Fast and Scalable Priority Queue Architecture for High-Speed Network Switches

Ranjita Bhagwan, Bill Lin
Center for Wireless Communications
University of California, San Diego

Abstract -1n this paper, we present afast and scalable pipelined priority
queue architecture for usein high-performance switches with support for
fine-grained quality of service (QoS) guarantees. Priority queues are used
to implement highest-priority-first scheduling policies. Our hardware ar-
chitecture is based on a new data structure called a Pipelined heap, or
P-heap for short. Thisdata structure enablesthe pipelining of the enqueue
and dequeue operations, thereby allowing these operations to execute in
essentially constant time. In addition to being very fast, the architecture
also scalesvery well to alarge number of priority levels and to large queue
sizes. We give a detailed description of this new data structure, the asso-
ciated algorithms and the corresponding hardware implementation. We
have implemented this new architecture using a 0.35 micron CMOS tech-
nology. Our current implementation can support 10 Gb/sconnectionswith
over 4 billion priority levels.

I. INTRODUCTION

Future packet-switched integrated-service networks are ex-
pected to support awide variety of real-time applications with
diverse quality of service (QoS) requirements. These real-
time applications have stringent performance requirements in
terms of average throughput, end-to-end delay and cell-loss
rate. These requirements must be satisfied at extremely high
speeds without compromising on network utilization.

To provide for QoS guarantees in packet-switched networks,
a number of service disciplines have been proposed, includ-
ing [8], [24], [9], [10], [26], [5]. [6], [23], [19], [18], [11], [12],
[7]. Many of these service disciplines are based on a prioriti-
zation of the network resourcesto match different QoS require-
ments. In these schemes, packets are assigned priority values
and are transmitted in a highest-priority-first order?.

To implement this priority-based scheduling policy, priority
gueues can be used to maintain areal-time sorting of the queue
elements in a decreasing order of priorities. Thus, the task of
highest-priority-first scheduling can be reduced to a simple re-
moval of the top queue element. However, to maintain thisreal-
time sorting at link speeds, a fast hardware priority queue im-
plementation is essential.

In the literature, several hardware-based sorted priority
gueue architectures have been proposed: calendar queues [1],
binary-tree-of-comparators-based priority queues [21], [22],
shift-register-based priority queues [2], [3], [23], and systolic-
array-based priority queues [14], [15], [17]. All of these
schemes have one or more shortcomings. The calendar queues,
for example, can only accommodate a small fixed set of priority
values since a large priority set would require extensive hard-

IService disciplines based on th Earliest-Deadline-First scheme can be
mapped to the highest-priority-first scheduling order, i.e., an earlier deadline
would translate to a higher priority, while alater deadline would map to alower
priority value

ware support. The other three classes of architectures, based
on binary-trees-of-comparators, shift-registers, and systolic ar-
rays, are all generally difficult to scale because the hardware
complexity is dependent on the worst-case queue size: each
gueue element requires a separate comparator datapath and sep-
arate register storage.

In this paper, a new pipelined priority queue architecture is
described. The architecture is based on a novel data structure
called aPipelined-heap, or P-heap for short. Thisdatastructure
is similar to a conventional binary heap [4]. In the literature,
several parallel algorithms have been proposed to make binary
heap enqueue and degueue operations work in constant time
([28], [29]), but these schemes are based on multi-processor
software implementationswith OS support for datalocking and
inter-process messaging. We believe implementing these in
hardware is both non-trivial and expensive. Our approach has
modified the binary heap in a manner to facilitate the pipelin-
ing of the enqueue and dequeue operations while keeping the
hardware complexity low, thereby allowing these operationsto
execute in essentially constant time.

Our current implementation is designed to support atotal link
rate of 10 Gh/s, which can correspondto either asingle OC-192
connection or a combination of lower speed connections.

In addition to being very fast, our priority queue architecture
also scales very well with respect to both the number of prior-
ity levels and the queue size. Our current implementation can
support 232 (over 4 billion) priority levels using a 32-bit prior-
ity field. Instead of requiring a separate comparator datapath
for each queue element, the number of comparator datapaths
needed in our pipelined architectureis|ogarithmic to the queue
size. In addition, the storage required for the queue elements
can beefficiently organizedinto on-chip SRAM modules. Also,
our current implementation can support unlimited buffer sizes.
Using a 0.35 micron CMOS technology, all the priority queue
management functions, including the necessary SRAM com-
ponents, can be implemented in a single application-specific
integrated circuit.

The remainder of this paper is organized as follows. In Sec-
tion I, we describe briefly the queue manager model for which
the P-heap has been devised. In Section 111, we describe the P-
heap data structure and in Section |V, its enqueue and degqueue
algorithms. In Section V, we describe the pipelined operation of
the P-heap. In Section VI, hardware implementation and mem-
ory organization issues are discussed. Section VII shows the
hardware implementation results using a 0.35 micron CMOS
technology.

Il. THE QUEUE MANAGER

From switch—t———————|Ext. Memory Controller || un:
link

. ueue

Priority [C(ogntroller Cell Data

Assign- Store
ment i
Unit -} P-heap Free Slot

M anager List

Fig. 1. The output queue manager

To support the operations of the P-heap, a dynamic queue
manager is required for each port of the switch. In an output-
gueued switch, the queues can be maintained dynamically as
described in [27]. We use a similar model in our approach,
where each output queue is maintained using an Output Queue
Manager, as shown in Figure 1. The Output Queue Manager
consists primarily of aPriority Assignment Unit, aP-heap Man-
ager and a Queue Controller. The Priority Assignment Unit
stamps the incoming packets with a certain priority, which is
decided depending upon the scheduling algorithm in use. The
P-heap Manager containsthe P-heap priority queue. Each of the
elementsin the P-heap holds a priority value, and it is on these
valuesthat the queueis sorted. The Queue Controller maintains
alookup tablewith entries corresponding to each priority value.
Each entry consists of a pointer to alist of packets of the same
priority. We refer to thislist as a priority list. Thus our imple-
mentation is one of “ per-priority queueing” rather than per-flow
gueueing, and ismoregeneral inthe sensethat it can handle dif-
fering priorities within the same flow. It should be noted that at
any point of time, the P-heap only contains the priority values
for which the priority list is non-empty, i.e., it containsonly the
active priority values.

When a new packet needs to be inserted into the queue, the
Priority Assignment Unit stamps the packet with a suitable pri-
ority value. The Queue Controller determines whether a prior-
ity list already exists for the stamped priority value. If it does,
it simply adds the new packet to the corresponding priority list.
However, if the list does not exist, the Queue Controller cre-
ates a new priority list. It also signals the P-heap manager to
perform an enqueue operation, which inserts the new prior-
ity value into the P-heap in a sorted manner. This is done to
make sure that the highest priority stays at the top of the P-heap
so that whena dequeue of a packet is required, the priority list
with the highest priority can be accessed.

When a packet needs to be removed from the queue, the P-
heap Manager determinesthe non-empty priority list of highest
priority by looking at the topmost element of the P-heap and
sends this priority value to the Queue Controller. The Queue
Controller accesses the corresponding priority list and removes

Token Array (T) Binary Array (B)

operation value position 1

Level 1

Level 2

Level 3

Level 4

1 2 3 45 6 7 8 9 10 11 12 13 14 15

16]ufwfs]7]7[s[2] [1]s] []

4131 01 2 01001011

value

capacity

Fig. 2. The P-heap data structure

asingle packet fromit. If this causes the priority list to become
empty, the P-heap Manager inititates a procedure caled de-
queue which removes the topmost element from the P-heap,
while making sure that the P-heap remains sorted.

The former discussion is a brief note on the working of the
gueue manager. In this paper, however, we concentrate on the
P-heap data structure and the operations on it and the following
sections give a detailed explanation of the same.

I1l. THE P-HEAP DATA STRUCTURE

A known data structure for maintaining priority queues is
the binary heap [4]. Its enqueue and dequeue operations use
O(log(n)) time, where n is the size of the heap, and cannot
be easily pipelined. However, it takes a very simple hardware
implementation to emulate a binary heap. Keeping thisfact in
mind, we designed the Pipelined Heap or the P-heap, which,
while preserving the ease of hardware implementation of the
conventional binary heap, alows pipelined implementation of
priority queue operations, providing, in effect, constant-time
operations.

The Pipelined heap or the P-heap data structure P can be
defined asatuple (B, T') where both B and T" are array objects.
B, whichwerefer to asthe P-heap binary array, isthe structure
which stores the sorted priority values. It can be viewed as a
complete binary tree, as shown in Figure 2. Thelength of B is
given by

length(B)y=2' -1 1 € Z*

where [is the number of levels in the tree represented by
B. For example, in Figure 2, [= 4 and hence the number of
elements in the binary array B, or the number of nodes in the
binary tree it represents, is 2% — 1, or 15. This data structure
is in fact very similar to the conventional binary heap. The
differencelies in the fact that a binary heap’'s size may vary as
long as it stays an almost complete binary tree. In contrast, the
size of B isfixed.

Theroot of B is B[1], and given the index ¢ of any node in
B, the indices of its parent and children can be determined in
the following way:

parent(i) = |i/2]
left(i) = 2i
right(i) =2+ 1

In therest of the paper, we refer to anodein B with index i as
Bli]. We formally define the ji* level of B, L;, as the set of
nodes given by

Ly ={Bli]| 2" <i<2 -1}

Another difference between B and a binary heap data struc-
ture lies in the contents of each node in the tree. Whilein a
binary heap, the nodes contain just the value on which the heap
is sorted, a node of B, say BJi|, contains three fields as given
below:
o Bli].active: thisis a boolean field which is set to true if
the node BJi] is filled with a valid priority value (the node is
active). Itisset to false if the nodeis empty, or inactive.
o Bli].value: if the node is active, this field holds the actual
priority value.
 Bli].capacity: this field contains the number of inactive
nodes in the sub-tree rooted at Bi].
In Figure 2, the active nodes are shown shaded while the inac-
tive nodes are left unshaded. The following property is satisfied
by all nodesin B.

If B[i] isan ancestor of B3], then

Bli].capacity > B[j].capacity.

We defineatrio for every nodein B asfollows: Theit* trio
of B, A;, isdefined as the set of nodes

{Bli], Blle ft(i)], Blright(i)]}

A conventional binary heap satisfies the heap property, that
is, for every node apart from the root, the value of the parent of
the node will always be greater than or equal to the value of the
node itself. A similar property holds for the binary array of a
P-heap which we refer to as the P-heap Property. The P-heap
property has to be satisfied by every node B(i] of B except the
leaves. It can be summarized as follows:

P-heap Property : Let B[i] be a nodein B and B[j] be an
immediate (left or right) child of BJ[i]. Then,

1. BJi].active A B[j].active = Bli].value > B[j].value
2. Blj]-active = Bli].active
For example, in Figure 2, B[1].value is 16, while B[2].value

is 14. This satisfies property 1. Also, no active node has an
inactive parent. This conformswith property 2.

The P-heap property 1 makes sure that the highest priority
valueis awaysintheroot of B, i.e., in B[1].value.

The array object T', called the token array, is aso shown in
Figure 2. The length of the token array is exactly equal to I,
which we formalize here as

length(T)=1 1 € Z*

For example, in Figure 2, the value of [is 4. The length of the
token array is also 4. The element T'[¢] is associated with the
level L; of B. For example, T'[1] is associated with level 1 of
B, which is the root. The purpose of the token array is to aid
the pipelined operation of the P-heap. Each element T'[i] of the
token array also comprises of threefields. They are:

o T'[i].operation: thisfield holds an instruction, depending
on the operation to be executed at level L ; of the P-heap. It is
useful in the pipelined implementation of P-heaps.

o T'[i].value: Thisfield may hold apriority value that needsto
beinsertedinto B.

o T'[i].position: thisfield can hold theindex of anode at level
L; of B.

The significance of these fields is addressed in the next two
Sections.

IV. PRIORITY QUEUE OPERATIONS ON THE P-HEAP

The motivation behind defining a new priority queue data
structureis to be able to pipeline the enqueue and dequeue op-
erationson it. The conventional binary heap operations, though
very simple to implement, executein O(log(n)) stepswhere n
isthe number of elementsin the heap, and they cannot be easily
pipelined. On the other hand, architectures like the systolic ar-
ray can be pipelined, but have extremely high hardwarerequire-
ments. Our purpose is to design a modified heap data structure
and associate algorithms with it, which while being smple and
easy to implement, can be easily pipelined to provide constant
time priority queue operation at low hardware costs. The fol-
lowing algorithms have been developed keeping this objective
in mind.

A. The enqueue operation

To engueue a new value into B, we need to find an inactive
node in B. We do this by traversing a valid path from the root
to aleaf of B, whereavalid path is defined as follows:

A valid path B[i1] — Bliz] — --- — B[i;] where B[i;] €
L; andi; = parent(i;j+1), isapathin B where

VBli;], Blij].capacity > 0.

Since the capacities of all the nodes in the valid path are
greater than O, there exists at least one inactive nodein it. Fig-
ure 3 shows all the valid paths in the given binary array. In this
example, there are atotal of five valid pathsin B.

The enqueue operation first writes the new vaue into
T[1].value, sets T'[1].position to 1 and travels through a valid
path by making up to ! calls to a core procedure called the

Fig. 3. Anexample of abinary array B with five valid paths

local-enqueue. This procedure takes as input j, denot-
ing the level L; of B. The enqueue first céls local-
enqueue(l). The local -enqueue agorithm worksin the
following way:
«» The position and value fields of the element in T'[;] are read.
We refer to them asi and v respectively.
o if B[i] isinactive, v is Simply written into B[i].value, mak-
ing BJi] active. This reduces the number of inactive nodes
in the sub-tree rooted at B[i] by 1. This number is stored
in Bli].capacity, which is therefore decremented by 1. The
local-enqueue operation completes, and since the new
value has found a place in B, the enqueue operation may be
stopped too.
« If BJi] is active and the value v is greater than that of B[],
the two are swapped. This step does not violate the P-heap
properties as we know that for A;, if al the nodes in it are
active,

Bli].value > Blleft(i)].value

Bli].value > Blright(i)].value
and therefore

v > Bli].value = v > Blleft(i)].value

v > Bli].value = v > B[right(i)].value

« Thevaluein T'[j] ismoved downto T'[j + 1].value.

o Thecapacity of Blleft(i)]isread. If itisgreater than zero, it
means that there are some inactive nodes in the sub-tree rooted
at Blleft(i)], and B[left(i)] can therefore be part of the valid
path to be traversed. The index left(i) is written into T[j +
1].position, so that in the next iteration of enqueue, acall to
the procedure 1local-enqueue(j+1) may be madeto examine
Ayeyi(s) for an inactive node.

« If the capacity of the left child is zero, the capacity of
Blright(i)] must be non-zero 2 , and the index right(i) is
written into T'[j + 1].position, so that in the call to procedure
local-enqueue(j+1), A, 55y May be examined for an in-
active node.

2|f thisisnot the case, it implies that the queue isfull and our algorithm leads
to avalue being dropped from the priority queue.

procedure local-enqueue(j)
begin
i <= T'[j].position;
v <= T[j].value;
if Bi].value = false
Bli].value <= v;
Bli].active <= true;
Decrement Bli].capacity;
return done;
dsif T'[j].value > Bli].value
Swap T'[j].value, Bli].value;
Move T'[j].value to T[j + 1].value;
end if;
if B[left(i)].capacity > 0
T[j + 1].position < left(i);

se
T'[j + 1]).position = right(i);
endif,
return not_done;
end procedure;

Fig. 4. Thelocal-enqueue agorithm.

The agorithm followed by 1ocal-enqueue is shown in
Figure 4.

The local-enqueue procedureis called up to [times be-
forethe enqueue can complete. Thisis because the valid path
stretches from the root of B to a leaf of B, and is therefore |
nodeslong. We may have to traverse the path starting from the
root right till the leaf nodeto find an inactive node, which would
be accomplished by making I calls to the 1ocal-enqueue
procedure. It can a so be observed that any instance of 1ocal-
enqueue works on a single trio. This is a significant point
which shall be referred to later in the section on the P-heap
pipeline.

Going back to the enqueue operation, it sets T'[1].value to
the new valueto beinserted, and T'[1].position to 1. Following
this, local-enqueue(l), local-enqueue(?),..., local-
enqueue(l) may be executed. An example is shown in
Figure 5. The new value 9 is stored in T'[1].value, while
T[1].position is set to 1. The operation Local-enqueue(l)
is then executed (Figure 5 (a)). Since 9 is smaller than
Bl1].value,i.e. 16, thereisno swap. The new value 9 is moved
down to T'[2].value. The capacity of B[2] is examined, and is
found to by equal to 1 since B[10] is inactive. T'[2].position
is therefore set to the index 2. The execution of local-
enqueue(1) completes.

Now, local-enqueue(2) is executed (Figure 5 (b)).
T'[2].value and T'[2].position, which have the values 9 and 2
respectively, are read. The value of B[2] is read and is found
to be 14. T'[2].value, whichis 9, is smaller than 14, and so the
two values are not swapped. The value 9 is moved down fur-
ther to T'[3]. The capacity of B[4] is examined and is found to
be 0. Thisimplies that there are no inactive nodes in the sub-
tree rooted at B[4]. Therefore, the index of the right child of
BJ2], i.e. 5iswritten into T'[3].position, ending the execution
of local-enqueue(2).

local-enqueue(3) isnow executed, as shownin Figure 5
(c). The value and position fields of T'[3] are read, which are

index value position 1

index value position 1

Fig. 5. Anexample of the enqueue procedure

procedure enqueue(V)
begin
T[1].value <= V;
T(1].position <= 1,
whilej <l do
temp < local-enqueue(j);
if temp = done
return;
else
j<i+1
end if;
end while
end procedure;

Fig. 6. The enqueue agorithm.

found to be 9 and 5 respectively. The value 9 is compared with
B[5].value, i.e. 7. Since 9 is larger, the two are swapped.
T'[3].value now holds the value 7 and it is moved down to
T'[4].value. The capacity of B[10], the left child of B[5], is
examined. Itisfound to be 1 and so the index 10 is written into
T'[4].position.

During the execution of 1ocal-enqueue(4), shownin Fig-
ure 5 (d), it is found that B[10] is inactive, and so the value of
T'[4] which is 5, is written directly into the node B[10] and its
capacity is reduced to 0. The P-heap, at the end of the en-
queue, is shown in Figure 5 (€). The algorithm followed by
the enqueue operationisgivenin Figure 6.

B. Thedequeue Operation

The dequeue operation extracts B[1].value from the P-
heap, since it has the highest priority value, making B[1] in-
active and hence increasing the capacity of B[1] by one. The
children of B[1], however, may be active, thus violating the P-
heap property 2 within the 1¢ trio, A;. We need to push down
the inactive node to the lower levels till the P-heap property is
maintained throughout B. To sort the trio, we use a procedure
caled the local -dequeue. Thisproceduretakes asinput 7,

Procedure 1local-dequeue(y)
begin
i <= T'[j].positon,;
if both Bleft(i)], Blright(i)] areinactive
return done;
end if;
Read the values of the active nodes among Blle ft(i)]
and B[right(i)];
Determine the node B[k] with largest value V;
Make Bli] active;
Bli].walue < V;
Make Blk] inactive;
Increment B[k].capacity;
T[j + 1].position < k;
return not_done;
end procedure;

Fig. 7. local-dequeue agorithm.

index value position 1 index value position 1

(d) local-dequeue(3)

Fig. 8. The P-heap dequeue operation

indicating thelevel L; of B. Theinitial stepsto sort the P-heap
areto set T'[1].position to 1, increment B[1].capacity and call
local-dequeue(l). The operation local-dequeue(y)
operates as described below:

o T'[j].position isread into ¢. The index ¢ corresponds to an
inactive node Bi].

« If both the child nodes of BJ[i] are inactive, property 2 is sat-
isfied, and the dequeue operation may halt.

« Otherwise, at least one of the two child nodesis active. The
values of the active nodes are read.

« Letussay that B[k] isthe node with the larger value v of the
two child nodes. B[] is made active and the value v is written
intoit, while B[k] is madeinactive. In other words, the inactive
node is pushed down from position i to k. This increases the
number of inactive nodes in the sub-tree rooted at B[k] by 1.
Blk].capacity is thereforeincremented by 1.

« Theindex k iswritten into T'[j + 1].position for future use,

procedure dequeue
begin
j< L
maz_value <= B[1].value;
Bl1].active < false;
Increment B[1].capacity;
whilej < ldo
temp < local-dequeue(y);
if temp = done
return;
else
j<i+1
end if;
end while;
end procedure;

Fig. 9. The dequeue algorithm

when local-dequeue(j + 1) iscalled.

Now, since the node BJ[k] is inactive, the P-heap property 2
might be violated in the trio A. This situation can be recti-
fied by calling procedure 1ocal -dequeue(j + 1). It reads
T'[j + 1].position, which is k and moves the inactive node fur-
ther downif required. Thus, by makingupto! callsto 1ocal -
dequeue, we can ensure that the P-heap properties are satis-
fied throughout B.

An example is shown in Figure 8. The top-most value, 16
isfirst removed (Figure 8 (a)) and B[1] is made inactive, while
its capacity is increased by one. T'[1].position is set to 1 and
local-dequeue(l)iscalled, asshownin Figure 8 (b). The
operation sorts A; by moving the inactive node from BJ[1]
down to B[2], which has a larger value than B[3]. The value
14 ismoved from BJ2] to B[1], making B[1] active. The index
of the new inactive node, 2, iswritten into T'[2].position.

Now, local-dequeue(2) is executed, shown in Figure 8
(c), sothat A, may be sorted to satisfy the P-heap property. The
value of B[4], i.e. 8, is moved up to B[2], while the inactive
node moves further down to B[4]. The index 4 is written into
T[3].position.

Finally, as shown in Figure 8 (d), 1ocal-dequeue(3) is
executed which causes the inactive node to move down to B[9],
while B[4] is filled up with the value 4. Since B[9] is a |eaf
node, its being inactive does not violate the P-heap properties.
Figure 8 (e) shows what B looks like at the end of the de-
queue. The codefor the dequeue operationisshownin Fig-
ure9.

C. The enqueue-dequeue operation

The P-heap data structureis built to accommodate a new pri-
ority queue operation, the enqueue-dequeue, which allows
simultaneous enqueue and dequeue to occur in the P-heap. The
process is similar to the dequeue. The differenceis that in
the first step, instead of removing the value of the top node
and making it inactive, we remove the value and replace it by
the new value V' to be inserted into the queue. This may vi-
olate P-heap property 1 within A;. To sort the heap and sat-
isfy the P-heap properties, the enqueue -dequeue makesup
to!l calsto the core procedure 1ocal -enqueue-dequeue,

Procedure local -enqueue-dequeue(j)
begin
i <= T'[j].position;
if both Blleft(i)], Blright(i)] areinactive
return done;
endif;
Read the values of the active nodes among all three nodes
inA;;
Determine the node B[k] with largest value;
ifi==k
return done;
end if;
Swap Bli].value, Blk].value;
T[j + 1].position < k;
return not_done;
end procedure;

Fig. 10. local-enqueue-dequeue agorithm.

which takes asinput j, alevel in B.

Figure 10 gives the algorithm. T'[1].position, asin al other

operations, is set to 1. The steps given below follow.

» Thevalueof T'[j].position isread intoq.

« If both child nodes of B[i] areinactive, the P-heap properties
are satisfied and the enqueue -dequeue operation may halt.
« If not, the active values are read from the three nodesin A ;.

» Thenode B[k] with the largest value v is determined.

« if thisnodeis BJi], the P-heap properties are satisfied and the
procedure enqueue - dequeue may halt.

» Otherwise, the values of B[i] and B[k] are swapped.

« Theindex k is written into T'[j + 1].position to aid the call
to local -enqueue-dequeue(j+1) inthe next iteration.

Since B[k] may now have a value smaller than its original
value, A, might violate the P-heap properties. Thusupto! exe-
cutions of the local -enqueue - dequeue procedure might
be necessary to restore order.

An example is shown in Figure 11. The highest value
16 is dequeued, i.e removed from B[1], and it is replaced
with the new value, 9 (Figure 11 (a)). local-enqueue-
dequeue(1) isnow called, which causes 9 to be swapped with
the value of BJ[2], i.e. 14 (Figure 11 (b)). The index 2 is writ-
ten into T'[2].position. Thisis followed by a call to local-
enqueue-degqueue(2), shown in Figure 11 (c), where it is
observed that the P-heap properties are already satisfied within
A, and no swaps need to be made. Hence the enqueue-
dequeue operation stops. Figure 12 gives the algorithm fol-
lowed by the enqueue -dequeue operation.

V. PIPELINING THE P-HEAP OPERATIONS

The operations explained in the previous section have all
been designed keeping in mind the need to efficiently pipeline
them for constant-time priority queue operation. In thissection,
we describe the P-heap pipeline, and how all three operations
can be executed on the P-heap in constant-time.

Thelocal proceduresare al constant-time operationsand ac-
cess at most the three nodes in atrio, which belong to two con-
secutive levels of B, and two nodes in 7', which belong to the
same two levels of T'. For example, 1ocal -dequeue(3) ac-

index value position

Fig. 11. The P-hesp enqueue-dequeue operation

procedure enqueue-dequeue(V)
begin
j< L
maz_value <= B[1].value;
Bl1].value < V;
while j <l do
temp < local-enqueue-dequeue(j);
if temp = done
return;
else
j<i+1
end if;
end while;
end procedure;

Fig. 12. The enqueue-dequeue agorithm

cesses only L3 and Ly of B, and nodes T'[3] and T'[4] of T" .
Similarly, local-enqueue(2) accesses L, and L3 of B, and
T'[2] and T'[3] of T". We show in the remainder of this section
that several instances of the three local operations can be exe-
cuted simultaneously in a pipelined manner.

We define the it pipeline window «; as

o; = {Li,Li+1,T[Z'],T[Z'+].]} 1<5< l

o = {L;, TIil} j=1

So, we can say that 1ocal-dequeue(yj) accesses only a;
and that 1ocal-enqueue(k) accesses only ay.

We refer back to the definition of the token array T, where
we introduced the field T'[j].operation. Thisfield holds one of
four instructions,

{enqg, deq, edq, nop}

one each for enqueue, dequeue, enqueue-dequeue
and no-op. For example, if T'[3].operation = dequeue, it
means that the 1ocal-dequeue(3) procedure, used by the
dequeue operation, needs to be executed on a3 of the P-heap.
We also define function f (i) as shown in Figure 13.

function f(3)
begin
if T'[i].operation = enq
local-enqueue(i);
dsif T'[i].operation = deq
local-dequeue(i);
dsif T'[i].operation = edq
local-enqueue-dequeue(i);

end if;
end function;
Fig. 13. Thefunction f.
1t operation 2nd operation 39 operation
Cyclel f(1)
Cycle2 f(2)
Cycle3 | f(3) | | £(1) |
Cycle4 | f(4) | | f(2) |
Cycle5 | f(3) | | f(1) |
Cycle6 | f(4) | | f(2) |
Cycle7 f(3)
Cycles f(4)

Fig. 14. Working of the P-heap pipeline

Thefunction f (i) executes one of the three local procedures
on pipeline window «; depending on the operation field of
T[i]. So it can be said that f(i) accesses only pipeline win-
dow «;, sinceit only executes local -dequeue(i), local -
enqueue(i) or local -enqueue-dequeue(i), al of which
access only a;.

Based on this definition of f, we make the following claims.

Claim1: If we can access every level of B in parallel, the
functions f(1), f(3),..., f(i),.... f2{| 5]} +1), wherei isan
odd number, can be executed simultaneously.

Proof: If every level of B isindependently accessible, all
operations for which o;; N, = ¢ can be executed simultane-
oudy. a1, az,..., Qg =1 341 satisfy this property.

Hence, the functions f (1), £(3)., f(i),... fC{| 5]} + 1),
where1 is an odd number, can be executed simultaneously. B

Claim2: If we can access every level of B in pardldl, the
operations f(2), f(4)..., f(i),.. f(2{[£]}), wherei isan even
number, can be executed simultaneously.

Proof: similar to that of claim 1.

|

We define a P-heap cycle in the following way:

A P-heap cycle is the maximum time required to execute any
instance of the three local operations.

Having made these claims and definitions, we now show how

index value position

index value position 1

Fig. 15. The pipelined operation of a 4-level P-heap

the P-heap pipeline works on a four-level P-heap in Figure 14.
In the Figure, three operations are executed one after the other.
Incycles1and 2, only the 15t operationisactive. Incycle3, the
2nd operation starts alongside, with the simultaneous operation
of f(3) (executed by the 1t operation) and f(1) (executed by
the 27 operation). The functions f(2) and f(4) are executed
simultaneously in cycle 4. In cycle 5, the 15 operation ends
while the 37 starts. The two functions (1) and f(3) are exe-
cuted together, at the same time. This goes on till the pipeline
isfinally flushed. Each pipeline stageis therefore 2 cycleswide
and two consecutiveinstances of f comprise the pipeline stage.
A new operation can be started on the P-heap every two cycles.

We now give an example of the P-heap pipeline in action.
Figure 15 shows a four-level P-heap with the following opera-
tions executed on it.

enqueue(9);
enqueue(4);

dequeue,;
enqueue-dequeue (2);

Cycle 1: The new value to be enqueued, 9, is written into
T[1].value (Figure 15 (&). T[1].position is set to 1 and
T[1].operation is set to eng. Thisisfollowed by execution of
f(1), whichin turn executes 1ocal -enqueue(l). Thevalue
9, which is smaller than 16, is pushed down to T'[2].value. The
left branch of B istaken, since the left sub-tree has an inactive
node. T'[2].operation isnow set to eng.

Cycle 2. local-enqueue(2) is executed in this cycle
(Figure 15 (b)). Since 9 is smaller than B[2].value, which
is 14, it is moved down to the next level, i.e. T[3].value.
BJ[2].capacity, which was originaly 1, is decremented to O.
The right branch is taken in this case, since the left sub-tree
does not have an inactive node. T'[3].operation is set to eng.

Cycle 3: The operation enqueue(9) continues at a3 of B
(Figure 15 (c)). Since 9 is larger than 7, the value of B[5], the
two are swapped and 7 is moved down to T'[4].value, while
T'[4].operation is set to eng. At the sametime, enqueue(4)
starts operating on «;. Since 4 is smaller than 16, it is just
moved down to T'[2].value. The capacity of B[2] isfoundto be
0 since it was decremented by the enqueue(9) operation. So
theright branch istaken for future comparison. T'[2].operation
is set to enqg. Thus the two operations that run simultaneously
are f(1) and f(3). This conformswith claim 1.

Cycle 4: The enqueue(9) completes with the execution of
f(4) (Figure 15 (d)), having found an inactive nodein B[10] to
insert the value 7. At the same time, the function f(2) , called
by the enqueue(4) operation, continueson a5 of B. Since 4
is smaller than B[3].value which is 10, there is no swap. The
value 4 is moved down to T'[3].value and the left branch is
taken. T'[3].operation is set to eng. NO new operation starts
at this stage.

Cycle 5: f(3) is executed by the operation engqueue(4)
(Figure 15 (e)). It finds an inactive node, B[6], and writes
the value 4 into it, thus ending this enqueue operation.
Since there is n0 local-enqueue hecessary at level Ly,
T'[4].operation is set to nop. At the sametime, the dequeue
operation starts working on «; with the procedure 1ocal -
dequeue(l) caled by f(1). Thehighest value, 16, isremoved
from B[1] and it is made inactive. Since the largest of the val-
uesin thetrio A; is 14, it is moved up to B[1], while B[2] is
made inactive. T'[2].operation is set to deq.

Cycle 6: The dequeue executes f(2) (Figure 15 (f)), in
which since B[2] isinactive, A, isfound to violate the P-heap
property. The value of B[5], 9, is moved up to B[2] while B[5]
is rendered inactive. T'[3].operation is set to deq.

Cycle 7: The dequeue continues with the execution of
f(3), where the value of B[10], 7, is moved up to B[5]
so that the P-heap property is maintained in A (Figure 15
(9)). T'[4].operation is set to nop, since the dequeue can
be stopped at this stage. The next operation, enqueue-
dequeue(2), starts alongside by executing f(1). The highest
value 14 is removed from B[1] and replaced by 2. Since the P-
heap property isviolated in A, the value 2 of B[1] is swapped
with the value of B[3], which is 10. T'[2].operation is set to

1] @
H
e =
—= |0 [
SRAM Bank P-heap pro-

cessor

Fig. 16. The P-heap Manager (PHM), with the external DRAM module and
the Priority Assignment Unit.

edq.

Cycle8: Thedequeue completesin the previouscycle, and
so the only operation running now isthe enqueue -dequeue
(Figure 15 (h)). Since 2 is found to be smaller than the value
of B[6], i.e. 4, the two are swapped. This operation completes
right here.

Figure 15 (i) shows the P-heap after the completion of these
pipelined operations.

From the example, it is clear that we can start a new oper-
ation on the P-heap every two cycles. Effectively, we achieve
constant time enqueue, dequeue and enqueue-dequeue
operations using the P-heap pipelined priority queue.

VI. HARDWARE REQUIREMENTS

In this section, the hardware necessary to implement P-heaps
in a high-speed packet switch is described. The P-heap array
objects B and T' are implemented using the following:

« Thebinary array B is implemented not as one memory ele-
ment, but as! SRAM elements, where ! is the number of levels
in B. All the nodesin level i are maintained in SRAM-i. Si-
multaneous memory accesses can be performed to the different
levels of B, as each one is stored in a different SRAM. This
satisfies the condition specified in claims 1 and 2.

o Thetoken array T is represented by [registers, one for each
level of B.

The priority management functions and the SRAMs required
for implementing the P-heap are integrated onto the P-heap
Manager(PHM).

The PHM is shown in Figure 16. It holds two sub-modules:
the SRAM Bank and the P-heap Processor Engine. While the
SRAM Bank is a collection of the] SRAMSs, the P-heap Pro-
cessor Engine consists of the datapath and controller used to
implement the three P-heap operations. The token array 1" is
apart of the datapath. The controller holds ! comparators, one
for each level of the P-heap, so that different local operations
may occur at different levels of the P-heap without any resource
hazards.

The P-heap therefore requires I SRAMS, [registers and [
comparators for constant-time operation. Thisisin contrast to
the systalic array, which, for the same queue length, requires

2!*1 registersand 2! comparators. For example, a 1024 packet-
long systolic array requires 2048 registers, 1024 comparators
and additional combinational logic per packet in the queue.
The hardware requirements increase linearly with the size of
the queue. The P-heap of the same size requires only 10 com-
parators, as opposed to 1024 needed by the systolic array. The
additional combinational logic requiredin aP-heapis per level.
The hardware required for the P-heap increases logarithmically
with the size of the queue. The P-heap requires 10 memory el-
ements. Since the 1st few levels of the P-heap are very small
(L1 has only one element, Lo has 2, L3 has 4, etc), they can
be stored in registers, while the larger levels can be stored in
SRAMs.

Currently available on-chip SRAMs can have sizes up to 256
KB. Using these memory modules along with 32 bit-wide pri-
ority values, the P-heap can support about 217 different active
priority lists at any given time, while allowing for unlimited
buffer space.

VII. IMPLEMENTATION RESULTS

We implemented the P-heap processor engine using the
TSMC 0.35 micron CMOS standard-cell technology, along
with the memory access times for a 256 KB synchronous
SRAM.

Table| showsthe P-heap pipeline stage time, which isthe ef-
fective time required to execute asingle enqueue, dequeue
or an enqueue-dequeue operation, for different sizes of the
priority field. These values were obtained by calculating the
size of a P-heap Pipeline cycle defined earlier and multiplying
it by 2, sincethisisthe time required between any two consec-
utive P-heap operations.

TABLEI
VARIATION OF P-HEAP PIPELINE STAGE TIME WITH NUMBER OF BITSIN
THE PRIORITY VALUE FIELD

Priority | P-heap Pipeline
(bits) | Stage Time(ns)
4 13.94
8 15.10
12 16.52
16 18.84
20 21.16
24 23.48
28 25.80
32 28.12

From these figures, we conclude that with 32 bit priorities,
the P-heap architecture can schedule one packet every 28.12
ns, i.e., a the rate of 35.56 Mpps. For an ATM cell switch,
with cell sizes of 424 bits, this rate would trandlate to allowing
link speeds of 15.08 Gb/s, which is quite a bit higher than our
objective of meeting the 10 Gb/s OC-192 rates.

An advantage of the P-heap is that the pipeline stage time
does not change with increasing size of the queue. The P-heap
pipeline stage width is independent of the actual length of the
gueue. Theincrease in queue length only increases the amount
of hardware required, and that too, on alogarithmic scale.

VIII. CONCLUSIONS

In this paper, we presented a fast and scalable pipelined pri-
ority queue architecture that can effectively support constant
time enqueue and dequeue operations. The presented P-heap
data structure and the associated algorithms are well-suited for
hardware implementation. In addition to being very fast, the
architecture also scales very well to alarge number of priority
levelsand to large queue sizes. Our current implementation can
support as many as 232 priority values and can vary in size to
up to 2!7 entries. The P-heap can therefore be used efficiently
in a high-speed packet switch providing fine-grained quality-
of-service guarantees.

REFERENCES
[1

R. Brown, “Calendar queues: afast O(1) priority queue implementation
for the simulation of event set problem”, Communications of the ACM,
31(10):1220-1227, October 1988.

J. Chao, “A novel architecture for queue management in the ATM net-
work”, |EEE Journal on Selected Areasin Communications, 9(7):1110-
1118, September 1991.

J. Chao and N. Uzun, “A VLSI sequencer chip for ATM traffic shaper and
gueue management”, 1EEE Journal of Solid-Sate Circuits, 27(11):1634-
1643, November 1992.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to algo-
rithms’, McGraw-Hill Book Company, ISBN 0-07-013143-0.

R. L. Cruz, “Quality of service guarantees in virtua circuit switched
networks’, 1EEE Journal on Selected Areasin Communications, vol. 13,
no. 6, August 1995.

R. L. Cruz, “Service burstiness and dynamic burstiness measures. a
framework”, Journal of High Speed Networks, vol. 1, no. 2, pp. 105-127,
1992.

A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a fair
queueing algorithm”, Proceedings of ACM SSGCOMM'89, pp. 1-12,
1989.

D. Ferrari and D. Verma, “A scheme for real-time channel establishment
in wide-area networks’, |EEE Journal on Selected Areasin Communica-
tions, vol. 8, no. 4, pp. 368-379, April 1990.

N. R. Figueira and J. Pasquale, “Leave-in-time: anew service discipline
for control of real-time communications in a packet-switching network”,
Proceedings of ACM SSGCOMM’ 95, August 1995.

N. R. Figueiraand J. Pasquale, “Rate-function scheduling”, Proceedings
of INFOCOM' 97, pp. 1065-1074, April 1997.

S. J. Golestani, “Congestion-free communication in high-speed packet
networks’, |EEE Transactions on Communications, vol. 39, no. 12, pp.
1802-1812, December 1991.

C. Kamanek, H. Kanakia, and S. Keshav, “Rate controlled servers for
very high-speed networks’, Proceedings of IEEE GLOBECOM' 90, vol.
1, pp. 12-20, 1990.

R. Katz, “Contemporary Logic Design”, Addison-Wesley/Benjamin-
Cummings Publishing Co., Redwood City, CA, 1993

P. Lavoie and Y. Savaria, “A systolic architecture for fast stack sequen-
tial decoders’, |EEE Transactions on Communications, 42(2-4):324-334,
Feb-Apr 1994.

C. E. Leiserson, “Systolic priority queue”, Caltech Conference on VLS,
pp. 200-214, January 1979.

N. McKeown, M. I1zzard, A. Mekkittikul, B. Ellersick, M. Horowitz, “The
tiny tera: a packet switch core”, Hot Interconnects Symposium, Stanford
University, August 1996.

(2

(3

(4
(9]

(6l

(8

(9

(10

(1]

(12]

(13

[14]

(19]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]
[26]

[27]

(28]

[29]

S. W. Moon, K. G. Shin, and J. Rexford, “Scalable hardware prior-
ity queue architectures for high-speed packet switches’, Proceedings of
Real-Time Applications Symposium, June 1997.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated service networks: the multi-node
case”, Proceedings of IEEE INFOCOM'93, vol. 2, pp. 521-530, March
1993.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated service networks: the single-node
case’, |EEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344-
357, June 1993.

C. Partridge et a., “A 50-Gb/s IP router”, |EEE/ACM Transactions on
Networking, vol. 6, no. 3, pp. 237-248, June 1998.

D. Picker and R. Fellman, “A VLS priority packet queue with inheritance
and overwrite”, |IEEE Transactions on VLS Systems, 3(2):245-252, June
1995.

J. Rexford, J. Hall, and K. G. Shin, “A router architecture for rea-time
point-to-point networks’, Proceedings of International Symposium on
Computer Architecture, pp. 237-246, May 1996.

K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi, “De-
sign and implementation of apriority forwarding router chip for real-time
interconnection networks”, International Journal on Mini and Microcom-
puters, 17(1):42-51, 1995.

D. Verma, H. Zhang, and D. Ferrari, “Delay jitter control for real-time
communication in a packet switching network”, Proceedings of |EEE
TriCom' 91, pp. 35-43, April 1991.

H. Zhang and D. Ferrari, “Rate-controlled service disciplines’, Journal
of High Speed Networks, vol. 3, no. 4, pp. 389-412, 1994.

L. Zhang, *“VirtuaClock: a new traffic control agorithm for packet
switching networks’, ACM Transactions on Computer Systems, vol. 9,
no. 2, pp. 101-124, May 1991.

Y. Chen and J. S. Turner, “Dynamic Queue Assignment in a VC queue
Manager for Giggabit ATM Networks’, Proceedings of the IEEE ATM
Workshop, 1998.

V. N. Rao and V. Kumar, “Concurrent Access to Priority Queues’, In
| EEE transactions of Computers, vol.37, Dec 1988.

S. K. Prasad, S. 1. Sawant, “Parallel Heap: A Practical Priority Queue for
Fine to Medium-Grained Applications on Small Multiprocessors’, The
Seventh Symposium on Parallel and Distributed Processing, San Antonio,
TX 1995.

