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Abstract—Communication networks are expected to offer a wide range
of services to an increasingly large number of users, with a diverse range
of quality of service. This calls for efficient control and management of
these networks. We address the problem of quality-of-service routing,
more specifically the planning of bandwidth allocation to communication
demands. Shortest path routing is the traditional technique applied to this
problem. However, this can lead to poor network utilizationand even con-
gestion. We show how an abstraction technique combined withsystematic
search algorithms and heuristics derived from Artificial Intelligence make
it possible to solve this problem more efficiently and in muchtighter net-
works, in terms of bandwidth usage.

Keywords— Quality of Service routing, constraint-based routing, re-
source allocation planning, abstraction, constraint satisfaction.

I. I NTRODUCTIONTHE communication networks of the next millennium are
expected to offer a wide range of services to an increas-

ingly large number of users, with a diverse range of Quality of
Service (QoS) requirements. This calls for efficient control and
management of these high-speed networks. A central problem
is the automatic routing of traffic through the network. Rout-
ing must be a very fast process, in order to guarantee customer
satisfaction. Currently, shortest path routing is most often used
to route traffic across a network. Although this ensures the best
possible route for each particular demand, it can lead to ineffec-
tive use of the network as a whole and even congestion, espe-
cially in highly loaded networks.

From the routing point of view, the key resource to manage
in networks is bandwidth. Therefore, in order to make better
use of available network resources, there is a need for planning
bandwidth allocation to communication demands, in order to set
up routing tables (or any other route selection criterion) more
purposefully. This can be achieved by the use ofglobal infor-
mation, including not only the available link capacities but also
the expected traffic profile. In this paper, we consider the prob-
lem of allocating in anoff-line manner a set of demands known
in advance within the resource capacities of a communication
network. This situation may arise for instance when setting up
virtual private networks in a connection-oriented network (e.g.,
ATM, TDM) of a provider; planning the routing of virtual path
connections (VPC) in an ATM network; planning the routing of
virtual channel connections (VCC) in the VPC network of an
ATM backbone; or optimizing the routing tables of an IP net-
work (demands are then estimated from objective traffic mea-
surements).

Formally, we define the problem of resource allocation in net-
works (RAIN) as follows:

Given a network composed of nodes and bidirectional links,
where each link has a given bandwidth capacity, and a set of
communication demands to allocate, where each demand is de-
fined by a triple:

(source node, destination node, requested bandwidth)
Find one and only one route for each demand so that the band-
width requirements of the demands are simultaneously satisfied
within the resource capacities of the links.

It is important to note that because of technological limita-
tions (for ATM typically) and/or performance reasons, it is im-
possible to divide demands among multiple routes. However,
there may be several demands between same endpoints. With
this restriction, the RAIN problem is NP-hard in the number
of demands. When demands are subject to multiple additive or
multiplicative quality of service (QoS) criteria, then Wang and
Crowcroft [1] have shown that the allocation of every single de-
mand is NP-complete by itself. This creates a new situation
for the networking community, as traditional routing algorithms
such as shortest paths do not perform very well on this problem.

In practice, the RAIN problem poses itself in the following
way: a network or service provider receives a set of requests
from some customers to allocate a number of demands, and must
decide within a certain time decision threshold whether and how
the demands can be accepted.

Constraint satisfaction [2] is a technique which has been
shown to work well for solving certain NP-hard problems, and
has been applied to a variety of domains [3]. AConstraint Sat-
isfaction Problem(CSP) is defined by a triple(X;D;C), whereX = fx1; :::; xng is a set ofvariables, D = fD1; :::; Dng a
set of finitedomainsassociated with the variables andC =fC1; :::; Cmg a set ofconstraints. The domain of a variable
is the set of all values that can be assigned to that variable. A
constraint between variables restricts the combinations of values
that can be assigned to those variables. Solving a CSP amounts
to finding a value for each variable so that all constraints are
satisfied. This may be done with abacktracking algorithm.

The RAIN problem is easily formulated as a CSP in the fol-
lowing way: variables are demands, the domain of each variable
is the set of all routes between the endpoints of the demand, and
constraints on each link must ensure that the resource capacity
is not exceeded by the demands routed through it. A solution is
a set of routes, one for each demand, respecting the capacities of
the links. However, this formulation presents severe complexity
problems. It is too expensive to compute, represent, and store
the domain of a variable, i.e., all the routes that join the end-



points of a demand. Suppose the network is simple but complete
(this is not even the worst case, since a communication network
is a multi-graph: it allows multiple links between same end-
points) withn nodes. A route is a simple path, its length in num-
ber of links is therefore bounded byn�1. Since a route of lengthj hasj�1 intermediate (distinct) nodes, the number of routes of
lengthj is (n�2)!=(n� j�1)!. The total number of routes be-
tween two nodes is therefore equal to

Pn�1i=1 (n�2)!=(n�i�1)!.
Storing all routes between a pair of nodes would require expo-
nential space. For instance, in a complete graph with 10 nodes,
there are 69’281 routes between any two nodes. Since methods
such as forward checking or dynamic variable ordering require
explicit representation of domains, they would be very ineffi-
cient on a problem of realistic size.

It has long been observed that the complexity of solv-
ing a problem can depend heavily on how it is formulated.
Giunchiglia and Walsh define abstraction as follows in [4]:“Ab-
straction is the mapping of a problem representation into a sim-
pler one that satisfies some desirable properties in order to re-
duce the complexity of reasoning. The problem is solved in the
abstract space and the solution is then mapped back to the more
complex ground space.”The ground space refers to the original
problem representation. Abstractions are naturally used my hu-
mans to solve problems. Reducing problem complexity is a ma-
jor reason for using abstraction techniques. A recent collection
of papers addressing abstraction, reformulation, and approxima-
tion techniques in a variety of AI domains can be found in [5].

In this paper, we show how an abstraction of the network
called Blocking Islands, create a compact representation of the
domains which allows the application of well-known CSP tech-
niques such as forward checking, variable and value ordering
to the RAIN problem with manageable complexity. In the fol-
lowing section, we review some of the related work. In Sec-
tion III, we briefly recall the Blocking Island paradigm and out-
line its major properties. Section IV illustrates how blocking
islands help to route a single demand while attempting to pre-
serve bandwidth connectivity inside the network. In Section V,
we present a generic algorithm and some heuristics to solve the
RAIN problem. Empirical results are summarized in Section VI.
The blocking island paradigm is generalized to multiple link
constraints in Section VII. Finally, we conclude by some future
work directions.

II. RELATED WORK

Surprisingly, there has been little published research on the
RAIN problem. Currently, most network providers use some
kind of best effort algorithm, without any backtracking due to
the complexity of the problem: given an order of the demands,
each demand is assigned the shortest possible route supporting
it, or just skipped if there is no such route.

Operations Research (OR) techniques are also applied to the
RAIN problem. Most often, a fixed number of shortest paths for
each demand are pre-computed, and the problem is solved using
linear programming with very large constraint systems of equa-
tions [6], [7], [8], [9]. However, because only a given number
of routes are considered, these techniques are not guaranteed to
find a solution if one exists. Moreover, OR techniques are not as
flexible as CSP-based methods (see Section VIII).

Mann and Smith [10] search for routing strategies that attempt
to ensure that no link is over-utilized (hard constraint) and, if
possible, that all links are evenly loaded (below a fixed target
utilization), for the predicted traffic profile. Finally, they at-
tempt to minimize the communication costs. Genetic algorithms
and simulated annealing approaches were used to develop such
strategies. However, their methods do not apply well, if not at
all, to highly loaded networks, mainly because the multi-criteria
objective function they use cannot ensure that the hard con-
straint, i.e., no link is over-utilized, is respected in every case.
Moreover, we think that load balancing should be viewed in
terms of bandwidth connectivity and not the even distribution of
the load among the links, especially in highly loaded networks,
since high bandwidth connectivity allows to route additional de-
mands without having to recompute a complete solution.

Vedantham and Iyengar [11] prove that the problem of ef-
fective bandwidth utilization in the ATM network model is NP-
complete. In the situation where there are more incoming calls
than available bandwidth, they also propose the use of Genetic
Algorithms for maximizing the revenue.

Bandwidth auctionning through a multi-agent system is being
explored [12]; however, this work is still at an early stage.

To our knowledge, the closest published work to ours is the
CANPC framework [13]. It is based on the successive alloca-
tions of shortest routes to the demands, without any backtrack-
ing when an assignment fails. They propose several heuristics
to order the demands (such as bandwidth ordering) to provide
better solutions, i.e., to route more demands. They are currently
developing an optimization tool that takes the partial solution as
input to try to allocate all demands. However, results show that
the methods we propose clearly outperform theirs.

Abstraction and reformulation techniques have already been
applied to permit more efficient solution of a CSP. Choueiry and
Faltings [14] relate interchangeability to abstraction in the con-
text of a decomposition heuristic for resource allocation. Weigel
and Faltings [15] cluster variables to build abstraction hierar-
chies for configuration problems viewed as CSPs, and then use
interchangeability to merge values on each level of the hierar-
chy. Freuder and Sabin [16] present abstraction and reformula-
tion techniques based on interchangeability to improve solving
CSPs.

The phenomenon of phase transitions occurring in many types
of problems as a control parameter is varied has been recog-
nized and studied extensively in recent years. Cheesemanet al.
[17] first reported a phase transition between a region where al-
most all problems have many solutions and are relatively easy
to solve, and a region where almost all problems have no so-
lution and their insolubility is relatively easy to prove. In this
intervening region, the probability of problem solubility falls
from close to 1 to 0, and the cost of searching these problems
is highest. Cheeseman suggests the following conjecture:“All
NP-complete problems have at least one order parameter and
the hard to solve problems are around a critical value of this
order parameter”. The critical value (or a range) of the or-
der parameter is where phase transition occurs. The value of
the order parameter for a problem instance is often called the
tightnessof the problem instance. Noteworthy, Gentet al. [18]
observed that the relative behavior of algorithms on large and
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Fig. 1. The blocking island hierarchy for resource requirementsf64K; 56K; 16Kg. The weights on the links are their available bandwidth. Abstract nodes’
description include only their node children and network node children in brackets. Link children (of BIs and abstract links) are omitted for more clarity, and
the0-BI is not displayed since equal toN7. (a) the16-BIG. (b) the56K-BIG.(c) the64K-BIG. (d) the network.

small problems is the same when plotted against this parameter.
Comparison of different algorithms can therefore be performed
on small problems, and results can be expected to scale to larger
problems. Phase transition behavior has been reported in an in-
creasing number of NP-complete problems [19].

III. T HE BLOCKING ISLAND PARADIGM

Frei and Faltings [20] introduce a clustering scheme based
on Blocking Islands (BI), which can be used to represent band-
width availability at different levels of abstraction, as a basis for
distributed problem solving. A�-blocking island (�-BI) for a
nodex is the set of all nodes of the network that can be reached
from x using links with at least� available resources, includingx. Fig. 1 (d) shows all64K-BIs for a network. Note that some
links inside a�-BI, i.e., the links that have both endpoints in the�-BI, may have less than� available resources. In such a case,
it simply means that there is another route with� available re-

sources between the link’s endpoints. As a matter of fact, link(b; c) has both endpoints in64K-BI N1 but has less than64K
available resources. However, there are at least64K available
resources along routef(c; a); (a; b)g.�-BIs have some fundamental properties. Given any resource
requirement, blocking islands partition the network into equiva-
lence classes of nodes. The BIs areunique, andidentify global
bottlenecks, that is, inter-blocking island links. If inter-blocking
island links are links with low remaining resources, as some
links inside blocking islands may be, inter-blocking island links
are links for which there is no alternative route with the desired
resource requirement. Moreover, BIs highlight theexistenceand
locationof routes at a given bandwidth level:

Proposition 1(Route Existence Property) There is at least
one route satisfying the resource requirement of an unallocated
demanddu = (x; y; �u) if and only if its endpointsx andy are
in the same�u-blocking island. Furthermore, all links that could
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Fig. 2. The abstraction tree of the BIH of Fig. 1 (links are omitted for clarity).

form part of such a route lie inside this blocking island.
Finally, theinclusion propertystates that for any�i < �j , the�j-BI for a node is a subset of the�i-BI for the same node.
Blocking islands are used to build the�-blocking island graph

(�-BIG), a simple graph representing anabstractview of the
available resources: each�-BI is clustered into a single node
and there is an abstract link between two of these nodes if there
is a link in the network joining them. Fig. 1 (c) is the 64-BIG
of the network of Fig. 1 (d). An abstract link between two BIs
clusters all links that join the two BIs, and the abstract link’s
available resources is equal to the maximum of the available
resources of the links it clusters (since a demand can only be
allocated over one route). These abstract links denote the critical
links, since their available resources do not suffice to support a
demand requiring� resources.

In order to identify bottlenecks for different�s, e.g., for typ-
ical possible bandwidth requirements, we build a recursive de-
composition of BIGs in decreasing order of the requirements:�1 > �2 > ::: > �b. This layered structure of BIGs is aBlock-
ing Island Hierarchy(BIH). The lowest level of the blocking
island hierarchy is the�1-BIG of the network graph. The sec-
ond layer is then the�2-BIG of the first level, i.e.,�1-BIG, the
third layer the�3-BIG of the second, and so on. On top of the
hierarchy there is a 0-BIG abstracting the smallest resource re-
quirement�b. The abstract graph of this top layer is reduced
to a single abstract node (the 0-BI), since the network graph
is supposed connected. Fig. 1 shows such a BIH for resource
requirementsf64K; 56K; 16Kg. The graphical representation
shows that each BIG is an abstraction of the BIG at the level just
below (the next biggest resource requirement), and therefore for
all lower layers (all larger resource requirements).

A BIH can not only be viewed as a layered structure of�-BIGs, but also as anabstraction treewhen considering the
father-child relations. In the abstraction tree, the leaves are net-
work elements (nodes and links), the intermediate vertices either
abstract nodes or abstract links and the root vertex the 0-BI of
the top level in the corresponding BIH. Fig. 2 is the abstraction
tree of Fig. 1.

The �-BI S for a given nodex of a network graph can be
obtained by a simple greedy algorithm: starting with an initial
setS = fxg, we recursively add every node toS that can be
reached by a link adjacent to a node ofS, and that has at least� available bandwidth. When no more new nodes can be added,

S is the�-BI sought. This algorithm has a linear complexity
of O(m), wherem is the number of links. The construction of
a�-BIG is straightforward from its definition and is also linear
in O(m). A BIH for a set of constant resource requirements
ordered decreasingly is easily obtained by recursive calls to the
BIG computation algorithm. Its complexity is bound byO(bm),
whereb is the number of different resource requirements. The
adaptation of a BIH when demands are allocated or deallocated
can be carried out incrementally with complexityO(bm) (see
[20] for more details). Therefore, since the number of possible
bandwidth requirements (b) is constant, all BI algorithms are
linear in the number of links of the network.

A BIH contain at mostbn+1BIs, that is, one BI for each node
at each bandwidth requirement level, plus the 0-BI. In that worst
case, there areminfm;n(n � 1)=2g links at each bandwidth
level, since multiple links between same BIs are clustered into a
single abstract link. Therefore, the memory storage requirement
of a BIH is bound byO(bn2).

IV. ROUTING FROM THEBIH PERSPECTIVE

Consider the problem of routing a single demanddu =(c; e; 16K) in the network of Fig. 1 (d). Sincec ande are clus-
tered in the same16K-BI (N7), we know that at least one route
satisfyingdu exists. Classical wisdom would select the shortest
route, that is the routerS : c ! i! e. However, allocating this
route todu is here not a good idea, since it uses resources on two
critical links in terms of available bandwidth, that is(c; i) and(i; e): these two links join64K-BIsN1 andN2 in the64K-BIG
of Fig. 1 (c). After that allocation, no other demand requiring
16K (or more) between any of the nodes clustered by56K-BIN5 and one of the nodes inside56K-BI N6 can be allocated
anymore. For instance, a demand(c; i; 16K) is then impossible
to allocate. A better way to routedu is rL: c ! b ! d ! e,
sincerL uses only links that are clustered at the lowest level
in the BIH, that is in64K-BI N1, and no critical links (that is
inter-BI links).rL is a route that satisfies thelowest level(LL) heuristic. Its
principle is to route a demand along links clustered in the lowest
BI clustering the endpoints of the demand, i.e., the BI for the
highest bandwidth requirement containing the endpoints. This
heuristic is based on the following observation: the lower a BI is
in the BIH, the less critical are the links clustered in the BI. By
assigning a route in a lower BI, a betterbandwidth connectivity
preservation effect is achieved, therefore reducing the risk of
future allocation failures. Bandwidth connectivity can therefore
be viewed as a kind ofoverall load-balancing.

Another way to see the criticalness of a route is to consider
themappingof the route onto the abstraction tree of Fig. 3:rS
is by far then the longest route, since its mapping traverses BIsN1,N5,N7,N6,N3, and then back;rL traverses only BIN1. rS
therefore affects not only critical links at higher level thenrL,
but also many more BIs, and its allocation may cause to split
each of them. This observation (also) justifies the LL heuristic.

Even better, a BIH gives also the means to comparea priori
equivalent routes in order to decide for the “best” one, besides
the length criterion. Theminimal splitting(MS) heuristic selects
the route that causes the fewest splittings of blocking islands in
the BIH: obviously, the more splittings, the more links become
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Fig. 3. Mapping the shortest path (SP) and the lowest level (LL) routes onto the
abstraction tree.

critical, leading to more allocation failures of demands. MS has
therefore an even greater bandwidth connectivity preservation
effect than LL. Unfortunately, only an approximation of the MS
heuristic can effectively be used in practice, since an exact im-
plementation of MS requires to compute all routes beforehand
in order to compare them. A possible implementation is to com-
pute a given number of routes using LL, and then to order them
according to the MS heuristic to select a route. The evaluation
of the MS heuristic is left for a later paper.

Widest path routing has been proposed as an alternative to
SP. For instance, Wang and Crowcroft [1] advocate the use of
shortest-widest path(WP) for hop-by-hop routing algorithms.
This strategy is to find a route with maximum bottleneck band-
width (a widest path), and when there are more than one widest
path, choose the one with shortest propagation delay (in our case
the number of hops). In routing the same demanddu as above,
WP selects the routerW : c ! a ! b ! d ! e, a route longer
thanrS or rL. Therefore, even if it attempts to distribute the
load by avoiding as much as possible bottleneck links, WP may
select a very long route, thereby using a lot of resources glob-
ally. However, WP performed very poorly in our experiments,
as expected, and we will not report it on solving the RAIN prob-
lem. We show nonetheless its behavior in case of QoS-routing
(Section VI-B).

Because of its characteristics, LL can be viewed as a mixture
of SP and WP.

V. AUTOMATICALLY SOLVING A RAIN PROBLEM

Solving a RAIN problem amounts to solving the CSP intro-
duced in Section I. This can be done using abacktracking al-
gorithmwith forward checking(FC) [2]. Its basic operation is
to pick one variable (demand) at a time, assign it a value (route)
of its domain that is compatible with the values of all instanti-
ated variables so far, and propagate the effect of this assignment
(using the constraints) to the future variables by removing any
inconsistent values from their domain. If the domain of a future
variable becomes empty, the current assignment is undone, the
previous state of the domains is restored, and an alternative as-
signment, when available, is tried. If all possible instantiations
fail, backtracking to the previous past variable occurs. FC pro-

ceeds in this fashion until a complete solution is found or all
possible assignments have been tried unsuccessfully, in which
case there is no solution to the problem.

The formulation of the CSP presents severe complexity prob-
lems (see Section I). Nonetheless, blocking islands provide an
abstraction of the domain of each demand, since any route satis-
fying a demand lies within the�-BI of its endpoints, where� is
the resource requirement of the demand (Proposition 1). There-
fore, if the endpoints of a demand are clustered in the same�-
BI, there is at least one route satisfying the demand. We do not
know what the domain of the variable isexplicitly, i.e., we do not
know the set of routes that can satisfy the demand; however we
know it is non-empty. In fact, there is a mapping between each
route that can be assigned to a demand and the BIH: a route can
be seen as a path in the abstraction tree of the BIH. Thus, there
is a route satisfying a demand if and only if there is a path in the
abstraction tree that does not traverse BIs of a higher level than
its resource requirement. For instance, from the abstraction tree
of Fig. 2, it is easy to see that there is no route betweena andf with 64 available resources, since any path in the tree must at
least cross BIs at level 56.

This mapping of routes onto the BIH is used to formulate a
forward checking criterion, as well as dynamic value ordering
and dynamic variable ordering heuristics.

A. Forward Checking

Forward checking is a technique to improve backtracking al-
gorithms. Its idea is to propagate value assignments to unallo-
cated variables along the constraints in order to detect a dead-
end earlier, thereby increasing search efficiency. Moreover, de-
cisions regarding which variable to select next and what value
of the selected variable to try next can then be done in a more
informed way.

Thanks to the route existence property, we know at any point
in the search if it is still possible to allocate a demand, without
having to compute a route: if the endpoints of the demand are
clustered in the same�-BI, where� is the resource requirement
of the demand, there is at least one, i.e., the domain of the vari-
able (demand) is not empty, even if not explicitly known.

Therefore, after allocating a demand, forward checking is per-
formed first by updating the BIH, and then by checking that the
route existence property holds for all uninstantiated demands.
If the latter property does not hold at least once, another route
must be tried for the current demand. Domain pruning (i.e., the
update of the domain of the demands by propagation of the al-
location decisions) is thus implicit while maintaining the BIH.

B. Value Ordering

A backtracking algorithm involves two types of choices: the
next variable to assign (see Section V-C), and the value to assign
to it. As illustrated above, the domains of the demands are too
big to be computed beforehand. Instead, we compute the routes
as they are required. In order to reduce the search effort, routes
should be generated in “most interesting” order, so to increase
the efficiency of the search, that is: try to allocate the route that
will less likely prevent the allocation of the remaining demands.
A natural heuristic is to generate the routes inshortest pathorder
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(SP), since the shorter the route, the fewer resources will be used
to satisfy a demand.

However, Section IV shows how to do better using a kind of
min-conflict heuristic, the lowest level heuristic. Applied to the
RAIN problem, it amounts to considering first, in shortest order,
the routes in the lowest blocking island (in the BIH). Apart from
attempting to preserve bandwidth connectivity, the LL heuris-
tic allows to achieve a computational gain: the lower a BI is,
the smaller it is in terms of nodes and links, thereby reducing
the search space to explore. Generating one route with the LL
heuristic can be done in linear time in the number of links (as
long as QoS is limited to bandwidth constraints).

C. Variable Ordering

The selection of the next variable to assign may have a strong
effect on search efficiency, as shown by Haralick [21] and oth-
ers. A widely used variable ordering technique is based on the
“fail-first” principle: “To succeed, try first where you are most
likely to fail” . The rationale is to minimize the size of the search
tree and to ensure that any branch that does not lead to a solution
is pruned as early as possible when choosing a variable.

There are some natural static variable ordering (SVO) tech-
niques for the RAIN problem, such as first choose the demand
that requires the most resources. Nonetheless, BIs allow dy-
namic (that is during search) approximation of the difficulty of
allocating a demand in more subtle ways by using the abstrac-
tion tree of the BIH:
DVO-HL (Highest Level): first choose the demand whose low-
est common father of its endpoints is the highest in the BIH (re-
call that high in the BIH means low in resources requirements).
The intuition behind DVO-HL is that the higher the lowest com-
mon father of the demand’s endpoints is, the more constrained
(in terms of number of routes) the demand is. Moreover, the
higher the lowest common father, the more allocating the de-
mand may restrict the routing of the remaining demands (fail
first principle), since it will use resources on more critical links.
DVO-NL (Number of Levels): first choose the demand for
which the difference in number of levels (in the BIH) between
the lowest common father of its endpoints and its resources re-
quirements is lowest. The justification of DVO-NL is similar to
DVO-HL.

The behavior of DVO-HL and DVO-NL are illustrated in

Function FCRAIN (D;�;H)if D = ; then
(* no more demands to allocate: solution found *)return �elsed = (x ; y ; �)  pick a demand ofDr  NextBestRoute (d ;H)repeat (* Try connection(d; r) *)
  (d ; r)UpdateConnectionAddition (H;�; 
)

(* Forward checking: verify that(d; r) does *)
(* not prevent the remaining allocations *)if ExistsRouteForAll (D � fdg;H) thenRes  FCRAIN (D � fdg;� [ f
g;H)if Res 6= ; thenreturn Res (* We have a solution *)end ifUpdateConnectionRemoval (H;�; 
)r  NextBestRoute (d ;H)until r = ;return ; (* Backtrack *)end ifend FCRAIN

Fig. 5. The forward checking algorithmFCRAIN for the RAIN problem. Its
input is threefold:D is the set of still unallocated demands,� the set of
established connections, andH the current blocking island hierarchy. It
returns either a set of connections� (a solution) or; (in which case there is
no solution).

Fig. 4. In the implementation, both latter heuristics use the
required bandwidth as a secondary criterion to break ties: in
case two or more demands have the same value for the criterion,
the one with highest requirement is preferred. Besides obey-
ing the fail-first principle, this secondary criterion attempts to
minimize one side effect of the lowest level heuristic for route
selection: by avoiding the routing through critical links, LL may
cause the split of BIs at very low levels in the hierarchy, i.e., for
high bandwidth requirements, thereby preventing the allocation
of demands with high requirements.

There are numerous otherDynamic Variable Ordering(DVO)
heuristics that can be derived from analyzing the BIH, and their
presentation and evaluation is left for a later paper.

D. A forward-checking algorithm for the RAIN problem

Now that the different parts have been examined, we can put
everything together into a systematic search algorithm. Fig. 5
shows a pseudo-code for a recursive forward-checking back-
tracking algorithmFCRAIN. FCRAIN can be read as follows: if
there are still unallocated demands, it selects the next demand
to allocate using a dynamic demand ordering heuristic (Sec-
tion V-C). NextBestRoutecomputes the best route according to
the dynamic route ordering heuristic (Section V-B). FCRAIN
then performs forward-checking: it verifies that all remaining
unallocated demands can still be allocated, using generic func-
tion ExistsRouteForAll. The latter checks that all unallocated
demands have both endpoints in the same BI at their bandwidth



requirement level (as explained in Section V-A). If it is the case,
it recursively allocates the next demand. Otherwise, the current
allocation is undone, and the best next route is tried. If all routes
have been tried unsuccessfully, backtracking to the previously
allocated demand occurs. This amounts to deallocating the cur-
rent demand and the previously allocated demand, and selecting
for the latter the next best route.

VI. EMPIRICAL RESULTS

A. Results on the RAIN problem

Recall that in the typical scenario presented in Section I, a
network/service provider must decide within a certain time de-
cision threshold whether and how a set of demands could be ac-
cepted. A meaningful analysis of the performance of the heuris-
tics we proposed would thus analyze the probability of finding
a solution within the given time limit, and compare this with the
performance that can be obtained using common methods of the
networking world, in particular shortest-path algorithms.

For comparing the efficiency of different constraint solving
heuristics, it is useful to plot their performance for problems of
different tightness. In the RAIN problem, tightness is the ratio
of resources required for the best possible allocation (in terms of
used bandwidth) divided by the total amount of resources avail-
able in the network. This is an approximation of the “constraint
tightness” in the CSP. Since it is very hard to compute the best
possible allocation, we use an approximation, the best allocation
found among the methods being compared.

We generated 22’000 instances of RAIN problems, each with
at least one solution. Each problem has a randomly generated
network topology of 20 nodes and 38 links, and a random set of
80 demands, each demand characterized by two endpoints and
a bandwidth constraint. A solution must allocate all demands
within the bandwidth capacities of the links. No other restriction
was imposed on the routes. We especially supposed no hop-by-
hop routing table constraints for instance. A solution is thus
applicable to a connection-oriented network such as ATM. The
problems were solved with four different strategies:basic-SP
performs a search using the shortest path heuristic common in
the networking world today, without any backtracking on deci-
sions;BT-SPincorporates backtracking to the previous in order
to be able to undo “bad” allocations. The next search methods
make use of the information derived from the BIH:BI-LL-HL
uses the LL heuristic for route generation and DVO-HL for dy-
namic demand selection, whereasBI-LL-NL differs from the lat-
ter in using DVO-NL for choosing the next demand to allocate.

Fig. 6 provides the probability of finding a solution to a prob-
lem in less than 1 second, given the tightness of the problems
(as defined above). Both BI search methods prove to perform
much better than brute-force, even on these small problems,
where heuristic computation (and BIH maintenance) may pro-
portionally use up a lot of time. Noteworthy, NL outperforms
HL: NL is better at deciding which demand is the most difficult
to assign, and therefore achieves a greater pruning effect. The
shape of the curves is similar for larger time scales. The quality
of the solutions, in terms of network resource utilization, was
about the same for all methods. However, when the solutions
were different, bandwidth connectivity was generally better on

Fig. 6. The probability of finding a solution within 1 second,given the tight-
ness of the problems (22’000 random problems with 20 nodes, 38 links, 80
demands).
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Fig. 7. The probability of finding a solution within 5 seconds, given the tight-
ness of the problems (6’000 random problems with 20 nodes, 38links, 200
demands).

those provided by BI methods.
Note that the experimental results allow quantifying the gain

obtained by using our methods. If an operator wants to ensure
high customer satisfaction, demands have to be accepted with
high probability. This means that the network can be loaded
up to the point where the allocation mechanism finds a solution
with probability close to 1. From the curves, we can see that for
the shortest-path methods, this is the case up to a load of about
40% with a probability of 0.9, whereas the NL heuristic allows
a load of up to about 55%. Using this technique, an operator
can thus reduce the capacity of the network by an expected 27%
without a decrease in the quality of service provided to the cus-
tomer! Moreover, according to phase transition theory, relative
performance can be expected to scale in the same way to large
networks. The latter is corroborated by another result on a series
of larger problems, see Fig. 7. Noteworthy, BI-LL-NL solved a
larger RAIN problem (50 nodes, 171 links, and 3’000 demands)
in less than 6 minutes, whereas BT-SP was not able to solve it
within 12 hours.

The advantages of the BI methods over naive shortest path



TABLE I

The comparison of a brute-force backtracking method to BI-based search

methods when finding all solutions (6’504) on a small RAIN problem (a

leased-line network), with 8 nodes, 9 links, and 18 demands.

Search method Runtime [s] Routes generated Backtracks
BT-SP 191.140 795’425 788’921

BI-LL-HL 10.523 16’668 10’164
BI-LL-NL 8.466 10’694 4’190

allocation are best illustrated when searching all solutions of
a RAIN problem, as shown in the comparisons of Table I for
a small problem. Thanks to their much better pruning power
and more purposeful search guidance heuristics, they are much
faster (about 20 times), generate fewer routes (between 48 and
74 times) and backtrack even less (between 78 and 188 times).

All results were computed on a Sun Sparc 60.

B. QoS-routing

We also evaluated the route ordering heuristics in anon-line
QoS-routing scenario. In this case, the demands are not known
in advance and allocated one after the other (if possible) by a
centralized state-based algorithm. Demand ordering heuristics
and backtracking algorithms are then not applicable. We com-
pared the three routing heuristics presented in Section IV (SP,
LL, WP), and the results are summarized in Table II for the same
22’000 problems and 6’000 larger problems as in Section VI.

These results show that LL performs very similarly to SP: for
the set of 22’000 problems, despite completely solving fewer
problems (i.e., allocating all demands of a problem), LL allo-
cated more demands in average than SP, had a better remaining
bandwidth connectivity (the probability being able to allocate an
additional new demand), and used fewer bandwidth resources.
However, the differences are extremely slight. The same can be
observed on the 6’000 larger problems: the only change is that
LL solves more problems and uses more bandwidth, however
still has a better bandwidth connectivity. The major difference
between the two is run time: LL is more than twice faster than
SP, despite the overhead of maintaining the BIH. We see two
explanations for this: (1) if a demand can be allocated, LL al-
lows to find a route faster because it limits the search space to
the lowest BI clustering the endpoints of the demand. (2) LL
knows before computing a route if one exists (route existence
property), thereby saving time if a demand cannot be allocated,
when SP has to explore the network graph before asserting that
a demand cannot be allocated.

WP is clearly outperformed by both LL and SP in all domains.
While allocating fewer demands (and solving just half of the
problems that LL and SP solved), WP still uses more bandwidth
resources. The run time is about twice longer than SP, which is
easy to explain: routes are more expensive to compute for WP
than for SP, because WP routes cannot be shorter than SP routes
by definition. In fact, WP routes are often much longer, and
therefore a bigger part of the network needs to be explored.

These experiments show that the DVO heuristics are very ef-
ficient for the RAIN problem, and that they are mainly responsi-
ble for the effectiveness of the proposed algorithms over existing
methods. And even though LL performs very similarly to SP in

TABLE II

Comparison of routing heuristics in a centralized QoS-routing scenario.

QoS Time Solved Allocated Bw. con- Bw.
method [s] problems demands nectivity usage

22’000 random problems with 20 nodes, 38 links, and 80 demands
SP 0.292 39.40% 97.90% 81.80% 59.04%
LL 0.125 39.20% 97.93% 82.42% 58.99%
WP 0.414 20.90% 96.15% 80.95% 64.75%

6’000 random problems with 20 nodes, 38 links, and 200 demands
SP 0.719 60.08% 99.49% 91.82% 59.11%
LL 0.307 60.71% 99.51% 92.05% 59.15%
WP 1.553 43.13% 98.55% 87.84% 71.74%

the QoS-routing scenario, it combines better with these DVO
heuristics.

VII. G ENERALIZING THE BLOCKING ISLAND PARADIGM

TO MULTIPLE CONCAVE METRICS

A resource metric� is said to beconcaveif for any pathp, �(p) = minl2p �(l), where�(l) is the metric for linkl.
Bandwidth is typically a concave resource, however there are
others: for instance, the number of connections routed over a
link may be limited, due to various factors, such as the num-
ber of allowed identifiers of connections over a link (e.g., virtual
path/connection identifiers in ATM). The links of a communica-
tion network may belong to different operators. A demand may
require to use links under contract of one or a set of operators.
This requirement corresponds also to a concave metric.

When there are multiple concave metrics to take into account,
it is possible to build a BIH for each metric and apply the pre-
sented techniques on one or the other BIH, or both. However,
the BI paradigm is straightforwardly generalized to integrate
multiple concave metrics into a connectivity cluster. In this
context, a demand is defined by a tripledu = (xu; yu; Qu),
whereQu = [q1u; q2u; ::; qzu] is an array ofz concave QoS re-
quirements. For a given metric, we say thatqki < qkj if qkj is
harder to satisfy thanqki , i.e., if a link supports a demand re-
quiringqkj resources of thek-th metric, than it can support a de-
mand requiringqki . There is therefore a partial ordering on the
QoS requirements. For instance, suppose we have two metrics
for which both a higher value means a harder constraint (e.g.,
bandwidth).Q1 = [64; 12] andQ2 = [32; 20] are incompara-
ble requirements, since a link with[96; 12] available resources
may accommodate a demand with QoSQ1, but notQ2, and a
link with [48; 30] free resources supports a demand requiringQ2
but notQ1. However, for a requirementQ3 = [16; 5], we haveQ3 < Q1 (since16 < 64 and5 < 12), andQ3 < Q2 (id.).

Given a quality of service requirementQu = [q1u; q2u; ::; qzu],
of which each corresponds to a concave metric, after a set of de-
mands has been allocated, we call aConnectivity Cluster(CC)
for a nodex underQu, or theQu-CC forx, the set of all nodes
of the network that can be reached fromx through links respect-
ing the QoS constraintsQu, includingx. A CC restricted to
one concave metric is then a BI. CCs have the same proper-
ties as BIs (see Section III), such as unicity, route existence
and location. AConnectivity Cluster Graphfor a set of re-
quirementsQu (Qu-CCG) is defined and built as the BIG. The
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Fig. 8. The Connectivity Cluster Hierarchy of a small network with possible
QoS requirementsf[64; 12]; [56; 10]; [32; 20]; [16; 5]g.

Connectivity Cluster Hierarchy(CCH) for a set of concave re-
quirements sets is a generalized version of the BIH. Since there
is only a partial order on the possible requirements setsQu,
father-child relations define a lattice instead of a tree. Fig. 8
shows the CCH of a simple network for possible requirementsf[64; 12]; [56; 10]; [32; 20]; [16; 5]g. Two concave metrics are
thus taken into account. Each node of the network has two fa-
thers, one a[64; 12]-CC and one a[32; 20]-CC. As for the BIH,
there is a null resource requirementQ0 = [0; 0] clustering the
whole network (it is not displayed in Fig. 8 since equal toN4).

The construction and maintenance of a CCH is more complex
than for a BIH. Nevertheless, it allows to abstract resource avail-
ability for several resource requirements at the same time, and
allows to use the heuristics for route and demand selection, with
some adaptations. For instance, the LL heuristics selects the
shortest route within the lowest BI clustering the endpoints of
the demand. However, the lowest CC clustering the endpoints of
a demand is not always univocally defined because of the partial
order on the QoS requirements. For instance, suppose a demandd = (b; d; [16; 5]) in Fig. 8. Since its endpoints are clustered in
the same[16; 5]-CC, we know there is at least one route satis-
fying du. However, which is the lowest CC,[64; 12]-CCN11
or [32; 20]-CCN22? They both containd’s endpoints, but are
in incomparable levels in the CCH. LL applied toN11 selects
the route througha, whereas inN22 a route throughc would
be chosen. There are several solutions to this problem, for in-
stance metric serialization or combination.Metric serialization
amounts to impose a precedence over the metrics. If the first
metric is preferred to the second, because it is considered more
important to maintain the connectivity for it in the network, then
LL applies toN11 because its value for the first metric is higher.
Typically, if one metric is sharable (a resource is sharable if it
can be simultaneously allocated to multiple consumers, e.g., the
operator constraint) and the other not (e.g., bandwidth), metric

serialization should be conducted according to the second met-
ric, since it makes no sense to do load-balancing on sharable
resources.Metric combinationamounts to select the shortest
route within the subgraph composed of the children of both can-
didates, in this case the subgraph restricted to nodesfa; b; c; dg.
The same techniques can be applied for DVO-HL and DVO-NL.

VIII. C ONCLUSION AND FUTURE WORK

The current technique for routing communication demands in
a network is to select the shortest route for each particular de-
mand. However, this strategy can lead to suboptimal routing
or even highly congested network utilization as a whole. Infor-
mation about the expected traffic allows to make better use of
network resources. However, on-line routing processes cannot
make use of this knowledge since they must be very fast to en-
sure customer satisfaction. Instead, bandwidth allocation can be
planned in an off-line manner with this information, thanks to
a systematic search algorithm that is capable of backtracking to
faulty routing decisions in order to satisfy all demands. How-
ever, search must be guided carefully since the search space to
explore is exponentially large.

We have shown that using blocking island abstractions cou-
pled with CSP exhaustive search mechanisms and heuristics,
it is possible to solve the bandwidth allocation planning prob-
lem in reasonable time, in particular when using the lowest level
heuristic for route generation and the number of levels heuristic
for demand selection. We also get better solutions than short-
est path routing algorithms, markedly in terms of the remaining
bandwidth connectivity in the network after all demands have
been allocated. This is especially useful when another unex-
pected demand needs to be routed, since the likelihood of be-
ing able to route it without recomputing a full solution from
scratch is higher. Network operators (or service providers) can
now plan the allocation of bandwidth in much tighter networks
and more often than before. Noteworthy, it is possible to sim-
ulate link and node failures, and, using the same technique,
compute alternative routing plans for these situations. An on-
line demo illustrating these features is available on the WWW
at http://www.iconomic.com. Moreover, we have pro-
posed a generalization of the BI paradigm, connectivity clusters,
to take into account multiple concave QoS metrics. We note that
a patent for the methods described in this paper is pending.

In this paper, the performance of the proposed heuristics
where only analyzed on solvable problems. When the alloca-
tion problem is not feasible, the potential problem is that search
can take a very long time without producing an answer. To avoid
this, the blocking island paradigm allows detecting unsolvabil-
ity by comparing total demand to total capacity available in and
out of a blocking island. When such unsolvability is detected, it
also pinpoints where to either remove demands or add capacity
to make the problem solvable again. Preliminary results show
that this technique works very well. The evaluation of the pro-
posed search algorithm on infeasible problems, however, lies
outside the scope of this paper and is left for a later article.

The presented techniques are not only applicable to
connection-oriented networks (such as ATM), but also to
connection-less networks (such as IP). In a connection-less net-
work, demands can be derived from traffic statistics between



nodes. If a solution can be found, applying it will prevent con-
gestion in the network, or at least reduce its probability in case of
unexpected traffic. The only difference to connection-oriented
networks is in the route generation process, since IP uses hop-
by-hop routing tables. The additional constraint of routing being
implementable by hop-by-hop routing tables can be formulated
in CSP and taken into account during search. Even if the route
existence property does not hold in this context, its natural coun-
terpart, the routeinexistenceproperty does. Nonetheless, we are
confident that solving a RAIN problem for an IP network will
be as efficient as for the connection-oriented case.

In this paper, we restricted demands to point-to-point traffic.
However, the same techniques can be applied for multipoint de-
mands: routes are then trees instead of simple paths. General-
izing the presented heuristics, such as the lowest level (LL) for
route generation or the number of levels for demand selection
(DVO-NL), to multipoint demands is straightforward.

Current and future work is conducted along five axis:
1. We are concerned with the explanation of allocation fail-
ures during search (dead-end), in order to determine the culprit
assignment. This can be realized by examining the demands
routed over the cocycles of the blocking islands (the cocycle of
a subset of nodesA is the set of all links that have one and only
one endpoint inA). When such a culprit can be identified, we
are then able to directlybackjumpto the cause of the failure,
without having to explore (pruning) parts of the search space
that do not contain any solution, thereby increasing search ef-
ficiency. Backjumping algorithms [22] are widely used in the
CSP community nowadays.
2. We want to develop more sophisticated heuristics for route
generation and demand selection during search, using more in-
formation that can be derived from the BIH, again to increase
search efficiency.
3. We are developing new types of hierarchies that decompose
even better the network according to resource availability. One
major goal is here to get rid of the fixed levels in the hierarchy
that depend on the possible QoS requirements of the demands.
4. Taking into account other QoS constraints of demands (such
as delay or loss probability) or network element limitations (e.g.,
node buffer capacity) is also one of our main concerns. CSP
modeling has the facility to easily take such additional restric-
tions into account, by just adding these additional constraints
“as is”. CSPs have in this case a major advantage over Opera-
tions Research techniques, that do not allow the integration of
new constraints in such a straightforward manner. Another ap-
proach is the connectivity cluster paradigm, a generalization of
blocking island abstractions to multiple concave metrics into a
single and concise representation of resource availability. Even
if not concave, delay can be approximated as a concave metric
in case there are large variations from one link to another: if the
delay varies a lot from one link to another (for instance a satel-
lite link vs. an optical fiber), the delay of a route is close to the
delay of the slowest link (the satellite link).
5. We intend to adapt the techniques to perform on-line routing
with intelligent agents, as presented in [20]. The idea is to as-
sign one agent to each BI, each agent then being responsible for
the allocation of demands inside its domain, thereby possibly
cooperating with agents below it in the hierarchy.
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