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Abstract—Communication networks are expected to offer a wide range Given a network composed of nodes and bidirectional links,
of services to an increasingly large number of users, with aiderse range \where each link has a given bandwidth capacity, and a set of

of quality of service. This calls for efficient control and management of . . . )
these networks. We address the problem of quality-of-serge routing, communication demands to allocate, where each demand is de

more specifically the planning of bandwidth allocation to conmunication  fined by a triple:

demands. Shortest path routing is the traditional techniqwe applied to this (SOUI’CG node, destination node, requested bandwidth)
prob_lem. However, this can lead to poor netyvork utlllza_tlon an_d even con-  Eind one and only one route for each demand so that the band-
gestion. We show how an abstraction technique combined witbystematic . . . .
search algorithms and heuristics derived from Artificial Intelligence make Width requirements of the demands are simultaneously satisfied

it possible to solve this problem more efficiently and in mucttighter net-  within the resource capacities of the links.

works, in terms of bandwidth usage. Itis i tant t te that b f technological limita
Keywords— Quality of Service routing, constraint-based routing, re IS Important to note that because of technologica

source allocation planning, abstraction, constraint sasifaction. tions (for ATM typically) and/or performance reasons, it is im-
possible to divide demands among multiple routes. However,
there may be several demands between same endpoints. With
this restriction, the RAIN problem is NP-hard in the number
HE communication networks of the next millennium aref demands. When demands are subject to multiple additive or
expected to offer a wide range of services to an increasultiplicative quality of service (QoS) criteria, then Wang and
ingly large number of users, with a diverse range of Quality @rowcroft [1] have shown that the allocation of every single de-
Service (QoS) requirements. This calls for efficient control andand is NP-complete by itself. This creates a new situation
management of these high-speed networks. A central problgmthe networking community, as traditional routing algorithms
is the automatic routing of traffic through the network. Routuch as shortest paths do not perform very well on this problem.
ing must be a very fast process, in order to guarantee customen practice, the RAIN problem poses itself in the following
satisfaction. Currently, shortest path routing is most often usggly: a network or service provider receives a set of requests
to route traffic across a network. Although this ensures the b&stm some customers to allocate a number of demands, and must
possible route for each particular demand, it can lead to ineffefecide within a certain time decision threshold whether and how
tive use of the network as a whole and even congestion, esp demands can be accepted.
cially in highly loaded networks. Constraint satisfaction [2] is a technique which has been
From the routing point of view, the key resource to managdown to work well for solving certain NP-hard problems, and
in networks is bandwidth. Therefore, in order to make betthas been applied to a variety of domains [3]CAnstraint Sat-
use of available network resources, there is a need for plannisigiction Problen{CSP) is defined by a tripleX, D, C), where
bandwidth allocation to communication demands, in order to s€t = {z1,...,z,} is a set ofvariables D = {D,,...,D,} a
up routing tables (or any other route selection criterion) mosget of finite domainsassociated with the variables agd =
purposefully. This can be achieved by the us@lobal infor- {C1,...,C,,} a set ofconstraints The domain of a variable
mation including not only the available link capacities but als@s the set of all values that can be assigned to that variable. A
the expected traffic profile. In this paper, we consider the protenstraint between variables restricts the combinations of values
lem of allocating in aroff-line manner a set of demands knownhat can be assigned to those variables. Solving a CSP amounts
in advance within the resource capacities of a communicatinfinding a value for each variable so that all constraints are
network. This situation may arise for instance when setting gptisfied. This may be done withbacktracking algorithm
virtual private networks in a connection-oriented network (e.g., The RAIN problem is easily formulated as a CSP in the fol-
ATM, TDM) of a provider; planning the routing of virtual pathlowing way: variables are demands, the domain of each variable
connections (VPC) in an ATM network; planning the routing aik the set of all routes between the endpoints of the demand, and
virtual channel connections (VCC) in the VPC network of aconstraints on each link must ensure that the resource capacity
ATM backbone; or optimizing the routing tables of an IP neis not exceeded by the demands routed through it. A solution is
work (demands are then estimated from objective traffic mesmset of routes, one for each demand, respecting the capacities of
surements). the links. However, this formulation presents severe complexity
Formally, we define the problem of resource allocation in ngiroblems. It is too expensive to compute, represent, and store
works (RAIN) as follows: the domain of a variable, i.e., all the routes that join the end-
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points of a demand. Suppose the network is simple but complet&lann and Smith [10] search for routing strategies that attempt
(this is not even the worst case, since a communication netwtokensure that no link is over-utilized (hard constraint) and, if
is a multi-graph: it allows multiple links between same engsossible, that all links are evenly loaded (below a fixed target
points) withn nodes. A route is a simple path, its length in numutilization), for the predicted traffic profile. Finally, they at-
ber of links is therefore bounded ly-1. Since a route of length tempt to minimize the communication costs. Genetic algorithms
j hasj —1 intermediate (distinct) nodes, the number of routes ahd simulated annealing approaches were used to develop such
lengthj is (n —2)!/(n — j — 1)!. The total number of routes be-strategies. However, their methods do not apply well, if not at
tween two nodes is therefore equa@fgf (n—2)!/(n—i—1)!. all, to highly loaded networks, mainly because the multi-criteria
Storing all routes between a pair of nodes would require expajective function they use cannot ensure that the hard con-
nential space. For instance, in a complete graph with 10 nod#f&gint, i.e., no link is over-utilized, is respected in every case.
there are 69281 routes between any two nodes. Since methitégeover, we think that load balancing should be viewed in
such as forward checking or dynamic variable ordering requi&ms of bandwidth connectivity and not the even distribution of
explicit representation of domains, they would be very ineffihe load among the links, especially in highly loaded networks,
cient on a problem of realistic size. since high bandwidth connectivity allows to route additional de-
It has long been observed that the complexity of solwands without having to recompute a complete solution.
ing a problem can depend heavily on how it is formulated. Vedantham and lyengar [11] prove that the problem of ef-
Giunchiglia and Walsh define abstraction as follows in [#b-  fective bandwidth utilization in the ATM network model is NP-
straction is the mapping of a problem representation into a simemplete. In the situation where there are more incoming calls
pler one that satisfies some desirable properties in order to rvan available bandwidth, they also propose the use of Genetic
duce the complexity of reasoning. The problem is solved in tAkgorithms for maximizing the revenue.
abstract space and the solution is then mapped back to the mor8andwidth auctionning through a multi-agent system is being
complex ground spaceThe ground space refers to the originaéxplored [12]; however, this work is still at an early stage.
problem representation. Abstractions are naturally used my huTo our knowledge, the closest published work to ours is the
mans to solve problems. Reducing problem complexity is a M@ANPC framework [13]. It is based on the successive alloca-
jor reason for using abstraction techniques. A recent collectifions of shortest routes to the demands, without any backtrack-
of papers addressing abstraction, reformulation, and approxiriy when an assignment fails. They propose several heuristics
tion techniques in a variety of Al domains can be found in [5].to order the demands (such as bandwidth ordering) to provide
In this paper, we show how an abstraction of the netwoBetter solutions, i.e., to route more demands. They are currently
called Blocking Islands, create a compact representation of #veloping an optimization tool that takes the partial solution as
domains which allows the application of well-known CSP technput to try to allocate all demands. However, results show that
niques such as forward checking, variable and value orderifg methods we propose clearly outperform theirs.
to the RAIN problem with manageable complexity. In the fol- Apstraction and reformulation techniques have already been
lowing section, we review some of the related work. In Segpplied to permit more efficient solution of a CSP. Choueiry and
tion I1I, we briefly recall the Blocking Island paradigm and outgaltings [14] relate interchangeability to abstraction in the con-
line its major properties. Section IV illustrates how blockingext of a decomposition heuristic for resource allocation. Weigel
islands help to route a single demand while attempting to pignd Faltings [15] cluster variables to build abstraction hierar-
serve bandwidth Connectivity inside the network. In Section ¥hies for Conﬁguration pr0b|ems viewed as CSPs, and then use
we present a generic algorithm and some heuristics to solve fh@rchangeability to merge values on each level of the hierar-
RAIN problem. Empirical results are summarized in Section Vghy. Freuder and Sabin [16] present abstraction and reformula-
The blocking island paradigm is generalized to multiple linfon techniques based on interchangeability to improve solving
constraints in Section VII. Finally, we conclude by some futurgsps,
work directions. The phenomenon of phase transitions occurring in many types
of problems as a control parameter is varied has been recog-
nized and studied extensively in recent years. Cheeseian
Surprisingly, there has been little published research on 1] first reported a phase transition between a region where al-
RAIN problem. Currently, most network providers use sommost all problems have many solutions and are relatively easy
kind of best effort algorithm, without any backtracking due tto solve, and a region where almost all problems have no so-
the complexity of the problem: given an order of the demandation and their insolubility is relatively easy to prove. In this
each demand is assigned the shortest possible route suppoititeyvening region, the probability of problem solubility falls
it, or just skipped if there is no such route. from close to 1 to 0, and the cost of searching these problems
Operations Research (OR) techniques are also applied toithhighest. Cheeseman suggests the following conjectiie:
RAIN problem. Most often, a fixed number of shortest paths fédP-complete problems have at least one order parameter and
each demand are pre-computed, and the problem is solved usiregghard to solve problems are around a critical value of this
linear programming with very large constraint systems of equarder parameter’ The critical value (or a range) of the or-
tions [6], [7], [8], [9]. However, because only a given numbeder parameter is where phase transition occurs. The value of
of routes are considered, these techniques are not guarantedhigmrder parameter for a problem instance is often called the
find a solution if one exists. Moreover, OR techniques are nottightnessof the problem instance. Noteworthy, Gettal. [18]
flexible as CSP-based methods (see Section VIII). observed that the relative behavior of algorithms on large and
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Fig. 1. The blocking island hierarchy for resource requeata {64 K,56 K, 16 K'}. The weights on the links are their available bandwidth. tdu$ nodes’
description include only their node children and networkieahildren in brackets. Link children (of Bls and abstradtd) are omitted for more clarity, and
the 0-Bl is not displayed since equal 19;. (a) the16-BIG. (b) the56 K -BIG.(c) the64 K -BIG. (d) the network.

small problems is the same when plotted against this parameteurces between the link’s endpoints. As a matter of fact, link
Comparison of different algorithms can therefore be performétl ¢) has both endpoints i64K-Bl N; but has less thaéd K

on small problems, and results can be expected to scale to lameilable resources. However, there are at |64t available
problems. Phase transition behavior has been reported in arr@sources along routgc, a), (a,b)}.

creasing number of NP-complete problems [19]. (3-Bls have some fundamental properties. Given any resource
requirement, blocking islands partition the network into equiva-
I1l. THE BLOCKING ISLAND PARADIGM lence classes of nodes. The Bls argéque andidentify global

Frei and Famngs [20] introduce a C|ustering scheme basag[tleneCkSthat iS, inter-blOCking island links. |finter-b|0Cking
on Blocking Islands (BI), which can be used to represent barigland links are links with low remaining resources, as some
width availability at different levels of abstraction, as a basis fdifks inside blocking islands may be, inter-blocking island links
distributed problem solving. #8-blocking island §-Bl) for a are links for which there is no alternative route with the desired
nodez is the set of all nodes of the network that can be reachgkpource requirement. Moreover, Bls highlightéxestencend
from z using links with at leas$ available resources, includinglocationof routes at a given bandwidth level:
z. Fig. 1 (d) shows al64K -Bls for a network. Note that some Proposition 1(Route Existence Property) There is at least
links inside a3-Bl, i.e., the links that have both endpoints in th@ne route satisfying the resource requirement of an unallocated
(-Bl, may have less thafi available resources. In such a caselemand!,, = (z,y, £,) if and only if its endpoints: andy are
it simply means that there is another route witlavailable re- inthe sames, -blocking island. Furthermore, all links that could



0 Ng S is the 5-Bl sought. This algorithm has a linear complexity

of O(m), wherem is the number of links. The construction of
N7 a 3-BIG is straightforward from its definition and is also linear
in O(m). A BIH for a set of constant resource requirements
/ \ ordered decreasingly is easily obtained by recursive calls to the
Ng Ng BIG computation algorithm. Its complexity is bound &ybm),

whereb is the number of different resource requirements. The
/ \ adaptation of a BIH when demands are allocated or deallocated
N1 N2 N3 Ng

can be carried out incrementally with complexi¥(bm) (see
a/b c\d\e f

\ ‘ / \ [20] for more details). Therefore, since the number of possible
k
Fig. 2. The abstraction tree of the BIH of Fig. 1 (links are tted for clarity).
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bandwidth requirements) is constant, all Bl algorithms are
linear in the number of links of the network.

A BIH contain at mosbn+1 Bls, that is, one Bl for each node
at each bandwidth requirement level, plus the 0-BlI. In that worst
case, there arein{m,n(n — 1)/2} links at each bandwidth
form part of such a route lie inside this blocking island. level, since multiple links between same Bls are clustered into a

Finally, theinclusion propertystates that for ang; < ;, the single abstract link. Therefore, the memory storage requirement
3,-Bl for a node is a subset of thi-BI for the same node. ~ 0f @ BIH is bound byO (bn?).

Blocking islands are used to build tiBeblocking island graph
(8-BIG), a simple graph representing abstractview of the
available resources: ea¢hBl is clustered into a single node Consider the problem of routing a single demahd =
and there is an abstract link between two of these nodes if théfge, 16 K) in the network of Fig. 1 (d). Sinceande are clus-
is a link in the network joining them. Fig. 1 (c) is the 64-BlGered in the sam&6 K -Bl (IV7), we know that at least one route
of the network of Fig. 1 (d). An abstract link between two Blsatisfyingd,, exists. Classical wisdom would select the shortest
clusters all links that join the two Bls, and the abstract link'soute, that is the routes: ¢ — i — e. However, allocating this
available resources is equal to the maximum of the availablute tod,, is here not a good idea, since it uses resources on two
resources of the links it clusters (since a demand can only dyitical links in terms of available bandwidth, that(is i) and
allocated over one route). These abstract links denote the critigak): these two links joir64 K-Bls N; andN, in the64 K-BIG
links, since their available resources do not suffice to suppordBFig. 1 (c). After that allocation, no other demand requiring
demand requirin@ resources. 16K (or more) between any of the nodes clustered i -BI

In order to identify bottlenecks for differepts, e.g., for typ- N5 and one of the nodes insid®K-Bl Ng can be allocated
ical possible bandwidth requirements, we build a recursive damymore. For instance, a demafg, 16 K) is then impossible
composition of BIGs in decreasing order of the requirements: allocate. A better way to rout&, isr;,: ¢ — b — d — e,

81 > B2 > ... > By. This layered structure of BIGs isBlock- sincer;, uses only links that are clustered at the lowest level
ing Island Hierarchy(BIH). The lowest level of the blocking in the BIH, that is in64K-Bl Ny, and no critical links (that is
island hierarchy is the, -BIG of the network graph. The sec-inter-Bl links).

ond layer is then thg,-BIG of the first level, i.e.3;-BIG, the rr, IS a route that satisfies thewest levelLL) heuristic. Its
third layer thegs-BIG of the second, and so on. On top of th@rinciple is to route a demand along links clustered in the lowest
hierarchy there is a 0-BIG abstracting the smallest resource Bé-clustering the endpoints of the demand, i.e., the Bl for the
quirements,. The abstract graph of this top layer is reducelighest bandwidth requirement containing the endpoints. This
to a single abstract node (the 0-BI), since the network grahburistic is based on the following observation: the lower a Bl is
is supposed connected. Fig. 1 shows such a BIH for resouitc¢he BIH, the less critical are the links clustered in the Bl. By
requirement§ 64K, 56K, 16K }. The graphical representationassigning a route in a lower Bl, a betteandwidth connectivity
shows that each BIG is an abstraction of the BIG at the level jystservation effect is achieved, therefore reducing the risk of
below (the next biggest resource requirement), and thereforefiaure allocation failures. Bandwidth connectivity can therefore
all lower layers (all larger resource requirements). be viewed as a kind ajverall load-balancing

A BIH can not only be viewed as a layered structure of Another way to see the criticalness of a route is to consider
(3-BIGs, but also as aabstraction treewhen considering the the mappingof the route onto the abstraction tree of Fig.r3:
father-child relations. In the abstraction tree, the leaves are ristby far then the longest route, since its mapping traverses Bls
work elements (nodes and links), the intermediate vertices eitt¥ér, N5, N7, Ng, N3, and then back:;, traverses only BV;. rg
abstract nodes or abstract links and the root vertex the 0-Bltbérefore affects not only critical links at higher level then
the top level in the corresponding BIH. Fig. 2 is the abstractidut also many more Bls, and its allocation may cause to split
tree of Fig. 1. each of them. This observation (also) justifies the LL heuristic.

The 8-Bl S for a given noder of a network graph can be Even better, a BIH gives also the means to comppgpeiori
obtained by a simple greedy algorithm: starting with an initi@quivalent routes in order to decide for the “best” one, besides
setS = {z}, we recursively add every node fthat can be the length criterion. Theninimal splitting(MS) heuristic selects
reached by a link adjacent to a nodeSfand that has at leastthe route that causes the fewest splittings of blocking islands in
[ available bandwidth. When no more new nodes can be addénd BIH: obviously, the more splittings, the more links become

g h i j

IV. ROUTING FROM THEBIH PERSPECTIVE



ceeds in this fashion until a complete solution is found or all
possible assignments have been tried unsuccessfully, in which
case there is no solution to the problem.

The formulation of the CSP presents severe complexity prob-
lems (see Section I). Nonetheless, blocking islands provide an
abstraction of the domain of each demand, since any route satis-
fying a demand lies within thg-BI of its endpoints, wherg is
the resource requirement of the demand (Proposition 1). There-
fore, if the endpoints of a demand are clustered in the s&me
Bl, there is at least one route satisfying the demand. We do not
know what the domain of the variabledgsplicitly, i.e., we do not
know the set of routes that can satisfy the demand; however we
know it is non-empty. In fact, there is a mapping between each
route that can be assigned to a demand and the BIH: a route can
Fig. 3. Mapping the shortest path (SP) and the lowest levs) hutes onto the D€ seen as a path in the abstraction tree of the BIH. Thus, there

abstraction tree. is a route satisfying a demand if and only if there is a path in the
abstraction tree that does not traverse Bls of a higher level than
its resource requirement. For instance, from the abstraction tree
Fig. 2, it is easy to see that there is no route betweand
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-------- Shortest Path routing

-~ Lowest Level routing

critical, leading to more allocation failures of demands. MS h
therefore an even greater bandwidth connectivity presenvatipn u, g4 available resources, since any path in the tree must at
effect than LL. Unfortunately, only an approximation of the M
L . . . . Teast cross Bls at level 56.

heuristic can effectively be used in practice, since an exact M- - mapbing of routes onto the BIH is used to formulate a
plementation of MS requires to compute all routes beforeha]nd d hppk_g iteri Il as d . | deri
in order to compare them. A possible implementation is to conp ward checking criterion, as well as dynamic value ordering

. ' and dynamic variable ordering heuristics.
pute a given number of routes using LL, and then to order them
according to the MS heuristic to select a route. The evaluatixn
of the MS heuristic is left for a later paper. '

Widest path routing has been proposed as an alternative té-orward checking is a technique to improve backtracking al-

SP. For instance, Wang and Crowcroft [1] advocate the usegufrithms. Its idea is to propagate value assignments to unallo-
shortest-widest patfWP) for hop-by-hop routing algorithms. cated variables along the constraints in order to detect a dead
This strategy is to find a route with maximum bottleneck banénd earlier, thereby increasing search efficiency. Moreover, de-
width (a widest path), and when there are more than one wideisions regarding which variable to select next and what value
path, choose the one with shortest propagation delay (in our caéthe selected variable to try next can then be done in a more
the number of hops). In routing the same demdnés above, informed way.
WP selects the routey: ¢ - a — b — d — e, aroute longer  Thanks to the route existence property, we know at any point
thanrg or r;,. Therefore, even if it attempts to distribute thén the search if it is still possible to allocate a demand, without
load by avoiding as much as possible bottleneck links, WP mhasiving to compute a route: if the endpoints of the demand are
select a very long route, thereby using a lot of resources glatustered in the sam@-BI, wherej is the resource requirement
ally. However, WP performed very poorly in our experimentsf the demand, there is at least one, i.e., the domain of the vari-
as expected, and we will not report it on solving the RAIN prokable (demand) is not empty, even if not explicitly known.

lem. We show nonetheless its behavior in case of QoS-routingrherefore, after allocating a demand, forward checking is per-

Forward Checking

(Section VI-B). formed first by updating the BIH, and then by checking that the
Because of its characteristics, LL can be viewed as a mixtutite existence property holds for all uninstantiated demands.
of SP and WP. If the latter property does not hold at least once, another route
must be tried for the current demand. Domain pruning (i.e., the

V. AUTOMATICALLY SOLVING A RAIN PROBLEM update of the domain of the demands by propagation of the al-

Solving a RAIN problem amounts to solving the CSP introIpcanon decisions) is thus implicit while maintaining the BIH.

duced in Section I. This can be done usinbazktracking al-
gorithmwith forward checkingFC) [2]. Its basic operation is
to pick one variable (demand) at a time, assign it a value (route)A backtracking algorithm involves two types of choices: the
of its domain that is compatible with the values of all instantiext variable to assign (see Section V-C), and the value to assign
ated variables so far, and propagate the effect of this assignnterit. As illustrated above, the domains of the demands are too
(using the constraints) to the future variables by removing ahig to be computed beforehand. Instead, we compute the routes
inconsistent values from their domain. If the domain of a futuies they are required. In order to reduce the search effort, routes
variable becomes empty, the current assignment is undone,gheuld be generated in “most interesting” order, so to increase
previous state of the domains is restored, and an alternativeths-efficiency of the search, that is: try to allocate the route that
signment, when available, is tried. If all possible instantiationsill less likely prevent the allocation of the remaining demands.
fail, backtracking to the previous past variable occurs. FC prA-hatural heuristic is to generate the routestiortest patiorder

B. Value Ordering



....... d1=(h,9,32) Function FCRAIN (D,T,H)

do=(b.c.64 if D =0 then
o rbesd (* no more demands to allocate: solution found *
— = d3=(d.e,16) return
else
dy | dy | dg d = (z,y,3) « pickademand oD

r < NextBestRoute (d,H)

repeat (* Try connection(d,r) *)
v+ (d,r)
Update ConnectionAddition (H,T, )

Fig. 4. Selecting the next demand to allocate using DVO-HLEXO-NL. The (* Forward checking: verify thatd, r) does *)
B e et oo s e o (*not prevent he remaining allocations *)
common father and the bandwidth requirement level. Thewgledlemand if EzistsRouteForAll (D — {d},H) then
by each heuristic is shaded in gray. Res < FCRAIN (D — {d}, T U{~}, H)

if Res # () then

* i *

(SP), since the shorter the route, the fewer resources will be used endrii.tum Res (*We have a solution *)

to satisfy a demand. .

However, Section IV shows how to do better using a kind of gpﬂltegzggnéﬁ:;zg;nzsU;l_i)m’ L)
min-conflict heuristic, the lowest level heuristic. Applied to the untilr = 0 ' ’

RAIN problem, it amounts to considering first, in shortest order| return ) (* Backtrack *)

the routes in the lowest blocking island (in the BIH). Apart from end if

attempting to preserve bandwidth connectivity, the LL heuris end FOCRAIN

tic allows to achieve a computational gain: the lower a Bl is

the smaller it is in terms of nodes and links, thereby reducing . .

the search space to explore. Generating one route with the T¢: 5- The forward checking algorithCRAIN for the RAIN problem. Its

.. S . . . input is threefold: D is the set of still unallocated demands,the set of
heuristic can be done in linear time in the number of links (as established connections, afd the current blocking island hierarchy. It

long as QoS is limited to bandwidth constraints). returns either a set of connectiofiga solution) orf) (in which case there is
no solution).

DVO-HL | 128 64 | 32
DVO-NL 2 0 1

D

C. Variable Ordering

The selection of t,he, nextvariable to assign may have a str g. 4. In the implementation, both latter heuristics use the
effect on_search eff|C|e_ncy, as sho_wn by quahc_k [21] and ot 2quired bandwidth as a secondary criterion to break ties: in
ers. A widely used variable ordering technique is based on

D . e two or more demands have the same value for the criterion,
fail-first” principle: “To succeed, try first where you are most, . e with highest requirement is preferred. Besides obey-
likely to fail”. The rationale is to minimize the size of the searg,

ng the fail-first principle, this secondary criterion attempts to
Hf?ﬁ'imize one side effect of the lowest level heuristic for route
election: by avoiding the routing through critical links, LL may
Ci}iuse the split of Bls at very low levels in the hierarchy, i.e., for
h bandwidth requirements, thereby preventing the allocation

tree and to ensure that any branch that does not lead to a solu
is pruned as early as possible when choosing a variable.
There are some natural static variable ordering (SVO) te
niques for the RAIN problem, such as first choose the demaiqI
that requires the most resources. Nonetheless, Bls allow

) ) . L o ‘demands with high requirements.
namic (that is during search) approximation of the difficulty of There are numerous othBynamic Variable OrderingDVO)
allocating a demand in more subtle ways by using the abstr%

tion tree of the BIH: Euristics that can be derived from analyzing the BIH, and their

DVO-HL (Highest Level): first choose the demand whose Iovy_resentanon and evaluation is left for a later paper.
est common f_ather of its endpoints is the highestin th_e BIH (r . A forward-checking algorithm for the RAIN problem
call that high in the BIH means low in resources requirements).
The intuition behind DVO-HL is that the higher the lowest com- Now that the different parts have been examined, we can put
mon father of the demand’s endpoints is, the more constrair@gerything together into a systematic search algorithm. Fig. 5
(in terms of number of routes) the demand is. Moreover, tlsBows a pseudo-code for a recursive forward-checking back-
higher the lowest common father, the more allocating the deacking algorithnFCRAIN FCRAIN can be read as follows: if
mand may restrict the routing of the remaining demands (ftfilere are still unallocated demands, it selects the next demand
first principle), since it will use resources on more critical linkgo allocate using a dynamic demand ordering heuristic (Sec-
DVO-NL (Number of Levels): first choose the demand fation V-C). NextBestRouteomputes the best route according to
which the difference in number of levels (in the BIH) betweethe dynamic route ordering heuristic (Section V-B). FCRAIN
the lowest common father of its endpoints and its resources tieen performs forward-checking: it verifies that all remaining
quirements is lowest. The justification of DVO-NL is similar taunallocated demands can still be allocated, using generic func-
DVO-HL. tion ExistsRouteForAll The latter checks that all unallocated
The behavior of DVO-HL and DVO-NL are illustrated indemands have both endpoints in the same BI at their bandwidth



requirement level (as explained in Section V-A). Ifitis the case,

it recur_sivgly allocates the next demand. Oth_erV\_/ise, the current - “‘“Qf“"‘* s
allocation is undone, and the best next route is tried. If all routes s .\ e N —=BT-SP
have been tried unsuccessfully, backtracking to the previously . ~ T @ e g;ﬁ:t

allocated demand occurs. This amounts to deallocating the cpr-,,
rent demand and the previously allocated demand, and selectﬁwg
for the latter the next best route.

VI.
A. Results on the RAIN problem

EMPIRICAL RESULTS

Prob. finding a solut

\!\ b .
0.1 B

Recall that in the typical scenario presented in Section I, a R NN
network/service provider must decide within a certain time de-
cision threshold whether and how a set of demands could be ac-
cepted. A meaningful analysis of the performance of the heuris-
tics we proposed would thus analyze the probability of findingg. 6. The probability of finding a solution within 1 secorgiven the tight-
a solution within the given time limit, and compare this with the ness of the problems (22’000 random problems with 20 nod&8n&s, 80
performance that can be obtained using common methods of thélemands).
networking world, in particular shortest-path algorithms.

For comparing the efficiency of different constraint solving |,

0 ==
05 055 06 065 07 075

Problem tightness

heuristics, it is useful to plot their performance for problems of e e _ ;ga:’scpsp
different tightness. In the RAIN problem, tightness is the rati9 i '\-\_ *: UL,
of resources required for the best possible allocation (in termsiof e e BI-LL-NL

used bandwidth) divided by the total amount of resources ava'\zl-“-’
able in the network. This is an approximation of the constrai@t 05
tightness” in the CSP. Since it is very hard to compute the b@stgs
possible allocation, we use an approximation, the best aIIocatlgarL
found among the methods being compared. 2 W
We generated 22’000 instances of RAIN problems, each wigh
at least one solution. Each problem has a randomly genera"fecf
network topology of 20 nodes and 38 links, and a random set of*”'
80 demands, each demand characterized by two endpoints and OOt =
a bandwidth constraint. A solution must allocate all demands
within the bandwidth capacities of the links. No other restriction
was imposed on the routes. We especially supposed no hOpJ’_dg‘ 7. The probability of finding a solution within 5 secondg/en the tight-
hop routing table constraints for instance. A solution is thus ggfﬁa?]fdge problems (6'000 random problems with 20 nodefini 200
applicable to a connection-oriented network such as ATM. The
problems were solved with four different strategidsisic-SP
performs a search using the shortest path heuristic commonhase provided by Bl methods.
the networking world today, without any backtracking on deci- Note that the experimental results allow quantifying the gain
sions;BT-SPincorporates backtracking to the previous in ordesbtained by using our methods. If an operator wants to ensure
to be able to undo “bad” allocations. The next search methasigh customer satisfaction, demands have to be accepted with
make use of the information derived from the BIBI-LL-HL high probability. This means that the network can be loaded
uses the LL heuristic for route generation and DVO-HL for dyup to the point where the allocation mechanism finds a solution
namic demand selection, wherd2isLL-NL differs from the lat- with probability close to 1. From the curves, we can see that for
ter in using DVO-NL for choosing the next demand to allocatehe shortest-path methods, this is the case up to a load of about
Fig. 6 provides the probability of finding a solution to a prob40% with a probability of 0.9, whereas the NL heuristic allows
lem in less than 1 second, given the tightness of the probleenoad of up to about 5%5. Using this technique, an operator
(as defined above). Both BI search methods prove to perfocan thus reduce the capacity of the network by an expectgd 27
much better than brute-force, even on these small problemdthout a decrease in the quality of service provided to the cus-
where heuristic computation (and BIH maintenance) may prmmer! Moreover, according to phase transition theory, relative
portionally use up a lot of time. Noteworthy, NL outperformgperformance can be expected to scale in the same way to large
HL: NL is better at deciding which demand is the most difficulbetworks. The latter is corroborated by another result on a series
to assign, and therefore achieves a greater pruning effect. Difidarger problems, see Fig. 7. Noteworthy, BI-LL-NL solved a
shape of the curves is similar for larger time scales. The qualigyger RAIN problem (50 nodes, 171 links, and 3'000 demands)
of the solutions, in terms of network resource utilization, was less than 6 minutes, whereas BT-SP was not able to solve it
about the same for all methods. However, when the solutiowihin 12 hours.
were different, bandwidth connectivity was generally better on The advantages of the Bl methods over naive shortest path

Problem Tightness



TABLE | TABLE Il

The comparison of a brute-force backtracking method tod&lell search Comparison of routing heuristics in a centralized QoSinguscenario.
methods when finding all solutions (6’504) on a small RAINkgdem (a
leased-line network), with 8 nodes, 9 links, and 18 demands. QoS Time Solved Allocated | Bw. con- Bw.
method [s] problems | demands | nectivity usage
Search method | Runtime [s5] | Routes generated| Backiracks 22’000 random problems with 20 nodes, 38 links, and 80 desiand
BT-SP 191.140 7952405 785971 SP 0.292 | 39.40% 97.90% 81.80% | 59.04%
BI-LL-HL 10.523 16'668 10'164 LL 0.125 | 39.20% 97.93% 82.42% | 58.99%
BI-LL-NL 8.466 10694 4'190 WP 0.414 20.90% 96.15% 80.95% | 64.75%

(o}

6’000 random problems with 20 nodes, 38 links, and 200 demar
SP 0.719 | 60.08% 99.49% 91.82% | 59.11%
LL 0.307 | 60.71% 99.51% 92.05% | 59.15%

allocation are best illustrated when searching all solutions of___ WP | 1.553 | 43.13% | 98.55% | 87.84% | 71.74%
a RAIN problem, as shown in the comparisons of Table | for

a small problem. Thanks to their much better pruning power

and more purposeful search guidance heuristics, they are Myt Qos-routing scenario, it combines better with these DVO
faster (about 20 times), generate fewer routes (between 48 agdristics.

74 times) and backtrack even less (between 78 and 188 times).

All results were computed on a Sun Sparc 60. VII. GENERALIZING THE BLOCKING ISLAND PARADIGM
. TO MULTIPLE CONCAVE METRICS
B. QoS-routing

We also evaluated the route ordering heuristics imasine A reso_urce. metrlq; IS Sr?'d to lbeponrtl:avelf fpr fa nyl.pli‘;h
QoS-routing scenario. In this case, the demands are not kndid!(P) = minie, u(l), where (1) is the metric for link!.

in advance and allocated one after the other (if possible) b)? ndwidth IS typically a concave resource, however there are
Eé ers: for instance, the number of connections routed over a
s

centralized state-based algorithm. Demand ordering heuris o .
may be limited, due to various factors, such as the num-

and backtracking algorithms are then not applicable. We co _ . . . .
pared the three routing heuristics presented in Section IV ( r of allowed identifiers of connections over a link (e.g., virtual

LL, WP), and the results are summarized in Table Il for the SarRg’th/connection identifiersin .ATM). The links of a communica-
22’000 problems and 6’000 larger problems as in Section v tion r_1etwork may belong to different operators. A demand may
These results show that LL performs very similarly to SP: f pquire to use links under contract of one or a set of operators.
the set of 22'000 problems, despite completely solving few! P'S requirement corre.sponds alsotoa goncave mgtnc.
problems (i.e., allocating all demands of a problem), LL allo- _Whent_here are _mult|ple concave metrlc_s to take into account,
cated more demands in average than SP, had a better remailtilsgP0SsiPle to build a BIH for each metric and apply the pre-
bandwidth connectivity (the probability being able to allocate a1¢"t€d techniques on one or the other BIH, or both. However,
additional new demand), and used fewer bandwidth resourd§ Bl paradigm is straightforwardly generalized to integrate
However, the differences are extremely slight. The same can'BHItiPIe concave metrics into a connectivity cluster. In this
observed on the 6’000 larger problems: the only change is tRftext: a demlancg is defined by a triple = (2u,yu, Qu),
LL solves more problems and uses more bandwidth, howeY&#€€Qu = [d,;dy; -, ¢z] is an array ofz concave _onslre-
still has a better bandwidth connectivity. The major differend@/irements. For a given metric, we say thét < gy if ¢ is
between the two is run time: LL is more than twice faster thdwrder to satisfy thag;, i.e., if a link supports a demand re-
SP, despite the overhead of maintaining the BIH. We see t@8iring ¢} resources of thé-th metric, than it can support a de-
explanations for this: (1) if a demand can be allocated, LL akand requiring;¥. There is therefore a partial ordering on the
lows to find a route faster because it limits the search spaceQoS requirements. For instance, suppose we have two metrics
the lowest BI clustering the endpoints of the demand. (2) Lfior which both a higher value means a harder constraint (e.g.,
knows before computing a route if one exists (route existenkgndwidth).@, = [64,12] and@, = [32,20] are incompara-
property), thereby saving time if a demand cannot be allocat®le requirements, since a link wiff6, 12] available resources
when SP has to explore the network graph before asserting thiaty accommodate a demand with QQ$, but not@-, and a
a demand cannot be allocated. link with [48, 30] free resources supports a demand requifjag
WP is clearly outperformed by both LL and SP in all domaindut not),. However, for a requiremeii); = [16, 5], we have
While allocating fewer demands (and solving just half of th@s < @1 (sincel6 < 64 and5 < 12), and@s; < Q- (id.).
problems that LL and SP solved), WP still uses more bandwidthGiven a quality of service requireme®t, = [q.,q2, .., ¢7],
resources. The run time is about twice longer than SP, whicloiswhich each corresponds to a concave metric, after a set of de-
easy to explain: routes are more expensive to compute for WRnds has been allocated, we cal@annectivity Cluste(CC)
than for SP, because WP routes cannot be shorter than SP roiatea noder under@,,, or the@,,-CC for z, the set of all nodes
by definition. In fact, WP routes are often much longer, anaf the network that can be reached frerthrough links respect-
therefore a bigger part of the network needs to be explored. ing the QoS constraint§,,, includingz. A CC restricted to
These experiments show that the DVO heuristics are very efie concave metric is then a Bl. CCs have the same proper-
ficient for the RAIN problem, and that they are mainly respongies as Bls (see Section Ill), such as unicity, route existence
ble for the effectiveness of the proposed algorithms over existiagd location. AConnectivity Cluster Grapffior a set of re-
methods. And even though LL performs very similarly to SP iquirements),, (Q,-CCG) is defined and built as the BIG. The
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faboas serialization should be conducted according to the second met-

ric, since it makes no sense to do load-balancing on sharable

resources.Metric combinationamounts to select the shortest

A RS route within the subgraph composed of the children of both can-
didates, in this case the subgraph restricted to nédds c, d}.

(56,10)-CCG Nap N32 The same techniques can be applied for DVO-HL and DVO-NL.
{ab,de} {c} N23

o T~ Ny VIIl. CONCLUSION AND FUTURE WORK
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(64,12)-CCG Nyp — @ a)
fabdl T~ Nyg
{et

(16,5)-CCG

The current technique for routing communication demands in
@32,20-ccc  a network is to select the shortest route for each particular de-
mand. However, this strategy can lead to suboptimal routing
or even highly congested network utilization as a whole. Infor-
/@ Z? mation about the expected traffic allows to make better use of
network resources. However, on-line routing processes cannot
b J ¢ make use of this knowledge since they must be very fast to en-
‘ (20,6) sure customer satisfaction. Instead, bandwidth allocation can be
planned in an off-line manner with this information, thanks to

(48,30)

(96,12) e (36,25) . . . .
a systematic search algorithm that is capable of backtracking to

(60'10)\ ‘ faulty routing decisions in order to satisfy all demands. How-
(7215 —— d ever, search must be guided carefully since the search space to
explore is exponentially large.

We have shown that using blocking island abstractions cou-
pled with CSP exhaustive search mechanisms and heuristics,
it is possible to solve the bandwidth allocation planning prob-
Connectivity Cluster HierarchyCCH) for a set of concave re-lemin reasonable time, in particular when using the lowest level
guirements sets is a generalized version of the BIH. Since thbeuristic for route generation and the number of levels heuristic
is only a partial order on the possible requirements égts for demand selection. We also get better solutions than short-
father-child relations define a lattice instead of a tree. Fig.e8t path routing algorithms, markedly in terms of the remaining
shows the CCH of a simple network for possible requiremerfiandwidth connectivity in the network after all demands have
{[64,12], 56, 10],[32, 20],[16,5]}. Two concave metrics arebeen allocated. This is especially useful when another unex-
thus taken into account. Each node of the network has two fsected demand needs to be routed, since the likelihood of be-
thers, one 464, 12]-CC and one 432, 20]-CC. As for the BIH, ing able to route it without recomputing a full solution from
there is a null resource requiremeps = [0, 0] clustering the scratch is higher. Network operators (or service providers) can
whole network (it is not displayed in Fig. 8 since equaMg).  now plan the allocation of bandwidth in much tighter networks

The construction and maintenance of a CCH is more complard more often than before. Noteworthy, it is possible to sim-
than for a BIH. Nevertheless, it allows to abstract resource availate link and node failures, and, using the same technique,
ability for several resource requirements at the same time, arwmpute alternative routing plans for these situations. An on-
allows to use the heuristics for route and demand selection, wlitte demo illustrating these features is available on the WWW
some adaptations. For instance, the LL heuristics selects @tdtt p: // www. i conomi ¢. com Moreover, we have pro-
shortest route within the lowest Bl clustering the endpoints pbsed a generalization of the Bl paradigm, connectivity clusters,
the demand. However, the lowest CC clustering the endpoints@take into account multiple concave QoS metrics. We note that
a demand is not always univocally defined because of the paréiglatent for the methods described in this paper is pending.
order on the QoS requirements. For instance, suppose a demard this paper, the performance of the proposed heuristics
d = (b,d, [16,5]) in Fig. 8. Since its endpoints are clustered iwhere only analyzed on solvable problems. When the alloca-
the samd16, 5]-CC, we know there is at least one route satigion problem is not feasible, the potential problem is that search
fying d,,. However, which is the lowest C@64, 12]-CC N;;  cantake a very long time without producing an answer. To avoid
or [32,20]-CC N»»? They both contaia’s endpoints, but are this, the blocking island paradigm allows detecting unsolvabil-
in incomparable levels in the CCH. LL applied 2,; selects ity by comparing total demand to total capacity available in and
the route througlu, whereas inV,, a route through: would out of a blocking island. When such unsolvability is detected, it
be chosen. There are several solutions to this problem, for &so pinpoints where to either remove demands or add capacity
stance metric serialization or combinatidvietric serialization to make the problem solvable again. Preliminary results show
amounts to impose a precedence over the metrics. If the fitsat this technique works very well. The evaluation of the pro-
metric is preferred to the second, because it is considered mposed search algorithm on infeasible problems, however, lies
important to maintain the connectivity for it in the network, thepnutside the scope of this paper and is left for a later article.

LL applies to/Ny; because its value for the first metric is higher. The presented techniques are not only applicable to
Typically, if one metric is sharable (a resource is sharable ifdbnnection-oriented networks (such as ATM), but also to
can be simultaneously allocated to multiple consumers, e.g., tomnection-less networks (such as IP). In a connection-less net-
operator constraint) and the other not (e.g., bandwidth), metwork, demands can be derived from traffic statistics between

a

Fig. 8. The Connectivity Cluster Hierarchy of a small netiarith possible
QoS requirement§$[64, 12], [56, 10], [32, 20], [16, 5]}.



nodes. If a solution can be found, applying it will prevent con- ACKNOWLEDGMENTS
gestion in the network, or at least reduce its probability in case of-l-
unexpected traffic. The only difference to connection—orient%
networks is in the route generation process, since IP uses hg

by-hop routing tables. The additional constraint of routing bei 5311. The authors are grateful to Dean Allemang, Beat Liver,

implementable by hop-by-hop routing tables can be formulategl, ey wilimott, and Monique Calisti for their invaluable com-
in CSP and taken into account during search. Even if the TOWe to ;

his work is partly a result of the IMMuNe (Integrated Man-
ement for Multimedia Networks) Project, supported by the
jiss National Science Foundation (FNRS) under grant 5003-

terpart, the routeexistenceroperty does. Nonetheless, we argy, for their work on the GUI of the developed tool
confident that solving a RAIN problem for an IP network will '

be as efficient as for the connection-oriented case. REFERENCES

In this paper, we reStriC.ted demands to pOiht-tO-pOint traﬁiﬁ-] Z. Wang and J. Crowcroft, “Quality-of-Service RoutingrfSupporting
However, the same techniques can be applied for multipoint de- Multimedia Applications,”IEEE Journal on Selected Areas in Communi-

mands: routes are then trees instead of simple paths. GeniEfl-Caﬁons vol. 14, no. 7, pp. 1228-1234, 1996.
0

.. L. E. Tsang, Foundations of Constraint SatisfactioMcademic Press, Lon-
izing the presented heuristics, such as the lowest level (LL) don, UK. 1993.

route generation or the number of levels for demand selecti@h R.J. Wallace, “Practical Applications of ConstrainbBramming,” Con-

_ A ; ; straints. An International Journapp. 139-168, 1996.
(DVO-NL), to multipoint demands is straightforward. [4] F. Giunchiglia and T. Walsh, “A Theory of AbstractionArtificial Intelli-

Current and future work is conducted along five axis: gence vol. 57, pp. 323-389, 1992.

1. We are concerned with the explanation of allocation faie] “Symposium on Abstraction, Reformulation and Approzition (SARA-
duri h (dead d). i d d . h lori 98),” Supported in Part by AAAI, Asilomar Conference Centeacific
ures during search (dead-end), in order to determine the culprit gove. California, May 1998.

assignment. This can be realized by examining the demang]s G. R. Ash, Dynamic Routing in Telecommunications NetworkeGraw
routed over the cocycles of the blocking islands (the cocycle }9{ Hill, 1998.

. . S. Cosares and |. Saniee, “An optimization problem eglab balancing
a subset of noded is the set of all links that have one and onl loads on SONET rings Telecommunication Systemwsl. 3, pp. 165-181,

one endpoint ind). When such a culprit can be identified, we  1994.

; ; ; [8] M. Herzberg, D. J. Wells, and A.Herschtal, “Optimal Resze Allocation
are then able to directlpackjumpto the cause of the failure, for Path Restoration in Mesh-Type Self-Healing Networkstérnational

without having to explore (pruning) parts of the search space Teletraffic Congress (ITCyol. 15, pp. 351-360, 1997.
that do not contain any solution, thereby increasing search Bf- T.-H. Wu, Fiber Network Service SurvivabilityArtech House, Boston -

.. . . . . . London, 1992.
ficiency. Backjumping algorithms [22] are widely used in thFlO] J. W. Mann and G. D. Smith, “A Comparison of Heuristics Telecom-

CSP community nowadays. munications Traffic Routing,” iModern Heuristic Search Methods996,
2. We want to develop more sophisticated heuristics for route_ pp. 235-254, John Wiley & Sons Ltd.

- . . - S. Vedantham and S. S. lyengar, “The Bandwidth AllamatProblem
generation and demand selection during search, using mor " in the ATM network model is NP-Complete,”Information Processing

formation that can be derived from the BIH, again to increase Letters vol. 65, pp. 179-182, 1998.
search efficiency. [12] M. S. Miller, D. Krieger, and N. Hardy, “An Automated Ation in ATM

. . . Network Bandwidth,” inMarket-Based Control: A Paradigm for Dis-
3. We are developing new types of hierarchies that decompose tributed Resource Allocatiompp. 96—125. World Scientific, 1996.

even better the network according to resource availability. Ope] B. T. Messmer, “A framework for the development of telsanunica-
major goal is here to get rid of the fixed levels in the hierarchy tions network planning, design and optimization applaagi” Technical

. . Report FE520.02078.00 F, Swisscom, Bern, Switzerland7.199
that depend on the possible QoS requirements of the demanﬁsﬁ B. Y. Choueiry and B. Faltings, “A Decomposition Hetidsfor Resource

4. Taking into account other QoS constraints of demands (such Allocation,” in Proceedings of the 1%* European Conference on Artifi-

ili imitati cial Intelligence, ECAI-941994, pp. 585-589.
as delay or loss pro_bab_lllty) or network element limitations (e' R. Weigel and B. Faltings, “Structuring techniques donstraint satisfac-
node buffer capacity) is also one of our main concerns. C tion problems,” inProc. of the 13" International Joint Conference on

modeling has the facility to easily take such additional restric- Artificial Intelligence, IJCAI-971997, pp. 418—423.

tions into account, by just adding these additional constraift§! E: C. Freuder and D. Sabin, “Interchangeability Supébstraction and
s . . . Reformulation for Multi-Dimensional Constraint Satisfi@o,” in Proc. of
as is”. CSPs have in this case a major advantage over Opera- the 15t* National Conference on Artificial Intelligence, AAAI;AR97,

tions Research techniques, that do not allow the integration 05 pp. 1}191—196- o and | here thelfg Hard
; ; ; 7] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where t Har

new Cor,]StramtS n SU(_:h, a stralghtforward manner. An_Oth,er Ab Problems Are,” irProceedings of the 12" International Joint Conference

proach is the connectivity cluster paradigm, a generalization of on Artificial Intelligence, 1JCAI-911991, pp. 331-337.

blocking island abstractions to multiple concave metrics intol#8] |- P. Gent, E. Macintyre, P. Prosser, and T. Walsh, “igaEffects in the

. . . . iy CSP Phase Transition,” iRirst International Conference on Principles
single and concise representation of resource availability. Even 45 - S Cconstraint Programming (CP'98)995, pp. 70-87.

if not concave, delay can be approximated as a concave mefég 1. P. Gent and T. Walsh, “Computational Phase Transitiom Real
in case there are large variations from one link to another: if the Problems,’In Proceedings ISAI-95p. 356-364, 1995.

. . . 0] C. Frei and B. Faltings, “A Dynamic Hierarchy of Intgént Agents for
delay varies a lot from one link to another (for instance a satéf° Network Management,” ir2 " International Workshop on Intelligent

lite link vs. an optical fiber), the delay of a route is close to the  Agents for Telecommunications Applications, IATA'2898, pp. 1-16,
delay of the slowest link (the satellite link). LNAI1437, Springer-Verlag. : .
5. We intend to adapt the technigues to perform on-line routihm] R. M. Haralick and G. L. Elliott, “Increasing Tree SehrEfficiency for
- WY I - p q ) p g i 9" Constraint Satisfaction Problemgttificial Intelligence vol. 14, pp. 263—
with intelligent agents, as presented in [20]. The idea is to as- 313, 1980.
i i i P. Prosser, “Hybrid Algorithms for the Constraint Sédttion Problem,”
sign one agent to each B, e_ac_h agent then _belng responS|bI_é4%ir Computational Intelligencevol. 9. no. 3, pp. 268-299. 1993,
the allocation of demands inside its domain, thereby possibly

cooperating with agents below it in the hierarchy.



