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ABSTRACT

We analyze the asymptotic behavior of long-tailed traffic sources under the Generalized Pro-
cessor Sharing (GPS) discipline. GPS-based scheduling algorithms, such as Weighted Fair
Queueing, have emerged as an important mechanism for achieving differentiated quality-of-
service in integrated-services networks.
Under certain conditions, we prove that in an asymptotic sense an individual source with long-
tailed traffic characteristics is effectively served at a constant rate, which may be interpreted
as the maximum feasible average rate for that source to be stable. Thus, asymptotically, the
source is only affected by the traffic characteristics of the other sources through their average
rate. In particular, the source is essentially immune from excessive activity of sources with
‘heavier’-tailed traffic characteristics. This suggests that GPS-based scheduling algorithms
provide an effective mechanism for extracting high multiplexing gains, while protecting indi-
vidual connections.
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1 Introduction

Statistical data analysis has provided convincing evidence of long-tailed (subexponential [20])

traffic characteristics in high-speed communication networks. Early indications of the long-

range dependence of Ethernet traffic, attributed to long-tailed file size distributions, were

reported in [29]. Long-tailed characteristics of the scene length distribution of MPEG video

streams were explored in [21, 26].

These empirical findings have encouraged theoretical developments in the modeling and queue-

ing analysis of long-tailed traffic phenomena. Despite significant progress, however, the practi-

cal implications are not yet thoroughly understood, in particular issues relating to control and

priority mechanisms in the network. To gain a better understanding of those issues, the present

paper analyzes the queueing behavior of long-tailed traffic sources under the Generalized Pro-

cessor Sharing (GPS) discipline. As a design paradigm, GPS is at the heart of commonly-used

scheduling algorithms for high-speed switches, such as Weighted Fair Queueing, see for instance

Parekh & Gallager [32, 33].

A basic approach in the analysis of long-tailed traffic phenomena is the use of fluid models with

long-tailed arrival processes (e.g. On/Off sources with long-tailed On-periods). Fluid models

are closely related to the ordinary single-server queue, thus bringing within reach the classi-

cal results on regularly-varying (Cohen [18]) or subexponential (Pakes [31], Veraverbeke [35])

behavior of the service and waiting-time distribution in the GI/G/1 queue. Those results are

immediately applicable in the case of a single long-tailed arrival stream, see Boxma [10] and

Choudhury & Whitt [16]. They are also of use when a single long-tailed stream is multiplexed

with exponential streams, see Boxma [11], Jelenković & Lazar [24], and Rolski et al. [34].

The queueing analysis of fluid models with multiple long-tailed arrival streams is fundamentally

more difficult due to the complex dependency structure in the aggregate arrival process, see

for instance Heath et al. [22]. Recently, Agrawal et al. [2] obtained interesting partial results.

General bounds were derived in Choudhury & Whitt [16]. Boxma [11] and Jelenković &

Lazar [24] studied the limiting process obtained by multiplexing an infinite number of On-Off

sources with regularly-varying and subexponential On-periods, respectively. We refer to Boxma

& Dumas [14] for a comprehensive survey on fluid queues with long-tailed arrival processes.

See also Jelenković [23] for an extensive list of references on subexponential queueing models.

As mentioned above, the impact of priority mechanisms on long-tailed traffic phenomena has

received relatively little attention. Some recent studies have investigated the effect of the

scheduling discipline on the waiting-time distribution in the classical M/G/1 queue, see for

instance Anantharam [3]. For FCFS, it is well-known [18] that the waiting-time tail is reg-

ularly varying of index 1 − ν iff the service time tail is regularly varying of index −ν. For

LCFS preemptive resume as well as for Processor Sharing, the waiting-time tail turns out to

be regularly varying of the same index as the service time tail [12], [39], although with different
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pre-factors. In the case of Processor Sharing with several customer classes, Zwart [38] recently

showed that the sojourn time distribution of a class-i customer is regularly varying of index −νi

iff the service time distribution of that class is regularly varying of index −νi, regardless of the

service time distributions of the other classes. In contrast, for two customer classes with ordi-

nary non-preemptive priority, the tail behavior of the waiting- and sojourn time distributions

is determined by the heaviest of the (regularly-varying) service time distributions [1, 13].

In the present paper, we consider the Generalized Processor Sharing (GPS) discipline. GPS-

based scheduling algorithms, such as Weighted Fair Queueing, have emerged as an important

mechanism for achieving differentiated quality-of-service in integrated-services networks. The

queueing analysis of GPS is extremely difficult. Interesting partial results for exponential

traffic models were obtained in Bertsimas et al. [5], Dupuis & Ramanan [19], Massoulié [30],

Zhang [36], and Zhang et al. [37].

Here, we focus on non-exponential traffic models. Extending the results from [7], we show

that, under certain conditions, an individual source with long-tailed traffic characteristics is

effectively served at a constant rate, which may be interpreted as the critical mean rate for

stability. This is strongly reminiscent of the reduced-load equivalence established by Agrawal

et al. [2]. In particular, the source is largely insensitive to excessive activity of sources with

‘heavier’-tailed traffic characteristics. This insensitivity property starkly contrasts with a recent

result in [9], which shows that in other scenarios a source may be strongly affected by the

activity of ‘heavier’-tailed sources, and may inherit their traffic characteristics, causing induced

burstiness. The sharp dichotomy in qualitative behavior illustrates the crucial importance of

the weight parameters in protecting individual connections while extracting multiplexing gains.

The remainder of the paper is organized as follows. In Section 2, we present a detailed model

description. In Section 3, we briefly discuss some stability issues, and introduce a stability-

related notion which will play a crucial role in the analysis. General lower and upper bounds

on the buffer content of an individual source are derived in Section 4. We then show, in

Section 5, that for long-tailed traffic characteristics, the lower and upper bounds have the

same asymptotic behavior, yielding exact asymptotic results. In Section 6, we make some

concluding remarks.

2 Model description

Consider N sources sharing a link of unit rate. Traffic from the sources is served in accordance

with the Generalized Processor Sharing (GPS) discipline, which operates as follows. There are

weights φ1, . . . , φN associated with each of the sources, with
N∑

i=1
φi = 1. Denote by Vi(t) the

buffer content of source i at time t. Let Vi be a stochastic variable with as distribution the

limiting distribution of Vi(t) for t→∞ (assuming it exists). If all the sources are backlogged at
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time t, i.e., Vi(t) > 0 for all i = 1, . . . ,N , then source i is served at rate φi. If some of the sources

are not backlogged, however, then the excess capacity is redistributed among the backlogged

sources in proportion to their respective weights. We refer to Dupuis & Ramanan [19] for a

formal description of the evolution of the buffer content process.

Denote by Ai(r, t) the amount of work generated by source i during the time interval (r, t],

and assume that Ai is a stationary process. Define Bi(r, t) as the amount of service received

by source i during (r, t]. Then the following identity relation holds

Vi(t) = Vi(r) + Ai(r, t) −Bi(r, t) (1)

for all 0 ≤ r ≤ t.

Remark 2.1 Although we use the term ‘buffer content’ to indicate the workload, we do not

make any particular assumptions where traffic physically resides while waiting to be served.

Using flow control algorithms, backlogged sources may for example be instructed to feed traffic

into the network only at a rate comparable to the actual service rate so as to avoid excessive

buffer overflow due to congestion.

Before describing the traffic model, we first introduce some further notation. For any two real

functions g(·) and h(·), we use the notational convention g(x) ∼ h(x) as x → ∞ to denote

limx→∞ g(x)/h(x) = 1, or equivalently, g(x) = h(x)(1 + o(1)) as x → ∞. For any stochastic

variable X with distribution function F (·), EX <∞, denote by F r(·) the distribution function

of the residual lifetime of X, i.e., F r(x) = 1
EX

∫ x
0 (1− F (y))dy.

The classes of long-tailed, subexponential, intermediately regularly varying , and dominatedly

varying distributions are denoted with the symbols L, S, IR, and DR, respectively. The

definitions of these classes are given in Appendix A.

For any c ≥ 0, denote by V c
i (t) := sup

0≤r≤t
{Ai(r, t) − c(t − r)} the buffer content of source i at

time t if it were served in isolation at rate c (assuming V c
i (0) = 0). Denote by ρi the traffic

intensity of source i. For c > ρi, let Vc
i be a stochastic variable with as distribution the limiting

distribution of V c
i (t) for t→∞. Define W c

i (x) := P{Vc
i ≤ x} and W̄ c

i (x) := 1−W c
i (x). In the

next sections, we will analyze the asymptotic behavior of sources i where the function W̄ c
i (·)

satisfies the following three properties for some value of σi > ρi.

Property 2.1 For any c ∈ (ρi, σi), W c
i (·) ∈ L, i.e.,

lim
x→∞

W̄ c
i (x− y)
W̄ c

i (x)
= 1, for all real y.
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Property 2.2 For any c ∈ (ρi, σi), W c
i (·) ∈ DR, i.e.,

lim sup
x→∞

W̄ c
i (ηx)

W̄ c
i (x)

= Gc
i (η) <∞, for some real η ∈ (0, 1)

(which implies the property holds for all η > 0).

Property 2.3 For any c ∈ (ρi, σi),

lim sup
x→∞

W̄ c−θ
i (x)

W̄ c
i (x)

= Hc
i (θ) <∞, for some real θ ∈ (0, c − ρi)

(which implies the property holds for all θ > 0 small enough where we assume lim
θ→0

Hc
i (θ) = 1).

We now describe two traffic scenarios where the function W̄ c
i (·) satisfies the above three prop-

erties.

2.1 Instantaneous arrivals

Here, a source generates instantaneous traffic bursts according to independent renewal pro-

cesses. The interarrival times between bursts of source i are generally distributed with mean 1/λi.

The burst sizes of source i have distribution Bi(·) with mean βi. Thus, the traffic intensity of

source i is ρi = λiβi. Let Br
i be a stochastic variable with distribution Br

i (·).

The next result is immediate from Pakes [31].

Theorem 2.1 If Br
i (·) ∈ S, and ρi < c, then

W̄ c
i (x) ∼ ρi

c− ρi
P{Br

i > x} as x→∞.

Thus, for any finite σi > ρi, W̄ c
i (·) satisfies Properties 2.1 and 2.3 if Br

i (·) ∈ S, and Property 2.2

if Br
i (·) ∈ DR∩ L.

2.2 On-Off processes

Here, a source generates traffic according to independent On-Off processes, alternating between

On- and Off-periods. The Off-periods of source i are generally distributed with mean 1/λi.

The On-periods of source i have distribution Ai(·) with mean αi. While On, source i produces

traffic at a constant rate ri, so the mean burst size is αiri. The fraction of time that source i

is Off is

pi =
1/λi

1/λi + αi
=

1
1 + λiαi

.

The traffic intensity of source i is

ρi = (1− pi)ri =
λiαiri

1 + λiαi
.
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Let Ar
i be a stochastic variable with distribution Ar

i (·).

The next result is established in Jelenković & Lazar [24].

Theorem 2.2 If Ar
i (·) ∈ S, and ρi < c < ri, then

W̄ c
i (x) ∼ pi

ρi

c− ρi
P{Ar

i > x/(ri − c)} as x→∞.

Thus, for any ri > σi > ρi, W̄ c
i (·) satisfies Property 2.1 if Ar

i (·) ∈ S, Property 2.2 if Ar
i (·) ∈

DR∩ L, and Property 2.3 if Ar
i (·) ∈ IR.

3 Stability issues

We first briefly discuss some stability issues. If
N∑

i=1
ρi < 1, then all the sources will be stable,

since the GPS discipline is work-conserving. If
N∑

i=1
ρi > 1, then at least one of the sources

will be unstable, but others may still be stable. We now identify which sources are stable and

which ones are unstable. To avoid technical subtleties, source i is considered ‘stable’ if the

mean service rate is ρi, see also Remark 3.1 below. For the ease of presentation, we assume

the sources are indexed such that

ρ1

φ1
≤ . . . ≤ ρN

φN
.

Proposition 3.1 With the above ordering, the set of stable sources is S = {1, . . . ,K∗}, with

K∗ = max
k=1,...,N

k :
ρk

φk
≤

1−
k−1∑
j=1

ρj

N∑
j=k

φj

 .

Proof

See Appendix B.

2

It may be verified that K∗ = N (i.e. all the sources receive a stable service rate) iff
N∑

i=1
ρi ≤ 1.

By definition, each of the stable sources i ∈ S receives a mean service rate ρi. Each of the

unstable sources i 6∈ S receives a mean service rate φiR < ρi, with

R =
1∑

j 6∈S

φj

1−
∑
j∈S

ρj

 .
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To understand the above formula, notice that the stable sources consume an average aggre-

gate rate
∑
j∈S

ρj , leaving an average rate 1−
∑
j∈S

ρj for the unstable sources, which is shared in

proportion to the weights φi.

We now introduce a stability-related notion which will play a crucial role in the analysis.

Define γiE as the mean rate at which source i would receive service if the sources j ∈ E were

to continuously claim their full share of the link rate (while the remaining sources j 6∈ E still

acted ‘normally’). (With minor abuse of notation we write γij for γi{j}.) Now observe that

the sources j ∈ E would in fact show such greedy behavior if they were unstable (which they

need not be in reality). So we may determine γiE by forcing the sources j ∈ E into the set

of unstable sources, and then apply Proposition 3.1. The set of sources which would receive a

stable service rate if the sources j ∈ E were to continuously claim their full share of the link

rate, is then SE = {1, . . . ,K∗E} \E, with

K∗E = max
k=1,...,N

k :
ρk

φk
≤

1−
k−1∑
j=1

ρjI{j 6∈E}

N∑
j=k

φjI{j 6∈E} +
∑
j∈E

φj

 .

Thus, γiE = ρi for all i ∈ SE, and γiE = φiRE < ρi for all i 6∈ SE, with

RE =
1∑

j 6∈SE

φj

1−
∑
j∈SE

ρj

 .

To explain the above formula, observe that the sources j ∈ SE by definition receive an average

aggregate rate
∑

j∈SE

ρj , leaving an average rate 1 −
∑

j∈SE

ρj for the sources j 6∈ SE , which is

shared in proportion to the weights φi.

Remark 3.1 For later purposes, we find it convenient to label source i as ‘stable’ if the mean

service rate is ρi. In fact, the latter condition is necessary for stability in the usual sense, but

not entirely sufficient. A sufficient condition is ρi < γii. Indeed, if the buffer of source i never

emptied, then it would receive a mean service rate γii, so that γii is the critical mean rate for

stability.

4 Bounds

We now derive some general bounds which we will use in the next section to analyze the

asymptotic behavior of the buffer content distribution. We focus on a particular yet arbitrary

source i for which we assume ρi < γii to ensure stability.
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For any set E ⊆ {1, . . . ,N}, define

γiE(δ) = (1− δ)γiE = (1− δ)ρi for all i ∈ SE ,

and

γiE(δ) = φiRE(δ) for all i 6∈ SE,

with

RE(δ) =
1∑

j 6∈SE

φj

1−
∑
j∈SE

γjE(δ)

 =
1∑

j 6∈SE

φj

1− (1− δ)
∑

j∈SE

ρj

 .

Notice that for E 6= ∅,
N∑

i=1
γiE(δ) = 1 for all values of δ.

We first state a basic lemma which will play a central role in deriving the bounds.

Lemma 4.1 For any set E ⊆ {1, . . . ,N}, S ⊇ SE,∑
j∈S

Bj(r, t) ≥
∑
j∈S

inf
r≤s≤t

{Aj(r, s) + γjE(δ)(t− s)},

for all δ ≥ δ0 for some δ0 < 0.

Proof

The proof follows immediately from combining Lemma’s C.1 and C.2.

2

We now present a lower bound for the buffer content distribution of source i. For any j 6= i,

define U δ
ij(r) := sup

s≥r
{γji(δ)(s − r) − Aj(r, s)}. For δ > 0 such that γij(δ) < ρj , let Uδ

ij be a

stochastic variable with as distribution the distribution of U δ
ij(r) (which does not depend on r).

Lemma 4.2 (Lower bound) For δ > 0 sufficiently small,

P{Vi > x} ≥ P{Vγii(δ)
i −

∑
j 6=i

Uδ
ij > x}. (2)

Proof

Notice that
N∑

j=1
Bj(r, t) ≤ t− r, so that Bi(r, t) ≤ t− r −

∑
j 6=i

Bj(r, t) for all 0 ≤ r ≤ t.

Thus, from (1), for any 0 ≤ r ≤ t,

Vi(t) ≥ Ai(r, t)− (t− r) +
∑
j 6=i

Bj(r, t). (3)
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By definition, Si ⊆ {1, . . . ,N} \ {i}. Hence, from Lemma 4.1, for any δ ≥ 0,∑
j 6=i

Bj(r, t) ≥
∑
j 6=i

inf
r≤s≤t

{Aj(r, s) + γji(δ)(t − s)}. (4)

Plugging (4) into (3), for any δ ≥ 0 and 0 ≤ r ≤ t,

Vi(t) ≥ Ai(r, t) − (t− r) +
∑
j 6=i

inf
r≤s≤t

{Aj(r, s) + γji(δ)(t − s)}

= Ai(r, t) − γii(δ)(t − r)−
∑
j 6=i

γji(δ)(t − r) +
∑
j 6=i

inf
r≤s≤t

{Aj(r, s) + γji(δ)(t − s)}

≥ Ai(r, t) − γii(δ)(t − r) +
∑
j 6=i

inf
s≥r
{Aj(r, s)− γji(δ)(s− r)}

= Ai(r, t) − γii(δ)(t − r)−
∑
j 6=i

U δ
ij(r). (5)

Denote r∗ := arg sup
0≤r≤t

{Ai(r, t) − γii(δ)(t − r)}, so that V
γii(δ)
i (t) = Ai(r∗, t) − γii(δ)(t − r∗).

Substituting r = r∗ in (5) then yields

Vi(t) ≥ V
γii(δ)
i (t)−

∑
j 6=i

U δ
ij(r
∗).

From the definition it is easily seen that for δ > 0, γji(δ) < γji = ρj for all j ∈ Si, and

γji(δ) > γji with γji(δ) ↓ γji for δ ↓ 0 for all j 6∈ Si. In particular, γii(δ) > ρi, because γii > ρi.

Since γji < ρj for j 6∈ Si, j 6= i, we also have that for δ sufficiently small, γji(δ) < ρj for j 6∈ Si,

j 6= i. Hence, for δ sufficiently small, γji(δ) < ρj for all j 6= i, so that Uδ
ij is well-defined.

Also, note that r∗, V
γii(δ)
i (t) only depend on Ai(s, t), and are independent of U δ

ij(s), s ≥ 0

(fixed). Hence, for δ > 0 sufficiently small,

P{Vi(t) > x | r∗} ≥ P{V γii(δ)
i (t)−

∑
j 6=i

U δ
ij(r
∗) > x | r∗}

= P{V γii(δ)
i (t)−

∑
j 6=i

Uδ
ij > x | r∗}.

Thus, in the stationary regime, (2) holds.

2

We now present an upper bound for the buffer content distribution of source i.

Lemma 4.3 (Upper bound) For δ > 0 sufficiently small,

P{Vi > x} ≤ P{VγiE(−δ)
i +

∑
j∈SE

V(1+δ)ρj
j > x for all sets E 3 i with γiE > ρi}. (6)
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Proof

Since source i is stable, the distribution of Vi does not depend on the values of Vj(0). Hence,

we may assume Vj(0) = 0 for all j = 1, . . . ,N .

Then from (1),

Vi(t) ≤
∑

j∈SE∪{i}
Vj(t) =

∑
j∈SE∪{i}

{Aj(0, t) −Bj(0, t)}. (7)

From Lemma 4.1, for any δ ≤ δ0,∑
j∈SE∪{i}

Bj(0, t) ≥
∑

j∈SE∪{i}
inf

0≤s≤t
{Aj(0, s) + γjE(−δ)(t− s)}, (8)

for some δ0 > 0.

Substituting (8) into (7), for any δ ≤ δ0,

Vi(t) ≤
∑

j∈SE∪{i}
{Aj(0, t)− inf

0≤s≤t
{Aj(0, s) + γjE(−δ)(t− s)}}

=
∑

j∈SE∪{i}
{Aj(0, t) + sup

0≤s≤t
{−Aj(0, s)− γjE(−δ)(t − s)}}

=
∑

j∈SE∪{i}
sup

0≤s≤t
{Aj(s, t)− γjE(−δ)(t− s)}

=
∑

j∈SE∪{i}
V

γjE(−δ)
j (t)

= V
γiE(−δ)
i (t) +

∑
j∈SE

V
(1+δ)ρj
j (t)

for all sets E 3 i with γiE > ρi.

From the definition it is easily seen that for δ > 0, γiE(−δ) < γiE with γiE(δ) ↑ γiE for δ ↓ 0.

Since γiE > ρi, we have that γiE(−δ) > ρi for δ sufficiently small, and hence VγiE(−δ)
i is

well-defined.

Thus, in the stationary regime, (6) holds for δ > 0 sufficiently small.

2

5 Asymptotic behavior

We now use the bounds from the previous section to determine the asymptotic behavior of the

buffer content distribution. We consider a source i which satisfies Properties 2.1, 2.2, and 2.3

with ρi < γii < σi, and assume the following condition holds.

10



Condition 1 For all sets E 63 i with γiE∪{i} ≤ ρi,

lim
x→∞

∏
j∈E

W̄
ρj(1+δ)
j (x)

W̄ c
i (x)

= 0, for any δ > 0, c ∈ (ρi, σi).

Condition 1 postulates that the tail of min
j∈E

Vρj(1+δ)
j is lighter than the tail of Vc

i for all sets

E 63 i with γiE∪{i} ≤ ρi. In case of instantaneous arrivals, Theorem 2.1 then implies that the

tail of min
j∈E

Br
j must then be lighter than the tail of Br

i . Similarly, in case of On/Off processes,

Theorem 2.2 indicates that the tail of min
j∈E

Ar
j must then be dominated by the tail of Ar

i . The

inequality γiE∪{i} ≤ ρi means that source i could be pushed into instability if the sources j ∈ E

continuously claimed their full share of the capacity. Thus, Condition 1 guarantees that only

sources with combined lighter tails could potentially drive source i into instability. In other

words, sources with combined heavier tails cannot drive source i into instability.

As a special but important case, consider a scenario where some of the sources have regularly

varying tails, while the others have exponential tails. Specifically, suppose that W̄ c
i (·) is regu-

larly varying with index 1 − νi for the sources i ∈ R, R ⊆ {1, . . . ,N}. For the other sources

j 6∈ R, W̄ c
j (x) = o(x−ζ) for any c > ρj and some ζ > 0. In this case, for the sources i ∈ R,

Condition 1 may be rewritten as follows.

Condition 1’

For all sets E ⊆ R, E 63 i, with γiE ≤ ρi,
∑
j∈E

(νj − 1) > νi − 1.

We now state the main theorem of the paper.

Theorem 5.1 Consider a source i which satisfies Properties 2.1, 2.2, and 2.3 with ρi < γii <

σi. If Condition 1 holds, then

P{Vi > x} ∼ P{Vγii
i > x} as x→∞.

Before giving the formal proof of Theorem 5.1, we first provide an intuitive interpretation and

discuss the significance of Condition 1.

The result shows that an individual source with long-tailed traffic characteristics is effectively

served at constant rate γii. Remember γii is the mean service rate that source i would receive

if it continuously claimed capacity. This suggests that the most likely scenario for source i to

build a large queue is to generate a large burst, or to experience a long On-period, while the

other sources show average behavior. During that congestion period, source i then receives

service approximately at rate γii.

If Condition 1 does not hold, then there is some set E 63 i with heavier combined tails than

source i and γiE ≤ ρi. We conjecture that the tail behavior of Vi in that case is determined

11



by the set E∗ with the heaviest tails, i.e., lim
x→∞

∏
j∈E

W̄
ρj(1+δ)
j (x)/

∏
j∈E∗

W̄
ρj(1+δ)
j (x) = 0 for all

E 6= E∗ with γiE ≤ ρi. Observe that the tail of Vi is now heavier than when source i were

served in isolation at a stable rate. The most likely scenario for source i to build a large

queue is that the sources j ∈ E∗ generate large bursts, or experience long On-periods, while

the other sources, including source i, show average behavior. Source i then receives service

approximately at rate γiE∗ ≤ ρi, so that the queue will roughly grow at rate ρi − γiE∗ for a

significant period of time.

The conjecture has recently been proved in [9] for the case of N = 2 sources and a class of ar-

rival processes which include regularly varying burst sizes, i.e., 1−Bi(x) ∼ li(x)x−νi as x→∞,

with νi > 1 and li(·) slowly varying functions, i = 1, 2, see the definition in Appendix A. Sup-

pose that ρ1 > φ1, ρ1 + ρ2 < 1, so that ρ2 < φ2. Then γ11 = 1 − ρ2 > ρ1, γ22 = φ2 > ρ2,

γ1{1,2} = φ1 < ρ1, and γ2{1,2} = φ2 > ρ2. Thus Condition 1 holds for source 2, so that if

source 2 satisfies Properties 2.1, 2.2, and 2.3, then P{V2 > x} ∼ P{Vφ2
2 > x} as x→∞. Now

suppose that ν1 > ν2. Then Condition 1 does not hold for source 1, and source 1 inherits the

tail behavior of source 2, regardless of whether or not it satisfies Properties 2.1, 2.2, and 2.3, and

thus experiences heavier tail behavior than when served in isolation. This may be explained as

follows. Note that when source 2 is backlogged, source 1 receives service at rate φ1, so queue 1

will roughly grow at rate ρ1 − φ1. When source 2 is not backlogged, queue 1 will drain at

rate 1 − ρ1. Thus the tail behavior of source 1 is equivalent to the tail behavior of a single

On/Off source served at constant rate 1− ρ1, with peak rate 1−φ1, as On-period distribution

the busy-period distribution of source 2 (which is also regularly varying of index ν2), and frac-

tion Off-time 1−ρ2/φ2. This is also shown for a closely related coupled-processors model in [8].

A special but important case is a scenario where ρi < φi for all i = 1, . . . ,N . It is eas-

ily verified that in that case γii = 1 −
∑
j 6=i

ρj > 1 −
∑
j 6=i

φj = φi > ρi. Also, for all sets

E 63 i, γiE∪{i} =
φi

φi +
∑
j∈E

φj

1−
∑
k 6∈E

ρk + ρi

 >
φi

φi +
∑
j∈E

φj

1−
∑
k 6∈E

φk + φi

 = φi > ρi.

Thus, Condition 1 holds, so that Theorem 5.1 gives P{Vi > x} ∼ P{V
1−
∑
j 6=i

ρj

i > x} as x→∞.

This result can in fact be obtained using a simpler proof technique and under slightly weaker

conditions, see [7] and also Remark 5.1 below.

Now suppose each of the sources were served in isolation. Then the required capacity to achieve

similar tail behavior is
N∑

i=1
γii =

N∑
i=1

(1 −
∑
j 6=i

ρj) =
N∑

i=1
(1 − ρ + ρi) = 1 + (N − 1)(1 − ρ). The

latter quantity may typically be expected to be significantly larger than 1. This suggests that

GPS is effective in extracting high multiplexing gains, while protecting individual connections.

12



Recall that besides stability, i.e., ρi < γii, we also assume σi > γii in Theorem 5.1. In case of

instantaneous arrivals, this assumption is not restrictive. However, in case of On/Off processes,

σi < ri, so that Theorem 5.1 does not apply when ri ≤ γii.

If Condition 1 does not hold, then we expect the tail behavior of Vi in that case is still deter-

mined by the set E∗ as described above. If Condition 1 does hold, however, then we conjecture

that, possibly under certain additional conditions, the tail behavior is determined by the set E∗

with the heaviest tails for which either (i) γiE < ρi, if i 6∈ E or (ii) γiE < ri, if i ∈ E. Observe

that the tail of Vi is now lighter than when source i were served in isolation. The most likely

scenario for source i to build a large queue is still that the sources j ∈ E∗ generate large bursts

or experience long On-periods, while the other sources show average behavior.

We now give the proof of Theorem 5.1.

Proof

(Lower bound) From Lemma 4.2, for δ > 0 sufficiently small and any value of y, using inde-

pendence,

P{Vi > x} ≥ P{Vγii(δ)
i −

∑
j 6=i

Uδ
ij > x}

≥ P{Vγii(δ)
i > x + y,

∑
j 6=i

Uδ
ij ≤ y}

= P{Vγii(δ)
i > x + y}P{

∑
j 6=i

Uδ
ij ≤ y}.

Thus,

P{Vi > x}
P{Vγii

i > x} ≥
P{Vγii(δ)

i > x + y}
P{Vγii(δ)

i > x}
P{Vγii(δ)

i > x}
P{Vγii

i > x} P{
∑
j 6=i

Uδ
ij ≤ y}.

Using the fact that W̄ c
i (·) satisfies Properties 2.1 and 2.3 for c ∈ (ρi, σi),

lim inf
x→∞

P{Vi > x}
P{Vγii

i > x} ≥ lim inf
x→∞

P{Vγii(δ)
i > x}

P{Vγii
i > x} P{

∑
j 6=i

Uδ
ij ≤ y}

= P{
∑
j 6=i

Uδ
ij ≤ y}

/
lim sup

x→∞

P{Vγii
i > x}

P{Vγii(δ)
i > x}

= P{
∑
j 6=i

Uδ
ij ≤ y}/Hγii(δ)

i (γii(δ) − γii)

for δ sufficiently small.
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Letting y →∞ and δ ↓ 0, observing that lim
δ↓0

γii(δ) = γii,

lim inf
x→∞

P{Vi > x}
P{Vγii

i > x} ≥ 1.

(Upper bound) Let us index the sets E 3 i for which γiE > ρi as E0, E1, . . . , EM .

Because ρi < γii, we may assume E0 = {i}.
Hence, from Lemma 4.3, for δ > 0 sufficiently small and any value of y, using independence,

P{Vi > x} ≤ P{VγiE(−δ)
i +

∑
j∈SE

V(1+δ)ρj
j > x for all sets E 3 i with γiE > ρi}

= P{Vγii(−δ)
i +

∑
j∈Si

V(1+δ)ρj
j > x,VγiEm (−δ)

i +
∑

j∈SEm

V(1+δ)ρj
j > x ∀m = 1, . . . ,M}

≤ P{Vγii(−δ)
i > x− y or

∑
j∈Si

V(1+δ)ρj
j > y,

VγiEm (−δ)
i > x/N or ∃jm ∈ SEm : V(1+δ)ρjm

jm
> x/N ∀m = 1, . . . ,M}

≤ P{Vγii(−δ)
i > x− y}+ P{

∑
j∈Si

V(1+δ)ρj
j > y,∃m : VγiEm (−δ)

i > x/N}

+
∑

j1∈SE1
,...,jM∈SEM

P{V(1+δ)ρjm
jm

> x/N ∀m = 1, . . . ,M}

≤ P{Vγii(−δ)
i > x− y}+ P{

∑
j∈Si

V(1+δ)ρj
j > y}

M∑
m=1

P{VγiEm (−δ)
i > x/N}

+
∑

j1∈SE1
,...,jM∈SEM

∏
j∈{j1,...,jM}

P{V(1+δ)ρj
j > x/N}.

Thus,

P{Vi > x}
P{Vγii

i > x} ≤ P{Vγii(−δ)
i > x− y}

P{Vγii(−δ)
i > x}

P{Vγii(−δ)
i > x}

P{Vγii
i > x}

+ P{
∑
j∈Si

V(1+δ)ρj
j > y}

M∑
m=1

P{VγiEm (−δ)
i > x/N}
P{Vγii

i > x/N}
P{Vγii

i > x/N}
P{Vγii

i > x}

+
∑

j1∈SE1
,...,jM∈SEM

∏
j∈{j1,...,jM}

P{V(1+δ)ρj
j > x/N}

P{Vγii
i > x/N}

P{Vγii
i > x/N}

P{Vγii
i > x} .

Using the fact that W̄ c
i (·) satisfies Properties 2.1, 2.2, and 2.3 for c ∈ (ρi, σi),

lim sup
x→∞

P{Vi > x}
P{Vγii

i > x} ≤ Hγii
i (γii − γii(−δ))

+ P{
∑
j∈Si

V(1+δ)ρj
j > y}Gγii

i (1/N)
M∑

m=1

Hγii
i (γii − γiEm(−δ))
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+ Gγii
i (1/N)

∑
j1∈SE1

,...,jM∈SEM

lim sup
x→∞

∏
j∈{j1,...,jM}

P{V(1+δ)ρj
j > x/N}

P{Vγii
i > x/N} .

Now consider a set {j1, . . . , jM} with j1 ∈ SE1, . . . , jM ∈ SEM . By definition, j1 6∈ E1, . . . , jM 6∈
EM , so that {i, j1, . . . , jM} 6= E1, . . . , EM . Consequently, γi{i,j1,...,jM} ≤ ρi. Condition 1 then

implies that

lim sup
x→∞

∏
j∈{j1,...,jM}

P{V(1+δ)ρj
j > x/N}

P{Vγii
i > x/N} = 0.

Hence,

lim sup
x→∞

P{Vi > x}
P{Vγii

i > x} ≤ Hγii
i (γii − γii(−δ))

+ P{
∑
j∈Si

V(1+δ)ρj
j > y}Gγii

i (1/N)
M∑

m=1

Hγii
i (γii − γiEm(−δ)).

Letting y →∞ and δ ↓ 0, observing that lim
δ↓0

γii(−δ) = γii,

lim sup
x→∞

P{Vi > x}
P{Vγii

i > x} ≤ 1.

2

Remark 5.1 Notice that neither Property 2.2 nor Condition 1 were actually used in establish-

ing the lower bound in the proof of Theorem 5.1. Now suppose that there is a set E 3 i such

that γiE > ρi and for any c ∈ (ρi, σi), limx→∞ W̄
(1+δ)ρj
j (x)/W̄ c

i (x) = 0 for all j ∈ SE. In that

case, Property 2.2 and Condition 1 are not needed in obtaining the upper bound either, so that

Properties 2.1 and 2.3 are sufficient for Theorem 5.1 to hold. Two extreme cases where there

is such a set E 3 i are: (i) ρi < φi with E = {1, . . . ,N}; (ii) limx→∞W
(1+δ)ρj
j (x)/W c

i (x) = 0

for all j ∈ Si with E = {i}.

6 Conclusion

We analyzed the asymptotic behavior of long-tailed traffic sources under the Generalized Pro-

cessor Sharing (GPS) discipline. GPS-based scheduling algorithms, such as Weighted Fair

Queueing, have emerged as an important mechanism for achieving differentiated quality-of-

service in integrated-services networks.

Under certain conditions, we proved that in an asymptotic sense an individual source with long-

tailed traffic characteristics is effectively served at a constant rate, which may be interpreted

15



as the maximum feasible average rate for that source to be stable. Thus, asymptotically, the

source is only affected by the traffic characteristics of the other sources through their average

rate. In particular, the source is essentially immune from excessive activity of sources with

‘heavier’-tailed traffic characteristics. This suggests that GPS-based scheduling algorithms pro-

vide an effective mechanism for extracting high multiplexing gains, while protecting individual

connections.
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Zwart.

References

[1] Abate, J., Whitt, W. (1997). Asymptotics for M/G/1 low-priority waiting-time tail prob-

abilities. Queueing Systems 25, 173-233.

[2] Agrawal, R., Makowski, A.M., Nain, Ph. (1999). On a reduced load equivalence for a fluid

model under subexponential assumptions. Queueing Systems, to appear.

[3] Anantharam, V. (1997). Scheduling strategies and long-range dependence. Technical re-

port, University of California, Berkeley.

[4] Asmussen, S., Schmidli, H., Schmidt, V. (1999). Tail probabilities for non-standard risk

and queueing processes with subexponential jumps. Adv. Appl. Prob. 31, 422-447.

[5] Bertsimas, D., Paschalidis, I.Ch., Tsitsiklis, J.N. (1997). Large deviations analysis of the

generalized processor sharing policy. Report Boston University.

[6] Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987). Regular Variation (Cambridge Uni-

versity Press, Cambridge, UK).
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[20] Goldie, C.M., Klüppelberg, C. (1997). Subexponential distributions. In: A Practical Guide

to Heavy Tails: Statistical Techniques and Applications, eds. R.J. Adler, R.E Feldman,

M.S. Taqqu (Birkhäuser), 435-459.
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A Definitions

Definition 1 A distribution function F (·) on [0,∞) is called long-tailed (F (·) ∈ L) if

lim
x→∞

1− F (x− y)
1− F (x)

= 1, for all real y.

Definition 2 A distribution function F (·) on [0,∞) is called subexponential (F (·) ∈ S) if

lim
x→∞

1− F 2∗(x)
1− F (x)

= 2,

where F 2∗(·) is the 2-fold convolution of F (·) with itself, i.e., F 2∗(x) =
∫ x

0 F (x− y)F (dy).

The class of subexponential distributions was introduced by Chistyakov [15]. The definition

is motivated by the simplification of the asymptotic analysis of the convolution tails. A well-

known subclass of S is the class R of regularly-varying distributions (which contains the Pareto

distribution):

Definition 3 A distribution function F (·) on [0,∞) is called regularly varying of index −ν

(F (·) ∈ R−ν) if

F (x) = 1− l(x)
xν

, ν ≥ 0,

where l : R+ → R+ is a function of slow variation, i.e., limx→∞ l(ηx)/l(x) = 1, η > 1.

The class of regularly-varying functions was introduced by Karamata [27]; a key reference is

Bingham et al. [6]. It is easily seen that R ⊂ S ⊂ L. Examples of subexponential distributions

which do not belong to R include the Weibull, lognormal, and Benktander distributions (see

Klüppelberg [28]). A useful extension of R is the class IR of intermediately regularly-varying

distributions:

Definition 4 A distribution function F (·) on [0,∞) is called intermediately regularly varying

(F (·) ∈ IR) if

lim
η↑1

lim sup
x→∞

1− F (ηx)
1− F (x)

= 1.
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A further extension is the class DR of dominatedly varying distributions (see Cline [17]; R ⊂
IR ⊂ (DR ∩ L) ⊂ S):

Definition 5 A distribution function F (·) on [0,∞) is called dominatedly varying (F (·) ∈ DR)

if

lim sup
x→∞

1− F (ηx)
1− F (x)

<∞, for some real η ∈ (0, 1).

B Stability issues

We now identify which sources are stable and which ones are unstable. Source i is considered

‘stable’ if the mean service rate is ρi. For the ease of presentation, we assume the sources are

indexed such that

ρ1

φ1
≤ . . . ≤ ρN

φN
.

Define S as the set of stable sources. Denote by γi the mean service rate for source i (assuming

it exists).

We have γi ≤ ρi for all i = 1, . . . ,N , with equality for all i ∈ S. Also, if j 6∈ S, then
γi

φi
≤ γj

φj

for all i = 1, . . . ,N .

In particular, we have
γi

φi
=

γj

φj
for any pair of sources i, j 6∈ S, so γi = φiR for all i 6∈ S for

some R ≥ 1. To determine R, observe that
N∑

i=1
γi = 1 if S 6= {1, . . . ,N}, which gives

R =
1∑

j 6∈S

φj

1−
∑
j∈S

ρj

 .

We first prove a lemma that characterizes the structure of the set S.

Lemma B.1 With the above ordering of the sources, the set S is of the form {1, . . . ,K} for

some K.

Proof

Suppose not, i.e., there are sources i and j, with i < j, i 6∈ S, and j ∈ S. Then we have γi < ρi,

γj = ρj, and
γi

φi
≥ γj

φj
. Thus,

ρi

φi
>

ρj

φj
, which would contradict the ordering of the sources.

2

We now prove an auxiliary lemma.
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Lemma B.2 With the above ordering of the sources, if

ρk >
φk

N∑
j=k

φj

1−
k−1∑
j=1

ρj

 , (9)

then

ρk+1 >
φk+1

N∑
j=k+1

φj

1−
k∑

j=1

ρj

 . (10)

Proof

First observe the equivalence relation

ρk >
φk

N∑
j=k

φj

1−
k−1∑
j=1

ρj

⇐⇒ ρk >
φk

N∑
j=k+1

φj

1−
k∑

j=1

ρj

 . (11)

The proof then immediately follows from the fact that
ρk

φk
≤ ρk+1

φk+1
.

2

The next proposition now identifies the set of stable sources.

Proposition 3.1

With the above ordering of the sources, the set of stable sources is S = {1, . . . ,K∗}, with

K∗ = max
k=1,...,N

k :
ρk

φk
≤

1−
k−1∑
j=1

ρj

N∑
j=k

φj

 .

Proof

By Lemma B.1, the set S is of the form {1, . . . , L} for some L, so it suffices to show that

L = K∗. First observe that

ρL+1 > γL+1 =
φL+1

N∑
j=L+1

φj

1−
L∑

j=1

ρj

 .

By Lemma B.2 and the definition of K∗, this implies L ≥ K∗.

We also have γL = ρL and
γL

φL
≤ γL+1

φL+1
. Thus,

ρL ≤
φL

φL+1
γL+1 =

φL

N∑
j=L+1

φj

1−
L∑

j=1

ρj

 ,
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which is equivalent to

ρL ≤
φL

N∑
j=L

φj

1−
L−1∑
j=1

ρj

 .

By Lemma B.2 and the definition of K∗, this implies L ≤ K∗.

2

C Basic GPS inequalities

Lemma C.1 Let S ⊆ {1, . . . ,N} be a set and let αj, j ∈ S, be numbers such that

αi

1−
∑
j∈S

φj

φi
≤ 1−

∑
j∈S

αj (12)

for all i ∈ S.

Then ∑
j∈S

Bj(r, t) ≥
∑
j∈S

inf
r≤s≤t

{Aj(r, s) + αj(t− s)}

for all 0 ≤ r ≤ t.

Proof

For given values of r, t, define

v∗ := max
r≤v≤t

{v :
∑
j∈S

Bj(r, v) ≥
∑
j∈S

inf
r≤s≤v

{Aj(r, s) + αj(v − s)}}.

We need to show that v∗ = t. Suppose not, i.e., v∗ < t. Then there must be some source i∗

for which

Bi∗(r, v) < inf
r≤s≤v

{Ai∗(r, s) + αi∗(v − s)}

for all v ∈ (v∗, w∗) for some w∗ > v∗.

Define

u∗ := max
r≤u≤w∗

{u : Bi∗(r, u) ≥ inf
r≤s≤u

{Ai∗(r, s) + αi∗(u− s)}}.

First observe that

Bi∗(u∗, w∗) ≤ αi∗(w∗ − u∗), (13)
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because otherwise

Bi∗(r,w∗) = Bi∗(r, u∗) + Bi∗(u∗, w∗)

> inf
r≤s≤u∗

{Ai∗(r, s) + αi∗(u∗ − s)}+ αi∗(w∗ − u∗)

= inf
r≤s≤u∗

{Ai∗(r, s) + αi∗(w∗ − s)}

≥ inf
r≤s≤w∗

{Ai∗(r, s) + αi∗(w∗ − s)},

contradicting the definition of w∗.

Further observe that

Bi∗(r, u) < inf
r≤s≤u

{Ai∗(r, s) + αi∗(u− s)} ≤ Ai∗(r, u)

for all u ∈ (u∗, w∗), so that source i∗ must be continuously backlogged during the interval

(u∗, w∗).

Hence, by definition of the GPS discipline,

Bi∗(u∗, w∗) ≥
φi∗

φj
Bj(u∗, w∗) (14)

for all j = 1, . . . ,N , and

N∑
j=1

Bj(u∗, w∗) = w∗ − u∗. (15)

Using (13), (14),

∑
j 6∈S

Bj(u∗, w∗) ≤ αi∗

∑
j 6∈S

φj

φi∗
(w∗ − u∗). (16)

By virtue of (12),

αi∗

∑
j 6∈S

φj

φi∗
≤ 1−

∑
j∈S

αj. (17)

From (16), (17),∑
j 6∈S

Bj(u∗, w∗) ≤ (1−
∑
j∈S

αj)(t− s). (18)

Combining (15), (18),∑
j∈S

Bj(u∗, w∗) ≥
∑
j∈S

αj(w∗ − u∗). (19)

By definition,∑
j∈S

Bj(r, u∗) ≥
∑
j∈S

inf
r≤s≤u∗

{Aj(r, s) + αj(u∗ − s)}. (20)
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From (19), (20),∑
j∈S

Bj(r,w∗) =
∑
j∈S

Bj(r, u∗) +
∑
j∈S

Bj(u∗, w∗)

≥
∑
j∈S

inf
r≤s≤u∗

{Aj(r, s) + αj(u∗ − s)}+
∑
j∈S

αj(w∗ − u∗)

=
∑
j∈S

inf
r≤s≤u∗

{Aj(r, s) + αj(w∗ − s)}

≥
∑
j∈S

inf
r≤s≤w∗

{Aj(r, s) + αj(w∗ − s)},

contradicting the definition of v∗, so we must have v∗ = t as required.

2

We now show that αj = γjE(δ), j ∈ S ⊇ SE, satisfy (12) for all δ ≥ δ0 for some δ0 < 0.

Lemma C.2 For any set E ⊆ {1, . . . ,N}, S ⊇ SE,

γiE(δ)

1 −
∑
j∈S

φj

φi
≤ 1−

∑
j∈S

γjE(δ)

for all i ∈ S and δ ≥ δ0 for some δ0 < 0.

Proof

Using the definition of γjE(δ),

1−
∑
j∈S

γjE(δ) = 1−
∑
j∈SE

γjE(δ) −
∑

j∈S\SE

γjE(δ)

= 1−
∑
j∈SE

γjE(δ) −
∑

j∈S\SE

φj∑
k 6∈SE

φk

1−
∑

k∈SE

γkE(δ)



=

1−

∑
k∈S\SE

φk∑
k 6∈SE

φk


1−

∑
k∈SE

γkE(δ)



=

∑
k 6∈SE

φk −
∑

k∈S\SE
φk∑

k 6∈SE

φk

1−
∑

k∈SE

γkE(δ)



=

1−
∑

k∈SE

φk −
∑

k∈S\SE
φk∑

k 6∈SE

φk

1−
∑

k∈SE

γkE(δ)


=

1−
∑
k∈S

φk∑
k 6∈SE

φk

1−
∑

k∈SE

γkE(δ)

 .
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Thus, we need to show that

γiE(δ) ≤ φi∑
j 6∈SE

φj

1−
∑
j∈SE

γjE(δ)

 φi∑
j 6∈SE

φj

1−
∑
j∈SE

(1− δ)ρj


for all i ∈ S.

By definition, the above inequality holds with equality for all i ∈ S \ SE .

From the definition of SE and the equivalence relation (11),

ρi

φi
≤ max

j∈SE

ρj

φj
≤

1−
∑

j∈SE

ρj∑
j 6∈SE

φj

for all i ∈ SE.

Hence, for all i ∈ S and δ ≥ δ0,

γiE(δ) = (1− δ)ρi ≤
φi∑

j 6∈SE

φj

1−
∑
j∈SE

(1− δ)ρj

 ,

for some δ0 < 0.

2
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