
Fast and Scalable Priority Queue Architecture for High-Speed Network Switches

Ranjita Bhagwan, Bill Lin
Center for Wireless Communications
University of California, San Diego

Abstract -In this paper, we present a fast and scalable pipelined priority
queue architecture for use in high-performance switches with support for
fine-grained quality of service (QoS) guarantees. Priority queues are used
to implement highest-priority-first scheduling policies. Our hardware ar-
chitecture is based on a new data structure called a Pipelined heap, or
P-heap for short. This data structure enables the pipelining of the enqueue
and dequeue operations, thereby allowing these operations to execute in
essentially constant time. In addition to being very fast, the architecture
also scales very well to a large number of priority levels and to large queue
sizes. We give a detailed description of this new data structure, the asso-
ciated algorithms and the corresponding hardware implementation. We
have implemented this new architecture using a 0.35 micron CMOS tech-
nology. Our current implementation can support 10 Gb/s connections with
over 4 billion priority levels .

I. INTRODUCTION

Future packet-switched integrated-service networks are ex-
pected to support a wide variety of real-time applications with
diverse quality of service (QoS) requirements. These real-
time applications have stringent performance requirements in
terms of average throughput, end-to-end delay and cell-loss
rate. These requirements must be satisfied at extremely high
speeds without compromising on network utilization.

To provide for QoS guarantees in packet-switched networks,
a number of service disciplines have been proposed, includ-
ing [8], [24], [9], [10], [26], [5], [6], [25], [19], [18], [11], [12],
[7]. Many of these service disciplines are based on a prioriti-
zation of the network resources to match different QoS require-
ments. In these schemes, packets are assigned priority values
and are transmitted in a highest-priority-first order1.

To implement this priority-based scheduling policy, priority
queues can be used to maintain a real-time sorting of the queue
elements in a decreasing order of priorities. Thus, the task of
highest-priority-first scheduling can be reduced to a simple re-
moval of the top queue element. However, to maintain this real-
time sorting at link speeds, a fast hardware priority queue im-
plementation is essential.

In the literature, several hardware-based sorted priority
queue architectures have been proposed: calendar queues [1],
binary-tree-of-comparators-based priority queues [21], [22],
shift-register-based priority queues [2], [3], [23], and systolic-
array-based priority queues [14], [15], [17]. All of these
schemes have one or more shortcomings. The calendar queues,
for example, can only accommodate a small fixed set of priority
values since a large priority set would require extensive hard-

1Service disciplines based on th Earliest-Deadline-First scheme can be
mapped to the highest-priority-first scheduling order, i:e:, an earlier deadline
would translate to a higher priority, while a later deadline would map to a lower
priority value

ware support. The other three classes of architectures, based
on binary-trees-of-comparators, shift-registers, and systolic ar-
rays, are all generally difficult to scale because the hardware
complexity is dependent on the worst-case queue size: each
queue element requires a separate comparator datapath and sep-
arate register storage.

In this paper, a new pipelined priority queue architecture is
described. The architecture is based on a novel data structure
called a Pipelined-heap, or P-heap for short. This data structure
is similar to a conventional binary heap [4]. In the literature,
several parallel algorithms have been proposed to make binary
heap enqueue and dequeue operations work in constant time
([28], [29]), but these schemes are based on multi-processor
software implementations with OS support for data locking and
inter-process messaging. We believe implementing these in
hardware is both non-trivial and expensive. Our approach has
modified the binary heap in a manner to facilitate the pipelin-
ing of the enqueue and dequeue operations while keeping the
hardware complexity low, thereby allowing these operations to
execute in essentially constant time.

Our current implementation is designed to support a total link
rate of 10 Gb/s, which can correspond to either a single OC-192
connection or a combination of lower speed connections.

In addition to being very fast, our priority queue architecture
also scales very well with respect to both the number of prior-
ity levels and the queue size. Our current implementation can
support 232 (over 4 billion) priority levels using a 32-bit prior-
ity field. Instead of requiring a separate comparator datapath
for each queue element, the number of comparator datapaths
needed in our pipelined architecture is logarithmic to the queue
size. In addition, the storage required for the queue elements
can be efficiently organized into on-chip SRAM modules. Also,
our current implementation can support unlimited buffer sizes.
Using a 0.35 micron CMOS technology, all the priority queue
management functions, including the necessary SRAM com-
ponents, can be implemented in a single application-specific
integrated circuit.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe briefly the queue manager model for which
the P-heap has been devised. In Section III, we describe the P-
heap data structure and in Section IV, its enqueue and dequeue
algorithms. In Section V, we describe the pipelined operation of
the P-heap. In Section VI, hardware implementation and mem-
ory organization issues are discussed. Section VII shows the
hardware implementation results using a 0.35 micron CMOS
technology.

II. THE QUEUE MANAGER

From switch
fabric to output

link

Priority
Assign-

ment
Unit

Cell Data
Store

Free Slot
List

Queue
Controller

P-heap
Manager

Ext. Memory Controller

Fig. 1. The output queue manager

To support the operations of the P-heap, a dynamic queue
manager is required for each port of the switch. In an output-
queued switch, the queues can be maintained dynamically as
described in [27]. We use a similar model in our approach,
where each output queue is maintained using an Output Queue
Manager, as shown in Figure 1. The Output Queue Manager
consists primarily of a Priority Assignment Unit, a P-heap Man-
ager and a Queue Controller. The Priority Assignment Unit
stamps the incoming packets with a certain priority, which is
decided depending upon the scheduling algorithm in use. The
P-heap Manager contains the P-heap priority queue. Each of the
elements in the P-heap holds a priority value, and it is on these
values that the queue is sorted. The Queue Controller maintains
a lookup table with entries corresponding to each priority value.
Each entry consists of a pointer to a list of packets of the same
priority. We refer to this list as a priority list. Thus our imple-
mentation is one of “per-priority queueing” rather than per-flow
queueing, and is more general in the sense that it can handle dif-
fering priorities within the same flow. It should be noted that at
any point of time, the P-heap only contains the priority values
for which the priority list is non-empty, i:e:, it contains only the
active priority values.

When a new packet needs to be inserted into the queue, the
Priority Assignment Unit stamps the packet with a suitable pri-
ority value. The Queue Controller determines whether a prior-
ity list already exists for the stamped priority value. If it does,
it simply adds the new packet to the corresponding priority list.
However, if the list does not exist, the Queue Controller cre-
ates a new priority list. It also signals the P-heap manager to
perform an enqueue operation, which inserts the new prior-
ity value into the P-heap in a sorted manner. This is done to
make sure that the highest priority stays at the top of the P-heap
so that whena dequeue of a packet is required, the priority list
with the highest priority can be accessed.

When a packet needs to be removed from the queue, the P-
heap Manager determines the non-empty priority list of highest
priority by looking at the topmost element of the P-heap and
sends this priority value to the Queue Controller. The Queue
Controller accesses the corresponding priority list and removes

16 14 10 7 3 24 1 57 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 3 1 0 1 2 0 1 0 0 1 0 1 1

value

capacity

16

2

4

1 5

7

8

7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

operation positionvalue

Level 1

Level 2

Level 3

Level 4

Binary Array (B)Token Array (T)

Fig. 2. The P-heap data structure

a single packet from it. If this causes the priority list to become
empty, the P-heap Manager inititates a procedure called de-
queue which removes the topmost element from the P-heap,
while making sure that the P-heap remains sorted.

The former discussion is a brief note on the working of the
queue manager. In this paper, however, we concentrate on the
P-heap data structure and the operations on it and the following
sections give a detailed explanation of the same.

III. THE P-HEAP DATA STRUCTURE

A known data structure for maintaining priority queues is
the binary heap [4]. Its enqueue and dequeue operations use
O(log(n)) time, where n is the size of the heap, and cannot
be easily pipelined. However, it takes a very simple hardware
implementation to emulate a binary heap. Keeping this fact in
mind, we designed the Pipelined Heap or the P-heap, which,
while preserving the ease of hardware implementation of the
conventional binary heap, allows pipelined implementation of
priority queue operations, providing, in effect, constant-time
operations.

The Pipelined heap or the P-heap data structure P can be
defined as a tuple hB; T i where both B and T are array objects.
B, which we refer to as the P-heap binary array, is the structure
which stores the sorted priority values. It can be viewed as a
complete binary tree, as shown in Figure 2. The length of B is
given by

length(B) = 2l � 1 l 2 Z+

where l is the number of levels in the tree represented by
B. For example, in Figure 2, l = 4 and hence the number of
elements in the binary array B, or the number of nodes in the
binary tree it represents, is 24 � 1, or 15. This data structure
is in fact very similar to the conventional binary heap. The
difference lies in the fact that a binary heap’s size may vary as
long as it stays an almost complete binary tree. In contrast, the
size of B is fixed.

The root of B is B[1], and given the index i of any node in
B, the indices of its parent and children can be determined in
the following way:

parent(i) = bi=2c

left(i) = 2i

right(i) = 2i+ 1

In the rest of the paper, we refer to a node in B with index i as
B[i]. We formally define the j th level of B, Lj , as the set of
nodes given by

Lj = fB[i] j 2j�1 � i � 2j � 1g

Another difference between B and a binary heap data struc-
ture lies in the contents of each node in the tree. While in a
binary heap, the nodes contain just the value on which the heap
is sorted, a node of B, say B[i], contains three fields as given
below:
� B[i]:active: this is a boolean field which is set to true if
the node B[i] is filled with a valid priority value (the node is
active). It is set to false if the node is empty, or inactive.
� B[i]:value: if the node is active, this field holds the actual
priority value.
� B[i]:capacity: this field contains the number of inactive
nodes in the sub-tree rooted at B[i].
In Figure 2, the active nodes are shown shaded while the inac-
tive nodes are left unshaded. The following property is satisfied
by all nodes in B.

If B[i] is an ancestor of B[j], then

B[i]:capacity � B[j]:capacity:

We define a trio for every node in B as follows: The ith trio
of B, �i, is defined as the set of nodes

fB[i]; B[left(i)]; B[right(i)]g

A conventional binary heap satisfies the heap property, that
is, for every node apart from the root, the value of the parent of
the node will always be greater than or equal to the value of the
node itself. A similar property holds for the binary array of a
P-heap which we refer to as the P-heap Property. The P-heap
property has to be satisfied by every node B[i] of B except the
leaves. It can be summarized as follows:
P-heap Property : Let B[i] be a node in B and B[j] be an
immediate (left or right) child of B[i]. Then,

1. B[i]:active ^ B[j]:active) B[i]:value � B[j]:value

2. B[j]:active) B[i]:active

For example, in Figure 2, B[1]:value is 16, while B[2]:value

is 14. This satisfies property 1. Also, no active node has an
inactive parent. This conforms with property 2.

The P-heap property 1 makes sure that the highest priority
value is always in the root of B, i:e:, in B[1]:value.

The array object T , called the token array, is also shown in
Figure 2. The length of the token array is exactly equal to l,
which we formalize here as

length(T) = l l 2 Z+

For example, in Figure 2, the value of l is 4. The length of the
token array is also 4. The element T [i] is associated with the
level Li of B. For example, T [1] is associated with level 1 of
B, which is the root. The purpose of the token array is to aid
the pipelined operation of the P-heap. Each element T [i] of the
token array also comprises of three fields. They are:
� T [i]:operation: this field holds an instruction, depending
on the operation to be executed at level L i of the P-heap. It is
useful in the pipelined implementation of P-heaps.
� T [i]:value: This field may hold a priority value that needs to
be inserted into B.
� T [i]:position: this field can hold the index of a node at level
Li of B.
The significance of these fields is addressed in the next two
Sections.

IV. PRIORITY QUEUE OPERATIONS ON THE P-HEAP

The motivation behind defining a new priority queue data
structure is to be able to pipeline the enqueue and dequeue op-
erations on it. The conventional binary heap operations, though
very simple to implement, execute in O(log(n)) steps,where n
is the number of elements in the heap, and they cannot be easily
pipelined. On the other hand, architectures like the systolic ar-
ray can be pipelined, but have extremely high hardware require-
ments. Our purpose is to design a modified heap data structure
and associate algorithms with it, which while being simple and
easy to implement, can be easily pipelined to provide constant
time priority queue operation at low hardware costs. The fol-
lowing algorithms have been developed keeping this objective
in mind.

A. The enqueue operation

To enqueue a new value into B, we need to find an inactive
node in B. We do this by traversing a valid path from the root
to a leaf of B, where a valid path is defined as follows:

A valid path B[i1] ! B[i2] ! � � � ! B[il] where B[ij] 2
Lj and ij = parent(ij+1), is a path in B where

8B[ij]; B[ij]:capacity > 0:

Since the capacities of all the nodes in the valid path are
greater than 0, there exists at least one inactive node in it. Fig-
ure 3 shows all the valid paths in the given binary array. In this
example, there are a total of five valid paths in B.

The enqueue operation first writes the new value into
T [1]:value, sets T [1]:position to 1 and travels through a valid
path by making up to l calls to a core procedure called the

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fig. 3. An example of a binary array B with five valid paths

local-enqueue. This procedure takes as input j, denot-
ing the level Lj of B. The enqueue first calls local-
enqueue(1). The local-enqueue algorithm works in the
following way:
� The position and value fields of the element in T [j] are read.
We refer to them as i and v respectively.
� if B[i] is inactive, v is simply written into B[i]:value, mak-
ing B[i] active. This reduces the number of inactive nodes
in the sub-tree rooted at B[i] by 1. This number is stored
in B[i]:capacity, which is therefore decremented by 1. The
local-enqueue operation completes, and since the new
value has found a place in B, the enqueue operation may be
stopped too.
� If B[i] is active and the value v is greater than that of B[i],
the two are swapped. This step does not violate the P-heap
properties as we know that for �i, if all the nodes in it are
active,

B[i]:value � B[left(i)]:value

B[i]:value � B[right(i)]:value

and therefore

v > B[i]:value) v > B[left(i)]:value

v > B[i]:value) v > B[right(i)]:value

� The value in T [j] is moved down to T [j + 1]:value.
� The capacity ofB[left(i)] is read. If it is greater than zero, it
means that there are some inactive nodes in the sub-tree rooted
at B[left(i)], and B[left(i)] can therefore be part of the valid
path to be traversed. The index left(i) is written into T [j +

1]:position, so that in the next iteration of enqueue, a call to
the procedurelocal-enqueue(j+1) may be made to examine
�left(i) for an inactive node.
� If the capacity of the left child is zero, the capacity of
B[right(i)] must be non-zero 2 , and the index right(i) is
written into T [j + 1]:position, so that in the call to procedure
local-enqueue(j+1), �right(i) may be examined for an in-
active node.
2If this is not the case, it implies that the queue is full and our algorithm leads

to a value being dropped from the priority queue.

procedure local-enqueue(j)
begin

i(T [j]:position;
v (T [j]:value;
if B[i]:value = false

B[i]:value(v;
B[i]:active(true;
Decrement B[i]:capacity;
return done;

elsif T [j]:value > B[i]:value
Swap T [j]:value, B[i]:value;
Move T [j]:value to T [j + 1]:value;

end if;
if B[left(i)]:capacity > 0

T [j + 1]:position(left(i);
else

T [j + 1]:position) right(i);
end if;
return not done;

end procedure;

Fig. 4. The local-enqueue algorithm.

The algorithm followed by local-enqueue is shown in
Figure 4.

The local-enqueue procedure is called up to l times be-
fore the enqueue can complete. This is because the valid path
stretches from the root of B to a leaf of B, and is therefore l

nodes long. We may have to traverse the path starting from the
root right till the leaf node to find an inactive node, which would
be accomplished by making l calls to the local-enqueue
procedure. It can also be observed that any instance of local-
enqueue works on a single trio. This is a significant point
which shall be referred to later in the section on the P-heap
pipeline.

Going back to the enqueue operation, it sets T [1]:value to
the new value to be inserted, and T [1]:position to 1. Following
this, local-enqueue(1), local-enqueue(2),..., local-
enqueue(l) may be executed. An example is shown in
Figure 5. The new value 9 is stored in T [1]:value, while
T [1]:position is set to 1. The operation local-enqueue(1)
is then executed (Figure 5 (a)). Since 9 is smaller than
B[1]:value,i:e: 16, there is no swap. The new value 9 is moved
down to T [2]:value. The capacity of B[2] is examined, and is
found to by equal to 1 since B[10] is inactive. T [2]:position

is therefore set to the index 2. The execution of local-
enqueue(1) completes.

Now, local-enqueue(2) is executed (Figure 5 (b)).
T [2]:value and T [2]:position, which have the values 9 and 2
respectively, are read. The value of B[2] is read and is found
to be 14. T [2]:value, which is 9, is smaller than 14, and so the
two values are not swapped. The value 9 is moved down fur-
ther to T [3]. The capacity of B[4] is examined and is found to
be 0. This implies that there are no inactive nodes in the sub-
tree rooted at B[4]. Therefore, the index of the right child of
B[2], i.e. 5 is written into T [3]:position, ending the execution
of local-enqueue(2).
local-enqueue(3) is now executed, as shown in Figure 5

(c). The value and position fields of T [3] are read, which are

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2

3

4

index positionvalue

9 1 16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2

3

4

index positionvalue

9 2

16

2 4 5

8 9 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2

3

4

index positionvalue

7 10

(a) (b)

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2

3

4

index positionvalue

9 5

(c) (d)

16

2 4 5

8 9 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2

3

4

index positionvalue

7

(e)

Fig. 5. An example of the enqueue procedure

procedure enqueue(V)
begin

T [1]:value(V ;
T [1]:position(1;
while j � l do

temp(local-enqueue(j);
if temp = done

return;
else

j (j + 1;
end if;

end while;
end procedure;

Fig. 6. The enqueue algorithm.

found to be 9 and 5 respectively. The value 9 is compared with
B[5]:value, i:e: 7. Since 9 is larger, the two are swapped.
T [3]:value now holds the value 7 and it is moved down to
T [4]:value. The capacity of B[10], the left child of B[5], is
examined. It is found to be 1 and so the index 10 is written into
T [4]:position.

During the execution of local-enqueue(4), shown in Fig-
ure 5 (d), it is found that B[10] is inactive, and so the value of
T [4] which is 5, is written directly into the node B[10] and its
capacity is reduced to 0. The P-heap, at the end of the en-
queue, is shown in Figure 5 (e). The algorithm followed by
the enqueue operation is given in Figure 6.

B. The dequeue Operation

The dequeue operation extracts B[1]:value from the P-
heap, since it has the highest priority value, making B[1] in-
active and hence increasing the capacity of B[1] by one. The
children of B[1], however, may be active, thus violating the P-
heap property 2 within the 1st trio, �1. We need to push down
the inactive node to the lower levels till the P-heap property is
maintained throughout B. To sort the trio, we use a procedure
called the local-dequeue. This procedure takes as input j,

Procedure local-dequeue(j)
begin

i(T [j]:positon;
if both B[left(i)], B[right(i)] are inactive

return done;
end if;
Read the values of the active nodes among B[left(i)]
and B[right(i)];
Determine the node B[k] with largest value V ;
Make B[i] active;
B[i]:value(V ;
Make B[k] inactive;
Increment B[k]:capacity;
T [j + 1]:position(k;
return not done;

end procedure;

Fig. 7. local-dequeue algorithm.

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(a)

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b) local-dequeue(1)

2 4 5

8 7 3

14

10

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(c) local-dequeue(2)

2 4 5

8

7 3

14

10

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(d) local-dequeue(3)

2

4

5

8

7 3

14

10

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(e)

1

2

3

4

index positionvalue

1

2

3

4

index positionvalue

1

1

2

3

4

index positionvalue

2

1

2

3

4

index positionvalue

4

1

2

3

4

index positionvalue

Fig. 8. The P-heap dequeue operation

indicating the level Lj of B. The initial steps to sort the P-heap
are to set T [1]:position to 1, increment B[1]:capacity and call
local-dequeue(1). The operation local-dequeue(j)
operates as described below:
� T [j]:position is read into i. The index i corresponds to an
inactive node B[i].
� If both the child nodes of B[i] are inactive, property 2 is sat-
isfied, and the dequeue operation may halt.
� Otherwise, at least one of the two child nodes is active. The
values of the active nodes are read.
� Let us say that B[k] is the node with the larger value v of the
two child nodes. B[i] is made active and the value v is written
into it, while B[k] is made inactive. In other words, the inactive
node is pushed down from position i to k. This increases the
number of inactive nodes in the sub-tree rooted at B[k] by 1.
B[k]:capacity is therefore incremented by 1.
� The index k is written into T [j + 1]:position for future use,

procedure dequeue
begin

j (1;
max value(B[1]:value;
B[1]:active(false;
Increment B[1]:capacity;
while j � l do

temp(local-dequeue(j);
if temp = done

return;
else

j (j + 1;
end if;

end while;
end procedure;

Fig. 9. The dequeue algorithm

when local-dequeue(j + 1) is called.
Now, since the node B[k] is inactive, the P-heap property 2

might be violated in the trio �k. This situation can be recti-
fied by calling procedure local-dequeue(j + 1). It reads
T [j +1]:position, which is k and moves the inactive node fur-
ther down if required. Thus, by making up to l calls to local-
dequeue, we can ensure that the P-heap properties are satis-
fied throughout B.

An example is shown in Figure 8. The top-most value, 16
is first removed (Figure 8 (a)) and B[1] is made inactive, while
its capacity is increased by one. T [1]:position is set to 1 and
local-dequeue(1) is called, as shown in Figure 8 (b). The
operation sorts �1 by moving the inactive node from B[1]

down to B[2], which has a larger value than B[3]. The value
14 is moved from B[2] to B[1], making B[1] active. The index
of the new inactive node, 2, is written into T [2]:position.

Now, local-dequeue(2) is executed, shown in Figure 8
(c), so that �2 may be sorted to satisfy the P-heap property. The
value of B[4], i:e: 8, is moved up to B[2], while the inactive
node moves further down to B[4]. The index 4 is written into
T [3]:position.

Finally, as shown in Figure 8 (d), local-dequeue(3) is
executed which causes the inactive node to move down to B[9],
while B[4] is filled up with the value 4. Since B[9] is a leaf
node, its being inactive does not violate the P-heap properties.
Figure 8 (e) shows what B looks like at the end of the de-
queue. The code for the dequeue operation is shown in Fig-
ure 9.

C. The enqueue-dequeue operation

The P-heap data structure is built to accommodate a new pri-
ority queue operation, the enqueue-dequeue, which allows
simultaneous enqueue and dequeue to occur in the P-heap. The
process is similar to the dequeue. The difference is that in
the first step, instead of removing the value of the top node
and making it inactive, we remove the value and replace it by
the new value V to be inserted into the queue. This may vi-
olate P-heap property 1 within �1. To sort the heap and sat-
isfy the P-heap properties, the enqueue-dequeuemakes up
to l calls to the core procedure local-enqueue-dequeue,

Procedure local-enqueue-dequeue(j)
begin

i(T [j]:position;
if both B[left(i)], B[right(i)] are inactive

return done;
end if;
Read the values of the active nodes among all three nodes

in �i;
Determine the node B[k] with largest value;
if i = k

return done;
end if;
Swap B[i]:value;B[k]:value;
T [j + 1]:position(k;
return not done;

end procedure;

Fig. 10. local-enqueue-dequeue algorithm.

which takes as input j, a level in B.
Figure 10 gives the algorithm. T [1]:position, as in all other

operations, is set to 1. The steps given below follow.
� The value of T [j]:position is read into i.
� If both child nodes of B[i] are inactive, the P-heap properties
are satisfied and the enqueue-dequeue operation may halt.
� If not, the active values are read from the three nodes in � i.
� The node B[k] with the largest value v is determined.
� if this node is B[i], the P-heap properties are satisfied and the
procedure enqueue-dequeuemay halt.
� Otherwise, the values of B[i] and B[k] are swapped.
� The index k is written into T [j + 1]:position to aid the call
to local-enqueue-dequeue(j+1) in the next iteration.

Since B[k] may now have a value smaller than its original
value, �k might violate the P-heap properties. Thus up to l exe-
cutions of the local-enqueue-dequeue procedure might
be necessary to restore order.

An example is shown in Figure 11. The highest value
16 is dequeued, i:e removed from B[1], and it is replaced
with the new value, 9 (Figure 11 (a)). local-enqueue-
dequeue(1) is now called, which causes 9 to be swapped with
the value of B[2], i:e: 14 (Figure 11 (b)). The index 2 is writ-
ten into T [2]:position. This is followed by a call to local-
enqueue-dequeue(2), shown in Figure 11 (c), where it is
observed that the P-heap properties are already satisfied within
�2 and no swaps need to be made. Hence the enqueue-
dequeue operation stops. Figure 12 gives the algorithm fol-
lowed by the enqueue-dequeue operation.

V. PIPELINING THE P-HEAP OPERATIONS

The operations explained in the previous section have all
been designed keeping in mind the need to efficiently pipeline
them for constant-time priority queue operation. In this section,
we describe the P-heap pipeline, and how all three operations
can be executed on the P-heap in constant-time.

The local procedures are all constant-time operations and ac-
cess at most the three nodes in a trio, which belong to two con-
secutive levels of B, and two nodes in T , which belong to the
same two levels of T . For example, local-dequeue(3) ac-

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(a)

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b)

2 4 5

8 7 3

14

10

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(c)

9

9

1

2

3

4

index positionvalue

9 1

2

3

4

index positionvalue

1

2

1

2

3

4

index positionvalue

Fig. 11. The P-heap enqueue-dequeue operation

procedure enqueue-dequeue(V)
begin

j (1;
max value(B[1]:value;
B[1]:value(V ;
while j � l do

temp(local-enqueue-dequeue(j);
if temp = done

return;
else

j (j + 1;
end if;

end while;
end procedure;

Fig. 12. The enqueue-dequeue algorithm

cesses only L3 and L4 of B, and nodes T [3] and T [4] of T .
Similarly, local-enqueue(2) accesses L2 and L3 of B, and
T [2] and T [3] of T . We show in the remainder of this section
that several instances of the three local operations can be exe-
cuted simultaneously in a pipelined manner.

We define the ith pipeline window �i as

�i = fLi; Li+1; T [i]; T [i+ 1]g 1 � j < l

�i = fLi; T [i]g j = l

So, we can say that local-dequeue(j) accesses only �j

and that local-enqueue(k) accesses only �k.
We refer back to the definition of the token array T , where

we introduced the field T [j]:operation. This field holds one of
four instructions,

fenq, deq, edq, nopg

one each for enqueue, dequeue, enqueue-dequeue
and no-op. For example, if T [3]:operation = dequeue, it
means that the local-dequeue(3) procedure, used by the
dequeue operation, needs to be executed on �3 of the P-heap.

We also define function f(i) as shown in Figure 13.

function f(i)
begin

if T [i]:operation = enq

local-enqueue(i);
elsif T [i]:operation = deq

local-dequeue(i);
elsif T [i]:operation = edq

local-enqueue-dequeue(i);
end if;

end function;

Fig. 13. The function f .

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

f(1)

f(2)

f(3)

f(4)

f(1)

f(2)

f(3)

f(4)

f(1)

f(2)

f(3)

f(4)

1st operation 2nd operation 3rd operation

Fig. 14. Working of the P-heap pipeline

The function f(i) executes one of the three local procedures
on pipeline window �i depending on the operation field of
T [i]. So it can be said that f(i) accesses only pipeline win-
dow �i, since it only executes local-dequeue(i), local-
enqueue(i) or local-enqueue-dequeue(i), all of which
access only �i.

Based on this definition of f , we make the following claims.
Claim 1: If we can access every level of B in parallel, the

functions f(1), f(3),..., f(i),..., f(2fb l�1
2
cg+1), where i is an

odd number, can be executed simultaneously.
Proof: If every level of B is independently accessible, all

operations for which �j \ �k = � can be executed simultane-
ously. �1, �3,..., �

2fb l�1

2
cg+1

satisfy this property.

Hence, the functions f(1), f(3)., f(i),..., f(2fb l�1
2
cg+ 1),

where i is an odd number, can be executed simultaneously.
Claim 2: If we can access every level of B in parallel, the

operations f(2), f(4)..., f(i),..., f(2fb l
2
cg), where i is an even

number, can be executed simultaneously.
Proof: similar to that of claim 1.

We define a P-heap cycle in the following way:
A P-heap cycle is the maximum time required to execute any

instance of the three local operations.
Having made these claims and definitions, we now show how

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

9

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

9

16

2 4 5

8 9 3

10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

14

2 4 5

8 9 3

10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

7

1

5

2

16

2 4 5

8 7 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

9 2

4
16

2 4 5

8 9 3

14 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

10

4

7

4

7

14

4

1

3

6

1

10

2 4 5

8

9

3

14

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

7

4

2 4 5

8

9

3

10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

7

5

2

4

2

2 4 5

8

9

3

10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

2

3

4

1

index positionvalue

75 4

2

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 15. The pipelined operation of a 4-level P-heap

the P-heap pipeline works on a four-level P-heap in Figure 14.
In the Figure, three operations are executed one after the other.
In cycles 1 and 2, only the 1st operation is active. In cycle 3, the
2nd operation starts alongside, with the simultaneous operation
of f(3) (executed by the 1st operation) and f(1) (executed by
the 2nd operation). The functions f(2) and f(4) are executed
simultaneously in cycle 4. In cycle 5, the 1st operation ends
while the 3rd starts. The two functions f(1) and f(3) are exe-
cuted together, at the same time. This goes on till the pipeline
is finally flushed. Each pipeline stage is therefore 2 cycles wide
and two consecutive instances of f comprise the pipeline stage.
A new operation can be started on the P-heap every two cycles.

We now give an example of the P-heap pipeline in action.
Figure 15 shows a four-level P-heap with the following opera-
tions executed on it.

enqueue(9);
enqueue(4);
dequeue;
enqueue-dequeue(2);

Cycle 1: The new value to be enqueued, 9, is written into
T [1]:value (Figure 15 (a)). T [1]:position is set to 1 and
T [1]:operation is set to enq. This is followed by execution of
f(1), which in turn executes local-enqueue(1). The value
9, which is smaller than 16, is pushed down to T [2]:value. The
left branch of B is taken, since the left sub-tree has an inactive
node. T [2]:operation is now set to enq.

Cycle 2: local-enqueue(2) is executed in this cycle
(Figure 15 (b)). Since 9 is smaller than B[2]:value, which
is 14, it is moved down to the next level, i:e: T [3]:value.
B[2]:capacity, which was originally 1, is decremented to 0.
The right branch is taken in this case, since the left sub-tree
does not have an inactive node. T [3]:operation is set to enq.

Cycle 3: The operation enqueue(9) continues at �3 of B
(Figure 15 (c)). Since 9 is larger than 7, the value of B[5], the
two are swapped and 7 is moved down to T [4]:value, while
T [4]:operation is set to enq. At the same time, enqueue(4)
starts operating on �1. Since 4 is smaller than 16, it is just
moved down to T [2]:value. The capacity of B[2] is found to be
0 since it was decremented by the enqueue(9) operation. So
the right branch is taken for future comparison. T [2]:operation
is set to enq. Thus the two operations that run simultaneously
are f(1) and f(3). This conforms with claim 1.

Cycle 4: The enqueue(9) completes with the execution of
f(4) (Figure 15 (d)), having found an inactive node in B[10] to
insert the value 7. At the same time, the function f(2) , called
by the enqueue(4) operation , continues on �2 of B. Since 4
is smaller than B[3]:value which is 10, there is no swap. The
value 4 is moved down to T [3]:value and the left branch is
taken. T [3]:operation is set to enq. No new operation starts
at this stage.

Cycle 5: f(3) is executed by the operation enqueue(4)
(Figure 15 (e)). It finds an inactive node, B[6], and writes
the value 4 into it, thus ending this enqueue operation.
Since there is no local-enqueue necessary at level L4,
T [4]:operation is set to nop. At the same time, the dequeue
operation starts working on �1 with the procedure local-
dequeue(1) called by f(1). The highest value, 16, is removed
from B[1] and it is made inactive. Since the largest of the val-
ues in the trio �1 is 14, it is moved up to B[1], while B[2] is
made inactive. T [2]:operation is set to deq.

Cycle 6: The dequeue executes f(2) (Figure 15 (f)), in
which since B[2] is inactive, �2 is found to violate the P-heap
property. The value of B[5], 9, is moved up to B[2] while B[5]

is rendered inactive. T [3]:operation is set to deq.
Cycle 7: The dequeue continues with the execution of

f(3), where the value of B[10], 7, is moved up to B[5]

so that the P-heap property is maintained in �5 (Figure 15
(g)). T [4]:operation is set to nop, since the dequeue can
be stopped at this stage. The next operation, enqueue-
dequeue(2), starts alongside by executing f(1). The highest
value 14 is removed from B[1] and replaced by 2. Since the P-
heap property is violated in �1, the value 2 of B[1] is swapped
with the value of B[3], which is 10. T [2]:operation is set to

SRAM Bank P-heap pro-
cessor

Fig. 16. The P-heap Manager (PHM), with the external DRAM module and
the Priority Assignment Unit.

edq.
Cycle 8: The dequeue completes in the previous cycle, and

so the only operation running now is the enqueue-dequeue
(Figure 15 (h)). Since 2 is found to be smaller than the value
of B[6], i:e: 4, the two are swapped. This operation completes
right here.

Figure 15 (i) shows the P-heap after the completion of these
pipelined operations.

From the example, it is clear that we can start a new oper-
ation on the P-heap every two cycles. Effectively, we achieve
constant time enqueue, dequeue and enqueue-dequeue
operations using the P-heap pipelined priority queue.

VI. HARDWARE REQUIREMENTS

In this section, the hardware necessary to implement P-heaps
in a high-speed packet switch is described. The P-heap array
objects B and T are implemented using the following:
� The binary array B is implemented not as one memory ele-
ment, but as l SRAM elements, where l is the number of levels
in B. All the nodes in level i are maintained in SRAM-i. Si-
multaneous memory accesses can be performed to the different
levels of B, as each one is stored in a different SRAM. This
satisfies the condition specified in claims 1 and 2.
� The token array T is represented by l registers, one for each
level of B.

The priority management functions and the SRAMs required
for implementing the P-heap are integrated onto the P-heap
Manager(PHM).

The PHM is shown in Figure 16. It holds two sub-modules:
the SRAM Bank and the P-heap Processor Engine. While the
SRAM Bank is a collection of the l SRAMs, the P-heap Pro-
cessor Engine consists of the datapath and controller used to
implement the three P-heap operations. The token array T is
a part of the datapath. The controller holds l comparators, one
for each level of the P-heap, so that different local operations
may occur at different levels of the P-heap without any resource
hazards.

The P-heap therefore requires l SRAMs, l registers and l

comparators for constant-time operation. This is in contrast to
the systolic array, which, for the same queue length, requires

2l+1 registers and 2l comparators. For example, a 1024 packet-
long systolic array requires 2048 registers, 1024 comparators
and additional combinational logic per packet in the queue.
The hardware requirements increase linearly with the size of
the queue. The P-heap of the same size requires only 10 com-
parators, as opposed to 1024 needed by the systolic array. The
additional combinational logic required in a P-heap is per level.
The hardware required for the P-heap increases logarithmically
with the size of the queue. The P-heap requires 10 memory el-
ements. Since the 1st few levels of the P-heap are very small
(L1 has only one element, L2 has 2, L3 has 4, etc), they can
be stored in registers, while the larger levels can be stored in
SRAMs.

Currently available on-chip SRAMs can have sizes up to 256
KB. Using these memory modules along with 32 bit-wide pri-
ority values, the P-heap can support about 217 different active
priority lists at any given time, while allowing for unlimited
buffer space.

VII. IMPLEMENTATION RESULTS

We implemented the P-heap processor engine using the
TSMC 0.35 micron CMOS standard-cell technology, along
with the memory access times for a 256 KB synchronous
SRAM.

Table I shows the P-heap pipeline stage time, which is the ef-
fective time required to execute a single enqueue, dequeue
or an enqueue-dequeue operation, for different sizes of the
priority field. These values were obtained by calculating the
size of a P-heap Pipeline cycle defined earlier and multiplying
it by 2, since this is the time required between any two consec-
utive P-heap operations.

TABLE I

VARIATION OF P-HEAP PIPELINE STAGE TIME WITH NUMBER OF BITS IN

THE PRIORITY VALUE FIELD

Priority P-heap Pipeline
(bits) Stage Time (ns)

4 13.94
8 15.10
12 16.52
16 18.84
20 21.16
24 23.48
28 25.80
32 28.12

From these figures, we conclude that with 32 bit priorities,
the P-heap architecture can schedule one packet every 28.12
ns, i:e:, at the rate of 35.56 Mpps. For an ATM cell switch,
with cell sizes of 424 bits, this rate would translate to allowing
link speeds of 15.08 Gb/s, which is quite a bit higher than our
objective of meeting the 10 Gb/s OC-192 rates.

An advantage of the P-heap is that the pipeline stage time
does not change with increasing size of the queue. The P-heap
pipeline stage width is independent of the actual length of the
queue. The increase in queue length only increases the amount
of hardware required, and that too, on a logarithmic scale.

VIII. CONCLUSIONS

In this paper, we presented a fast and scalable pipelined pri-
ority queue architecture that can effectively support constant
time enqueue and dequeue operations. The presented P-heap
data structure and the associated algorithms are well-suited for
hardware implementation. In addition to being very fast, the
architecture also scales very well to a large number of priority
levels and to large queue sizes. Our current implementation can
support as many as 232 priority values and can vary in size to
up to 217 entries. The P-heap can therefore be used efficiently
in a high-speed packet switch providing fine-grained quality-
of-service guarantees.

REFERENCES

[1] R. Brown, “Calendar queues: a fast O(1) priority queue implementation
for the simulation of event set problem”, Communications of the ACM,
31(10):1220-1227, October 1988.

[2] J. Chao, “A novel architecture for queue management in the ATM net-
work”, IEEE Journal on Selected Areas in Communications, 9(7):1110-
1118, September 1991.

[3] J. Chao and N. Uzun, “A VLSI sequencer chip for ATM traffic shaper and
queue management”, IEEE Journal of Solid-State Circuits, 27(11):1634-
1643, November 1992.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to algo-
rithms”, McGraw-Hill Book Company, ISBN 0-07-013143-0.

[5] R. L. Cruz, “Quality of service guarantees in virtual circuit switched
networks”, IEEE Journal on Selected Areas in Communications, vol. 13,
no. 6, August 1995.

[6] R. L. Cruz, “Service burstiness and dynamic burstiness measures: a
framework”, Journal of High Speed Networks, vol. 1, no. 2, pp. 105-127,
1992.

[7] A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a fair
queueing algorithm”, Proceedings of ACM SIGCOMM’89, pp. 1-12,
1989.

[8] D. Ferrari and D. Verma, “A scheme for real-time channel establishment
in wide-area networks”, IEEE Journal on Selected Areas in Communica-
tions, vol. 8, no. 4, pp. 368-379, April 1990.

[9] N. R. Figueira and J. Pasquale, “Leave-in-time: a new service discipline
for control of real-time communications in a packet-switching network”,
Proceedings of ACM SIGCOMM’95, August 1995.

[10] N. R. Figueira and J. Pasquale, “Rate-function scheduling”, Proceedings
of INFOCOM’97, pp. 1065-1074, April 1997.

[11] S. J. Golestani, “Congestion-free communication in high-speed packet
networks”, IEEE Transactions on Communications, vol. 39, no. 12, pp.
1802-1812, December 1991.

[12] C. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for
very high-speed networks”, Proceedings of IEEE GLOBECOM’90, vol.
1, pp. 12-20, 1990.

[13] R. Katz, “Contemporary Logic Design”, Addison-Wesley/Benjamin-
Cummings Publishing Co., Redwood City, CA, 1993

[14] P. Lavoie and Y. Savaria, “A systolic architecture for fast stack sequen-
tial decoders”, IEEE Transactions on Communications, 42(2-4):324-334,
Feb-Apr 1994.

[15] C. E. Leiserson, “Systolic priority queue”, Caltech Conference on VLSI,
pp. 200-214, January 1979.

[16] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, M. Horowitz, “The
tiny tera: a packet switch core”, Hot Interconnects Symposium, Stanford
University, August 1996.

[17] S. W. Moon, K. G. Shin, and J. Rexford, “Scalable hardware prior-
ity queue architectures for high-speed packet switches”, Proceedings of
Real-Time Applications Symposium, June 1997.

[18] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated service networks: the multi-node
case”, Proceedings of IEEE INFOCOM’93, vol. 2, pp. 521-530, March
1993.

[19] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated service networks: the single-node
case”, IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344-
357, June 1993.

[20] C. Partridge et al., “A 50-Gb/s IP router”, IEEE/ACM Transactions on
Networking, vol. 6, no. 3, pp. 237-248, June 1998.

[21] D. Picker and R. Fellman, “A VLSI priority packet queue with inheritance
and overwrite”, IEEE Transactions on VLSI Systems, 3(2):245-252, June
1995.

[22] J. Rexford, J. Hall, and K. G. Shin, “A router architecture for real-time
point-to-point networks”, Proceedings of International Symposium on
Computer Architecture, pp. 237-246, May 1996.

[23] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi, “De-
sign and implementation of a priority forwarding router chip for real-time
interconnection networks”, International Journal on Mini and Microcom-
puters, 17(1):42-51, 1995.

[24] D. Verma, H. Zhang, and D. Ferrari, “Delay jitter control for real-time
communication in a packet switching network”, Proceedings of IEEE
TriCom’91, pp. 35-43, April 1991.

[25] H. Zhang and D. Ferrari, “Rate-controlled service disciplines”, Journal
of High Speed Networks, vol. 3, no. 4, pp. 389-412, 1994.

[26] L. Zhang, “VirtualClock: a new traffic control algorithm for packet
switching networks”, ACM Transactions on Computer Systems, vol. 9,
no. 2, pp. 101-124, May 1991.

[27] Y. Chen and J. S. Turner, “Dynamic Queue Assignment in a VC queue
Manager for Giggabit ATM Networks”, Proceedings of the IEEE ATM
Workshop, 1998.

[28] V. N. Rao and V. Kumar, “Concurrent Access to Priority Queues”, In
IEEE transactions of Computers, vol.37, Dec 1988.

[29] S. K. Prasad, S. I. Sawant, “Parallel Heap: A Practical Priority Queue for
Fine to Medium-Grained Applications on Small Multiprocessors”, The
Seventh Symposium on Parallel and Distributed Processing, San Antonio,
TX 1995.

