicated at intermediate node I; for transmis-
sion across e2 and e3: The enhancement layer packets are not replicated at
I as they are transmitted only across e2: The source in Figure 1 will have a
4�layer encoding. Receiver u1 receives the �rst two layers, u2 receives all 4 of
them, u3 receives the �rst 3 layers and the slowest receiver u4; receives only
the base layer. We would like to mention that layered coding is useful, if the
nodes of the multicast tree are able to selectively forward 
ows to a speci�c
branch. This mechanism is likely to be deployed in networks eventually. If
network nodes do not have this ability, then transcoding is the only option.
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A perfect match between the layer bandwidths and the maxmin fair re-
ceiver rates is not always feasible due to limitations on such parameters
as the number of layers and the minimum bandwidth assigned to a layer.
Although PVH codec of [24] is amenable to dynamic layer bandwidth adap-
tation, the implementations still have a �xed layout strategy. Besides, many
hierarchical coding schemes do not generate embedded codes, e.g., percep-
tually weighted wavelets using hierarchical vector quantization with wavelet
decomposition(WWHVQ)[36]. In certain video codes, substreams can be
extracted to produce a speci�c range of resolutions only, e.g., 3D Subband
Video Coding[34]. Certain coding schemes are particularly successful only
when some apriori structure or hierarchy can be found in the problem[35]. In
many cases, generating a layer requires a dedicated �lter, and the number of
�lters employed by the source is �xed. Thus the number of layers is limited.
Similarly, requirements for minimum packet size and limitations on packeti-
zation delay, may impose a lower bound on bandwidth assigned to a single
layer and thus adversely a�ect layer granularity. The following approach can
be adopted in cases of �xed or partially adaptive signal hierarchy. Allocate
to the receivers as many layers as permitted by the computed fair rate. If
the total bandwidth consumed by the layers allocated to a receiver is strictly
less than the fair computed rate, allocate one more layer to the receiver and
let the network drop a certain portion of packets of the last layer at a forking
point. For instance, if the source of session 1 in Example 3.1.1 can transmit
unit bandwidth layers only, then initially receiver u1 will be allotted 4 layers
and receiver u2 3 layers only. Receiver u2 will be allotted one more layer
in the second stage (4 layers in all), because its fair rate is 3:5 units and 3
layers consume 3 units of bandwidth. Intermediate node I should not repli-
cate 50% of packets of layer 4: All layer 4 packets are transmitted across e2
and only 50% of them are transmitted across e3: So 50% of layer 4 packets
should not be replicated at node I: For certain coding schemes, packet loss
causes a graceful degradation in signal quality. For example, in [17] signal
exhibits a reasonable enhancement in quality above the base layer for 10%
enhancement layer packet loss. This transition is gradual up until 100% en-
hancement layer packet loss. This mechanism will be useful in these coding
schemes.

We would like to comment on our assumption that all multicast packets
of the same session move along the same tree. Di�erent multicast layers are
perceived as di�erent multicast groups and trees for di�erent groups may be
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completely di�erent in general. However, trees for di�erent multicast layers
of the same session will remain the same if source rooted trees are used, as
all these layers (multicast groups) have the same source. Besides, trees for
di�erent multicast layers of the same session should not di�er very much,
as that would complicate reconstruction of information at the receiver. For
example, if we consider video transmission, and di�erent layer packets of
the same session traverse along di�erent multicast trees, then di�erent layer
packets for the same frame may arrive at a receiver at di�erent times, and
frame reconstruction will involve a lot of packet reordering. This may incur
an unacceptable delay jitter. Thus it may be a good idea to use source rooted
trees in this case. Many video coders make the same assumption, e.g., [8].

6 Conclusion

Summarizing, we have presented a mathematical framework that can model
the fair allocation of bandwidth in the multicast scenario, while taking care
of both intra-session and inter-session fairness. This framework can model
fairness in both internet and ATM like networks. We have presented an al-
gorithm for computation of the maxmin fair rates in arbitrary multicast net-
works and a framework for distributed implementation of the same. The al-
gorithm takes care of minimum rate requirements, which are often present in
ATM ABR multicast scenario. This algorithm can be used to make maxmin
fair rate allocation, in presence of bandwidth adaptive hierarchical coding or
when the network has certain provisions like transcoding option or selective
packet replication. Several well known algorithms like the algorithm for com-
putation of maxmin fair rates in arbitrary unicast network and algorithm for
computation of maxmin fair rates in multicast network with the restriction
that all receivers of the same session must receive service at the same rate are
in fact special case of ours. We have also presented another distributed algo-
rithm for computation of maxmin fair rates in a multirate multicast network
which is more suited to asynchronous operation, i.e., when sessions enter
and exit at di�erent times. There exists an array of related intellectually
challenging unsolved research problems.

Firstly, we have assumed that network has certain provisions, but that
may not be the case. For example, transcoding places additional computa-
tional and administrative burden on the network. It may be possible to de-
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ploy transcoding gateways at strategic locations in the network but a system
that requires transcoding at arbitrary bottleneck links may not be computa-
tionally and �nancially viable. For transcoding, internal nodes must perform
intensive computational tasks and may need to process arbitrary coding al-
gorithms. Transcoding process increases end to end delay and cannot be
applied to a secure communication without entrusting the network with the
encryption key. Depending on the security risks, this may be totally un-
acceptable. In these cases, network heterogenity can be countered through
hierarchical encoding only. As discussed before, hierarchical signal structure
may be predetermined and layer granularity may be lower bounded. Net-
work may not have selective replication provisions at congestion points. As
a consequence, congestion will a�ect all the layers and the signal quality will
be very poor. Besides trusting the network to drop a certain proportion of
the highest layer packets may produce perceptually annoying distortions in
certain coding schemes. If the highest layer, employs a di�erential coding
scheme, then even a small percentage loss of packets may garble the entire
information in the �nal layer. In all these cases, \partial" subscription to a
layer is useless and receivers can only subscribe to layers fully. The conse-
quence is that any rate vector in the current feasible set can not be allocated.
Rather, only a discrete subset of rate vectors in the feasible set can actually
be allocated on account of the constraints on the signal structure. Fairness in
a discrete feasible set is vastly di�erent from fairness in our current feasible
set. It opens up many new research problems. We address those in [30].

We have discussed the generic mechanisms for fair rate allocation in pres-
ence of certain provisions like transcoding options and=or adaptive hierarchi-
cal encoding in Section 5, but we did not describe the exact protocol format
for the purpose. The detailed protocol would depend on the particular choice
(transcoding or adaptive hierarchical encoding). Developing the detailed pro-
tocols for the provisions described in Section 5 would be interesting from an
implementation point of view. We have also not described the exact message
exchange format for distributed computation of the maxmin fair rates, but
have suggested the general framework. Developing the exact protocol format
will have implementational signi�cance. Besides, while describing both the
distributed algorithms, we had implicitly assumed that the control messages
(e.g., rate packets, probe messages, saturation, unsaturation messages) are
never lost. However, in internet like lossy networks, control messages may
be lost. We need to devise retransmission and timeout strategies. This is a
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topic of future investigatation.

A Proof of Bottleneck Lemma:

Proof of Lemma 1(Bottleneck Lemma): Let a virtual session s not have
a bottleneck link under a feasible rate vector ~r. If s traverses a link l, it has
one of the following three properties.

1. Link l has some unused capacity.

2. Rate of some other virtual session of the same session as s traversing l
has greater rate than that of s, i.e., bandwidth consumed by the session
of s in link l is greater than the rate of s.

3. A session i traversing link l consumes greater bandwidth than s in link
l. This bandwidth is greater than the minimum rate of session i in link
l (�il). Virtual session s does not belong to session i:

If all links on the path of s satisfy the �rst two conditions, then the rate of
s can be increased without decreasing that of any other virtual sessions. If
some links on the path of s satisfy only the last property, then to increase the
rate of virtual session s, we may need to decrease the rate of some virtual
sessions having greater rate than that of s though. However we can still
increase the rate of virtual session s, without decreasing that of any other
virtual session having rate less than that of s and still maintain feasibility.
Thus ~r is not a maxmin fair rate vector.

Let ~r1 be a feasible rate vector such that all virtual sessions have a bot-
tleneck link. Consider any other feasible rate vector ~r2. Let there exist a
virtual session s such that r2s > r1s . Let l be a bottleneck link for virtual
session s. �2�(s);l � r2s > r1s = �1�(s);l. The last equality follows from the prop-
erty of a bottleneck link. Since l is a bottleneck link w.r.t. virtual session
s, its capacity is fully utilized, i.e.,

P
i2n(l) �

1
il = Cl. From the feasibility of

~r2,
P

i2n(l) �
2
il � Cl. Since �2�(s);l > �1�(s);l, and �(s) 2 n(l) (since virtual

session s traverses through link l), it follows that there exists a session j such
that �2jl < �1jl. From feasibility of ~r2, �2jl � �jl. It follows that �1jl > �jl.
There exists virtual session t such that t 2 m(j; l), r1t = �1jl. It follows that
r1t > ��(t)l: It follows from the last condition for a link to be bottleneck w.r.t.
a virtual session that r1t � r1s . Now r2t � �2jl < �1jl = r1t . The �rst inequality
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follows since �(t) = j. The second inequality and the last equality have been
argued before. Thus it follows that r2s > r1s implies there exists virtual session
t such that r2t < r1t � r1s . Hence ~r

1 is a maxmin fair rate vector. 2

B Proof of correctness for the algorithm for

computation of Maxmin fair rates

We prove that the algorithm for computation of maxmin fair rates pre-
sented in Section 3.1 indeed yields a maxmin fair rate vector upon termina-
tion(Theorem 1) and the algorithm terminates in M iterations (Theorem 2),
where M is the number of virtual sessions. We assume that the set of feasi-
ble rate vectors is nonempty. We outline the proof of Theorem 1 as follows.
We �rst show that the link control parameters increase (do not decrease,
to be precise) with every iteration(Lemma 3). It follows that the virtual
session rates and the session rates do not decrease in subsequent iterations
(Lemma 4). Using this, we show that the rate allocation at the end of the
every iteration is feasible (Lemma 6). Next we show that, if a virtual ses-
sion saturates in the kth iteration, it has a bottleneck link in all subsequent
iterations (Lemma 7). Since the algorithm terminates only when all virtual
sessions saturate, all virtual sessions have a bottleneck link when the algo-
rithm terminates. The rate allocation upon termination is also feasible by
Lemma 6. Thus maxmin fairness of the rate allocation upon termination
follows from the Bottleneck Lemma.

Lemma 3 If k � 1 and the algorithm has not terminated in k�1 iterations,
�l(k) � �l(k � 1) 8k � 1:

Remark: The intuition behind the result is as follows. Ignore the minimum
rate constraints for the time being. Link control parameter in an iteration
is the residual capacity per unsaturated session. The bandwidth assigned
to every unsaturated session traversing the link is at most equal to this
link control parameter. It may be less on account of bandwidth constraints
on other links, though. If no new session is saturated this iteration, then
the number of unsaturated sessions and the residual bandwidth remains the
same in the next iteration. So the link control parameter remains the same
as well. If a new session is saturated, then the residual capacity in the next
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iteration decreases by its bandwidth on the link, but this bandwidth is at
most by the link control parameter. So the link control parameter in the
next iteration does not decrease with respect to that in the current iteration.
The formal proof follows. The formal proof does not ignore the minimum
rate constraints.
Proof of Lemma 3: We will prove by induction. Let k = 1. The algorithm
can not terminate in 0 iterations. S(0) 6= �, Fl(0) = 0. If �l(0) = �,
then �l(1) = �l(0) = 0, and the lemma holds for link l and iteration 1. Let
�l(0) 6= �. Since the feasible set of rate vectors is nonempty,

P
i2�l(0) �il � Cl:

�il � 0, for every session i and link l. Thus � = 0, satis�es the inequalityP
i2�l(0)max(�; �il) � Cl. Clearly �l(1) is the maximum possible � which

satis�es the above inequality. Hence �l(1) � 0 = �l(0). The equality follows
from the initialization of �l(0). Thus the lemma holds for k = 1.

Let the lemma hold for iterations 1; : : : ; k and S(k) 6= �. We will show
that the lemma holds for the k+1th iteration. If �l(k) = �, then �l(k+1) =
�l(k): Let �l(k) 6= �. Consider any virtual session s traversing through link
l, i.e., �(s) 2 n(l). If s 2 S(k � 1), rs(k) � ��(s)l(k) = max(�l(k); ��(s)l).
Let s 62 S(k � 1). Thus s 2 S(t) n S(t + 1), 0 � t < k � 1. rs(t + 1) �
max(�l(t+1); ��(s)l) � max(�l(k); ��(s)l), since t+1 < k, and �l(0) � �l(1) �
: : : � �l(k) by induction hypothesis. Since S(k � 1) � : : : � S(t + 1)
(t + 1 < k and S(p + 1) � S(p), 8p), s 62 S(t + 1); : : : ; S(k � 1). Thus
rs(k) = : : : = rs(t + 1) � max(�l(k); ��(s)l).

rs(k) � max(�l(k); ��(s)l) for all virtual sessions s (2)

Thus �il(k) � max(�l(k); �il) (3)

Fl(k)� Fl(k � 1) =
X

i2�l(k�1)n�l(k)

�il(k)

�
X

i2�l(k�1)n�l(k)

max(�l(k); �il) (from (3))

Fl(k) +
X

i2�l(k)

max(�l(k); �il) � Fl(k � 1) +
X

i2�l(k�1)n�l(k)

max(�l(k); �il) +

X
i2�l(k)

max(�l(k); �il)

= Fl(k � 1) +
X

i2�l(k�1)

max(�l(k); �il)

(since �l(k) � �l(k � 1) as S(k) � S(k � 1))
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= Cl

Thus � = �l(k) satis�es the inequality Fl(k) +
P

i2�l(k)max(�; �il) � Cl.
Clearly �l(k + 1) is the maximum possible value of � which satis�es the
inequality and hence there exists a �l(k + 1) and �l(k + 1) � �l(k). Hence
the result follows from induction. 2

Lemma 4 rs(k + 1) � rs(k) if k � 0 for all virtual sessions s. �il(k + 1) �
�il(k) if k � 1 for all sessions i and links l.

Remark: We present the intuition, ignoring the minimum rate constraints.
The formal proof will consider them. The rate of an unsaturated virtual ses-
sion is equal to the minimum link control parameter on its path. Link control
parameter increases (does not decrease) with the iteration (Lemma 3). Thus
the result follows for unsaturated virtual sessions. The rate of a saturated
virtual session does not change in subsequent iterations. Thus the result
follows for virtual sessions. Session rates are nondecreasing because a ses-
sion rate on a link is equal to the rate of the virtual sessions of the session
traversing the link. The formal proof follows.
Proof of Lemma 4: Let k = 0. s 2 S(0) for all virtual sessions s.
rs(1) = minl2Ls ��(s)l(1). ��(s)l(1) = max(�l(1); ��(s)l) � ��(s)l � �s: The last
inequality follows from the fact that s 2 m(�(s); l): Thus rs(1) � �s = rs(0).
Thus the result holds for k = 0. Let k � 1. If s 62 S(k), rs(k + 1) = rs(k). If
s 2 S(k), rs(k+1) = minl2Ls ��(s)l(k+1). ��(s)l(k+1) = max(�l(k+1); ��(s)l):
�l(k+1) � �l(k). Thus ��(s)l(k+1) � (�l(k); ��(s)l) = ��(s)l(k). Thus rs(k+
1) � minl2Ls ��(s)l(k). Since s 2 S(k), and S(k � 1) � S(k), s 2 S(k � 1).
Thus rs(k) = minl2Ls ��(s)l(k). Hence rs(k + 1) � rs(k). The second part of
the lemma follows from the �rst and the fact that �il(k) = maxs2m(i;l) rs(k)

2

Lemma 5

rs(k) � ��(s)l(k) for all virtual sessions s; links l 2 Ls and k � 0(4)

Thus �il(k) � �il(k) for all sessions i; links l and k > 0 (5)

Remark: The intuition is as follows. Rate of an unsaturated virtual session
s is equal to the minimum value of its session link control parameter ��(s)l(k)
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on its path. So the result holds for an unsaturated virtual session. If a
virtual session is saturated in the kth iteration, its rate is frozen at the value
of the minimum session link control parameter in the kth iteration on its
path. Session link control parameter increases (nondecreasing) in subsequent
iteration. Thus the result follows. The result for session bandwidths follow
similarly. We will use this lemma in proofs of feasibility of rate allocations
(Lemma 6), the fact that every saturated virtual session has a bottleneck
link (Lemma 7) and the fact that the algorithm terminates in �nite number
of iterations (Theorem 2). The formal proof follows.
Proof of Lemma 5: We prove (4) by induction. rs(0) = �s � max(�l(0); ��(s)l)
8 l 2 Ls: The last inequality follows from the fact that ��(s)l = maxj2m(�(s);l) �j
and s 2 m(�(s); l), since l 2 Ls. Thus (4) holds for k = 0.

Let (4) hold for k � 0. If s 2 S(k), rs(k + 1) � ��(s)l(k + 1). If s 62 S(k),

rs(k + 1) = rs(k)

� ��(s)l(k) (from induction hypothesis)

= max(�l(k); ��(s)l)

� max(�l(k + 1); ��(s)l) ( �l(k) � �l(k + 1) by Lemma 3)

� ��(s)l(k + 1)

Thus (4) holds for k + 1. Thus (4) holds for all k � 0 by induction. (5)
follows from (4) and the de�nition of �il(k): 2

Lemma 6 The rate allocation at the end of the kth iteration is feasible,

k � 0.

Remark: Intuitive reasoning for the result is as follows. Rate of a virtual
session at the 0th iteration is its minimum rate. Rate of a virtual session do
not decrease in subsequent iterations. Thus minimum rate constraints are
satis�ed. Capacity constraints hold because no unsaturated session is o�ered
a rate more than its session link control parameter in any link. Session link
control parameters are computed such that the sum of the session link control
parameters for unsaturated sessions and bandwidths for saturated sessions
equal the link capacity for every link. The formal proof follows.
Proof of Lemma 6: We prove by induction. We �rst prove the lemma for
k = 0: Since the set of feasible rate vectors is nonempty, a rate allocation with
rate of each virtual session s equal to its minimum rate satis�es the capacity
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constraints. Thus ~r(0) satis�es the capacity constraints. Since rs(0) = �s,
~r(0) satis�es the minimum rate requirements. Thus ~r(0) is feasible and the
lemma holds for k = 0.

Let the rate allocation at the end of the kth iteration, ~r(k) be feasible.
Consider the k + 1th iteration. rs(k + 1) � rs(k) � �s. The �rst inequality
follows from Lemma 4 and the last from the feasibility of ~r(k). Thus rs(k +
1) � �s, for all virtual sessions s.

rs(k + 1) = rs(k) (if �(s) 2 n(l) n �l(k) since then s 62 S(k))

Thus �il(k + 1) = max
s2m(i;l)

rs(k) (if i 2 n(l) n �l(k))

= �il(k) (if i 2 n(l) n �l(k)) (6)

If �l(k) = �, from (6), �il(k + 1) = �il(k) 8 i 2 n(l).X
i2n(l)

�il(k + 1) =
X
i2n(l)

�il(k)

� Cl (from the feasibility of ~r(k))

If �l(k) 6= �,

X
i2n(l)

�il(k + 1) =
X

i2n(l)n�l(k)

�il(k + 1) +
X

i2�l(k)

�il(k + 1)

�
X

i2n(l)n�l(k)

�il(k) +
X

i2�l(k)

max(�l(k + 1); �il)

(from (5) of Lemma 5 and (6))

= Fl(k) +
X

i2�l(k)

max(�l(k + 1); �il)

= Cl

Since link l was chosen arbitrarily, it follows that the rate vector at the end
of iteration k + 1, ~r(k + 1) satis�es the capacity condition for every link l.
Hence ~r(k + 1) is feasible. Thus the lemma follows by induction. 2

Lemma 7 Let s 2 S(k � 1) n S(k). Let t � k and S(t � 1) 6= �, i.e., the
algorithm does not terminate in t � 1 iterations. Then virtual session s has

a bottleneck link, under rate vector ~r(t).
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Remark: Intuitively the result can be argued as follows. Ignore the mini-
mum rate constraints for time being. If a virtual session s saturates, then it
traverses through a link l whose capacity is fully utilized. Capacity of the
same link remains utilized in all subsequent iterations because session rates
do not decrease. Thus the �rst bottleneck condition holds in all iterations.
Actually, rates of sessions traversing the link do not change in subsequent
iterations, because they can not increase in view of the full utilization of the
capacity, and they can not decrease in any event. The rate of the particular
virtual session concerned does not change any further. Thus, since the sec-
ond bottleneck condition holds in the iteration in which the virtual session
saturate (by condition for saturation), it holds in all subsequent iterations.
We argue the third condition as follows. It can be shown that if s saturates
in the kth iteration, then its rate is equal to the link control parameter of l
in the kth iteration, and rate of any other virtual session traversing l in any
subsequent iteration is upper boulded by the link control parameter of l in
the kth iteration. Thus the rate of any other virtual session traversing l does
not exceed that of s in any subsequent iteration. Thus the third bottleneck
condition holds. The formal proof argues the lemma in a more general case,
with the minimum rate constraints.
Proof of Lemma 7: Let s 2 S(k� 1) n S(k), i.e., virtual session s becomes
saturated at the end of the kth iteration. Thus there exists link l 2 Ls such
that

X
i2n(l)

�il(k) = Cl (7)

and rs(k) = ��(s)l(k) (8)

By Lemma 5, rs(k) � ��(s)l(k). Let rs(k) < ��(s)l(k):

X
i2n(l)

�il(k) =
X

i2n(l)n�l(k�1)

�il(k) +
X

i2�l(k�1)n�(s)

�il(k) + ��(s)l(k) (9)

�il(k) = �il(k � 1) if i 2 n(l) n �l(k � 1) (argued in (6)) (10)

�il(k) � max(�l(k); �il)8i 2 n(l) (from (5) of Lemma 5) (11)

��(s)l(k) = rs(k)

< ��(s)l(k)

= max(�l(k); ��(s)l) (12)
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X
i2n(l)

�il(k) <
X

i2n(l)n�l(k�1)

�il(k � 1) +
X

i2�l(k�1)

max(�l(k); �il) (13)

= Fl(k � 1) +
X

i2�l(k�1)

max(�l(k); �il)

= Cl (since s 2 S(k � 1); l 2 Ls implying �l(k � 1) 6= �)(14)

The breakup in (9) follows from the fact that �l(k � 1) � n(l) and �(s) 2
�l(k� 1) as l 2 Ls, s 2 S(k� 1) and thus m(�(s); l)\S(k� 1) � fsg. (13)
follows from (9), (10) and (12). (14) contradicts (7). Thus

rs(k) = ��(s)l(k) (15)

Consider the t th iteration, t � k.

X
i2n(l)

�il(t) �
X
i2n(l)

�il(k) (since �il(t) � �il(k); t � k from Lemma 4)

= ClX
i2n(l)

�il(t) � Cl (from feasibility of ~r(t))

Thus
X
i2n(l)

�il(t) = Cl (16)

Since �il1(t) � �il1(k), for all sessions i, links l1, if �il(t) > �il(k), for some
i 2 n(l),

P
i2n(l) �il(t) >

P
i2n(l) �il(k): Thus from (7)

P
i2n(l) �il(t) > Cl: This

contradicts the feasibility of ~r(t) (~r(t) is feasible by Lemma 6). Thus

�il(t) = �il(k) 8 i 2 n(l) (17)

Since s 62 S(k), rs(t) = rs(k), 8t � k. rs(k) = ��(s)l(k) by (8). l 2 Ls and
thus �(s) 2 n(l). Thus from (17)

rs(t) = ��(s)l(t) (18)

Let j be a virtual session traversing through link l and rj(t) > rs(t).

max(�l(k); ��(j)l) � ��(j)l(k) (from (5) of Lemma 5)

= ��(j)l(t) (from (17))

� rj(t) (19)
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> rs(t) (by assumption)

� rs(k) (by Lemma 4 since t � k)

= max(�l(k); ��(s)l) (by (15))

Thus max(�l(k); ��(j)l) = ��(j)l (20)

Thus rj(t) � ��(j)l if rj(t) > rs(t) and l 2 Lj (21)

(from (19) and (20))

From (16), (18) and (21), link l is bottlenecked w.r.t. virtual session s
under rate vector ~r(t). 2

Proof of Theorem 1: If the algorithm terminates in k iterations, S(k) = �.
Since S(0) is the set of all virtual sessions, for every virtual session s, there
exists a t � k, such that s 2 S(t � 1) n S(t), t � k. Thus by Lemma 7
virtual session s has a bottleneck link l 2 Ls, under rate vector ~r(k). ~r(k) is
a feasible rate vector by Lemma 6. Thus ~r(k) is max-min fair by Lemma 1.

2

Now we prove that the algorithm terminates in at most M iterations
(Theorem 2), where M is the number of virtual sessions. The proof shows
that a new virtual session saturates every iteration. It looks at the link lmin

which attains the minimum link control parameter, amongst all those which
carry at least one unsaturated virtual session. It looks at that unsaturated
session imin which has the minimum rate requirement (minimum �il) amongst
all the unsaturated sessions traversing through link lmin and argues that all
unsaturated virtual sessions of imin saturates in the current iteration. The
result follows. Refer to the formal proof for details.
Proof of Theorem 2: It is su�cient to prove that S(k) is a proper subset
of S(k � 1), 8 k s.t. S(k � 1) 6= � and k � 1. Since jS(0)j = M , the
result follows. Let lmin = argminl2[s2S(k�1)Ls �l(k). lmin is well de�ned as
S(k � 1) 6= � (If more than one links attain the minimum, choose any one
of them as lmin). Since lmin 2 [s2S(k�1)Ls, at least one virtual session in
S(k � 1) (unsaturated virtual session) traverses through link lmin. Thus
�lmin

(k � 1) 6= �: Thus �lmin
(k) is the maximum � which satis�es Flmin

(k �
1) +

P
i2�lmin

(k�1)max(�; �ilmin
) � Clmin

and observe that

Flmin
(k � 1) +

X
j2�lmin

(k�1)

max

 
( min
i22�lmin

(k�1)
�ilmin

); �jlmin

!
� Flmin

(k � 1) +
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X
i2�lmin

(k�1)

max (�; �jlmin
) 8 �

since mini2�lmin
(k�1) �ilmin

� �jlmin
8 j 2 �lmin

(k � 1): Thus

�lmin
(k) � min

i2�lmin
(k�1)

�ilmin
(22)

Let imin = argmini2�lmin
(k�1) �ilmin

: imin is well de�ned as �lmin
6= �.

��(s)lmin
(k) = max(�lmin

(k); �iminlmin
) 8 s 2 m(imin; lmin) \ S(k � 1)

= �lmin
(k) (from (22) and the de�nition of imin) (23)

Consider a s 2 m(imin; lmin) \ S(k � 1) (m(imin; lmin) \ S(k � 1) 6= � as
imin 2 �lmin

(k � 1)).

��(s)lmin
(k) = �lmin

(k) (from (23))

� �l(k) 8 l 2 Ls (from the de�nition of lmin and since s 2 S(k � 1))

� ��(s)l(k) 8 l 2 Ls

Thus rs(k) = ��(s)lmin
(k) (since s 2 S(k � 1); rs(k) = min

l2Ls

��(s)l(k))

= max(�lmin
(k); ��(s)lmin

) (24)

� ��(s)lmin
(k) (from (5) of Lemma 5)

rs(k) � ��(s)lmin
(k)

Thus rs(k) = ��(s)lmin
(k) (25)

Consider any session i 2 �lmin
(k � 1). Let �ilmin

(k) = �ilmin
:

�ilmin
(k) = max

s2m(i;lmin)
rs(k)

� max
s2m(i;lmin)

�s (from feasibility of ~r(k))

= �ilmin

= �ilmin
(k) (from hypothesis)

�ilmin
(k) � �ilmin

(k) (from (5) of Lemma 5)

Thus �ilmin
(k) = �ilmin

(k) (26)

Now let �ilmin
(k) = �lmin

(k): rj(k) = �ilmin
(k), 8j 2 m(i; lmin) \ S(k � 1)

(m(i; lmin) \ S(k � 1) 6= � as i 2 �lmin
(k � 1)). The reasoning is exactly the
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same as that behind (24). �ilmin
(k) = maxj2m(i;lmin) rj(k) � �ilmin

(k), since
m(i; lmin) \ S(k � 1) 6= �. From (5) of Lemma 5,

�ilmin
(k) = �ilmin

(k) (27)

From (26) and (27)

�ilmin
(k) = �ilmin

(k) 8 i 2 �l(k � 1) (from (26) and (27)) (28)

�ilmin
(k) = �ilmin

(k � 1) if i 2 n(lmin) n �lmin
(k � 1) (from (10))X

i2n(lmin)n�lmin
(k�1)

�ilmin
(k) =

X
i2n(lmin)n�lmin

(k�1)

�ilmin
(k � 1)

= Flmin
(k � 1) (29)X

i2n(lmin)

�ilmin
(k) =

X
i2n(lmin)n�lmin

(k�1)

�ilmin
(k) +

X
i2�lmin

(k�1)

�ilmin
(k)

(since �lmin
(k � 1) � n(lmin))

= Flmin
(k � 1) +

X
i2�lmin

(k�1)

max(�lmin
(k); �ilmin

)

(from (28) and (29))

= Cl (since �lmin
(k � 1) 6= �) (30)

Thus from (25) and (30) s 2 S(k�1)nS(k), 8s 2 m(iminlmin)\S(k�1). Thus
S(k � 1) n S(k) � m(iminlmin) \ S(k � 1), S(k) � S(k � 1) by construction,
and m(iminlmin)\S(k� 1) 6= �. Thus S(k) is a proper subset of S(k� 1). 2

C Proof of Lemma 2

The algorithm terminates in fewer number of iterations (at most (jL,M)
iterations) if the minimum rate requirements satisfy a particular property,
i.e., all virtual sessions of the same session sharing a link at some point,
have the same minimum rate requirements. To show this, as in the proof of
Theorem 2, we need to consider link lmin, the link which attains the minimum
link control parameter amongst all those which carry at least one unsaturated
virtual session. In the more general case, every unsaturated virtual session,
of a particular session, imin, traversing through lmin saturate. However in this
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case, all unsaturated virtual sessions traversing lmin saturate. Thus by jLj
iterations, all virtual sessions are saturated. The result follows. The formal
proof is given below.
Proof of Lemma 2: Let S(k � 1) 6= �: Consider link lmin, where lmin

is as de�ned in proof of Theorem 2. Consider an unsaturated virtual ses-
sion s traversing through lmin (i.e., �(s) 2 n(lmin) and s 2 S(k � 1)).
Let rs(k) < ��(s)lmin

(k). Since �i = �j if �(i) = �(j) and Li \ Lj 6= �,
��(s)l(k) = max(�l(k); �s) 8l 2 Ls: Thus since rs(k) < ��(s)lmin

(k) and
s 2 S(k � 1), max(�l(k); �s) < max(�lmin

(k); �s) for some l 2 Ls. By de�-
nition �lmin

(k) = minl2[p2S(k�1)Lp
�l(k). Thus �lmin

(k) � �l(k) 8l 2 Ls, since
s 2 S(k � 1): It follows from max(�l(k); �s) < max(�lmin

(k); �s) that �s �
�lmin

(k): Thus ��(s)lmin
(k) = �s � rs(k): The last inequality follows from the

feasibility of ~r(k). This contradicts the assumption that rs(k) < ��(s)lmin
(k):

So rs(k) � ��(s)lmin
(k): Now ��(s)lmin

(k) � ��(s)lmin
(k) by Lemma 5. Thus

rs(k) � ��(s)lmin
(k). Thus rs(k) = ��(s)lmin

(k) for every unsaturated vir-
tual session traversing through link lmin:

P
i2n(lmin) �ilmin

(k) = Clmin
by (18).

Thus every virtual session traversing through link lmin and unsaturated at
the end of iteration k � 1 becomes saturated at the end of iteration k: Thus
�lmin

(k) = �: By choice, of lmin, �lmin
(k� 1) 6= �: Let �(k) = fl : �l(k) 6= �g:

�(k) � �(k � 1), since �l(k) � �l(k � 1), 8l; k � 1. It follows that
�(k) � �(k � 1) and j�(k)j < j�(k � 1)j, 8k � 1: j�(0)j � jLj: If �(k) = �,
then S(k) = � and �(k) becomes empty in at most jLj iterations. It follows
that S(k) = � for k � jLj: Thus the algorithm terminates in at most jLj
iterations. The lemma follows from Theorem 2. 2

D Asynchronous Distributed Algorithm

We �rst present a centralized algorithm for computation of maxmin fair rates
and show that the receiver rates, forward session link rates and the source
rates computed by the asynchronous distributed algorithm converge to the
maxmin fair rates computed by the centralized algorithm. The centralized
algorithm is similar to the synchronous distributed algorithm. The following
are the di�erences.

1. �(k) = minl:�l(k�1)6=� �l(k); �il(k) = max (�(k); �il)

2. If s 2 S(k � 1); rs(k) = minl2ls �il(k)
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3. S(k) = S(k � 1) n fs : s 2 S(k � 1); 9 l 2 Ls; s.t. ��(s)l(k) =
�(k); and

P
i2n(l) �il(k) = Clg:

Let L(k) = fl : �l(k � 1) 6= �; �l(k) = �(k)g: The following theorem shows
that the rate allocations upon termination of this algorithm are max-min
fair.

Theorem 4 The algorithm terminates in at most M iterations. Upon ter-

mination, the rate allocations are maxmin fair.

Proof of Theorem 4: First we show that the algorithm terminates in M
iterations. For this, it is su�cient to show that S(k) � S(k � 1); if S(k �
1) 6= �: Consider any link l 2L(k): Let imin = argmini2�lmin

(k�1) �ilmin
: Since

�lmin
6= �; imin is well de�ned. Proceeding as in Theorem 2, �l(k) � �iminl:

Thus �(k) � �iminl since �(k) = �l(k) as l 2L(k): Thus �iminl(k) = �(k): (It is
easy to see that �il1(k) = �il1(k); 8 i 2 �l1(k � 1); 8 l1:) Since �l(k) = �(k);
�il(k) = �il(k) = �il(k); 8 i 2 �l(k � 1): Also �il(k) = �il(k � 1) if i 2
n(l) n�l(k� 1): Thus

P
i2n(l) �il(k) = Fl(k� 1)+

P
i2�l(k�1) �il(k) = Cl: Thus

every virtual session in m(imin; l)\S(k� 1) is saturated. Since i 2 �l(k� 1);
there is at least one such virtual session. Thus S(k) � S(k � 1):

Proceeding as in Lemma 3, it can be shown that

�l(k) � �l(k � 1); 8l; k; k � 1: (31)

�(1) � 0 = �(0): Let k > 1: Now �(k) = minl:�l(k�1)6=� �l(k) and minl:�l(k�1)6=� �l(k) �
minl:�l(k�2)6=� �l(k � 1); since fl : �l(k � 1) 6= �g � fl : �l(k � 2) 6= �g (as
�l(k � 1) � �l(k � 2)) and �l(k) � �l(k � 1) 8 l:

Thus �(k) � �(k � 1)8k: (32)

It follows that �il(k) � �il(k � 1) 8 i; l and rs(k) � rs(k � 1) 8 s and

�il(k) � �il(k � 1) 8 i; l (33)

Thus rs(k) � rs(0) = �s: Also �il(k) = �il(k) � �il(k); 8 i 2 �l(k � 1)
and l: Thus the rate vectors satisfy the capacity condition at all links at all
iterations.

So ~r(k) is a feasible rate vector for all k: (34)

Let s 2 S(k� 1) nS(k): This means there exists a link l 2 Ls s.t. ��(s)l(k) =
�(k) and

P
i2n(l) �il(k) = Cl: Clearly, rs(k) = �(k) in this case. Consider
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any subsequent iteration t; t � k: Since �il(t) � �il(k) 8 i 2 n(l); and ~r(t)
satis�es the capacity condition at link l; �il(t) = �il(k) 8 i 2 n(l): Since
s 2 S(k � 1) n S(k); rs(t) = rs(k): Thus rs(t) = ��(s)l(t): If �il(t) > ��(s)l(t);
then �il(k) > ��(s)l(k) = �(k): Thus �il(k) = �il and hence �il(t) = �il:
It follows that if rj(t) > rs(t); for some j s.t. l 2 Lj; then rj(t) � ��(j)l:
Since �il(t) = �il(k) 8 i 2 n(l) and

P
i2n(l) �il(k) = Cl;

P
i2n(l) �il(t) = Cl:

Thus link l is bottlecked w.r.t. virtual session s for all iterations t � k:
Since every virtual session is saturated when the algorithm terminates, every
virtual session has a bottleneck link upon termination and thus the rate
vector obtained upon termination is maxmin fair by Lemma 1. 2

Lemma 8 If s 2 S(k� 1) nS(k); then there exists a link l s.t. l 2 Ls\L(k);
��(s)l(k) = �(k) and �(s) 2 �l(k�1)n�l(k): Call this link \saturation-link".

Proof of Lemma 8: Since s 2 S(k�1)nS(k); there exists l 2 Ls; such that
��(s)l(k) = �(k) and

P
i2n(l) �il(k) = Cl: For all j 2 m(�(s); l) \ S(k � 1);

��(j)l(k) = �(k) and
P

i2n(l) �il(k) = Cl: Thus j 62 S(k): Thus �(s) 62 �l(k):
However, �(s) 2 �l(k � 1): So �(s) 2 �l(k � 1) n �l(k): Let �(k) < �l(k):
��(s)l(k) < �l(k) � ��(s)l(k): Clearly, �il(k) = �il(k) � �il(k); 8 i 2 n(l):
Thus Fl(k � 1) +

P
i2�l(k�1) �il(k) < Fl(k � 1) +

P
i2�l(k�1) �il(k) = Cl: This

is a contradiction. Thus �(k) = �l(k): Since l 2 Ls; and s 2 S(k � 1);
�l(k � 1) 6= �: Thus l 2L(k): 2

Lemma 9 Let l 2L(k): If i 2 �l(t); then �il(t + 1) = �il(k); 8t � k:

Proof of Lemma 9: Since l 2L(k); �l(k � 1) 6= �: Now, 8i 2 �l(k � 1);
�il(k) = �il(k) and �il(k) = �il(k); since l 2L(k): Thus

P
i2n(l) �il(k) =

Fl(k � 1) +
P

i2�l(k�1) �il(k) = Cl: This means if i 2 �l(k); �il(k) > �(k):
The latter can happen only if �(k) < �il: It follows that �l(k) < �il: Thus
�il(k) = �il if i 2 �l(k): If i 2 �l(k); �il(k) � �il(k) = �il: From feasibility
of ~r(k) ((34)), �il(k) = �il: It follows that �il(k) = �il(k); if i 2 �l(k): If
i 2 �l(k � 1) n �l(k); �il(k) = �il(k) = �il(k):

Thus �il(k) = �il(k); if i 2 �l(k � 1): (35)

Consider any time t + 1; t � k:

If i 2 �l(k � 1) n �l(t); �il(t) � �il(k) = �il(k): (36)
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The �rst inequality follows from (33) and the second equality from (35). Let
�il(t + 1) 6= �il(k); for some i 2 �l(t): Thus �l(t) 6= �: Also, from (31), this
means that �il(t+ 1) > �il(k):X

i2�l(t)

�il(t+ 1) + Fl(t)

>
X

i2�l(t)

�il(k) + Fl(t)

=
X

i2�l(t)

�il(k) +
X

i2�l(k�1)n�l(t)

�il(t) + Fl(k � 1)

�
X

i2�l(t)

�il(k) +
X

i2�l(k�1)n�l(t)

�il(k) + Fl(k � 1) (from (36))

=
X

i2�l(k�1)

�il(k) + Fl(k � 1)

= Cl

This contradicts the de�nition of �l(t + 1): It follows that 8i 2 �l(t); �il(t +
1) = �il(k): 2

Lemma 10 If i 2 �l(p) n �l(p+ 1); then �(p+ 1) � �il:

Proof of Lemma 10: If s 2 m(i; l)\S(p); then s 2 S(p)nS(p+1): Let l1 be
the saturation link of virtual session s: By Lemma 8, �il1(p+ 1) = �(p+ 1);
and �il1(p + 1) � �s by feasibility of ~r(p + 1)((34)). Thus �(p + 1) � �s;
8 s 2 m(i; l) \ S(p): If s 2 m(i; l) n S(p); then let s 2 S(k) n S(k + 1);
k < p: Clearly, rs(k + 1) � ��(s)l2(k + 1) = �(k + 1); for some l2 2 Ls: Since
k + 1 < p+ 1; by (32), rs(k + 1) � �(p+ 1) and rs(k + 1) = rs(p+ 1); since
s 62 S(k+1) and k+1 < p+1: Thus rs(p+1) � �(p+1) and rs(p+1) � �s
from feasibility of ~r(p+ 1)((34)). Thus �(p+ 1) � �s 8 s 2 m(i; l) n S(p): It
follows that �(p+ 1) � �s, 8 s 2 m(i; l): Thus �(p+ 1) � �il:

Lemma 11 If s 2 S(k) n S(k + 1); then rs(p) = �(k + 1); 8 p > k: If
i 2 �l(k) n �l(k + 1); �il(p) = �(k + 1); 8 p > k:

Proof of Lemma 11: Clearly rs(p) = rs(k + 1): Since s 2 S(k) n S(k + 1);
there exists a link l s.t. ��(s)l(k + 1) = �(k + 1): Thus rs(k + 1) � �(k + 1):
Also rs(k+1) � �(k+1); since rs(k+1) = minl2Ls �il(k+1): Thus rs(k+1) =
�(k + 1): The �rst part follows.
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If i 2 �l(k) n �l(k + 1); then rs(p) = �(k + 1) 8 s 2 m(i; l) \ S(k): If
s 2 m(i; l) n S(k); then s 2 S(t) n S(t + 1); for some t < k: Thus rs(p) =
�(t+ 1) � �(k + 1) ((32)). The result follows since m(i; l) \ S(k) = �: 2

Let the system con�guration stop changing after t = t0: Thus n(l) = �l;
for t � t0: Let D be the maximum source-destination roundtrip time of a
session. Any session i feedback rate packet sent in response to a forward rate
packet sent after t0 reaches the origin of link l with minimum rate value equal
to �il and rate value not less than �il: Thus any such feedback rate packet sets
�̂il equal to �il: Only session i feedback rate packets alter bil and �̂il: Thus
bil � �il and �̂il = �il always after the �rst such feedback rate packet reaches
the origin of link l: Also  il � �il after the �rst such feedback rate packet
reaches the origin of link l: Any feedback rate packet sent in response to the
forward rate packet sent after t0 reaches the source with rate value not less
than the minimum rate of any session receiver. Thus source rate is always
greater than or equal to the maximum of the minimum receiver rates after
the �rst such feedback rate packet reaches the source. This happens before
t0 + 2D: The second and subsequent forward rate packets sent after t0 set
fil � �il: This is because such forward rate packets are sent from the source
with rate value not less than the minimum rate of any session i receiver. Also
any such forward rate packet �nds bil1 � �il1 and  il1 � �il1 for all links l1
on its path and �̂il1 = �il1 � �il if l1 lies on session i path between session i
source and the origin of link l: Thus any such forward rate packet reaches the
origin of link l with rate value not less than �il: Since  il � �il and bil � �il,
the forward rate packet sets fil to a value not less than �il: Since fil alters
only upon arrival of a session i forward rate packet, fil � �il always after the
arrival of the second forward rate packet sent after t0: Such a forward rate
packet arrives at the origin of link l before t0 + 2:5D: So �i � maxs:�(s)=i �s;
fil � �il; bil � �il and �̂il = �il, 8 i; 8 l; s.t. i 2 n(l); and for all t � T0;
where T0 = t0 + 2:5D:

Lemma 12 Consider a link l just after a link control parameter estimation

for t � T0: If at least one session is unmarked, then
P

i:wil=0 �il � Cl �P
i:wil=1 fil: Also, if at least one session is unmarked,

P
i:wil=0 �il = Cl �P

i:wil=1 fil implies that no session is marked, i.e., wil = 0 for all i 2 n(l):

Proof of Lemma 12: If the estimation subroutine terminates at the �rst
\end subroutine" statement, then n(l) = � and the lemma holds by vacuity.
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If the subroutine terminates at the second \end subroutine" statement, then
all sessions are marked upon termination, and the lemma holds by vacuity. If
it terminates at the third or the fourth \end subroutine" statement, then all
sessions are unmarked and the lemma holds trivially. So let the subroutine
terminate at the last such statement. Thus the condition that

P
i:wil=0 �il =

Cl �
P

i:wil=1 fil is tested. Observe that the value of fil is not changed in
the subroutine, but the value of wil changes. However once wil = 0; the
value of wil does not change any further. Let w1

il indicate the value of these
variables, just before the above condition is tested. Let w2

il denote the values
just before the �rst estimation of the link control parameter after this test.
Let

P
i:w1

il
=0 �il = Cl �

P
i:w1

il
=1 fil: Then fi : w2

il = 1g � fi : w1
il = 1g:

This is because there exists at least one i s.t. w1
il = 1; and fil = �l as

�l exists (otherwise termination takes place at the fourth \end subroutine"
statement). For this i; w2

il = 0: As mentioned before, w1
il 6= 1 means that

w2
il 6= 1: Also fi : w1

il = 0g � fi : w2
il = 0g:

X
i:w2

il
=0

�il =
X

i:w1
il
=0

�il +
X

i:w1
il
=1;w2

il
=0

�il

(since fi : w1
il = 0g � fi : w2

il = 0g)

= Cl �
X

i:w1
il
=1

fil +
X

i:w1
il
=1;w2

il
=0

�il

= Cl �
X

i:w2
il
=1

fil �
X

i:w1
il
=1;w2

il
=0

fil +
X

i:w1
il
=1;w2

il
=0

�il

(since fi : w2
il = 1g � fi : w1

il = 1g)

< Cl �
X

i:w2
il
=1

fil (37)

The last inequality follows because fil � �il for t � T0; 8 i 2 n(l) and
there exists a i s.t. w1

il = 1; fil = �l and fil > �il: Clearly w
2
il = 0 for such

i: Thus if
P

i:w1
il
=0 �il = Cl �

P
i:w1

il
=1 fil then

P
i:w2

il
=0 �il < Cl �

P
i:w2

il
=1 fil:

If
P

i:w1
il
=0 �il 6= Cl �

P
i:w1

il
=1 fil; then w1

il = w2
il; 8 i 2 n(l): Also, thenP

i:w1
il
=0 �il < Cl�

P
i:w1

il
=1 fil (otherwise termination takes place at the third

\end subroutine" statement). Thus
P

i:w2
il
=0 �il < Cl �

P
i:w2

il
=1 fil: So (37)

holds in both these cases.
Let w3

il be the session link saturation values when the subroutine termi-
nates. If there is only one estimation of the link control parameter, then
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w2
il = w3

il for all i 2 n(l): From (37), the lemma clearly holds in this case. Let
a second estimation take place. It follows that fi : w3

il = 1g � fi : w2
il = 1g

and fi : w2
il = 0g � fi : w3

il = 0g: Thus

X
i:w3

il
=0

�il =
X

i:w2
il
=0

�il +
X

i:w2
il
=1;w3

il
=0

�il

(since fi : w1
il = 0g � fi : w2

il = 0g)

< Cl �
X

i:w2
il
=1

fil +
X

i:w2
il
=1;w3

il
=0

�il (from (37))

= Cl �
X

i:w3
il
=1

fil �
X

i:w2
il
=1;w3

il
=0

fil +
X

i:w2
il
=1;w3

il
=0

�il

(since fi : w3
il = 1g � fi : w2

il = 1g)

� Cl �
X

i:w3
il
=1

fil (since fil � �il8i 2 n(l); 8t � T0)

The subroutine terminates with markings determined by w3
ils. Thus the

lemma holds in this case. 2

Henceforth wo
il; f

o
il indicate the values at the end of the estimate-link-

control-parameter which computes the current  l: A session i is marked on
a link l on its path if wil = 1: AlsoMl is the set of sessions marked after the
last estimation of link control parameter, i.e., Ml = fi : i 2 n(l); wo

il = 1g:

Lemma 13 If Ml � n(l); then
P

i2n(l)nMl
 il = Cl�

P
i2Ml

f oil: for all t: If

Ml = n(l) 6= �; then  l = Cl �
P

i2n(l) f
o
il +maxi2n(l) f

o
il for all t:

Proof of Lemma 13: Since Ml � n(l); the subroutine which computes
the current  l does not terminate at the �rst or the second \end-subroutine"
statement. If the subroutine terminates at the third \end-subroutine" state-
ment, then wo

il = 0; 8 i 2 n(l); i.e., Ml = �; and
P

i2n(l)  il = Cl: Thus
the lemma holds in this case. If the subroutine terminates at the fourth
\end-subroutine" statement, then  il = �̂il 8 i 2 n(l): Also, in this case,P

i2n(l) �̂il = Cl and Ml = �: Thus the lemma holds. The lemma clearly
holds if the subroutine terminates at the last \end-subroutine" statement.

If Ml = n(l) 6= �; then the subroutine terminates at the second \end-
subroutine". All sessions are marked before and after the estimation. Hence
the lemma holds by the operation of the algorithm. 2
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Lemma 14 (Marking-Consistency) If i 2Ml; then f oil <  l; for all t �
T0:

Proof of Lemma 14: If the routine terminates at the �rst, third and
fourth \end subroutine" statements, then no session is marked at link l; and
the lemma holds by vacuity. If the subroutine terminates at the second \end
subroutine" statement, then the lemma holds by the operation of the subrou-
tine. Let the subroutine terminate at the last \end subroutine" statement.
Again the lemma holds by the operation of the subroutine, if there is only
one estimate after the minimum rate test. Now, let there be two estimations
of  l after the minimum rate test.

Let Al be the set of sessions marked before the �rst computation of  l;
after the minimum rate test. Let  1

l be the �rst estimate of the link control
parameter, after the minimum rate test. Thus

P
i2n(l)nAl

 1
il = Cl�

P
i2Al

f oil:

Let Z l be the set of sessions unmarked after computing  1
l : While proving

Lemma 12, we have proved that if the subroutine terminates at the last \end
subroutine" statement,

Cl �
X
i2Al

f oil >
X

i2n(l)nAl

�il (38)

Since the subroutine makes a second estimation of link control parameter,
Z l 6= �: The last estimation is either made after T0 or is the last one before
T0 and hence f oil � �il 8 i 2 n(l): Let  2

l be the second estimate of the link
control parameter.X

i2n(l)n(AlnZ l)

 2
il = Cl �

X
i2AlnZ l

f oil

= Cl �
X
i2Al

f oil +
X
i2Z l

f oil

>
X

i2n(l)nAl

�il +
X
i2Z l

�il

(from (38) and since f oil � �il8i 2 n(l))

=
X

i2n(l)n(AlnZ l)

�il (39)

Also
X

i2n(l)n(AlnZ l)

 2
il = Cl �

X
i2(AlnZ l)

fil
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=

0
B@Cl �

X
i2Al

fil

1
CA+

X
i2Z l

fil

=
X

i2n(l)nAl

 1
il +

X
i2Z l

fil

�
X

i2n(l)n(AlnZ l)

 1
il (if i 2 Z l; fil �  1

il) (40)

From (40),  2
il �  1

il; 8 i 2 n(l)n(Al n Z l) : From (39), and the fact that  2
il �

�̂il = �il 8 i; l s.t. i 2 n(l) and t � T0,  
2
il > �il for some i 2 n(l) n (Al n Z l) :

Thus  2
il =  2

l for such an i: Thus  2
l =  2

il �  1
il �  1

l : If i 2 (Al n Z l) ; then
f oil <  1

l : It follows that f
o
il <  2

l ; if i 2 (Al n Z l) : Note that Ml =AlnZ l:
Thus the result follows. 2

Let t� be the time of the last computation before t:

Lemma 15 There esists a time T1 � T0 such that for all t � T�
1 ;

1. For all links l; and for all i 2 �l(0);  il � �il(1):

2. bil � �il(1); 8l; i 2 �l(0):

3. �i � max(�(1);maxs:�(s)=i �s); 8i s.t.i 2 �l(0) for some link l:

4. fil � �il(1), 8l; i 2 �l(0):

5. If l 2L(1); Ml � n(l) n �l(0):

6. If l 2L(1); then  il = �il(1); 8 i 2 �l(0): If i 2 �l(0) n �l(1); and
l 2L(1);  il = �(1):

7. If l 2L(1); then fil = �il(1) for all i 2 �l(0): If i 2 �l(0) n �l(1); and
l 2L(1); fil = �(1):

8. If i 2 �l(0) n �l(1); fil = �(1):

9. If i 2 n(l) n �l(1); and l 62L(1); wil = 1:

If virtual session s 2 S(0) n S(1); then �s = �(1); for all t � T1:
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Proof of Lemma 15: First we prove (1). Consider a link l: �l(0) = n(l):
Let t � T0: First let Ml � n(l): Let  l < �l(1): If i 2Ml; by Lemma 14,
f oil <  l < �l(1) � �il(1): Also let Ml 6= �:

X
i2n(l)nMl

 il = Cl �
X

i2Ml

f oil (Lemma 13)

> Cl �
X

i2Ml

�il(1)

(since Ml 6= �; and fil < �il(1); if i 2 Ml)

=
X

i2n(l)nMl

�il(1) (41)

Since �̂il = �il for all t � T0; this means that  l > �l(1) and hence  il � �il(1)
8 i 2 n(l): Now let Ml = �:

X
i2n(l)

 il = Cl (Lemma 13)

X
i2n(l)

�il(1) = Cl

If  il > �il(1) for some i 2 n(l); then  il =  l; since �̂il = �il for all t � T0:
Hence  l > �il(1) � �l(1): Again since �̂il = �il, for all t � T0; this means
that  jl � �jl(1) for all j 2 n(l): This means

P
i2n(l)  il >

P
i2n(l) �il(1):

However this is not true. Thus  il � �il(1) for all i 2 n(l): Arguing similarly
�il(1) �  il 8 i 2 n(l): So  il = �il(1) 8 i 2 n(l):

Now let all sessions traversing l be marked, i.e.,Ml = n(l): If maxi2n(l) f
o
il �

�l(1); then since by Lemma 14,  l > maxi2n(l) f
o
il;  l > �l(1): Now let

maxi2n(l) f
o
il < �l(1): It follows that f oil < �l(1); for all sessions i 2 n(l):

Let j be a session in n(l) for which f ojl = maxi2n(l) f
o
il:

 l = Cl �
X
i2n(l)

f oil + max
i2n(l)

f oil

= Cl �
X

i2n(l);i6=j

f ojl

> Cl � (jn(l)j � 1) �l(1)

=
X
i2n(l)

�il(1)� (jn(l)j � 1) �l(1)
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�
X
i2n(l)

�l(1)� (jn(l)j � 1) �l(1)

(since �il(1) � �l(1)8i 2 n(l))

= �l(1)

Thus (1) holds for all t � T0:
Now we prove (2). Let i 2 �l(0): Let �(1) � �il: Thus �il(1) = �il since

�̂il = �il as t � T0: Since bil � �il; for all t � T0; bil � �il(1); 8 t � T0: Now
let �(1) > �il: Consider a session i forward rate packet leaving the origin of
link l after T0. It follows that �(1) > �il1 for all links l1 on session i path
downstream of the origin of l (between the origin and the receivers). From
(1),  il1 � �il1(1) � �il1(1) > �il1 : Since �̂il1 = �il1 as t � T0;  il1 =  l1 : Thus
 l1 =  il1 � �il1(1) = �(1): If it leaves with a rate strictly less than �(1);
since  l1 � �(1); for all downstream links l1 (including l) and t � T0; up = 0
in the corresponding feedback rate packet reaching the origin of link l: This
sets bil =1: If the rate packet leaves with a rate value greater than or equal
to �(1); consider the path of session i from the origin of link l to one of the
downstream receivers of session i: If the rate value of the forward rate packet
all along this path is greater than or equal to �(1); clearly the feedback rate
packet reaches the origin of link l; through link l with a rate value greater
than or equal to �(1): Thus this feedback rate packet sets bil � �(1): If
the rate value of the forward rate packet all along this path is not greater
than or equal to �(1); then consider the node n on its path closest to the
origin of link l; such that a forward rate packet leaves the node with a rate
value strictly less than �(1): Thus the session i forward rate packet reaches
node n with rate value greater than or equal to �(1): Repeating one of the
previous arguements, a feedback rate packet returns to this node with up = 0:
Consequently, a feedback rate packet leaves node n with rate value not less
than that of the forward rate packet which reaches node n: As we argued
before, this is greater than or equal to �(1): Rate values in feedback rate
packets do not decrease as they move towards the source. So a feedback
rate packet reaches the origin of link l with rate value greater than or equal
to �(1): This sets bil to a value not less than �(1): The arguement ensures
that a session i feedback rate packet returning in response to a forward rate
packet sent after T0 sets bil to a value not less than �(1): Also the value
of bil changes only when session i feedback rate packets reach the origin of
link l: A feedback rate packet sent in response to a forward rate packet sent
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after T0 reaches the origin of link l in at most 2Dx time units after T0: Thus
bil � �(1); for all t � T0 + 2D: (2) follows from the fact that �il(1) = �(1)
as �(1) � �il for all t � T0; in this case.

Observe that the evolution of �i at the source of session i is similar to that
of bil at the origin of link l: Thus repeating the above arguements for forward
rate packets leaving the source and the feedback rate packets returning to
the source, we can show that �i � �(1); for all t � T0+2D: Thus (3) follows
from the fact that �i � maxs:i=�(s) �s for all t � T0:

Now we prove (4). Since �i � �(1); bil � �il(1); and  il � �il(1) � �(1);
for all links on the path of session i; at any time after the return of the
feedback rate packet sent in response to the �rst forward rate packet sent
after T0; the second and all subsequent forward rate packets sent after T0; set
fil to values not less than �(1): Also fil � �il for all t � T0. Thus fil � �il(1)
any time after the second forward rate packet reaches the origin of link l:
The second forward rate packet reaches every destination in at most D=2
time after its start. Thus fil � �il(1); 8t � (T0 + 2:5D)�:

Now we prove (5). Let l 2L(1): Consider t � (T0 + 2:5D)�: The last
link l link control parameter estimation is either executed after T0 + 2:5D
or is the last such estimation before T0 + 2:5D i.e., the last estimation for
t < T0 + 2:5D: By (4), f oil � �il(1): We �rst show that Ml 6= n(l): Let
Ml = n(l): By Lemma 14,  l > maxi2n(l) f

o
il; where  l = Cl �

P
i2n(l) f

o
il +

maxi2n(l) f
o
il(Lemma 13).

 l = Cl �
X
i2n(l)

f oil + max
i2n(l)

f oil

=
X
i2n(l)

�il(1)�
X
i2n(l)

f oil + max
i2n(l)

f oil (since l 2 L(1); �l(1) = �(1))

� max
i2n(l)

f oil (since f
o
il � �il(1)8i 2 n(l))

This is a contradiction. Thus all sessions are not marked, i.e., Ml � n(l):
Now we show that, in fact, no session is marked. Let some session be marked.
Ml 6= �: If i 2Ml; f

o
il <  l; by Lemma 14. Since f oil � �il(1); this means

�(1) <  l: ThusX
i2n(l)nMl

 il = Cl �
X

i2Ml

f oil

xThe �rst forward rate packet after T0 must leave the source before T0+D: The feedback

rate packet �nishes its journey before T0 + 2D
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� Cl �
X

i2Ml

�il(1) (since f
o
il � �il(1)8i 2 n(l))

=
X

i2n(l)nMl

�il(1) (since l 2 L(1); �l(1) = �(1)) (42)

From (42), and since �̂il = �il; 8 i 2 n(l); 8 t � T0;  il � �il(1), 8 i 2
n(l)nMl: Since �(1) <  l; Ml � n(l); and �̂il = �il;  il = �il for all i 2
n(l)nMl: This means

P
i2n(l)nMl

�il = Cl�
P

i2Ml
f oil: Since this estimation

is executed at t � T0; by Lemma 12, Ml = �: Thus Ml = � = n(l) n �l(0):
Thus (5) holds for all t � (T0 + 2:5D)�:

Now we prove (6). Let l 2L(1): Let t � (T0+2:5D)�: The last link l link
control parameter estimation is either executed after T0+2:5D or is the last
such estimation before T0 + 2:5D i.e., the last estimation for t < T0 + 2:5D:
As argued in (5), Ml = � � n(l):X

i2n(l)

 il = Cl (from Lemma 13)

=
X
i2n(l)

�il(1)

Clearly from this,  il = �il(1) for all l 2L(1) 8 i 2 n(l); t � (T0 + 2:5D)�:
Thus �rst part of (6) follows. Now let i 2 �l(0) n �l(1): From Lemma 10,
�(1) � �il: Hence �il(1) = �(1): Thus the second part follows from the �rst.
Both parts hold for all t � (T0 + 2:5D)�:

Now we prove (7). Let l 2L(1): Consider a forward rate packet leaving
the source after T0 + 2:5D: For all links l1 on session i path between the
source and the origin of link l; �il1 � �il: Thus �il1(1) � �il(1); for all such
links l1: Since fil1 � �il1(1); for all t � T0 + 2:5D; fil1 � �il(1) for all
links l1 on session i path between the source and the origin of link l; for
all t � T0 + 2:5D: Also �i � max(�(1);maxs:i=�(s) �s) � �il(p + 1): Thus
the rate value of the rate packet is not less than �il(1) when it reaches the
origin of link l: Since bil � �il(1); and  il = �il(1); this forward rate packet
sets fil equal to �il(1): Thus every forward rate packet leaving the source
after T0+2:5D sets fil = �il(1): Since fil is set by forward rate packets only,
fil = �il(1); at all times after the �rst such session i forward rate packet
reaches the origin of link l: Such a forward rate packet reaches the origin of
a link l before T0+4D: So �rst part of (7) holds for all t � (T0+4D)�: Now
let i 2 �l(0) n�l(1): From Lemma 10, �(1) � �il: Hence �il(1) = �(1): Thus
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Thus the second part follows from the �rst. The second part holds for all
t � (T0 + 4D)�:

Now we prove (8). Let there exist a session i 2 �l(0) n �l(1): If l 2L(1);
then the result follows from (7). Let l 62L(1): If s 2 m(i; l); then s 2
S(0) n S(1): By Lemma 8 there exists a saturation-link l1 2L(1); s.t. �(s) 2
�l1(0)n�l1(1) and ��(s)l1(1) = �(1): Call the saturation link of virtual session
s; l1(s): In this case, l1(s) 6= l: Let l1(s) lie on the path of session i between the
source and the origin of l:While proving (7) we have proved that any forward
rate packet transmitted from the source after T0 + 2:5D; sets fil1(s) = �(1):
Thus the forward rate packet moves from the origin of l1(s) with rate value
equal to �(1): Thus this forward rate packet can set fil to a value less than or
equal to �(p+1): Since t � T0 +2:5D; fil � �il(p+1) � �(p+1): Thus any
such forward rate packet sets fil equal to �(p+1): Since fil is set by incoming
session i forward rate packets only, fil = �(1) always after the arrival of the
�rst such forward rate packet. The �rst such forward rate packet reaches the
origin of link l before T0 + 4D: Thus fil = �(1); for all t � (T0 + 4D)� in
this case. Observe that this result holds if the saturation link of some virtual
session j; l1(j) lies on the path of session i between the source of session i
and the origin of link l; for some j 2 m(i; l): Let the above not hold for any
j 2 m(i; l): Since l1(j) 6= l for any j 2 m(i; l); l1(j) lies between the sink
of link l and receiver j for all j 2 m(i; l): Since �(j) 2 �l1(j)(0) n �l1(j)(1);
l1(j) 2L(1); and �(j) = i; from (7), any forward rate packet sent from the
source after T0 + 2:5D sets fil1(j) = �(1) and  il1(j) = �(1) by (6). Thus
fil1(j) �  il1(j) �  l1(j): Thus a forward rate packet moves from the origin of
link l1(j) with up = 1 and rp = �(1): Thus a feedback rate packet returns
to the origin of link l1(j) with up = 1: The only way the rate value of this
feedback rate packet can be greater than �(1) is if the minimum rate of
any �(j) receiver downstream is strictly greater than �(1): We know that
��(j)l1(j)(1) = �(1): From feasibility of ~r(1); ��(j)l1(j)(1) � ��(j)l1(j): Thus
�(1) � ��(j)l1(j): So rate value of this feedback rate packet is less than or
equal to �(1): Since up = 1; in the feedback rate packet, bil is set to this
rate value. Since bil � �il(1) � �(1); this rate value is equal to �(1): Unless
this origin is a merger point for other links of session i; clearly a feedback
rate packet moves towards the source with up = 1 and rp = �(1): Using
similar arguements, a feedback rate packet moves upstream with up = 1 and
rp = �(1) till it reaches a merger point. Now consider \�rst-level" merger
points downstream of the origin of link l: A �rst level merger point is that
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which satis�es the property that each of the session i paths downstream have
a saturation link and there is no merger point between this merger point and
such a link. Thus all feedback rate packets arrive at this merger point with
up = 1 and rp = �(1): Thus a feedback rate packet moves upstream from
this merger point, with up = 1 and rp = �(1): A \kth-level" merger point
is a merger-point, downstream of which, there can only be 1; 2; : : : ; k � 1th
level merger points. Applying this arguement successively to \second-level,"
\third-level" merger points, we can prove that a session i feedback rate packet
reaches the origin of link l with up = 1 and rp = �(1): Thus bil = �(1)
whenever a session i feedback rate packet arrives in response to a forward
rate packet sent from source of session i after T0+2:5D: Thus any forward rate
packet sent after this feedback rate packet reaches the source sets fil = �(1):
This is because the forward rate packet arrives with rate value not less than
�(1) because fil2 � �il2(1) � �(1) for all l2 on the path of session i for
all t � T0 + 2:5D: Also,  il � �il(1) � �(1) and bil = �(1): Again the
corresponding feedback rate packet sets bil = �(1): The cycle repeats. So
fil = �(1) always after the second forward rate packet reaches the origin of
link l: The second forward rate packet transmitted after T0 + 2:5D reaches
the origin before T0 + 5D: So, in this case fil = �(1) for all t � (T0 + 5D)�:
In either case (position of l1(j)s w.r.t l), fil = �(1) for all t � (T0 + 5D)�:

Now we prove (9). Let l 62L(1): Let there exist a session i 2 �l(0)n�l(1):
Thus �il(1) � �l(1) > �(1): Consider any time at and after the arrival of
the second forward rate packet at the origin of link l; transmitted from the
source after T0 + 2:5D: By (8), this packet sets fil equal to �(1): Since i 2
�l(0) n �l(1); �(1) � �il (Lemma 10). From (1),  il � �il(1) at this time.
So  il > �(1) � �il = �̂il: The last equality follows since �il = �̂il for
all t � T0: It follows that  l =  il > �(1): Thus fil <  l at all times
after the second forward rate packet arrives at the origin of link l: Thus any
forward rate packet, starting from the second one, sets wil = 1: We need to
show that wil = 1 after the subroutine estimate-link control parameter
is evoked. Note that fil <  l does not guarantee that wil = 1 after the
routine is evoked, because sessions get unmarked during the routine. It
only guarantees that every forward rate packet starting from the second one
sets wil = 1: Like before, f ojl; w

o
jl are the values of these variables just after

the previous computation. Let  1
l be the �rst estimate of the link control
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parameter when the current computation is evoked. We know that

fil = �(1) (43)

<  l (44)

wil = 1 (45)

wo
jl = wjl if j 6= i; j 2 n(l) (46)

f ojl = fjl if j 6= i; j 2 n(l) (47)

Since i 2 �l(0); fil � �il(1) � �(1) always after T0 + 2:5D by (4). The
current computation can be evoked by the second or the subsequent forward
rate packet sent after T0 + 2:5D: So the last computation before the current
one must be done after T0 + 2:5D: Thus

f oil � �(1) (48)

= fil (from (43)) (49)

We show that session i is marked after the execution of the subroutine. Let
all sessions be marked when the subroutine is evoked. This has two subcases.

1. In the �rst one all sessions are marked at the end of the last estimation,
i.e.,

wo
jl = 1; 8j 2 n(l): (50)

Let fil = max
j2n(l)

fjl (51)

From (43), maxj2n(l) fjl = �(1): Thus fjl � �(1) 8 j 2 n(l): From (47),
f ojl � �(1) 8 j 2 n(l); j 6= i: From (48),

f oil = max
j2n(l)

f ojl (52)

From (50) and (52) and Lemma 13,  l = Cl �
P

u2n(l) f
o
ul + f oil = Cl �P

u2n(l);u6=i f
o
ul: By Lemma 14 and (50), f ojl <  l 8 j 2 n(l): Thus

f ojl < Cl �
X

u2n(l);u6=i

f oul 8 j 2 n(l) (53)

From (45), (46) and (50) wjl = 1 8 j 2 n(l): Thus from (51),  1
l =

Cl �
P

u2n(l) ful + fil = Cl �
P

u2n(l);u6=i ful: So from (47), (49) and (53)
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fjl <  1
l 8 j 2 n(l): So all sessions remain marked and the subroutine

terminates with estimate  1
l and all sessions marked. Thus wil = 1

after the execution of this subroutine.

Now let fil < max
j2n(l)

fjl (54)

and f oil = max
j2n(l)

f ojl (55)

Let fvl = maxj2n(l) fjl: Thus  
1
l =

�
Cl �maxu2n(l);u 6=v fil

�
: Also v 6= i

and fvl > fil: From (47), f ovl > fil: From (50), (55) and Lemma 13,
 l = Cl �maxu2n(l);u6=i f

o
ul: Thus by Lemma 14,

f ojl < Cl � max
u2n(l);u6=i

f oul; 8j 2 n(l): (56)

Now
�
Cl �

P
u2n(l);u6=i f

o
ul

�
�
�
Cl �

P
u2n(l);u6=v fil

�
= fil � f ovl < 0: So�

Cl �maxu2n(l);u 6=i f
o
ul

�
<
�
Cl �maxu2n(l);u6=v fil

�
=  1

l : Thus f
o
jl <  1

l

8 j 2 n(l); from (56). From (47) and (49) fjl <  1
l ; 8 j 2 n(l): So all

sessions remain marked and the subroutine terminates with estimate
 1
l and all sessions marked. Thus wil = 1 after the execution of this

subroutine.

Now let fil < max
j2n(l)

fjl (57)

and f oil < max
j2n(l)

f ojl: (58)

Let fzl = maxj2n(l) fjl and f
o
yl = maxj2n(l) f

o
jl: Clearly i 6= y; and i 6= z:

Since fzl = f ozl; fzl � f oyl: Similarly, f
o
yl � fzl: Thus fzl = f oyl: Thus

from (47), fzl = fyl: ThusX
u2n(l);u6=y

f oul =
X

u2n(l);u 6=y;u6=i

f oul + f oil (since i 6= y; i 2 n(l))

=
X

u2n(l);u 6=y;u6=i

ful + f oil (since from (47) ful = f oul if u 6= i)

�
X

u2n(l);u 6=y;u6=i

ful + fil (since fil � f oil from (49))

=
X

u2n(l);u 6=y

ful



ISR Technical Report TR 99� 42 66

=
X

u2n(l);u 6=z

ful (since fzl = fyl)

Thus Cl �
X

u2n(l);u6=y

f oul � Cl �
X

u2n(l);u 6=z

ful (59)

Again from (50) and Lemma 13,  l = Cl�
P

u2n(l);u6=y f
o
ul: From Lemma 14,

f ojl <  l; 8 j 2 n(l): Thus f ojl < Cl �
P

u2n(l);u 6=y f
o
ul 8 j 2 n(l): Thus

from (59) f ojl < Cl �
P

u2n(l);u 6=z ful: Also  
1
l = Cl �

P
u2n(l);u 6=z ful: So

f ojl <  1
l for all j 2 n(l): From (47) and (49), fjl <  1

l for all j 2 n(l):
So all sessions remain marked and the subroutine terminates with es-
timate  1

l and all sessions marked. Thus wil = 1 after the execution of
this subroutine.

2. Now let all sessions be marked before the current computation, but
session i be marked because of the arrival of the current forward rate
packet, i.e., session i was not marked at the end of the previous com-
putation. ThusMl � n(l): Hence  il = Cl�

P
j2n(l);j 6=i f

o
jl(Lemma 13).

Clearly, fil <  l (else session i will not be marked before this compu-
tation). Thus fil <  l �  il = Cl �

P
j2n(l);j 6=i f

o
jl: Also f

o
jl = fjl; 8

i 6= j((47)). Thus fil < Cl �
P

j2n(l);j 6=i fjl: Thus
P

j2n(l) fjl < Cl: Thus
 1
l = Cl �

P
j2n(l) fjl +maxj2n(l) fjl > maxj2n(l) fjl: The last inequality

follows since
P

j2n(l) fjl < Cl: Thus all sessions remain marked after the
�rst step. So the subroutine terminates with all sessions marked and
estimate  1

l : It follows that if all sessions are marked in the beginning
of the current computation, all sessions are marked at the end of the
current computation. Thus session i is also marked at the end of the
current computation.

Now let all sessions not be marked in the beginning of the current com-
putation. Let wo

il = 1: From (45) and (46), wo
jl = wjl 8 j 2 n(l): Thus

Ml = fj : wo
jl = 1g = fj : wjl = 1g � n(l):

X
j:wjl=0

�jl =
X

j:wo
jl
=0

�jl

�
X

j:wo
jl
=0

 jl (since t � T0; �jl = �̂jl8j 2 n(l))

= Cl �
X

j:wo
jl
=1

f ojl (Lemma 13)



ISR Technical Report TR 99� 42 67

� Cl �
X

j:wo
jl
=1

fjl (from (47) and (49))

= Cl �
X

j:wjl=1

fjl (since wjl = wo
jl8j 2 n(l)) (60)

Let
X

j:wjl=0

�jl = Cl �
X

j:wjl=1

fjl

Thus f ojl = fjl 8j s.t. wo
jl = 1: Here wo

jl = wjl 8 j 2 n(l): Thus fjl = f ojl
for all j s.t. wjl = 1: It follows that

P
j:wo

jl
=0 �jl = Cl �

P
j:wo

jl
=1 f

o
jl: Since

Ml � n(l); this means that wo
jl = 0 for all j 2 n(l)(Lemma 12). However,

we know that wo
il = 1 and i 2 n(l): So

P
j:wjl=0 �jl 6= Cl �

P
j:wjl=1 fjl: Thus

from (60),
P

j:wjl=0 �jl < Cl �
P

j:wjl=1 fjl: Now let wo
il = 0: From (45) and

(46), fj : wjl = 0g = fj : wo
jl = 0; j 6= ig: Thus Ml = fj : wo

jl = 1g � fj :
wjl = 1g � n(l):X
j:wjl=0

�jl �
X

j:wo
jl
=0;j 6=i

 jl (since t � T0; �jl = �̂jl8j 2 n(l))

= Cl �  il �
X

j:wo
jl
=1

f ojl (from Lemma 13 since Ml � n(l))

< Cl � fil �
X

j:wo
jl
=1

f ojl (from (44))

= Cl � fil �
X

j:wo
jl
=1

fjl (since w
o
jl = 1 means that j 6= i and f ojl = fjl if j 6= i)

= Cl �
X

j:wjl=1

fjl (since fj : wjl = 1g = fj : wo
jl = 1g [ fig and wo

il 6= 1:)

Thus
P

j:wjl=0 �jl < Cl �
P

j:wjl=1 fjl if all sessions are not marked in the
beginning of the current computation. We know that session i is marked at
the beginning of this computation. Let session i be marked at the end of
the previous computation, i.e., wo

il = 1: From (45) and (46), wo
jl = wjl for all

j 2 n(l): As argued before, Ml � n(l) in this case. ThusX
j:wjl=0

 jl =
X

j:wo
jl
=0

 jl (since wjl = wo
jl8j 2 n(l))

= Cl �
X

j:wo
jl
=1

f ojl (from Lemma 13 since Ml � n(l))

= Cl �
X

j:wjl=1

f ojl (since wjl = wo
jl8j 2 n(l))
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� Cl �
X

j:wjl=1

fjl (from (47) and (49)) (61)

Since Ml � n(l) and
P

j:wjl=0 �jl < Cl �
P

j:wjl=1 fjl;X
j:wjl=0

 1
jl = Cl �

X
j:wjl=1

fjl (62)

�
X

j:wjl=0

 jl (from (61)) (63)

X
j:wjl=0

�jl < Cl �
X

j:wjl=1

fjl (64)

X
j:wjl=0

 1
jl >

X
j:wjl=0

�jl (from (62) and (64)) (65)

From (63),  1
jl �  jl; 8 j s.t. wjl = 0: Also �jl = �̂jl; 8 j 2 n(l); since

t � T0: From (65),  1
jl > �jl; for some j s.t. wjl = 0: Thus  1

jl =  1
l for

such j: Thus  1
l =  1

jl �  jl �  l: If w
o
jl = 1 by Lemma 14, f ojl <  l: Thus

f ojl <  1
l ; if wjl = 1 since wjl = wo

jl; 8 j 2 n(l) and  1
l �  l: From (47) and

(49), fjl <  1
l ; if wjl = 1: So the subroutine terminates with estimate  1

l

and without any change in the marking status of any session. Since wil = 1
before the subroutine is evoked, wil = 1 upon subroutine termination. Hence
the result holds. Now let wo

il = 0: As argued before, Ml � n(l) in this case.
ThusX
j:wjl=0

 jl =
X

j:wo
jl
=0

 jl �  il (since wil = 1 and wo
il = 0)

= Cl �
X

j:wo
jl
=1

f ojl �  il (from Lemma 13 since Ml � n(l))

< Cl �
X

j:wo
jl
=1

f ojl � fil (since fil <  l from (44) and  l �  il)

= Cl �
X

j:wo
jl
=1

fjl � fil (from (47) and since i 6= j as wo
jl = 1)

= Cl �
X

j:wjl=1;j 6=i

fjl � fil (since fj : w
o
jl = 1g = fj : wjl = 1g n fig)

= Cl �
X

j:wjl=1

fjl (since wil = 1)

=
X

j:wjl=0

 1
jl (since Ml � n(l) and

X
j:wjl=0

�jl < Cl �
X

j:wjl=1

fjl) (66)
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Since wjl = 0 for some j 2 n(l); (by assumption all sessions are not marked)
and �̂jl = �jl 8 t � T0;  l <  1

l : Now wjl = 1 means either j = i or wo
jl = 1:

In the �rst case, fil <  l by (44). In the second case, fjl <  l by Lemma 14.
Thus fjl <  l <  1

l if wjl = 1: So the subroutine terminates with estimate  1
l

and without any change in the marking status of any session. Since wil = 1
before the subroutine is evoked, wil = 1 upon subroutine termination. Hence
the result holds always after the second packet sent after T0 + 2:5D reaches
the origin of link l: Thus wil = 1 for all t � (T0 + 5D)�:

Thus (1) to (9) holds for t � T�
1 ; where T1 = T0 + 5D: Now we prove

the last part. Consider a virtual session s s.t. s 2 S(0) n S(1): Consider a
forward rate packet sent from the source of session �(s) after T0+2:5D: From
Lemma 8, this forward rate packet traverses through a saturation-link l which
satis�es the property that l 2L(1) and �(s) 2 �l(0)n�l(1): As argued in (7),
it sets f�(s)l = �(1) at this link. Thus the forward rate packet traverses down
this link with rate value equal to �(1): Note that as a forward rate packet
moves downstream, rate value can only decrease or remain the same. We
know that fil1 � �il(1) for all t � T0 + 2D: Thus the forward rate packet
sets fil1 to values not less than �il1(1) and �il1(1) � �(1): Thus rate values
of all downstream rate packets are equal to �(1): Thus the receiver receives
a forward rate packet with rate value equal to �(1): Since s 2 S(0) n S(1);
rs(1) = �(1) and from feasibility of ~r(1); rs(1) � �s: Thus �(1) � �s: Thus
the receiver rate is set equal to �(1): This holds for all times after the �rst
such forward rate packet reaches the receiver. The �rst such forward rate
packet reaches the receiver before T0+4D: So the corresponding receiver rate
is �(1) at all times after T0 + 4D: Thus the last part holds for all t � T1: 2

Lemma 16 If for k = 1; : : : ; p; there exists a time Tk � T0 such that T1 �
T2 � : : : � Tk; and for all t � T�

k ;

1.  il � �il(k); for all links l; and for all i 2 �l(k � 1):

2. bil � �il(k); 8l; i 2 �l(k � 1):

3. �i � max(�(k);maxs:�(s)=i �s); 8i s.t.i 2 �l(k � 1) for some link l:

4. fil � �il(k), 8l; i 2 �l(k � 1):

5. If l 2L(k); Ml � n(l) n �l(k � 1):
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6. If l 2L(k);  il = �il(k), 8 i 2 �l(k � 1): If i 2 �l(k � 1) n �l(k); and
l 2L(k);  il = �(k):

7. If l 2L(k); fil = �il(k), 8 i 2 �l(k � 1): If i 2 �l(k � 1) n �l(k); and
l 2L(k); fil = �(k):

8. If i 2 �l(k � 1) n �l(k); fil = �(k):

9. If i 2 n(l) n �l(k); and l 62L(1)[L(2) [ : : :[ L(k), wil = 1:

and if virtual session s 2 S(k� 1) nS(k); then �s = �(k) for all t � Tk; then
there exists a time Tp+1 � Tp such that for all t � T�

p+1

1.  il � �il(p+ 1); for all links l; and for all i 2 �l(p):

2. bil � �il(p+ 1); 8l; i 2 �l(p):

3. �i � max(�(p+ 1);maxs:�(s)=i �s); 8i s.t. i 2 �l(p) for some link l:

4. fil � �il(p+ 1), 8l; i 2 �l(p):

5. If l 2L(p+ 1); Ml � n(l) n �l(p):

6. If l 2L(p+1);  il = �il(p+1), 8 i 2 �l(p): If i 2 �l(p) n�l(p+1); and
l 2L(p);  il = �(p+ 1):

7. If l 2L(p+1); fil = �il(p+1), 8 i 2 �l(p): If i 2 �l(p) n�l(p+1); and
l 2L(p+ 1); fil = �(p+ 1):

8. If i 2 �l(p) n �l(p+ 1); fil = �(p+ 1):

9. If i 2 n(l) n �l(p+ 1); and l 62L(1)[L(2) [ : : :[ L(p+ 1), wil = 1:

and if virtual session s 2 S(p) n S(p+ 1); then �s = �(p+ 1); 8 t � Tp+1:

Proof of Lemma 16: First we prove (1). Consider t � Tp: Consider a link
l: If �l(p) = �; then (1) holds by vacuity. Let �l(p) 6= �: Let l 62L(1)[L(2)[
: : :[L(p): Since the last link control parameter estimation can take place
at t � T�

p ; we know from induction hypothesis (9) that n(l) n �l(p) �Ml:
First we assume that all sessions traversing l are not marked at the end
of the last estimation, i.e., Ml � n(l): Let  l < �l(p + 1): If i 2Ml; by
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Lemma 14, f oil <  l < �l(p+1) � �il(p+1): If i 2 (n(l) n �l(p)) by induction
hypothesis (8) and Lemma 11, f oil = �il(p): Also let Ml \ �l(p) 6= �:X
i2n(l)nMl

 il = Cl �
X

i2Ml

f oil (Lemma 13)

= Cl �
X

i2Ml\�l(p)

f oil �
X

i2n(l)n�l(p)

f oil

> Cl �
X

i2Ml\�l(p)

�il(p+ 1)� Fl(p)

(since Ml \ �l(p) 6= �; and f oil < �il(p+ 1); if i 2 Ml and

f oil = �il(p) if i 2 n(l) n �l(p))

=
X

i2�l(p)nMl

�il(p+ 1)

=
X

i2n(l)nMl

�il(p+ 1)

( since �l(p) nMl = n(l) nMl as n(l) n �l(p) �Ml)

Thus  l > �l(p + 1); since n(l) nMl 6= � and �jl = �̂jl 8 j 2 n(l) 8 t � T0:
This is a contradiction. So ifMl � n(l) and Ml \ �l(p) 6= �;  l > �l(p+ 1):
Thus (1) holds in this case, since �jl = �̂jl 8 j 2 n(l): Now letMl\�l(p) = �
and Ml � n(l): Thus Ml � n(l) n �l(p): Hence, from previous arguement,
Ml = n(l) n �l(p):X

i2n(l)nMl

 il = Cl �
X

i2Ml

f oil (Lemma 13)

= Cl �
X

i2n(l)n�l(p)

f oil (since Ml = n(l) n �l(p))

= Cl � Fl(p)

(since f oil = �il(p) if i 2 n(l) n �l(p))X
i2�l(p)

�il(p+ 1) = Cl � Fl(p) (67)

Also �l(p) = n(l) nMl since Ml = n(l) n�l(p);Ml � n(l) and �l(p) � n(l):
Since �jl = �̂jl 8 j 2 n(l);  il = �il(p+1); 8 i 2 �l(p): Thus (1) holds in this
case,

Now let all sessions traversing l be marked at the end of the last compu-
tation, i.e., Ml = n(l): If maxi2n(l) f

o
il � �l(p + 1); then since by Lemma 14,
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 l > maxi2n(l) f
o
il;  l > �l(p + 1): Now let maxi2n(l) f

o
il < �l(p + 1): It fol-

lows that f oil < �l(p + 1); for all sessions i: Now let there exist no session
j; s.t. j 2 �l(p); and f ojl = maxi2n(l) f

o
il: This means that if j 2 n(l) and

f ojl = maxi2n(l) f
o
il then j 2 n(l) n �l(p): Thus j 2 �l(q) n �l(q + 1) for some

q; q < p: From induction hypothesis (8), this means that f ojl = �(q + 1) �
�(p)((32)). Thus maxi2n(l) f

o
il � �(p): Since �l(p) 6= �; there exists j 2 �l(p)

and from assumption, f ojl 6= maxi2n(l) f
o
il; i.e., f

o
jl < maxi2n(l) fil � �(p): Since

�l(p) � �l(p�1); by induction hypothesis (4) for t � Tp; f
o
jl � �jl(p) � �(p);

if j 2 �l(p): This is a contradiction. So there exists a session j s.t. j 2 �l(p);
and f ojl = maxi2n(l) f

o
il:

 l = Cl �
X
i2n(l)

f oil + max
i2n(l)

f oil(Lemma 13)

= Cl �
X

i2n(l);i6=j

f oil

= Cl �
X

i2n(l)n�l(p)

f oil �
X

i2�l(p);i6=j

f oil (since j 2 �l(p))

> Cl � Fl(p)� (j�l(p)j � 1) �l(p+ 1)

(since fil = �il(p) if i 2 n(l) n �l(p) by induction hypothesis (8) and Lemma 11)

and f oil < �l(p+ 1); 8i 2 n(l))

=
X

i2�l(p)

�il(p+ 1)� (j�l(p)j � 1) �l(p+ 1)

�
X

i2�l(p)

�l(p+ 1)� (j�l(p)j � 1) �l(p+ 1)

= �l(p+ 1)

The result follows. Now let l 2L(q) for some q; 1 � q � p: Since i 2 �l(p);
i 2 �l(q�1); as �l(q�1) � �l(p): From induction hypothesis (1),  il � �il(q);
since t � Tp � Tq: Since l 2L(q); and i 2 �l(p); p � q; by Lemma 9,
�il(q) = �il(p+1): Thus  il � �il(p+ 1); for all t � Tp: Thus (1) holds for all
t � Tp:

Now we prove (2). Observe that �l(p+1) � �(p+1); for all l if �l(p) 6= �:
Thus �il(p+ 1) � �il(p+ 1) for all i; l if �l(p) 6= �: Thus  il � �il(p+ 1) for
t � Tp; if i 2 �l(p) by (1). Also observe that if i 2 �l(p); then there exists
at least one receiver s 2 m(i; l)\S(p): For all links l1 on session i path from
the origin of link l to receiver s; i 2 �l1(p): Thus  il1 � �il(p+1) for all such
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links for t � Tp: Now the arguement behind (2) is similar to that behind (2)
of Lemma 15, using the fact that  il1 � �il1(1); 8i; l1: The result holds for all
t � Tp + 2D:

Now we prove (3). If i 2 �l(p); for some l; then there exists at least one
session i receiver, s such that s 2 S(p): For all links l 2 Ls; i 2 �l(p) and
hence  il1 � �il(p+ 1) for all t � Tp: Now (3) can be proved in similar lines
as (3) of Lemma 15. The result holds for t � Tp + 2D:

Using (1), (2) and (3), (4) can be argued in the same manner as (4) of
Lemma 15. The result holds for t � (Tp + 2:5D)�:

Now we prove (5). Let l 2L(p + 1): First, let link l 2L(q), for some q;
1 � q � p: By induction hypothesis (5), for t � Tp � Tq;Ml � n(l)n�l(q�1):
Since q � p; �l(q�1) � �l(p): Thus (n(l) n �l(q � 1)) � (n(l) n �l(p)) : Thus
if t � Tp; Ml � (n(l) n �l(p)) after every link control parameter estimation.
Now let l 62L(1)[L(2)[ : : :[L(p): If �l(p) = �; then (5) is trivially true. Let
�l(p) 6= �: Let t � (Tp+2:5D)

�: The last link control parameter estimation is
either the last one before Tp+2:5D or takes place after Tp+2:5D: Thus by (4),
f oil � �il(p+1); for all i 2 �l(p):We �rst show thatMl � n(l): LetMl = n(l):
If i 2 n(l) n�l(p); �il(p) = f oil for all t � Tp; by induction hypothesis (8) and
Lemma 11. Thus

P
i2n(l)n�l(p) f

o
il = Fl(p): By Lemma 14,  l > maxi2n(l) f

o
il;

where  l is computed as  l = Cl �
P

i2n(l) f
o
il +maxi2n(l) f

o
il(Lemma 13).

 l = Cl �
X
i2n(l)

f oil + max
i2n(l)

f oil

= Cl �
X

i2(n(l)n�l(p))

f oil �
X

i2�l(p)

f oil + max
i2n(l)

f oil

= Cl � Fl(p)�
X

i2�l(p)

f oil + max
i2n(l)

f oil

=
X

i2�l(p)

�il(p+ 1)�
X

i2�l(p)

f oil + max
i2n(l)

f oil

(since �l(p+ 1) = �(p+ 1) as l 2 L(p+ 1))

� max
i2n(l)

f oil (since f
o
il � �il(p+ 1)8i 2 �l(p))

This is a contradiction. Thus Ml � n(l): Now we show that, in fact, no
session in �l(p) is marked after the last computation. Let it not be so, i.e.,
Ml \ �l(p) 6= �: If i 2Ml; f

o
il <  l(Lemma 14). Since f oil � �il(p + 1) �

�(p+ 1); for i 2 �l(p); by (4), this means �(p+ 1) <  l; if 9 i 2Ml \ �l(p);
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i.e., if Ml \ �l(p) 6= �: Also, since l 62L(1)[L(2) [ : : :[L(p); by induction
hypothesis (9), (n(l) n �l(p)) �Ml: Thus (n(l) n �l(p)) = (Ml n �l(p)) :X

i2n(l)nMl

 il = Cl �
X

i2Ml

f oil (from Lemma 13 since Ml � n(l))

= Cl �
X

i2Ml\�l(p)

f oil �
X

i2Mln�l(p)

f oil

� Cl �
X

i2Mln�l(p)

f oil �
X

i2Ml\�l(p)

�il(p+ 1)

(since f oil � �il(p+ 1) if i 2 �l(p))

= Cl �
X

i2n(l)n�l(p)

f oil �
X

i2Ml\�l(p)

�il(p+ 1)

(since (n(l) n �l(p)) = (Ml n �l(p)))

= Cl � Fl(p)�
X

i2Ml\�l(p)

�il(p+ 1)

=
X

i2�l(p)

�il(p + 1)�
X

i2Ml\�l(p)

�il(p+ 1)

(since l 2 L(p+ 1); �l(p+ 1) = �(p+ 1))

=
X

i2�l(p)nMl

�il(p+ 1)

�
X

i2n(l)nMl

�il(p+ 1) (since �l(p) � n(l)) (68)

From (68), and since �̂jl = �jl; 8 j 2 n(l);  il � �il(p + 1) for all i 2
n(l) nMl: However since �(p+ 1) <  l  il = �il for all i 2 n(l) nMl: ThusP

i2n(l)nMl
�il = Cl�

P
i2Ml

f oil: SinceMl � n(l); and t � T0; by Lemma 12,

Ml = �: Thus Ml \ �l(p) = �: This is a contradiction. So Ml \ �l(p) = �:
Thus Ml � n(l) n �l(p); for all t � (Tp + 2:5D)�:

Now we prove (6). Let l 2L(p + 1): If �l(p) = �; then (6) holds by
vacuity. So, let �l(p) 6= �: Let l 2L(q); for some q; 1 � q � p: Consider a
session i; i 2 �l(p): Since �l(p) � �l(q� 1); i 2 �l(q� 1): Thus by induction
hypothesis (6),  il = �il(q); for t � T�

q : We know that �il(q) � �il(q) since
�l(q) � �(q) as �l(q � 1) 6= �: Also, by Lemma 9, �il(q) = �il(p + 1) since
l 2L(q); i 2 �l(p) and q � p: Since l 2L(p + 1); �l(p + 1) = �(p + 1): Thus
�il(p + 1) = �il(p + 1): Thus  il � �il(p + 1) for t � T�

q : Since i 2 �l(p);
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we know from (1) that  il � �il(p + 1) for t � Tp: Also Tp � T�
q : Thus for

t � Tp;  il = �il(p + 1) for all i 2 �l(p): Now let l 62L(1)[L(2) [ : : :[L(p):
By induction hypothesis (9), (n(l) n �l(p)) �Ml; for t � Tp: Let t � (Tp +
2:5D)�: From (5), Ml � n(l) n�l(p): SoMl = n(l) n�l(p): Since Ml � n(l)
and �l(p) � n(l); we have �l(p) = n(l)nMl: Also Ml � n(l) as �l(p) 6= �:

X
i2n(l)nMl

 il = Cl �
X

i2Ml

f oil (by Lemma 13 since Ml � n(l))

= Cl � Fl(p) (since Ml = n(l) n �l(p) and f
o
il = �il(p) if i 2 n(l) n �l(p);

by induction hypothesis (8) and Lemma 11)X
i2�l(p)

�il(p+ 1) = Cl � Fl(p) (since l 2 L(p+ 1)) (69)

Since n(l) n Ml = �l(p); this means that  il = �il(p + 1); 8i 2 �l(p) for
t � (Tp + 2:5D)�: Hence �rst part of (6) holds for all t � (Tp + 2:5D)�:
Now let i 2 �l(p) n �l(p + 1): From Lemma 10, �(p + 1) � �il: Hence
�il(p+1) = �(p+1): Thus the second part follows from the �rst. Both parts
hold for all t � (Tp + 2:5D)�:

Now we prove (7). Let l 2L(p+1): If �l(p) = �; then (7) holds by vacuity.
So, let �l(p) 6= �: Now observe that, since i 2 �l(p); i 2 �l1(p) for all links
l1 on session i path between source of session i and the origin of link l: Thus
fil1 � �il1(p+ 1) for all t � (Tp + 2:5D)� for any such link l1 by (7). Again
since �il1 � �il for any such link l1; �il1(p+ 1) � �il(p+ 1) for any such link
l1: Also �i � max(�(p+1);maxs:i=�(s) �s) � �il(p+1) for t � Tp+2D: Thus
any forward rate packet starting from the source after Tp+2:5D; reaches the
origin of link l with a rate value greater than or equal to �il(p+ 1): By (2),
bil � �il(p+1) for t � Tp+2D: Also  il = �il(p+1) by (6) for t � Tp+2:5D:
So any such forward rate packet sets fil = �il(p + 1): Since fil changes only
upon arrival of forward rate packets, fil = �il(p+1) always after the arrival of
the �rst such forward rate packet. The �rst such forward rate packet reaches
the origin of link l by Tp + 4D: Hence fil = �il(p + 1) if i 2 �l(p) for all
t � (Tp + 4D)�: So �rst part of (7) holds for all t � (Tp + 4D)�: Now let
i 2 �l(p)n�l(p+1): From Lemma 10, �(p+1) � �il: Hence �il(p+1) = �(1):
Thus the second part follows from the �rst. The second part holds for all
t � (Tp + 4D)�:

Now we prove (8). Let there exist a session i 2 �l(p) n �l(p + 1): If
l 2L(p + 1); then the result follows from (7). Let l 62L(p + 1): If s 2
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m(i; l) \ S(p); then s 2 S(p) n S(p + 1): By Lemma 8, virtual session s
has a saturation link, l1 2L(p + 1); s.t. �(s) 2 �l1(p) n �l1(p + 1) and
��(s)l1(p+1) = �(p+1): Call the saturation link, l1(s): In this case, l1(s) 6= l:
Let l1(s) lie on the path of session i between the source and the origin of l:
While proving (7) we have proved that any forward rate packet transmitted
from the source after Tp+2:5D; sets fil1(s) = �(p+1): Thus the forward rate
packet moves from the origin of l1(s) with rate value equal to �(p+1): Thus
this forward rate packet can set fil to a value less than or equal to �(p+ 1):
Since t � Tp +2:5D; fil � �il(p+ 1) � �(p+ 1): Thus any such forward rate
packet sets fil equal to �(p+1): Since fil is set by incoming session i forward
rate packets only, fil = �(p + 1) always after the arrival of the �rst such
forward rate packet. The �rst such forward rate packet reaches the origin of
link l before Tp+4D: Thus fil = �(p+1); for all t � (Tp+4D)� in this case.
Observe that this result holds if l1(j) lies on the path of session i between the
source of session i and the origin of link l; for some j 2 m(i; l)\S(p): Let the
above not hold for any j 2 m(i; l) \ S(p): Since l1(j) 6= l for any j 2 m(i; l);
l1(j) lies between the sink of link l and receiver j for all j 2 m(i; l) \ S(p):
Consider any j 2 (m(i; l) n S(p)) (if there exists one). There exists q s.t.
q < p and j 2 S(q) n S(q + 1): By Lemma 8, the saturation link of j; l1(j) is
in L(q+1): Also i 2 �l1(j)(q)n�l1(j)(q+1) and �il1(j)(q+1) = �(q+1): Since
i 2 �l(p); i 2 �l2(p); for all links l2 between session i source and the sink of
link l: Thus i 2 �l2(q+1) as q < p and hence �l2(q+1) � �l2(p) for all such
links l2: Thus l1(j) does not lie on session i path between session i source and
the sink of link l for any j 2 m(i; l)nS(p): Thus l1(j) lies between the sink of
link l and receiver j for all j 2 m(i; l): Let q(j) be a q s.t. j 2 S(q)nS(q+1):
Thus �(j) 2 �l1(j)(q(j)) n �l1(j)(q(j) + 1) and l1(j) 2L(q(j) + 1): Since
j 2 m(i; l) and i 2 �l(p) n �l(p + 1); q(j) � p: Thus Tq(j) � Tp: Thus,
since �(j) 2 �l1(j)(q(j)) n �l1(j)(q(j) + 1); l1(j) 2L(q(j) + 1); and �(j) = i;
from (7) and induction hypothesis (7), any forward rate packet sent from the
source after Tq(j) + 2:5D sets fil1(j) = �(q(j) + 1) and  il1(j) = �(q(j) + 1)
by (6) and induction hypothesis (6). Thus fil1(j) �  il1(j) �  l1(j): Thus a
forward rate packet sent from the source after Tp + 2:5D; moves from the
origin of link l1(j) with up = 1 and rp = �(q(j) + 1): Thus a feedback rate
packet returns to the origin of link l1(j) with up = 1: The only way the
rate value of this feedback rate packet can be greater than �(q(j) + 1) is if
the minimum rate of any �(j) receiver downstream is strictly greater than
�(q(j)+1):We know that ��(j)l1(j)(q(j)+1) = �(q(j)+1): From feasibility of
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~r(q(j)+ 1); ��(j)l1(j)(q(j)+ 1) � ��(j)l1(j)((34)). Thus �(q(j)+ 1) � ��(j)l1(j):
So rate value of this feedback rate packet is less than or equal to �(q(j)+1):
Since up = 1; in the feedback rate packet, bil is set to this rate value. Since
bil � �il(q(j) + 1) � �(q(j) + 1); (by induction hypothesis (2) and (2)), for
all t � Tp + 2D; this rate value is equal to �(q(j) + 1): Unless this origin
is a merger point for other links of session i; clearly a feedback rate packet
moves towards the source with up = 1 and rp = �(q(j) + 1): Using similar
arguements, a feedback rate packet moves upstream with up = 1 and rp =
�(q(j)+1) till it reaches a merger point. Since i 2 �l1(j)(q(j))n�l1(j)(q(j)+1);
y 62 S(q(j) + 1)); 8 y 2 m(i; l1(j)): Thus q(y) � q(j); 8 y 2 m(i; l1(j)): By
(32), �(y(j) + 1) � �(q(j) + 1); 8 y 2 m(i; l1(j)): Now consider \�rst-level"
merger points downstream of the origin of link l: A �rst-level merger point is
that which satis�es the property that each of the session i paths downstream
have a saturation link and there is no merger point between this merger point
and such a link. Thus a session i feedback rate packet arrives at this merger
point with up = 1 and rp = max�(q(j) + 1); where the maximum is taken
over the session i virtual sessions traversing any session i satuartion link
already traversed by the feedback rate packet. Note that �(t) � �(t+1); for
all t((32)). Thus a feedback rate packet moves upstream from this merger
point, with up = 1 and rp = �(u+ 1) where u is the largest value of q(j) for
downstream session i receivers. A \kth-level" merger point is a merger-point,
downstream of which, there can only be 1; 2; : : : ; k� 1th level merger points.
Applying this arguement successively to \second-level," \third-level" merger
points, we can prove that a session i feedback rate packet reaches the origin
of link l with up = 1 and rp = �(p + 1): The last equality follows because
either at least one merger point has a downstream receiver j which saturates
in the p + 1th iteration, i.e., j 2 S(p) n S(p + 1) or there is no merger point
between the saturation link of such a receiver and the origin of link l: Thus
bil = �(p+1) whenever a session i feedback rate packet arrives in response to
a forward rate packet sent from source of session i after T0+2:5D: Thus any
forward rate packet sent after this feedback rate packet reaches the source sets
fil = �(p+1): This is because a forward rate packet is sent after this feedback
packet, only after Tp+2:5D: From (4) fil � �(p+1) for all t � Tp+2D; since
i 2 �l(p): Thus such a forward rate packet arrives with a rate value greater
than or equal to �(p + 1): Also, from (1)  il � �il(p + 1) � �(p + 1) and
bil = �(p + 1); as argued now. Thus any forward rate packet sent after this
feedback rate packet sets fil = �(p + 1): Again the corresponding feedback
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rate packet sets bil = �(p + 1): The cycle repeats. So fil = �(p + 1) always
after the second forward rate packet reaches the origin of link l: The second
forward rate packet transmitted after Tp + 2:5D reaches the origin before
Tp + 5D: So, in this case fil = �(p+ 1) for all t � (Tp + 5D)�: In either case
(position of l1(j)s w.r.t l), fil = �(p+ 1) for all t � (Tp + 5D)�:

Now we prove (9). Let l 62L(1)[L(2) [ : : :[L(p + 1): Let there exist a
session i 2 n(l) n�l(p+1): There exists q s.t. q � p and i 2 �l(q) n�l(q+1):
Thus Tq � Tp: Now, l 62L(q + 1): However, �l(q) 6= �; since i 2 �l(q): Thus
�il(q+1) � �l(q+1) > �(q+1): Consider any time at and after the arrival of
the second forward rate packet transmitted from the source after Tp + 2:5D
at the origin of link l: By (8) and induction hypothesis (8), fil = �(q + 1):
Since i 2 �l(q) n �l(q + 1); �(q + 1) � �il(Lemma 10). By (1) and induction
hypothesis (1),  il � �il(q+1) at this time. So  il > �(q+1) � �il = �̂il: The
last equality follows since t � T0: It follows that  l =  il > �(q + 1): Thus
fil <  l at all times after the second forward rate packet arrives at the origin
of link l: Thus any forward rate packet, starting from the second one, sets
wil = 1: We need to show that wil = 1 after the subroutine estimate-link
control parameter is evoked. As before, f ojl; w

o
jl are the values of these

variables just after the previous computation. Let  1
l be the �rst estimate

of the link control parameter when the current computation is evoked. We
know that

fil = �(q + 1) (70)

<  l (71)

wil = 1 (72)

wo
jl = wjl if j 6= i; j 2 n(l) (73)

f ojl = fjl if j 6= i; j 2 n(l) (74)

Since i 2 �l(q); fil � �il(q + 1) � �(q + 1) always after (Tq + 2:5D)� by (4)
and induction hypothesis (4). Since p � q; Tp � Tq: Thus fil � �(q + 1) for
all t � (Tp + 2:5D)�: We are considering any time after the arrival of the
second forward rate packet sent after Tq + 2:5D: Thus

f oil � �(q + 1)

= fil (from (70)) (75)

Using (70) to (75) we can argue that the subroutine terminates after one
estimate of the link control parameter and without any change in the marking
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status of any session. Thus session i remains marked after the execution of
the subroutine. The arguement is similar to that behind (9) of Lemma 15
using (43) to (49). Hence the result holds always after the second packet sent
after Tp+2:5D reaches the origin of link l: Thus wil = 1 for all t � (Tp+5D)

�:
Thus (1) to (9) holds for t � T�

p+1; where Tp+1 = Tp+5D: Now we prove
the last part. Consider a virtual session s s.t. s 2 S(p) n S(p+ 1): Consider
a forward rate packet sent from the source of session �(s) after Tp + 2:5D:
From Lemma 8, this forward rate packet traverses through some link l which
satis�es the property that l 2L(p+1) and �(s) 2 �l(p)n�l(p+1): By (7), it
sets f�(s)l = �(p+1) at this link. Thus the forward rate packet traverses down
this link with rate value equal to �(p+1): Note that as a forward rate packet
moves downstream, rate value can only decrease or remain the same. At all
subsequent links l1; on the path to receiver s; �(s) 2 �l1(p) since s 2 S(p)
and s 2 m(�(s); l1): Thus the forward rate packet sets fil1 to values not less
than �il1(p+1) and �il1(p+1) � �(p+1): Thus rate values of all downstream
rate packets are equal to �(p+ 1): Thus the receiver receives a forward rate
packet with rate value equal to �(p+1): By Lemma 10, �(p+1) � ��(s)l � �s:
Thus the receiver rate is set equal to �(p+ 1): This holds for all times after
the �rst such forward rate packet reaches the receiver. The �rst such forward
rate packet reaches the receiver before Tp+4D: So the corresponding receiver
rate is �(p + 1) at all times after Tp + 4D: Thus the last part holds for all
t � Tp+1: 2

Proof of Theorem 3: From Lemmas 15 and 16, 8 s; �s = �(q(s) + 1);
where s 2 S(q(s)) n S(q(s) + 1) for all t � Tp+1 if S(p + 1) = �: We know
from Theorem 3 that S(p+ 1) = �; for some p < M: Thus �s = �(q(s) + 1);
for all t � TM = t0+2:5D+5DM: By Lemma 11 and Theorem 3, �(q(s)+1)
is the maxmin fair rate of receiver s: Thus �s is the maxmin fair receiver
rate for all t � t0 + 2:5D + 5DM: From Theorem 3, there does not exist a
l s.t. i 2 �l(M) for all sessions i: Thus from (8) of Lemmas 15 and 16 and
Lemma 11 fils are the maxmin fair session rates for all t � t0+2:5D+5DM:

2

As we mentioned before, [18] presents an algorithm for computation of
maxmin fair rates in unicast networks with minimum rate requirements. The
authors claim that the algorithm converges in �nite time after the system
stabilizes. However, the proof is in error. We point out the problems in the
proof. The authors prove as follows. The authors �rst present a centralized
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algorithm for computation of maxmin fair rates. This centralized algorithm
is similar to that we presented in this section, except that they consider a
session saturated if it traverses a link whose capacity is fully utilized. Note
that this algorithm is for unicast networks and hence virtual sessions and
sessions are the same. If all sessions are unicast, then our centralized al-
gorithm will consider a session saturated if its rate is equal to �(k); in an
iteration k: Both the centralized algorithms allocate max(�(k); �i) rate to
unsaturated session i; for all i; in iteration k: Then the authors try to prove
that the rates computed by their distributed algorithm equals that of the
centralized algorithm in �nite time. To show this result, they �rst claim that
the advertized rate of a link equals �(1); for all su�ciently large t; if the link
is in L1 (L(1) in our terminology). They also use the result that if a session
saturates in iteration 1 in the centarlized algorithm, then it is marked in all
links except those in L1 (L(1) in our terminology), for all su�ciently large t:
The following example shows that neither claim is true.
Example D.1: Consider a network with 2 links, e1; e2 and 3 unicast sessions.
Session 1 traverses both links. Session 2 traverses e1 only and session 3
traverses e2 only. Session 1 requires a minimum rate of 7: Other sessions do
not have a minimum rate requirement. Link e1 has a capacity of 11 units
and link e2 has a capacity of 12 units. Since sessions can enter and exit
any time and link capacities can change any time during the operation of
the algorithm, the marking states and session rates can be arbitrary when
the network stabilizes to its current state. Let session 2 be marked in link
e1 with a rate of 4 units when the network stabilizes. No other session is
marked in any link at this time. The algorithm presented in [18] converges
to the following advertized rates: 7 for e1 and 5 for e2: Clearly �(1) = 4: Also
e1 2L1: The distributed algorithm generates a rate of 7 for session 1: Thus
it is not marked in link e2: Session 1 is saturated in iteration 1 and e2 62L1:
Thus neither claim is true.
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