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Abstract- Most on-line (i.e., not stored) Variable Bit Rate 
sources would find it difficult to a priori declare the traffic pa- 
rameters required by a connection admission control strategy. 
There is thus the problem of measurement based on-line estima- 
tion of source parameters. In this paper we address the problem 
of selection of source parameters based on minimising a buffer- 
bandwidth cost function in the network, for a specified delay QoS 
Violation Probability. We consider the shaping delay plus first 
hop multiplexing delay; this is  adequate, for example, for n statis- 
tically identical packet voice sources being multiplexed at a PBX, 
or in approaches where the end-to-end delay bound is broken into 
per hop delay bounds. Our approach yields a leaky bucket rate 
parameter p’ , and the sum of the shaper buffer and leaky bucket 
depth (B, + a). We show that, for a fluid source model, for a 
linear buffer-bandwidth cost function, and for lossless multiplex- 
ing, a sustainable rate parameter of p* and burst parameter of 
0 yields the minimum cost. We propose and study a stochastic 
approximation algorithm for on-line estimation of p*.  We then 
use buffer-bandwidth cost considerations to arrive at an optimal 
leaky bucket depth 0’ > 0 for lossy multiplexing of several statis- 
tically identical sources. The computation of o* must be done at 
the network node. We show, by an example, the improvement in 
cost that is possible by lossy multiplexing and a positive U*. 

Keywords-optimal leaky bucket, renegotiation, stochastic approxha- 
tion 

I. INTRODUCTION 

In an integrated services packet network, the proper func- 
tioning of Connection Admission Control (CAC) procedures 
depends critically on the source parameter declaration, and 
invariably a source would need to shape its output in order 
to conform to its declared parameters. A standard procedure 
that is used for this purpose is the Leaky Bucket (LB) algo- 
rithm [l]. There is, however, the important question of how 
a source determines its leaky bucket parameters. An on-line 
source (i.e., not stored; e.g., a packet voice phone call, or a live 
video broadcast) would need to estimate its source parameters. 
In general, even for a stationary source these parameters would 
be nonunique. What should be the criterion for choosing a spe- 
cific set of parameters? The need to learn the parameters on- 
line, and the practical reality of nonstationarity would require 
renegotiation of the connection parameters. In this paper we 
are motivated by this problem, and we develop an approach to 
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determine a set of optimal leaky bucket parameters, and mea- 
surement based estimation of these parameters. 

network node 
- access:‘ 

Pig. 1. The network scenario under consideration 

We consider the network scenario shown in Figure 1. There 
are n sources, assumed to be statistically identical (e.g., 
voice sources using the same coding and silence suppression 
scheme). Each source is shaped by a LB, and then the sources 
are multiplexed at a network node. Such a situation would 
arise, for example, between the packet voice “PBXs” of two 
enterprise locations connected by a serial link. The basic 
model is also relevant to end-to-end delay QoS approaches in 
which the QoS is managed by breaking it into a per-hop de- 
lay bound, and traffic is reshaped at each hop (in this case, 
of course, statistical homogeneity cannot be assumed after the 
first hop). 

The detailed model that we work with is shown in Figure 2. 
Each source is shaped by a LB. We are interested in choos- 
ing the shaper parameters p, LT and B, so as to minimise the 
network resources required for providing a certain QoS. The 
network resources comprise the network link capacity and the 
buffers at the node. It is these network resources that are scarce 
and expensive (the shaping resources are in the client comput- 
ers), and hence we consider a linear network buffer-capacity 
cost. The QoS constraint is that the shaping delay (in the 
source shaper buger) plus the multiplexing dehy  can exceed 
T only with a small probability q. 

There are three notable references that are related to our 
work in this paper. In [2] the authors study the problem of 
finding an optimal sustainable rate parameter based on network 
buffer-bandwidth cost considerations. They do not, however, 
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e .z 
shaper plus multiplexer delay to be bounded by T with probablllty q 

Fig. 2. The network model, showing the LB shapers and the network node. 

consider any delay constraint, as we do in our paper. Another 
related paper is [3]. The objectives of the research reported 
in this paper are similar to ours, i.e., to choose optimal leaky 
bucket parameters subject to a QoS constraint. The approach 
and results are different, however. Whereas in [3] the author 
only considers delay in the LB buffer, we consider the problem 
of choosing LB parameters under a shaping plus multiplexing 
delay constraint. We derive the LB parameters for minimum 
network resource (buffer and bandwidth) cost. In addition, we 
demonstrate the efficacy of a stochastic approximation based 
technique for estimating the optimal sustainable rate parame- 
ter, and for tracking slow changes in the source statistics. We 
also propose, and demonstrate the efficacy of an approach for 
choosing an optimal token bucket depth when several sources 
are multiplexed at the network node. 

A recently published related work is reported in [4]. The 
authors minimise a network cost function, but have only put a 
constraint on the shaping delay. Also their network cost is sim- 
ply the capacity required for a given network buffer, whereas 
ours considers the capacity-buffer tradeoff. 

This paper is organized as follows. In Section 11, we review 
the leaky bucket shaper. In Section III, we formulate and solve 
the problem of finding the optimal sustainable cell rate param- 
eter p * ,  and show that for lossless multiplexing and a linear 
buffer-bandwidth cost function, p" and U = 0 yields the op- 
timal LB parameters. In Section N, we provide an on-line 
estimation scheme to determine p*. We present some simula- 
tion results in Section V. In Section VI we consider a cost- 
based formulation for determining the optimal token bucket 
depth U*. 

11. THE LEAKY BUCKET SHAPER: A REVIEW 
Figure 3 shows the leaky bucket (LB) controller/shaper. and 

the associated notation that we shall use. We shall not con- 
cern ourselves with peak rate control, assuming that the input 
is already peak rate controlled to the rate R (e.g., a PCM voice 
coder, with activity detection, would emit bits at 64Kbps dur- 

token buffer 

cell buffer 

Fig. 3. The Leaky Bucket shaper. The buffer is infinite, but we want the 
probability of exceeding the buffer level B, to be very small. 

ing active periods). The processes S(t) and W ( t )  shown in 
Figure 3 are to be viewed as rate processes. In the analysis we 
will assume fluid processes, whereas the simulations will be 
done with discrete fixed length packets, or cells. 

We note that when there are cells in the cell buffer, since 
tokens are arriving at the rate p, the cell buffer is depleted at the 
rate p. If the cell buffer level exceeds B,, and since the source 
would not drop its own cells, we view this as a QoS violation; 
i.e., B, does not represent a memory limitation, but a delay 
bound of 9. Thus our view is that the cell buffer "behind" 
the LB is infinite but the buffer level exceeds B, with a small 
probability; we call this the QoS Violation Probability (QVP). 

Fig. 4. A single server queuing system, with service rate p and infinite buffer, 
that is equivalent to the (a, p )  leaky bucket shaper from the QVP (see text) 
point of view. 

With reference to Figure 3, define X (  t )  = XI (t ) - Xz (t) -t- 
o. The QVP is then just P ( X  > B, + u) ,  where X is the sta- 
tionary marginal buffer occupancy (see Figure 4). For a fluid 
model, this system is equivalent to the leaky bucket shown in 
Figure 3 from the QVP point of view (see also [5 ] ,  [I]). Thus 
for a given p, the QVP depends on U and B, only through their 
sum. We will use the notation p ,  to denote P(X > B, + 0). 
Writing B := B, + U, for fixed p,, we denote the B vs p trade- 
off function by gp. (p)  = B. Let h,, (.) denote the inverse of 
gP, (e) (an example of hp8 ( e )  is in Figure 5). 

111. SHAPING FOR MINIMUM COST LOSSLESS 

OPTlMAL VALUE OF p 
MULTIPLEXING: CHARACTERISATION OF AN 

In this section we consider several statistically identical 
sources (SI (t), S,(t), . . . , S,,(t). see Figure 2). each shaped 
by the same LB parameters, feeding a buffered multiplexer. 
Each source requires a shaping plus muxing delay bound of TI 
which can be violated with the QVP of q. For this scenario, 
we develop the notion of an optimal LB token rate parame- 
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B = T p  

Fig. 5. A typical (8, -i- U )  vs p trade-off curve; i.e., the function h,, (B) .  
Two state Markovian on-off source with mean on-time 5/3, mean off tune 
5/2, and peak rate R = 170; p a  = 

ter p* .  The optimality will be in the sense of minimising the 
multiplexer service rate (link bandwidth) required for  lossless 
multiplexing of the superposition of the LB controlled sources, 
with the constraint that the shaping plus multiplexing delay 
bound T is violated with a probability 5 q. 

For an isolated (a, p, R) source fed into a buffered server 
with service rate c, the maximum (over all conforming sources) 
buffer occupancy b is related to c by 

U 
b =  - ( R - c )  R - p  

This occupancy is achieved by an on-off extrema1 periodic 
source with on-time To, = & (at peak rate) and off-time 
T o f f  = 5 (see [6]).  It is also easily seen that (see Lo Presti 
et a1 [7] for a more general result) the lossless multiplexing 
of n such sources will require a buffer of nb and capacity nc; 
i.e., for lossless multiplexing the segregated and aggregated 
systems are identical for resource requirements. Thus, for loss- 
less service at the multiplexer, we need to consider each source 
with its own network queue of service rate c and buffer size b. 
With these ingredients, we will develop an optimization prob- 
lem. 

For given (U, p, R), for lossless service it is necessary that 
the capacity at the multiplexer c 2 p. Also, we need to have 

a b b 2  - ( R - c )  + C >  R -  ff - ( R - p )  
R-P 

It follows that, for lossless multiplexing, given b 2 0, we need 

Now consider the shaping and multiplexing delay constraint T. 
Suppose we allow a target shaping delay of a ( 5  T) .  Hence 
the delay bound T is met provided the bouni on the network 
node delay $ = (T - +), i.e., b = c(T- a). Since our QVP 
is q, we can permit the buffer level in the sgaper to exceed B, 
with probability p ,  = q. We seek the values of p, 0, b and B to 
minimise the multiplexer capacity c. Recalling some notation 

token rate p - 
Fig. 6. Characterisation of p* ; 7 is the mean rate of the source 

from Section I1 (in particular that B = B, + U), we have the 
lfollowing optimisation problem: 

Subject to: 
multiplexer delay constraint: 

b = c ( T - 7 )  

shaper delay constraint and delay QVP: 

< T  B - f f  
P -  

and 

and, by definition 

05 U < B  

Equivalently, eliminating b between the multiplexer delay con- 
straint and the objective function, we obtain 

Subject to 

B = gq(p) ,  0 5 ~7 5 B and B 5 T p  + 
The solution to the above problem is provided by the following 
theorem. 

Theorem III. 1: For g q ( p )  a convex and decreasing function, 
the optimal value of the problem described above is given by 
the unique p* that solves the equation 

T P  = d P >  (3) 

Further, the optimal value of B, + = Tp*, and for 0 5 U <_ 
Tp*, the value of b = U. 
Proof : See Appendix I. The geometry of the solution is de- 
picted in Figure 6.  
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Discussion of Theorem III.1: The only assumption that the 
above result makes about the source S(t)  is that the function 
g&) is convex and decreasing. Also the optimal sustainable 
rate parameter p* obtained by this approach depends only on 
the source process, the maximum delay (T) desired by the 
source, and the QVP q. Thus there is a possibility that p* 
can be determined autonomously by the source in real-time 
by making measurements. We explore an algorithm for doing 
this in the Section IV. Another observation is that since we 
have the optimal value of c = p*, if the source is shaped by 
(0, p * ) ,  0 5 CT 5 Tp’ we must use a buffer of size LT, to ensure 
a lossless service to the shaped source at the multiplexer. 
The function gq ( -) : With reference to Figure 4, an important 
approximate approach to determining the service rate p so that 
the overflow probability P(X > B) < q is to use the asymp- 
totic approximation developed in [8] (see also[9]). Such an ap- 
proach would be particularly applicable, for example, to VBR 
voice sources, for which a two state Markov model with expo- 
nential on and off times is a standard model. If we write the 
negative of the slope of the tail of In P(X > B) as ~ ( p ) ,  then 
one approach is to design the shaper by taking 

Hence, with this approach, we have 

(4) 

Lenirna III. 1: If S(t )  is a Markov modulated fluid process, 
then the function gq(p) ,  as defined in Equation 4, is convex and 
decreasing. 
Proof: The result follows by the application of the results in 
[8, Section IIIA]. 
Minimum Cost Lossless Multiplexing: SI ( t )  , Sz ( t )  , 
. . . , S,(t) are statistically identical sources, each shaped ac- 
cording to (LT, p ,  R) (for given R), and being served in a loss- 
less manner at a FCFS multiplexer with per source buffer b and 
per source capacity c. Consider the problem of minimising the 
linear buffer-bandwidth cost function yc + Pb (where 7 and 
0 are the per Knit cost of capacity and buffers, respectively; 
y > 0 and /? > 0 )  over all choices of the LB parameters, 
and under the QoS constraint: shaping plus multiplexing de- 
lay 5 T with QVP = q. Since the pair c = p* ,  b = 0 is feasible 
for this problem, and p* is the least feasible value of c, it fol- 
lows that the linear cost function is minimised for leaky bucket 
parameters CT = 0 and p = p*. Note that for a fluid source 
we interpret CT = 0 to mean that all fluid arrival from a source 
queues up at its LB buffer, and is served at the rate p (i.e., as 
the fluid “tokens” arrive). In practice, with discrete arrivals, LT 
will need to be at least the minimum data unit (e.g., a cell). 

Iv. MEASUREMENT BASED ESTIMATION OF p‘ 

We use the Robbins-Monro (RM) stochastic approximation 
algorithm to obtain the optimal value of p, i.e., p* (see [lo]). 
The RM algorithm addresses the problem of finding the root 

of a function when we can only observe the function values 
corrupted by noise. It is an iterative algorithm that uses noisy 
measurements of the function for given values of the argument. 
and iteratively obtains an estimate of the root. 

Consider a function f(p). Suppose that, given the argument 
p we can observe f ( p )  + IJ where t~ is the measurement noise. 
[n the RM algorithm, at the lcth iteration, the current estimate 
pk is updated as follows 

P k + i  = P k  - ak(f(Pk) -k %+I) (5 ) 

where {uk} is a “gain” sequence. For a suitably nice function 
f(.), sufficient conditions for the convergence of the RM algo- 
rithm are [lo]: (i) The gain coefficient sequence ab should be 
such that CEO at = 00 and E,”=, a; < 00; (ii) conditions 
on noise: for all IC 1 0 E(Vk+l [ P O ,  (U%, p i ) ,  1 5 i 5 I C )  = 0 
and E(V;+, Ipo, (U*, pi) ,  1 5 e’ 5 k) < H, for some H finite. 
‘In the model of Figure 4, with X the stationary queue length, 
definep(p, B) = P(X > B). Then we define d(p, B) as 

d(P, B)= - Inp(p, B )  -t lnq (6)  

where q is the desired QVP. Then, recalling Theorem 111.1, our 
problem is to find the root p* of the function f(p) = d(p,  Tp). 
An update interval is chosen (we study the effect of choices of 
this interval in Section V), p(pk, Tpk) is measured in the lcth 
interval (see below), and then a new value pk+l is computed 
according to the FUvl algorithm in Equation 5. In the RM algo- 
rithm we have found it useful to take the gain sequence to be 
of the form 

V 

with J an integer, and D a real number. J and D can be 
used to control the transient behaviour and the convergence 
of the algorithm. Also, R and -In(q) are used to scale the 
gain properly. It is easy to verify that C E o a t  = 00 and 
CEO a; < 00. The conditions on noise hold approximately. 
The first condition requires the measurement to be condition- 
ally unbiased. It can be argued that if we obtain the estimate 
of cell loss using the Virtual Buffer technique that we will de- 
scribe below, the measurements are asymptotically unbiased 
as the measurement interval becomes large. Also, we are mak- 
ing a heuristic modification to take care of unbounded values. 
Whenever we encounter a zero loss (leading to an unbounded 
function value), the function value is artificially bounded (e.g., 
by taking the loss to be a small nonzero value a few orders 
of magnitude smaller than q). This modification ensures that 
the RM algorithm steps are executed only on bounded values 
of the function. Hence the conditional second moment of the 
observations used by the RM algorithm is bounded. 
Measuring p ( p t l  T p k ) :  Since the target QVP of interest can 
be very small, we need to use special techniques to measure 
p ( p k , T p k ) ,  a rare event probability. We have used a virtual 
buffer approach based on large deviation asymptotics (see also 

We use an affine approximation for Inp(p, B) (see [12] and 
(91). Writing ~ s ( p )  as the negative of the asymptotic slope of 

[Ill). 
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higher loss 

low loss 

J log P(X > B) 

I 
Fig. 7. Scaling the arrival process and the service rate by Q scales the asymp- 

totic slope of In P ( X  > B )  by ~ / c # J ,  thus incmsing the probability of 
exceedance of a buffer level. 

the virtual buffer system for 
calculating C 

____________-____---------,  
I 

U 

Fig. 8. A virtual buffer system for estimating p'. Three virtual buffers at each 
source S( t ) ,  are used to obtain an estimate of - Inp(pk,Tpk), which is 
used for finding the next iterate of p' using the RM algorithm. The actual 
LB parameters are updated only periodically after renegotiation. 

lnp(p, B) (S denotes that fact that the source S(t) feeds the 
buffer), we approximate 

In P(P, B )  s3 In P(S > P )  - rlS(P)B 

l n P ( P ,  TP) 25 In P(S  > P )  - rlS(P)TP 

Hence we write 

Also, it is easy to see that if the source is scaled by a positive 
multiplier 4 (i.e., each arrival actually brings 4 arrivals) 

i.e., scaling the source and the service rate results in an asymp- 
totic slope that is scaled by l/q5 (see [13]). The usefulness of 
this for measurement of small overflow probabilities is shown 

in Figure 7. For example, with r$ = 4 an overflow probabil- 
ity of becomes roughly 1 0 3 ,  thus making a rare event 
relatively frequent. With this we can write the approximation 
as 

lnP(P> TP) = In P(S > PI - h+S(q5P)TP (7) 

Virtual buffers in the source can now be used to measure the 
various terms in Equation 7. The arrangement for measuring 
lnp(pk, Tpk) is shown in Figure 8. The scaled source is fed 
to two virtual buffers (B1 and Bz) that are served by 4pk ; this 
yields an estimate of q+s(r$pk). The bufferless component B3 
(= 1 for a discrete source) yields an estimate of In P(S > p k ) .  

Equation 7 is then used to get a measurement of lnp(pk, T p k ) .  
Details of the approach are available in a technical report [ 141 
by the authors. 

A. Detection of Change in Source Characteristics 
In practice the source characterisation will change with time, 

and hence the algorithm should be able to track the value of p* .  
We view the source as displaying several stationary regimes, 
each characterized by different LB parameters. In the above al- 
gorithm, the gain goes to zero, and hence the algorithm loses its 
responsiveness to change as the number of iterations increases. 
There are two approaches. One is to use a small fixed gain in 
the RM algorithm; this approach is taken, in a different con- 
text, in [15]. A better approach is to detect a change in the 
source and then reset the stochastic approximation gain. We 
report results for the latter approach here. 

< >- 
TI, 

Fig. 9. Measurement windows for change detection. When the - In (.) of 
means of memured QVPs in the two sliding windows differ by more than 
a predefined threshold, a change in source characteristics is assumed to 
have taken place. 

We have used a simple change detection scheme based on a 
windowing technique. We define two windows (Figure 9). The 
first window is called the Long Term Averaging (LTA) window, 
and the second the Change Detection (CD) window. Let the 
length of the LTA window be Tlta, and that of the CD window 
be Ted, both integer multiples of the basic measurement period. 
We take Tit, to be sufficiently large, and Tcd is small. Also, 
define 

where p; is the QVP at ith iteration. Similarly define 

A 1 
E c d ( k )  = - In - 

i=k-T,d+l 
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We declare that the process has changed if the two differ by 
more than a threshold value 6; i.e., if lelta(Cc) - e,d(k)l > 6. 
The choice of 6 is based on a trade off between reacting to mea- 
surement errors, and thus causing false alarms, and a delayed 
response to actual changes in the source statistics (an analysis 
of such issues in a queueing context is presented in [ 161). Also, 
after a change, the value of q t a  will keep changing till the full 
window shifts into the area where the source has the new char- 
acteristics; if we keep running this detection algorithm during 
that period, we will get false alarms. Hence, once we detect 
a change, we turn off the detection algorithm for (Tit, + Ted) 
iterations. 

v. SIMULATION RESULTS 
In the simulation, an on-off Markov Modulated source with 

a mean on-time of and a mean off-time of R = 170 
cellshnit time, delay bound T = 5 and QVP = was 
used. If we take the unit of time to be lOms and 48 bytes of 
payload per cell, then these parameters will correspond to a 
mean on-time of 16.67ms, and a mean off-time of 25ms, peak 
rate of about 6.5 Mbps, mean rate of 2.6Mbps and delay con- 
straint of 50ms. This could be a characterization of an inter- 
active video source. The delay requirement has to be stringent 
for lip-synching, if the voice and video are sent by different 
connections. Also define E = - In (q ) ;  it is E that we plot in 
the simulation results; note that - In lo-' = 11.513. 

There are two 
columns of plots in the figure; the first column shows the mea- 
sured value of QVP (E), and the second column shows the it- 
erates of p. Results for 3 measurement intervals are shown. 
The gain sequence parameters used are: J = 3 and D = 4; at 
the kth iteration, the virtual buffer values were B1 = 9 and 
Bz = %; the scaling factor C$ = 4. 

The plots in the first row of Figure 10 show the convergence 
behavior of the algorithm when the update period is large (here 
it is 10000 time units). The iterates of p converge to the value 
138.9 in just 2 or 3 iterations in Figure 10; (an effective band- 
width calculation gives p* = 139.1). The update period of 
10000 time units will correspond to 100 sec, which could be a 
reasonable time period for a video source. 

Next we examine the effect of choosing a shorter update pe- 
riod. As the update time period is increased the measurements 
are less noisy and are closer to being unbiased. Convergence it- 
self is affected when the measurement time is very small (con- 
vergence is not evident in the third row of plots in Figure 10, 
corresponding to an update period of 100 time units, Le., 1 sec- 
ond). However, convergence is reasonable for 1000 time units, 
which is equal to 10 seconds for the example above. 

Finally we study the change detection algorithm. The val- 
ues of the change detection algorithm parameters used were: 
Tlta = 10,Tcd = 4,6 = 4. We take a two-state nonsta- 
tionary. source having four stationary regimes. The values 
of [mean on-time, mean off-time) for the four regimes are 
(g,g),($!,g),(g,y) and (y,y). Analysis, based on the 
results of Section I11 and the effective bandwidth approach, 
gives a value of p* as 139.1, 166.3, 135.3, 165.8 for the four 

Figure I O  shows the simulation results. 

regimes respectively. The update time used here is 1000 time 
units, In the first subplot, we plot with a solid line the p* given 
by analysis, and with a dashed line the value given by stochas- 
tic approximation algorithm. We see that our algorithm de- 
tected all the changes without any false alarm. The stochastic 
approximation algorithm gives estimate of p' that are near to 
that given by analysis. In the second subplot in Figure 1 1, we 
plot the observations of - In (pa),  
]Remark on renegotiation: In order for the source to benefit 
from the above technique, the source parameters need to be 
renegotiated. The renegotiations can be for two reasons, (i) ei- 
ther there was a periodic update of the estimated parameters, 
or (ii) there was a change in the source characteristics (for ex- 
ample, owing to a change in source coding rate). While, we 
do not have control over 'direction' of change in the case of 
change in source characteristics, we should try to renegotiate 
'down' in the event of periodic update of leaky bucket param- 
eters, as 'up' renegotiations may be prone to rejection. This 
will be a major concern with algorithms that are iterative in 
nature. In some of the iterations, the estimate of the param- 
eters may be an underestimate. We should avoid using these 
values of LB parameters for renegotiation, since they may lead 
lo 'up' renegotiations later. The estimated QVP values may 
help us in deciding which iteration yielded a conservative es- 
timate of parameters. Whenever the estimated QVP is smaller 
than the required QVP (in the example above this is saying that 
E > 11.513), the estimate of p* is likely to be conservative, and 
hence may be a reasonable epoch for renegotiation. With this 
approach, the plot for E in Figure 11 can be seen to be par- 
ticularly useful in indentifying renegotiation epochs. This is, 
however, a topic for further study. 

VI. AN APPROACH FOR DETERMINING AN OPTIMAL 
VALUE OF 0: LOSSY MULTIPLEXING 

Motivated by the result in Section 111, it is reasonable for 
the source to use a token rate of p*. For lossless multiplexing, 
and a shaping+muxing delay constraint of T with a QVP = 
q, the source can use any a value such that 0 5 0 5 Tp', 
€I, = Tp' - a, and the network sets c = p* and b = U. Thus 
this approach does not yield a unique value of U (if the linear 
buffer-bandwidth cost function is used then, of course, u* = 0 
minimises such cost). A positive 0 would, however, facilitate 
statistical multiplexing, and a cell loss ratio comparable to 
lhe QVP' is permitted then the network resource requirement 
could be reduced. We denote the CLR by p, .  

In this section we develop an approach that will finally yield 
the shaping parameters (a*, p', R) with U* > 0, and such that 
the buffer-bandwidth cost will be minimised over all operating 
points that yield a delay bound of T with QVP % q (p, = q 
and network CLR pm = 4). 

The following bulleted list develops an approach for identi- 
lying an optimal CJ' > 0. 

'Note that if we think of a cell that is delayed more than T as bang equiv- 
alent to cell loss, then a cell loss ratio of q at the network node still yields a 
QVPof1 - (I - q)2 M 2q M p forqsmdl. 
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Fig. 10. Using the RM algorithm and the fast simulation technique. based on virtual buffers to estimate p* . 
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Fig. 1 1. The change detection capability of &e windowing technique in the stochastic approximation algorithm based on loss measurements by the virtual buffer 
approach. The update time is lo00 time units. The value of p* obtained by analysis for the four stationary regimes are 139.1, 166.3. 135.3, 165.8. and 
6 = 4. 

Our view of the system is that n homogeneous leaky bucket 
controlled sources are being fed into the multiplexer at the 
network node, of capacity nc and buffer size B, (see Fig- 

ure 2). The multiplexer inputs are the LB controlled sources 
Wl(t), Wz(t) ,  , . . , W,(t), each being the output of the corre- 
sponding source shaped by ( a , p * , T p *  - (T). 
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defining the multiplexer CLR for the superposition process 
E:=, W, by Ax" w, (B,, nc), we will use the effective 
bandwidths (EBM=gpproach, and assume the following ad- 
ditivity property of effective bandwidths 

n o  i 
7 
5 

iff 

where A(c,p.)(B,, c )  is (- In of) the cell loss ratio for the out- 
put of a (0, p* Tp* - a) shaped source fed into a multiplexer 
with buffer B, and capacity c. This says that if we scale the 
capacity with the number of sources n, with the same buffer, 
then the CLR does not change. Hence we only work with the 
total multiplexer buffer and per source capacity. Notice that, 
this is a conservative assumption because the EBW approach 
ignores the statistical multiplexing gain. 

A(o,p*)(&") = - In @m>1 

P* 
(Bm, c) trade-off curve 
for lossless senrice -----I-- B--K given (em, c) oand trade-off cell loss curve ratio for = pm 

c : per source capauly reqmt. 3 

Fig. 12. Network buffer (B,) vs. per source capacity (c) trade-off curves 
at the multiplexer for given u. 0 5 u 5 Tp'. Shown are the lossless 
trade-off curve, the network delay constraint curve, and the lossy trade- 
of f  curve. 

Fix U ,  0 5 a 5 T p * ,  and consider (c,p+,R) leaky bucket 
controlled sources feeding the network node in Figure 2. For 
lossless multiplexing we get the linear (Bml c) trade-off curve, 
p* 5 c 5 R, B, = no(&), shown as the straight 
line with negative slope in Figure 12. Also the network de- 
lay constraint is given by % = s; the slanting line with 
positive slope in Figure 12. Observe that for fixed o, the ex- 
tremal points of the lossless capacity-buffer trade-off curve 
are ( p ' ,  no) and (R, 0); this trade-off curve intersects the de- 
lay constraint (which is also linear) at (p*,no), the apex of 
the triangle. The triangles for increasing o have the same 
base, and are nested, the apex increasing in height to nTp* 
as o t Tp*. Also shown in Figure 12 (for the same value 
of U as the one for which the triangle is drawn) is the lossy 
(Bm,c) trade-off curve, for CLR p,; i.e., this is the graph 
{(B,,c) : A(o!p*)(%lc) = -lnp,}. The lossy (&,cl 
trade-off curve intersects the delay constraint line at (CO, Bo). 
where CO < p* and BO C no. Note that BO = n$;s, and 
hence co solves the equation Fl CO) = - In (XI,,,); 
clearly CO depends on LT. We will call this the extremal poinr 
f o r o ,  0 5 U 5 Tp*. 

P* R 

c : per source network bandwidth 

Fig. 13. The feasible region for the network buffer vs per source capacity 
trade-off. The shaded region shows the (B,, c) pairs that meet the CLR 
5 pm as well as the delay requirement. 

0 

Pig. 14. The graph of per source buffer vs per source capacity required at mux 
for lossy multiplexing; source model as in Section V; number of sources 
n = 50 and n = 150. Simulation results. 

a As U varies over 0 5 U 5 T p * ,  the locus of the ex- 
tremal points yields a curve as shown in Figure 13. The tri- 
angle shown in Figure 13 is for o = Tp* .  Note that for 
CJ = 0, the extremal point is (B,  = 0 ,c  = p* ) .  Define, 
fo ro<  U < T ~ * , c ( c J )  b y A ( u , p . ) ( y l ~ ( c ) )  = -h(pm). 
Then the locus of the extremal points shown in Figure 13 is de- 
fined by ( c ( ~ ) ~  -), for 0 5 LT < Tp'. Along this curve, 
CJ increases from the bottom to the top. We conjecture that this 
is a convex curve as shown. Examples of such a curve, for the 
source model in Section V, p' = 138, and pm = q = 
for n = 50 and n = 150, are shown in Figure 14 (where per 
source buffer is shown). These curves are obtained from a sim- 
ulation. In the simulations no model was used for the output 
of the shaper. The curves were obtained by directly feeding 
the shaper output to an algorithm that computed these curves 
{for details see [14]). Recently, for a 2-state model for S ( t ) ,  
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we have used an approximate 3-state model for the output of 
the LB shaper (see [SI), and have also obtained these curves 
analytically. The curves match very well with those obtained 
from simulation. 

The shaded area in Figure 13 is bounded by the curves 

{(B,,c) : B, = nTc,O 5 c 5 p * } ,  and {(B, ,c)  : Bm = 
n T p * - H l } .  This shaded region is the set of (Bmlc) pairs 
for each of which there exists a Q, 0 5 Q 5 Tp', such that 
the CLR and the delay requirement are met if the sources are 
controlled by (U,  p') .  

Let the per source cost function be 7 c  + 5, where 7 and 
p are the per unit cost of capacity and buffers, respectively. 
The convexity of the curve {(B, ,c)  : B m  = T,c = 
c(a),O 5 o 5 T p * }  guarantees that the minimum of the 
buffer-bandwidth cost function will be achieved on this bound- 
ary of the shaded region in Figure 13. Hence we have the opti- 
misation problem: 

{ ( B ~ , c )  : Bm = T 1 c  = c ( Q ) , O  5 U 5 2 ' ~ ' ) ~  

Lossless 0 138 690 138 
Lossy(n = 50) 160 138 530 83.02 
LOSSY (n = 150) 110 138 580 75.27 

where for each a, c(u) solves (for c) ,  

0 ' 
96.26 
60.00 

(9) 

Fig. 15. The cost function vs. shaper token bucket depth U,  for A = 8 = 6; 
value normalised to p; source model as in Section V; n is the number of 
sources. Simulation results. 

In Figure 15, for the S( t )  model in Section V, we show plots 
of the cost function. Here A := 5; hence the "cost" is nor- 
malised to 0. These results are obtained from a simulation. 
We notice that, for a small positive values of Pm (= q = lo-') 
there is a signijcant reduction in cost for a positive U. As ex- 
pected, the gain is more for larger n. The minimising values of 
o can be read off these curves. 

We provide a comparison of the values of the shaping pa- 
rameters o*, p*, B,*, and the per source capacity c, and buffer 
6. in Table I, for the three approaches: (i) Peak rate allocation 
(no shaping at the source), (ii) lossless multiplexing in the net- 
work, and (iii) lossy multiplexing in the network. The source 
model is the one defined at the beginning of Section V. 

Approach I o * I p ' I B , ' (  c b 
Peak rate 1 - I - ( - 1 1 7 0 1  0 

TABLE I 
SHAPER PARAMETERS A N D  PER SOURCE MULTIPLEXER CAPACITY AND 

BUFFER FOR VARIOUS APPROACHES. A = 6. 

With p' being estimated as in Section IV (observe that a is 
not needed for this), a measurement based technique needs to 
be developed to determine U* on-line. Such an algorithm will 
have to run in the network node. Periodically, a renegotiation 
will need to be done, with the sources providing estimates of 
p*, and the network node providing estimates of U'; see Fig- 
ure 16 for a schematic showing this idea. This is a topic of our 
ongoing analytical and experimental work. 

traffic source - - - - - I .  w i t h  shaper -'F;.. 

traffic source 

Fig. 16. Schematic of interaction between the sources and the network node 
for the computation of p' and U * .  The sources can estimate p' au- 
tonomously. 

VII. CONCLUSION 
In this paper, we have considered statistically identical, peak 

rate controlled, and leaky bucket shaped sources feeding a 
multiplexer. For a shaping plus multiplexing delay constraint, 
and constraint violation probability, we have formulated opti- 
misation problems that lead to network resource minimising 
choices for the token rate parameter (p),  and the token bucket 
depth (a). For the optimal sustainable rate parameter so ob- 
tained, we have studied a stochastic approximation technique 
for on-line computation of this parameter at the source. 

While our treatment of the token rate parameter is fairly 
complete, work remains to be done on the theory and on-line 
algorithms for the optimal token bucket depth. In particular, 
there is an unproven conjecture in Section VI, and a measure- 
ment based solution is needed to estimate the optimal token 
bucket depth. 

The homogeneous source and QoS (same T and q) model is 
appropriate for IP telephony sources being multiplexed at an 
"IP PBX'. Further work is needed to relax the assumption of 
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source homogeneity, and the requirement that all the sources 
need the same QoS. 

APPENDIX 

1. PROOF OF THEOREM 111.1 

T P* 
B : total buffer size at LB 

Fig. 17. Capacity requirement at the network node (c) as a knction of total 
buffer (sum of cell buffer and token buffer) at the shaper (B); F is the 
mean rate of the source S( t) . 

Proof Looking at the objective function of the optimization 
problem, let us first examine the condition for the following 
inequality to hold 

R 
1 + $(T - y ) ( R  - p)  P S  

i.e., 

Since R 2 p ,  we have 

from which we get 
T P I B  

for B < Tp. Thus, independent of g, p > 1+3(T-v) (R-p)  

We recall that h, (.) is the inverse function of gq (-); since gq ( a )  

is decreasing and convex, the same properties hold for hq(-) .  
Now p and B are related by p = h,(B),  and p’ is defined by 
the solution of p = hq(Tp).  Since h,(B) is decreasing in B, 
Th,(B) > B for B < Tp’. Thus for p = hq(B),  we can 
write (see Figure 17), 

R 

We see that the c vs B curve is just the h,(B) curve upto B = 
Tp’, and is hence decreasing upto B = Tp’. We will now 

This will establish the result. Notice that for B > Tp*, and 
B = g q ( p ) ,  we have B > T p  (see Figure 6). Also we have, 

show that for B > Tp’, c(B) = l + + ( T - y ) ( R - p )  R > - p’. 

from the constraints, that B - T p  5 o 
seen that, for B > Tp’ 

R 

B. It is then easily 

R > 
1 + i ( T  - V ) ( R  - p)  - 1 + g ( R  - p) 

Hence it suffices to show that, for B > Tp’, 
R ’ P* l + % ( R - p )  - 

But this follows since, by the convexity of h,(.), we have, 
for p < p’ < R, and p = h,(B) (see Figure 6) 

R - p’ T - > p*- 
R - p -  B 

In Figure 17 the increasing solid curve to the right of B = Tp’ 

REFERENCES 

is a sketch of the lower bound to c, i.e., +. 1+ ( R - p )  0 

Arthur Berger, “Performance analysis of a rate-control throttle where 
tokens and job queue:’ lEEE Journal on Selected Areus in Cr~mmunicu- 
tions, vol. 9, no. 2, pp. 165-170, Feb 1991. 
Fabrice Guillemin, Catherine Rosenberg, and Josee Mignault, “On char- 
acterizing an ATM source via sustainable cell rate traffic descriptor,” in 
IEEE INFOCOM, 1995. 
Gustavo de Veciana, “Leaky buckets and optimal self-tuning rate con- 
trol,” in IEEE GLOBECOM, 1994. 
Brian L. Mark and Gopalakrishnan Ramamurthy, “Real-time estima- 
tion and dynamic renegotiation of UPC parameters for arbitrary traffic 
sources in ATM networks,” IEEWACM Transactions on Neworking, 
vol. 6, no. 6, pp. 81 1-827, December 1998. 
Anwar I. Elwalid and Debasis Mitra, “Analysis and design of rate based 
congestion control of high speed networks, i: stochastic fluid models, 
access regulatiom,” Queueing Sysrems, vol. 9, pp. 29-64, 1991. 
Anwar I. Elwalid, Debasis Mitra, and Robert H. Wentworth, “A new ap- 
proach for allocating buffers and bandwidth to heterogeneous regulated 
traffc in an ATM node:’ IEEE Journal on Selected Areas in Communi- 
carions, vol. 13, no. 6, pp. 1115-1127, August 1995. 
Francesco Lo Presti, Zhi-Li Zhang, Jim Kurose. and Don Towsley. 
“Source time scale and optimal bufferhandwidth trade-off for regulated 
traffic in an ATM node,” in IEEE INFOCOM, 1997. 
Anwar I. Elwalid and Debasis Mitra, ‘‘Effwtive bandwidth of general 
markovian traffic sources and admission control of high speed networks,” 
IEEWACMTransactions on Networking, vol. 1. no. 3, pp. 329-343, June 
1993. 
G. de Veciana and J. Walrand, “Effective bandwidths: Call admis- 
sion, traffic policing & filtering for ATM networks:’ Queueing Systems 

Harold J. Kushner and Dean S. Clark, Stochastic Approximuriun Merh- 
ods for Construined and Unconstrained Systems, Springer-Verlag, 1978. 
C. Courcoubetis, G. Ke-sidis, A. Ridder, J. Walrand. and R. Weber, “Ad- 
mission control and routing in ATM networks using inferences from 
measured buffer occupancy:’ IEEE Transactions on Communicutions. 

Anwar Elwalid, Daniel Heyman, T. V. Lakshman. Debasis Mitra, and 
Alan Weiss, “Fundamental bounds and approximations for atm multi- 
plexers with applications to video teleconferencing,” IEEE Journul o n  
Selected Areas in Communicarions, vol. 13, no. 6, pp. 1004-1016, Au- 
gust 1995. 
Santosh Abraham and Anurag Kumar, “A new approach for asyn- 
chronous distributed rate control of elastic sessions in integrated packet 
networks,” IEEE Transactions on Networking. submitted. 
Parijat Dube and Anurag Kumar, “Measurement based selection of to- 
ken buffer size for leaky bucket controlled sources: A simulation study,’’ 
Tech. Rep., Indian Institute of Science, November 1998. 
Anurag Kumar, “Adaptive load control of the central processor in a dis- 
tributed system with a star topology,” IEEE Transucrions on Computers. 
vol. 38, no. 11. pp. 1502-1512. November 1989. 
S.Amamath and Anurag Kumar. “A New Technique for Link Utilization 
Estimation in Packet Data Networks using SNMP variables,” in lEEE 
GLOBECOM. 1997. 

(QUESTAJ, vol. 20. pp. 37-59.1995. 

vol. 43, pp. 1778-1784, April 1995. 

0-7803-5880-5/00/$10.00 ( c )  2000 IEEE 1816 IEEE INFOCOM 2000 


