
IEEE INFOCOM 2000 1

Effort-limited Fair (ELF) Scheduling for Wireless
Networks

David A. Eckhardt and Peter Steenkiste
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

davide+@cs.cmu.edu, prs+@cs.cmu.edu

Abstract—
While packet scheduling for wired links is a maturing area, scheduling

of wireless links is less mature. A fundamental difference between wired
and wireless links is that wireless media can exhibit substantial rates of
link errors, resulting in significant and unpredictable loss of link capacity.
This capacity loss results in a special challenge for wireless schedulers. For
example, a Weighted Fair Queue (WFQ) scheduler assumes an error-free
link and specifies how flows should share the link capacity. However, this
specification is not sufficient to determine the correct outcome when link
capacity is sharply reduced, because flows that have been allocated the same
weights may differ greatly in their ability to tolerate throughput loss.

In this paper, we first describe the wireless scheduling challenge in terms
of an effort-outcome disconnection. Next we propose a novel notion of fair-
ness for wireless links,effort-limited fairness (ELF), which extends WFQ via
dynamic weight adjustments. ELF guarantees that all flows experiencing an
error rate below a per-flow threshold receive their expected service, defined
as a specified rate for reserved flows or a specified share of best-effort capac-
ity for best-effort flows. After motivating and defining ELF, we present a
practical approximation algorithm, which we evaluate through both trace-
driven simulation and measurement of a prototype wireless radio network
based on the WaveLAN physical layer.

Keywords—Wireless networks, Quality of Service, Scheduling

I. INTRODUCTION

Wireless media can exhibit high, variable error rates that affect
network users in a number of ways. One problem is that many
applications and end-to-end transport protocols perform very
poorly when many packets are lost due to link errors. This
problem has been widely studied and proposed solutions include
modifying end-to-end protocols [1], [2], techniques such as TCP
snooping to avoid undesirable interactions with TCP [3], and
the use of local error recovery to hide the link errors from the
upper layer protocols [4], [5], [6]. A second problem is that link
errors reduce the useful throughput of the link. While a variety
of techniques such as swapping time slots between stations [7],
[8] or adaptive forward error control [9] can reduce the amount
of lost link capacity, some errors will still result in variable link
capacity.

The dynamic capacity of wireless links creates a variety of
problems for both users and network administrators. The obvi-
ous example is supporting reservations. When the capacity of
a link drops significantly, it may no longer be possible for the
link to meet its commitments for reserved bandwidth, raising
the question of which flows should be short-changed. Assume
we use a Weighted Fair Queueing (WFQ) scheduler to allocate
bandwidth to three flow classes (e.g., audio, video, Web). If
the link capacity drops by 50%, a simplistic response would be
to proportionally distribute the remaining capacity (and thus the
loss). While this may seem fair according to a traditional WFQ

model, a network administrator could argue that video is a luxury
and should bear the brunt of the capacity loss, i.e., the audio and
web flows should get preferential treatment when bandwidth be-
comes scarce. Similarly, if we consider a wireless network with
location-dependent errors, we must decide how much extra air
time to assign to high-error stations at the expense of others.

These problems all center on the question of how the sched-
uler should respond to capacity loss. Since capacity loss is a
central issue in wireless link scheduling, it is critical to devise
scheduling abstractions and mechanisms that explicitly consider
and address this issue. We can best capture the requirements
for wireless schedulers by listing properties that the scheduler
should meet. The results in this paper are guided by the following
list of principles: (1) in an error-free environment, the outcome
achieved by a wireless scheduler should be identical to that of
an equivalent wireline scheduler; (2) the amount of capacity loss
suffered by a flow should not be proportional to its bandwidth or
its error rate, but should be configurable through administrative
controls; (3) it must be possible to administratively bound the
amount of capacity that is lost due to location-dependent errors;
(4) in the absence of information to the contrary, flows expe-
riencing equal error rates should experience the same capacity
loss; and (5) capacity unused by one flow should be distributed
“fairly” among other flows. While several of our principles (1,
4, and 5) are similar to those used in other projects [7], [8], the
principles dealing with capacity loss (2 and 3) are unique. These
two principles will guide our design of a new scheduler model
that will allow intuitive control over the effect of capacity loss.

The scheduler model we propose focuses on the insight that,
in a wireless environment, we must distinguish between “effort”
(air time spent on a flow) and “outcome” (actual useful through-
put achieved by the flow). While effort equals outcome in a wire-
line environment, they can be substantially different in a wireless
environment. Imagine that a wireline scheduler evaluates a set
of flow requirements and determines that a certain flow would be
satisfied by 10% of the error-free link capacity. If that flow be-
longs to a station experiencing a 50% packet loss rate, spending
10% of the link’s effort on that flow will result in it achieving out-
come equivalent to 5% of the link’s error-free throughput. But
if this flow is critically important to some application, it might
make more sense to spend 20% of the link’s effort on the flow so
that it would achieve its expected outcome, 10% of the error-free
link throughput. To address this effort-outcome disconnection,
we propose an “effort-limited fair” (ELF) scheduling approach.
An ELF scheduler strives to achieve the outcome that is envi-

2 IEEE INFOCOM 2000

sioned by users (either a specific throughput for reserved flows or
a specific fraction of residual link capacity for best-effort flows),
subject to limits on the effort spent on each flow using a per-flow
power factor setting. The power factor is a control knob that can
be used to administratively implement a variety of fairness and
efficiency policies.

The remainder of the paper is organized as follows. In the
next section we elaborate on the scheduling challenges posed by
wireless errors, focusing on providing supporting arguments for
principles 2 and 3. In Section III we describe the power fac-
tor administrative control which defines how a scheduler should
respond to capacity loss and in Section IV place our work in
the context of related wireless packet scheduling efforts. Sec-
tion V describes a scheduler implementing the power factor. In
Section VI we examine the behavior of this algorithm via trace-
driven simulation, and Section VII reports on experience with
our prototype implementation.

II. CHALLENGES AND PRINCIPLES

In this section we will analyze the challenges posed by a
wireless error environment in order to guide our design process.
The insight we gain from this analysis will clarify and support
our second and third design principles.

A. Network model

We assume that a wireless network consists of one or more
cells and that the bandwidth in each cell is managed by a cen-
tralized packet scheduler. One example of a such a cell is an
IEEE 802.11 LAN [10] in which a base station is configured to
manage all bandwidth via the Point Control Facility.

We assume that the scheduler views traffic as a set of flows.
Flows can be individual, e.g., a single TCP connection, or aggre-
gates, e.g., all traffic to a specific host. Throughout the paper we
will use a traditional weighted-fair queueing (WFQ) scheduler
as an example. In a WFQ scheduler, link time is distributed over
the flows according to a set of weights. A WFQ scheduler can
be used to implement throughput reservations; in that case, the
weights will be adjusted as flows enter and leave the network so
that reserved flows maintain their reserved rates.

Finally, we mentioned in the introductionthat linkerrors result
in both data loss and capacity loss. Data loss can be addressed
using a range of local and end-to-end techniques that affect pri-
marily which data traverses the link and are largely orthogonal to
how we deal with capacity loss. In the remainder of this paper we
will for simplicity assume that a local error recovery mechanism
is used, although this is not a fundamental assumption.

B. Scheduling implications of link error patterns

Wireless networks experience errors on different time gran-
ularities, and network designers have devised a variety of error
control mechanisms to battle these errors. Error bursts at the
bit level are typically addressed by a mixture of error coding
and interleaving [9], [5], [6] which reduces but does not elimi-
nate link capacity variation. At a coarser time granularity, some
packet errors can be predicted based on packet burst error pat-
terns, and a wireless link scheduler may attempt to reduce the
overall packet error rate by swapping transmission slots between
stations believed to be experiencing a multi-packet error burst

and stations believed to be currently error-free [7], [8]. Again,
this approach does not eliminate all capacity loss, because of
the imperfect predictability of error bursts and because some in-
terference sources may affect multiple stations or even the base
station. We conclude that capacity loss is a fundamental reality
for wireless schedulers.

C. Reacting to link capacity loss

To discuss the impact of variable link capacity we will use
an example of a wireless cell with a capacity of 800 kilobits
per second employing a WFQ scheduler to serve two guaranteed
flows and two best-effort flows. We will first assume that all
errors are location independent, so that all flows experience the
same error rate. The flow properties and weights are summarized
in Table I. We will use the term fidelity to denote the degree to
which a scheduler is “faithful” to a particular flow, namely the
percentage of the flow’s expected throughput on an error-free
link that it actually achieves.

TABLE I

CLIENT EXAMPLE

Client Target rate WFQ
Flow (kilobits/second) Weight

Audio reserved 8 1.0
Video reserved 350 44.0
FTP1 available 27.5
FTP2 available 27.5

Let us first consider what happens if 50% of all packets are
lost. Since all flows are experiencing errors, most wireless fair
queueing schedulers would assign transmission slots to the flows
according to their weights in Table I. With this effort-fair ap-
proach, each flow receives 100% of its expected effort, but this
is degraded to yield only 50% of its expected outcome (Table II),
so both rate-sensitive flows fail to achieve their desired rates.

TABLE II

POSSIBLE RESULTS OF A 50% PACKET ERROR RATE

Client Expected Effort-fair Preferable
rate rate rate

(kbit/sec) (kbit/sec) (kbit/sec)

Audio 8 4 � 8
p

Video 350 175� 350
p

FTP1 221 110� 21 �
FTP2 221 110� 21 �

Results marked with “
p

” represent flows meeting their needs;
“�” represents un-met needs; “�” represents flows without spe-
cific requirements.

An alternative would be a priority-based scheduler which
would allot enough extra effort to the audio and video flows
that they would achieve their target rates at the expense of re-
ducing the effort spent on the best-effort FTP flows. This would
produce the result shown in the last column of Table II which,
given the target rates shown in Table I, is the correct outcome.

ECKHARDT AND STEENKISTE: EFFORT-LIMITED FAIR (ELF) SCHEDULING FOR WIRELESS NETWORKS 3

TABLE III

LOCATION-DEPENDENT ERRORS

Flow Error Effort Priority Outcome Desirable
rate rate rate rate rate
(%) (kbit/sec) (kbit/sec) (kbit/sec) (kbit/sec)

Video1 0% 100
p

100
p

67 � 100
p

FTP1 0% 300 � 250 � 200� 167�
Video2 50% 50 � 100

p
67 � 100

p
FTP2 50% 150 � 125 � 200� 167�
Throughput 600 575 534 534
Efficiency 75% 72% 67% 67%

Results marked with “
p

” represent flows meeting their needs; “�” represents un-met needs; “�” represents flows without specific
requirements.

While the priority-based scheduler achieves high fidelity in
the above scenario, it is too simplistic to be practical. For
example, with a 50% error rate, the priority-based scheduler
allocates about 89% of the useful bandwidth to reserved flows
(358kbs�400kbs). Many network managers would argue that
this is unfair to the best effort-flows. Things get even worse
when the error rate increases. As soon as the error rate is more
than 55%, the FTP flows will receive no throughput even though
both the audio and video flows will fail to meet their reserva-
tions. Since no flow will be satisfied, this is an unreasonable use
of the bandwidth. A better allocation would be to have the audio
stream meets its reservation while the other three flows split the
remaining bandwidth.

Each of these approaches performs well at one extreme of the
error rate spectrum and fails at the other extreme. The effort-fair
scheduler ensures that a reserved flow experiencing any errors
will fail to meet its reservation, even if repairing the errors would
require only a trivial amount of unfairness to some other flow;
the priority-based scheduler performs unacceptably if any high-
priority flow experiences a high error rate. An important insight
of this example is that, while we should help the video flow more
than the FTP flows because of its importance, we can help the
audio flow more than any of the others: multiplying its modest
throughput needs by even a large factor to compensate for a high
error rate won’t drive the link to starvation. This sort of decision
calls for a control mechanism which admission control can use
to map flow rate and importance into a procedure for distributing
link capacity loss among flows. In summary, capacity loss
should result in fidelity loss according to administrative controls.

D. Location-dependent errors

Let us now consider the impact of location-dependent errors
using an example with two stations, one of which is error-free
while the other experiences a 50% error rate. Each station owns
one “thumbnail” compressed video flow (100 kbit/sec) and one
FTP flow (best-effort). Table III summarizes the results for four
possible schedulers.

With effort-based scheduling, the lost capacity is distributed
proportional to the error rate experienced by each flow, i.e., only
the second station will suffer capacity loss, and its video flow will
not meet its throughputexpectation. As we saw above, the effort-

based scheduler ensures that every reserved flow experiencing
errors fails to meet its reservation.

A priority-based scheduler could ensure that both reserved
flows are satisfied. We would then need to define how it should
divide the remaining link capacity among the (equal-priority)
best-effort flows; Table III assumes this division would be effort-
fair. Once again, we cannot actually deploy a priority-based
scheduler, since a single high-priority flow experiencing serious
errors would starve every flow. Also, the throughputdiscrepancy
between the two FTP flows is very large, and a case could be
made that it would be more fair for them to receive the equal
throughput.

To address the best-effort fairness issue, we could employ an
“outcome-fair” scheduler, which would allocate effort to flows
in such a way that all flows would achieve the same percentage of
their expected throughput. In this case, an outcome-fair sched-
uler wouldensure that every flow achieves 67% of the throughput
it would achieve on an error-free link. In essence, the air time is
divided equally among packets sent to the error-free station, lost
packets sent to the error-prone station, and packets that success-
fully reach the error-prone station; each station receives equal
throughput and 33% of the air time is wasted. While this would
improve fairness among the FTP flows, neither video flow would
achieve its desired throughput. The outcome-fair scheduler, like
the priority scheduler,behaves poorly when any flow experiences
a high error rate.

Finally, we will consider a more desirable outcome, in which
both video flows meet their needs and both FTP flows receive
equal throughput. While this outcome could be accomplished
by a hybrid priority/outcome scheduler, this scheduler would
become unusable when confronted with any high-error-rate flow.

Notice that the presence of location-dependent errors adds an
efficiency dimension to the space of policy options. If all stations
experience the same error rate, moving air time from one flow to
another does not effect the useful throughput of the cell. How-
ever, with different error rates, moving air time from low-error
flow to a high-error flow reduces the useful throughput of the
cell. This is clearly illustrated by the efficiency row in Table III:
outcome-based scheduling results in markedly lower efficiency
than effort-based scheduling. All of these considerations call for
a scheduler that employs outcome fairness for best-effort flows

4 IEEE INFOCOM 2000

when error rates are low, uses priority to support reserved flows
as long as error rates are moderate, and falls back to effort fair-
ness in the face of very high error rates so that the link will still
provide some useful throughput.

This example illustrates two important concepts: Sometimes
flows with different error rates should experience the same fi-
delity, but meanwhile it must be possible to control cell-wide
efficiency in the presence of station-dependent errors by admin-
istratively bounding the amount of link effort devoted to “fair-
ness.”

III. THE POWER FACTOR

In this section we will present a model of how a wireless
link scheduler should adjust flow weights in response to errors
in order to create a hybrid between effort fairness and outcome
fairness which is parameterized by a single administrative con-
trol, the “power factor.” We will state a simple weight adjustment
criterion, describe the throughput flows achieve as a function of
their error rates, show how this weight adjustment can apply to
both constant-rate and best-effort flows, and discuss the applica-
bility of this approach.

A. Weighted fair queueing with adjustable weights

We will begin with a weighted fair queueing (WFQ) scheduler
that distributes effort (air time) according to weights provided
by an admission control module. The scheduler will adjust each
flow’s weight in response to the error rate of that flow, up to
a maximum weight defined by that flow’s power factor, also
provided by the admission control module (see Figure 1).

Packet
Scheduler

Link Layer

Application
ProtocolsAdmission

Control

weights

“next packet”

Packet
Scheduler

Link Layer

Application
Protocols

weights

“next packet”effort/outcome

power
factors

(a) Traditional wireline scheduler (b) Proposed wireless scheduler

Admission
Control +

Loss Policy

Administrative
Controls

User
Requests

Administrative
Controls

User
Requests

Fig. 1. Scheduler models

For example, a power factor of 200% indicates that a flow’s
weight should be doubled in a high error environment, which
means that it would gain weight relative to flows with a lower
power factor, but lose weight relative to flows with a higher
power factor. This makes it possible to, for example, increase
the link share of voice and web traffic relative to video traffic in
a high error environment. We call this type of scheduler effort-
limited fair (ELF) because it manipulates flow weights to achieve
outcome fairness subject to a limit on each flow’s effort.

B. The power factor

In order to characterize the behavior of the ELF scheduler
across the entire spectrum of error rates, we introduce the fol-
lowing notation. Let us assume we have N flows sharing a link
with (error-free) bandwidth B. Each flow has a weight Wi, a

power factor Pi, and experiences an error rate Ei. We can now
define the adjusted weight of flow i as

Ai � min�
Wi

1�Ei
� Pi �Wi� (1)

That is, for low error rates we scale the weight Wi to make up
for the link errors, but we limit the adjustment to a factor Pi.
The crossover point is at error rate Ec

i �
Pi�1
Pi

. We will refer
to the error range Ei � Ec

i as the outcome region and the error
range Ei � Ec

i as the effort region. The throughput Ti for flow
i is given by the product of the transmission time it receives and
its success rate,

Ti � �
AiP
j Aj

�B� � �1� Ei�

To justify this approach, we will look at the behavior of the
scheduler under some specific conditions.

First, in an error-free environment (Ei � 0� �i), the scheduler
is equivalent to a traditional WFQ scheduler with weights Wi.

As long as a flow is in its outcome region, Ai adjusts to
exactly cancel the flow’s reduced success rate �1�Ei�, yielding
a throughput of

Ti �
WiP
j�Aj�

� B

That is, the effective weight of the flow is corrected back toWi,
although that is relative to the adjusted weights of the whole link.
If all flows are in their outcome regions and they all experience
the same error rate E the throughput of flow i becomes

Ti �
WiP
j

Wj

1�Ej

� B �
WiP
jWj

� �B � �1�E��

Thus the scheduler is equivalent to a WFQ scheduler with the
original weights Wi running on a E-degraded link, which is
exactly outcome-fair.

At the other end of the spectrum, if all flows are in their effort
regions, i.e., Ei � Ec

i � �i, the throughput becomes

Ti �
Pi �WiP
j�Pj �Wj�

� �B � �1� Ei��

This means that the scheduler distributes transmission time to
the flows in WFQ fashion and the scheduler is “effort fair” (with
adjusted weights).

Finally, one of the motivations for introducing the ELF sched-
uler approach was to limit how much effort (transmission time)
is given to any specific flow, so that one flow experiencing very
high error rates cannot degrade the performance of the entire
link. The highest fraction of the link time that flow i can take is
given by

Pi �Wi

�Pi �Wi� �
P

j ��i�Wj�

when flow i is in its effort region and all other flows are error-free.

ECKHARDT AND STEENKISTE: EFFORT-LIMITED FAIR (ELF) SCHEDULING FOR WIRELESS NETWORKS 5

C. Fixed-rate reservations

Providing absolute bandwidth reservations (as opposed to link
shares), which WFQ can do, requires additional support in ELF.
The reason is that a error-adjusted fraction of a deflated link will
be smaller than the expected fraction of the error-free link. We
will obtain absolute bandwidth reservations by both adjusting
the weights of guaranteed flows upward as described above and
simultaneously reducing the weights of best-effort flows in a
straightforward way.

To support throughput guarantees, we will define G to be the
set of guaranteed flows and Bi to be the bandwidth allocated to
each flow i in G. Next, we will use fractions of the error-free
link as weights, i.e., Wi �

Bi

B
� �i � G. Admission control will

be responsible for ensuring that the link is not overcommitted in
both the error-free case (

P
i�GWi � 1) and when all guaranteed

flows are error-limited (BGmax
�
P

i�GWi � Pi � 1). Next,
we aggregate all best-effort flows into one virtual flow with a
special weight-adjustment function

ABE � 1�
X

i�G

Ai

which ensures that the best-effort aggregate flow will consume
only whatever link time is left over after every best-effort flow
has either achieved its outcome or has reached its crossover error
rate Ec

i .
For any guaranteed flow with Ei � Ec

i , Ai �
Bi�B
1�Ei

, so its
expected throughput

Ti �
AiP
Aj

� B � �1� Ei�

becomes the correct value,

Ti �

Bi�B
1�Ei

1
� B � �1� Ei� � Bi

The best-effort flows will avoid starvation if BGmax
� B, in

which case an error-dependent amount of transmission time will
be allocated to the best-effort aggregate flow, which will dis-
tribute it among the best-effort flows using exactly the approach
of Section III-B.

D. Example

This scheduler can support a variety of policies. For example,
the hybrid outcome/effort scheduler described in Table III can
be implemented by setting the power factors of each flow to at
least 200%. In general, setting a flow’s power factor to 100%
will cause it to be scheduled in an effort-fair fashion, and raising
its power factor will cause it to experience outcome fairness over
a wider range of error rates. In particular, it is feasible, albeit
probably undesirable, to obtain pure outcome fairness for all
best-effort flows by setting their power factors to infinity.

E. Choosing power factors

So far we have assumed that an admission control module
can set appropriate per-flow power factors though we have not
specified how they might be chosen. One possibility would
be to adapt an existing wireline admission control module in a

straightforward fashion. If the link error rate is expected to rarely
exceed a certain critical valueEc, assign every admitted reserved
flow a power factor of 1

1�Ec and stop admitting new reserved
flows when they occupy 1�Ec of the error-free link rate, which
is when their worst-case air-time requirements would consume
the entire link. Another possibility would be to assign power
factors according to flow classes. For example, flows requesting
8kb/s or 64kb/s could be categorized as voice flows and assigned
a power factor of 300%; a second throughput range, appropriate
for compressed video, could be assigned a power factor of 150%;
and a value could be chosen for all best-effort flows. Such an
admission control module would need to avoid overcommitting
the link, and would need some policy to determine how much of
the link could be assigned to each class.

F. Discussion

The proposed “power factor” scheduler model meets the re-
quirements outlined in the introduction. By setting the power
factor appropriately, administrators can control the degree to
which the fidelity of a flow will be maintained in the presence of
errors. Selection of the power factor should consider the relative
importance and demands of flows (e.g., audio is typically more
valuable than video while requiring less bandwidth), and should
also consider fairness issues across classes (e.g., reserved traffic
should not be able to starve best-effort traffic). The power factor
can also be used to control efficiency. For example, by keeping
all power factors below 200%, we can keep the efficiency over
50% (for error rates under 50%).

In this section we demonstrated how adding a per-flow power
factor setting transforms a wireline WFQ scheduler into a hybrid
effort/outcome WFQ scheduler. We believe that the power factor
is also a useful abstraction for other schedulers. One example is
a priority scheduler. We could associate power factors with the
different priority levels to avoid high priority traffic completely
starving low priority traffic or flows suffering from location-
dependent errors consuming a disproportionate fraction of the
link capacity in a futile attempt to obtain their expectations.
Schedulers which offer more complex service characterizations
will require additional work. A deadline-based scheduler or
any scheduler attempting to meet delay or jitter guarantees will
clearly need to track outcomes for individual packets rather than
entire flows.

In the next section we will compare the ELF model to other
proposed wireless link scheduling models before proceeding to
describe and evaluate our scheduler implementation in the re-
mainder of the paper.

IV. RELATED WORK

Fair queueing in a error-prone wireless environment is ex-
amined in [7]. The WPS wireless packet scheduler extends
weighted round robin in an attempt to provide fairness, swap
time allocations between stations experiencing error bursts and
currently error-free stations, avoid scheduling bursts (so a packet
burst won’t collide with an error burst), avoid polling stations
experiencing an error burst, and ensure that stations not experi-
encing errors receive their expected throughputs. WPS takes into
account imperfect information about link state and client queue
occupancy. A recent extension of this work [11] adds a variety

6 IEEE INFOCOM 2000

of attractive properties, such as separate management of delay
and bandwidth and graceful trading off of bandwidth between
leading and lagging flows. Evaluation is via a simulator using a
Markov-model error environment. The main difference between
this work and ELF is our belief that it is frequently appropriate
for error-free flows to yield throughput to flows experiencing
errors.

A set of formal fairness properties for evaluating wireless
versions of wired packet fair queueing algorithms is proposed
in [8]. Among these properties are that error-free stations should
not lose service to error-prone stations and that stations which
receive extra throughput due to another station’s unavailability
are not forced to pay back this excess via a long service out-
age. These properties are embodied in a proposed algorithm,
Channel-condition Independent packet Fair Queueing (CIF-Q),
that achieves these fairness properties in the face of errors. Both
analytical and simulation results are presented, the latter based
on an on-off error model. ELF differs by being able to recover
from the errors of some flows at the expense of other flows.

The Server-Based Fairness Approach [12] creates one or more
virtual “server” flows that are used to compensate flows for er-
rors they have experienced in the past. The amount and timing
of compensation depend on the amount of capacity reserved for
each flow’s compensation server, the relative weight of that flow
compared to others sharing the same compensation server, and
the error rates experienced by all flows compensated by that
server. This approach is powerful due to its generality. For
example, it is possible for SBFA embedded in HFS-C to ap-
proximate ELF by constructing a tree with two top-level nodes
(reserved and best-effort, with the best-effort node allocated a
tiny fraction of the link), pairing every ELF flow with its own
compensation server flow, and assigning weights appropriately.
One difference between the resultant scheduler and ELF is that
ELF will try to meet the latency expectations of low-rate flows
experiencing errors at the expense of slightly increasing the la-
tencies of high-rate flows, even those not experiencing errors.
Also, this SBFA construction might suffer from efficiency issues
because the compensation server flows (50% of all flows) would
frequently transition between being idle and active. The ELF
scheduler is designed to react efficiently to link errors, treating
them as the common case. We believe that the very generality
of SBFA calls for a simple and intuitive fairness model such as
our power-factor approach.

Utility-fair bandwidth allocation [13] presents a framework for
allowingflows to specify how much damage they incur as a result
of varying amounts of throughput reduction. The scheduler then
allocates throughput to each flow so that all flows perceive the
same subjective quality. While this approach expresses more
information about a flow’s needs than ELF does, it is unclear
how to apply it to location-dependent errors: it would appear
that if a single flow experiences a 100% error rate then all flows
will experience a quality level of zero.

We believe that an explicit model of the desired outcome of
a scheduling algorithm in the face of errors, as provided by
WPS, CIF-Q, and SBFA, is valuable. However, we believe it is
important in certain situations to give guaranteed flows “special
treatment” when they encounter errors, that it is often attractive
to slightly reduce overall link efficiency to obtain some amount

of outcome fairness among best-effort flows, and that it must
meanwhile be possible to protect the link against flows with
very high error rates. ELF provides a way of coping with the
fundamental challenges posed by wireless link capacity loss.

V. SCHEDULER ALGORITHM

A. Scheduler model

In this section we will present an algorithm for a particular ELF
scheduler based on weighted round-robin (WRR). This scheduler
will support reserved flows with absolute-rate reservations and
best-effort flows which distribute the remaining capacity via
weights. Flows in both classes will be bounded by effort limits.
We use packet weighted round-robin (WRR) instead of weighted
fair queueing, measuring throughput in packet slots. One reason
for using WRR instead of WFQ is simplicity. Also, wireless
networks are often slot-based for synchronization and power-
management purposes. Finally, the prototype network we use
for experiments in (Section VII) has a relatively high per-packet
cost, so charging on a per-packet instead of a per-byte basis is
actually quite reasonable.

B. Tracking Deserved Throughput, Effort, and Outcome

Protecting a link against excessive consumption by a subset of
flows is an interesting challenge. The most straightforward ap-
proach would be to measure the error rate of each flow and of the
link and then to calculate the air time each flow should get based
on the definition of the power factor (Section III). However, this
assumes that a link scheduler can accurately measure a flow’s
error rate and the current capacity of a wireless link. These
measurements are not straightforward. For example, determin-
ing the error rate of a low-throughput flow is difficult, since
observations are infrequent; single-packet observations may fail
to detect long outage bursts, so increasing the flow’s share of
the link could increase that flow’s error rate. Determining the
available link capacity is even more difficult, considering the
presence of location-dependent errors. The problem here is that
transmitting on behalf of different flows yields different link-
capacity measurements. If a single flow has a 50% error rate and
a weight of 50%, and is allocated enough effort to achieve its ex-
pected outcome, it will consume the entire link, so link capacity
will be 50%. If it is allocated only its expected 50% of the link’s
effort, and the remainder of the link is given to error-free flows,
link capacity will be 75%. These two considerations argue for
a scheduling algorithm that achieves the desired link allocation
without relying on explicit computations of per-flow error rates
or whole-link capacity.

C. Algorithm Overview

We will explain our scheduling algorithm using the pseudo-
code in Figures 2 and 3. The code embodies several simpli-
fying assumptions. All flows have data queued at all times.
Transmission time is slotted into fixed-size packets, though an
adaptive link layer may choose to send shorter packets to avoid
interference-related truncation. Each packet transmission fully
succeeds or fails (there are no sub-packet acknowledgements).

Admission control converts each flow’s weight into its ex-
pected inter-transmission interval (a flow expecting 50% of the

ECKHARDT AND STEENKISTE: EFFORT-LIMITED FAIR (ELF) SCHEDULING FOR WIRELESS NETWORKS 7

link would transmit every two time slots). The transmission
intervals of best-effort flows apply not to actual link time but
to a virtual time that increases only when no guaranteed flow
is eligible to transmit. Within each flow group (guaranteed or
best-effort), the scheduler operates the same way: each time
a flow’s transmission interval passes, tick allocates it both
throughput and an appropriate amount of effort; it is then eli-
gible for transmission until it either achieves that throughput or
exhausts that effort. When multiple flows are eligible for trans-
mission, choose selects the most urgent. We will choose the
flow whose outcome is currently lagging its deserved through-
put by the greatest percentage, breaking ties by serving low-
throughput flows first.

/* per flow state kept by scheduler: */
/* inter - inter-transmission interval, 1/rate */
/* last - timestamp of last eligibility to send */
/* power - power factor (as percentage) */
/* deserve - amount of *outcome* flow deserves */
/* effort - amount of *effort* flow is entitled to */

/* "tick": update the deserve and effort of each flow */
tick(flow-list, now)
{

foreach flow (flow-list)
if (flow.last + flow.inter <= now)

shouldserve(flow, now);
}

shouldserve(flow, now)
{

++flow.deserve;
flow.effort += flow.power / 100;
cap_effort(flow);
flow.last = now;

}

/* "choose" next flow from a class of flows */
choose(flows, &resultflow)
{

int bestwlag = 0; /* best weighted lag */
int bestinter = 0;
int bestdeserve = 0;
flow bestflow = NULL;

foreach flow (flows) {
/* weighted lag: deserve / rate */
int wlag = flow.deserve * flow.inter;

/* must have effort */
if (flow.effort < 1)

continue;

/* most deserving flow has highest % lag */
/* tie breakers: low-rate flows first; */
/* then flows with more absolute lag */

if ((wlag < bestwlag) ||
((wlag == bestwlag) && (flow.inter > bestinter)) ||
((wlag == bestwlag) && (flow.inter == bestinter)

&& (flow.deserve < bestdeserve)) {
continue; /* not the most deserving */

}
/* becomes the most deserving */
bestwlag = wlag;
bestinter = flow.inter;
bestdeserve = flow.deserve;
bestflow = flow;

}
*resultflow = bestflow;

}

Fig. 2. Pseudo-code for core of the scheduler

The main scheduling function schedule, is called by the
link layer when it is ready to send a packet (Figure 3). It will
first try to select an eligible guaranteed flow before moving on

/* "schedule" picks next flow to be served */
schedule(&selectedflow)
{

static int now, dilatednow;
flow flow;

++now;
tick(protected-flows, now);
choose(protected-flows, &flow);
if (!flow && length (unprotected-flows) > 0) {

choose(unprotected-flows, &flow);
while (!flow) {

++dilatednow;
tick(unprotected-flows, dilatednow);
choose(unprotected-flows, &flow);

}
}
if (!flow} {

/* advance schedule */
nextflow(protected-flows, &flow);
shouldserve(flow, now);

}
*selectedflow = flow;

}

update(flow,outcome) /* call-back from link layer */
{

--flow.effort;
if (outcome == SUCCESS) {

--flow.deserve;
cap_effort(flow);

}
}

cap_effort(flow) /* limit accumulated effort */
{

/* retain no more than 4 packets’ effort */
int slack = 4;
int cap = ((flow.deserve/100)+slack)*flow.power;
flow.effort = max(flow.effort, cap);

}

/* "nextflow" picks the flow that will fire next */
nextflow(flows, &flow)
{

flow nextflow;
int nextfire = INFINITY;

foreach flow (flows)
int fire = flow.last + flow.inter;

if (fire < nextfire)
nextflow = flow;
nextfire = fire;

*flow = nextflow;
}

Fig. 3. Pseudo-code for core of the scheduler - part 2

to best-effort flows. That is, guaranteed flows are served until
each is either satisfied with its outcome or limited by expended
effort, and the best-effort flows share the leftover bandwidth. The
main scheduler decision procedure operates as follows. First it
uses tick to inform guaranteed flows of the passage of time,
and then it asks choose whether any guaranteed flow should
currently transmit. If not, it moves on to the best-effort class,
calling tick with the best-effort virtual time and then invoking
choose. While reserved time increases for each link time
slot, best-effort time increases only when no best-effort flow is
eligible, as a consequence of the fact that the best-effort virtual
flow is almost always overcommitted. If no guaranteed flow
is eligible and there are no best-effort flows, the scheduler will
slightly advance the schedule of the next-eligible guaranteed
flow.

At this time the link layer transmits a packet for the designated

8 IEEE INFOCOM 2000

flow, employing whatever combination of packet length and er-
ror coding recently history suggests is prudent for successful
communication with that flow’s peer machine. Before the next
scheduling decision is made, the link layer will inform us of the
transmission outcome using the function update, which will
bill the designated flow for the effort expended and update its
achievement value appropriately. This assumes the existence of
a fast link-level acknowledgement, a feature common to many
wireless LAN MAC protocols [10], [14], [15].

Finally, whenever we update the status of a flow (functions
tick and update) we check whether the stored effort exceeds
a threshold using the function cap effort. This is so that a
flow cannot accumulate a large effort bank while its error rate
is low and seize the link for an extended period when it sud-
denly increases. We believe cap effort contains a plausible
heuristic.

D. Possible extensions

A question ignored so far is to what extent best-effort flows
should experience “fairness” over a long term. That is, if a flow
experiences errors for a period and loses throughputas a result, is
it entitled to regain that lost throughput later? This corresponds
to the question of whether there is a cap on each flow’sdeserve
value. If this value is allowed to grow without bound, a flow
will eventually reclaim the lost throughput, at the expense of
other flows in its class, when it experiences a low-error period.
Alternatively, this value could be capped or aged.

A related issue is what should happen to a flow that becomes
idle. One possible policy is that its deserve and effort
would cease to increase. Instead, we could allow an idle flow
to accumulate both deserve and effort up to some threshold; this
would then allow the flow to burst for a short while when it
becomes active. Note that deciding whether a flow is idle may
be difficult when error rates are high.

This scheduler implementation is orthogonal to swapping in
the sense that, if there is some good predictor of when a station
is unreachable, choose can easily skip known-unreachable sta-
tions.

This scheduling approach could be used as the policy for an
802.11 Point Control Function (PCF). If we assume that one
station is in a position to discover the outcomes of most packet
transmissions, the LAN could operate according to the more-
efficient Distributed Control Function most of the time, and the
controlling station could then use the PCF period to allocate
extra effort to stations according to their power factors.

VI. SIMULATION

To evaluate our scheduling algorithm in a repeatable fashion
we subjected it to a simple trace-based simulation. The simulator
assumes all flows are continuously busy, and records throughput
allocation decisions made by the scheduler (ignoring how real
transport protocols might react to allocation variations). The link
layer used in the simulation is based on earlier work [5], and can
reclaim substantial capacity even in the face of challenging error
patterns. As we discussed in Section II, this is largely orthogonal
to the question of how we distribute the variable link capacity
across the flows, which is the focus of this paper.

We will plot the error-free link-level throughput each flow
achieves, as a percentage of what it would expect in the absence
of errors, on its own independent vertical axis. Each plot will
include a “Link” pseudo-flow which represents the total link
throughput as a fraction of the error-free link throughput. Each
flow will be represented by a moving-window average through-
put, sampled at the same rate as its expected inter-transmission
interval (that is, a flow expecting 50% of the link is sampled five
times as frequently as a flow expecting 10%) and each point on
the graph is the mean of the 10 most recent samples.

We will present three simulator runs. In the first, we eval-
uate the scheduler’s performance in the motivating scenario of
Table II. Two protected flows, audio and video, expect 1% and
44% of the link, while two unprotected flows will share the re-
mainder equally. The audio flow has a power factor of 300% in
an attempt to ensure it will survive most plausible link errors.
The video flow has a power factor of 223%,a value chosen so that
it and the audio flow will consume the entire link in periods when
the error rate is 50% or more. The two best-effort flows each
have a power factor of 120%, which will enable outcome-based
fairness between them in the face of light errors.

Throughout the trace, the link will experience a uniformly
distributed 50% packet loss rate which is independent of which
flow’s packet is being transmitted. We would like the reserved
audio and video flows to experience little or no disruption while
the two best-effort flows should equally divide the remainder of
the link. The results of this simulator run appear in Figure 4 and
are what we would hope to observe.

Audio

Video

 FTP1

 FTP2

Link

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0 1000 2000 3000 4000 5000

Fig. 4. Plot of a straightforward 50% loss scenario suggested by Table II

.

Figure 5 displays how the same flows would fare in a more
interesting error environment. The error trace [9] includes both
packet losses and bit corruptions, varying in severity due to a
person moving through the main signal path. The sudden sharp
throughput losses leave the audio flow essentially unharmed.
Since the video flow requires much more throughput, it cannot
escape all injury, but the scheduler insures it is quickly com-
pensated. Each link throughput drop immediately affects both
best-effort flows.

Figure 6 is an example of a location-dependent error pattern:
the video flow and one of the best-effort flows belong to a station
experiencing significant errors, while the other two flows belong
to a station encountering none. The error pattern is a smoothly

ECKHARDT AND STEENKISTE: EFFORT-LIMITED FAIR (ELF) SCHEDULING FOR WIRELESS NETWORKS 9

Audio

Video

 FTP1

 FTP2

Link

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0 1000 2000 3000 4000 5000

Fig. 5. Response to a dynamic real-world error trace.

Audio

Video

 FTP1

 FTP2

Link

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0 2000 4000 6000 8000 10000 12000

Fig. 6. Location-dependent error trace.

increasing frequency of packet loss, ranging from 10% to 90%,
surrounded by periods without losses. The video flow’s power
factor has been lowered to a more-realistic 140%. As the losses
begin, the two best-effort flows share the burden equally, though
only “FTP1” experiences actual transmission errors. Soon, how-
ever, flow “FTP1” exhausts its outcome region and begins to lose
throughput relative to “FTP2.” Later, link errors begin to over-
whelm the video flow’s ability to demand extra link time. From
this point on, the burden of any increase in the error rate is borne
by these two flows. When the link no longer experiences errors,
we observe two interesting phenomena. First, the video flow
receives more than its expected share of the link so it can clear
its lag, but its power factor still limits its link time so that the
FTP flows are not starved. Second, the ill-fated “FTP1” flow
receives more throughput than “FTP2” so it can achieve long-
term fairness with “FTP2.” Again, this short-term unfairness is
limited by its power factor.

These scenarios illustrate the main goals of our scheduler. We
have observed prioritization of reserved flows over best-effort
flows coupled with effort-limited outcome-based fairness. The
scheduler performs intuitively across a wide range of desired
flow throughputs (1% to 44% of the link) and error rates (10%
to 90%).

VII. EXPERIMENTAL PROTOTYPE

In addition to our simulator-based evaluation, we wished
to verify that our scheduler would function acceptably in a

more “real-world” environment. We inserted the ELF sched-
uler into our existing prototype wireless LAN, built from Intel
80486 and Pentium laptops running NetBSD 1.2 and using 915
MHz PCMCIA card WaveLAN [16] units. The kernel device
driver includes a simplified poll/response Medium Access Con-
trol (MAC) protocol, similar in spirit to the IEEE 802.11 Point
Control Function [10]. In our experiments, one laptop operates
as a master/base station, while the others use the slave protocol.
We will report user-level throughput numbers obtained by the
standard kernel TCP stack. In order for TCP to make meaning-
ful progress in the face of these high error rates, we employ a
transparent link-level error control mechanism [9]. As we dis-
cussed earlier, error control is largely orthogonal to scheduling,
so we could have obtained similar experimental results by dis-
abling error control and reporting UDP throughput observed by
the receiver instead of TCP throughput observed by the sender.

The scheduler consists of 400 lines of code, of which approxi-
mately 150 lines are the heart of the algorithm and the remainder
is glue code, memory management, tracing support, and trace-
replay error injection code.

We will present tcptrace output for four TCP streams gen-
erated by a master and two slave stations. Each slave receives
one reserved flow (link fraction: 5%, power factor: 300%) and
one best-effort flow (power factor: 150%). One slave station
experiences no errors and the other begins by experiencing no
errors but then experiences 10 seconds each of 20% and 50%
packet loss rates before returning to an error-free condition.

We would expect that the reserved flows always achieve their
expected throughputs and that the best-effort flows would expe-
rience equal throughput whenever their error rates were below
30%. The traces in Figure 7 meet our expectations (the initial
upward spike in throughput displayed for each flow is an artifact
of the throughput averaging done by tcptrace). The slight
sag in throughput observed by the reserved flows is an artifact
of the software implementation of our MAC protocol (we are
forced to use conservative timeouts to avoid packet collisions,
so a lost packet takes slightly more air time than a packet that ar-
rives). The prototype implementation confirms the more detailed
simulator results presented earlier.

VIII. CONCLUSION

To effectively address wireless errors which may be severe,
time-varying, and location-dependent, we propose an “effort-
limited fair” (ELF) scheduling approach which extends the
scheduler with an explicit mechanism for controlling its behav-
ior in the presence of capacity loss. An ELF scheduler strives to
achieve the outcome that is envisioned by users (e.g., weighted
link sharing or fixed-rate reservations) while limiting the effort
spent on a flow using a per-flow parameter called the power fac-
tor, which can be used to administratively implement a variety
of fairness and efficiency policies.

We implemented an ELF WRR scheduler that supports reser-
vations and that uses the power factor to limit the per-flow ef-
fort applied to combat errors. Simulation clearly depicts ELF
scheduling in action. We also implemented the scheduler in a
NetBSD operating system kernel, and show that it achieves ap-
propriate division of user-level TCP throughput under various
error conditions.

10 IEEE INFOCOM 2000

60000

40000

20000

0
 16:12:40 16:12:35 16:12:30 16:12:25 16:12:20 16:12:15

bytes/sec

time

master:CBR_==>_slave1:9 (throughput)

�

���
�

����

��

�

�put

�

�

60000

40000

20000

0
 16:12:40 16:12:35 16:12:30 16:12:25 16:12:20 16:12:15

bytes/sec

time

master:CBR_==>_slave2:9 (throughput)

�

����

����

��

�

�

 tput

�

�

60000

40000

20000

0
 16:12:40 16:12:35 16:12:30 16:12:25 16:12:20 16:12:15

bytes/sec

time

master:BE_==>_slave1:9 (throughput)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t

�

�

60000

40000

20000

0
 16:12:40 16:12:35 16:12:30 16:12:25 16:12:20 16:12:15

bytes/sec

time

master:BE_==>_slave2:9 (throughput) �

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

t

�

�

Fig. 7. Traces of reserved and best-effort TCP streams

ACKNOWLEDGEMENTS

The WaveLAN driver we modified was written by Bob Baron
of the Coda research project. Hui Zhang and Ion Stoica provided
extensive comments on our scheduling proposals. A reviewer
comment led to a noticeable improvement in the introductory
material.

This research was supported in part by the Defense Advanced
Research Project Agency/ITO monitored by NRaD under con-
tract N66001-96-C-8528.

REFERENCES

[1] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” in
Proceedings of the 15th International Conference on Distributed Comput-
ing Systems, May 1995, pp. 136–143.

[2] Raj Yavatkar and Namrata Bhagawat, “Improvingend-to-end performance
of TCP over mobile internetworks,” in Mobile ’94 Workshop on Mobile
Computing Systems and Applications, December 1994.

[3] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and
Randy H. Katz, “A comparison of mechanisms for improving TCP per-
formance over wireless links,” IEEE/ACM Transactions on Networking,
December 1997.

[4] Antonio DeSimone, Mooi Choo Chuah, and On-Ching Yue, “Throughput
performance of transport-layer protocols over wireless LANs,” in Pro-
ceedings of IEEE GLOBECOM 1993, December 1993, pp. 542–549.

[5] David Eckhardt and Peter Steenkiste, “Improving Wireless LAN Perfor-
mance via Adaptive Local Error Control,” in Sixth International Confer-
ence on Network Protocols, Austin, TX, October 1998, IEEE Computer
Society.

[6] Paul Lettieri and Mani B. Srivastava, “Adaptive frame length control
for improving wireless link throughput, range, and energy efficiency,” in
Proceedings of IEEE INFOCOM ’98, San Francisco, CA, March 1998, pp.
564–571.

[7] Songwu Lu, Vaduvur Bharghavan,and Rayadurgam Srikant, “Fair schedul-
ing in wireless packet networks,” in Proceedings of ACM SIGCOMM ’97.
September 1997, IEEE Computer Society.

[8] T. S. Eugene Ng, Ion Stoica, and Hui Zhang, “Packet fair queueing
algorithms for wireless networks with location-dependent errors,” in Pro-
ceedings of INFOCOMM ’98. IEEE Communication Society.

[9] David Eckhardt and Peter Steenkiste, “A Trace-based Evaluation of Adap-
tive Error Correction for a Wireless Local Area Network,” Mobile Networks
and Applications (MONET), 1999, Special Issue on Adaptive Mobile Net-
working and Computing.

[10] IEEE Local and Metropolitan Area Network Standards Committee, Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications, IEEE Std 802.11-1997, The Institute of Electrical andElectronics
Engineers, New York, New York, 1997.

[11] Songwu Lu, Thyagarajan Nandagopal, and Vaduvur Bharghavan, “A wire-
less fair service algorithm for packet cellular networks,” in Proceedings of
The Fourth Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MOBICOM ’98), Dallas, TX, October 1998, ACM
SIGMOBILE.

[12] Parameswaran Ramanathan and Prathima Agrawal, “Adapting Packet Fair
QueueingAlgorithms to Wireless Networks,” in Proceedingsof The Fourth
Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’98), Dallas, TX, October 1998, ACM SIGMO-
BILE.

[13] Guiseppe Bianchi, Andrew T. Campbell, and Raymond R.-F. Liao, “On
Utility-Fair Adaptive Services in Wireless Networks,” in Proceedings of
the Sixth International Workshop on Quality of Services (IWQOS ’98),
Napa Valley, CA, May 1998, IEEE Communications Society.

[14] Phil Karn, “MACA–a new channel access method for packet radio,” in
Proceedings of the 9th ARRL/CRRL Amateur Radio Computer Networking
Conference, September 1992.

[15] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang,
“MACAW: A media access protocol for wireless LANs,” in ACM SIG-
COMM ’94, August 1994, pp. 212–225.

[16] Bruce Tuch, “Development of WaveLAN, an ISM band wireless LAN,”
AT&T Technical Journal, pp. 27–37, July/August 1993.

