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Abstract— sistency, and copyright protection, it also forfeits a# thenefits
The current web caching infrastructure, though it has a numter of per-  of caching.

formance benefits for clients and network providers, does nomeet pub- : A

lishers’ requirements. We argue that to satisfy these requements, caches We believe that C‘F?lChmg is fundamental to the 'Of‘g?tefm scal
should be enhanced in both the data and control planes. In theata plane, ~ability of the web infrastructure, and therefore it is impor
caches will dynamically generate content for clients by runing code pro- tant to allgn the interests of publlshers and cache opexator

vided by publishers. In the control plane, caches will retun logs of client ; _ ; ; ;
accesses to publishers. In this paper, we introduce Gemira, system which We propose a pUb“Sher centric web cachlng infrastrucne

has both of these capabilities, and discuss two of its key cqranents: secu- Paradigm that will encourage the publishers and cache tipera
rity and incremental deployment. Since Gemini caches are dgply involved  to cooperate in the distribution and caching of web contéat.

in content p(rftparalﬂon da{‘d 'Oggi”Q' e{‘suringhth?“ they Per‘;rm f‘ff‘.o.”ef“ty accomplish this, we have built Gemini, a publisher-centrit
IS vital. lraditional ena-to-end security mechanisms are ot sufricient to .
y cache and infrastructure.

protect clients and publishers, so we introduce a new secuyi model which o - .
consists of two pieces: an authorization mechanism and a viication mech- The Gemini strategy is to endow cache nodes with commu-

anism. The former allows a publisher to authorize a set of caesto runits  pications. storage and processina capabilities that camehe
code and serve its content, while the latter allows clientsral publishers ' 9 P g cap

to probabilistically verify that authorized caches are opeating correctly. e_f|C|aIIy employed by pub“SherS' A Gemini cache _nOde is de-
Because it is unrealistic to assume that Gemini caches willodeployed ev-  Signed as a next-generation web cache that can be incrdipenta

e S et o SYSET S PefemEnaly - deployed nthe current cache infasiructure. It can varely
wepde)écribe our implementation ogf Ggmini and preseni prelin’nar)'/ perfor)f’ SUbStItUte fof a regul_ar cache, as well as |_nt_er0perateerx|m-
mance results. ing cooperative caching schemes. A Gemini cache can support
variety of publisher-specified functions. In the data planean
support dynamic content generation using filtering, venisig,

. INTRODUCTION and/or other publisher-authored methods based on sandiboxe

Web caching, like other forms of caching that occur at valénguages such as Java. In the control plane, a Gemini cache
ious levels of the memory hierarchy (e.g., hardware, opeyat can support customizable logging and reporting, as welttaero
system, application), exploits the reference localitypiple to functions such as object consistency control, accessaipatrd
improve the cost and performance of data access. This has beeblisher-specified QoS.
especially effective at the Internet level, where largeggaphic ~ Central to our design is the architectural assumption ota he
and topological distances separate the producers androensu erogeneous global web cache infrastructure. Just as the Int
of content. The direct and tangible benefits of web caching inet’s routers and links are owned by different administeatio-
clude: improved access latency, reduced bandwidth consumins, we assume that caches belong to many different aghmini
tion, improved data availability, and reduced server load. trative domains, and may have different functionalitieisisTas-

The main drawback of today’s cache infrastructure is thiat itSumption requires an emphasis on security mechanisms to pro
network-centric, but not publisher-centric. From the istigr's tect publishers and clients from caches because (a) caghes ¢
point of view, a number of important features are missingstfi transform content and (b) caches are not owned by a singée org
caches are not equipped to handle dynamically generated daigation that can be held accountable for any corruptedecunt
tent, an increasingly large portion of all web traffic. Respgdor Also, our system must be incrementally deployable sinceethe
dynamic content have to be forwarded back to the origin sgyveis no way to mandate that every domain must switch over to
and the dynamically constructed pages cannot be reusedl, e@€mini. In this paper, we address the problems of providing
by the same client. Second, caches are unable to furnishecurity and an incremental deployment strategy for Gemini
ports on access statistics (e.g., hit counts and cliclasts¢back ~ The Gemini security architecture we introduce is desigoed t
to the publishers. This is of particular concern to publisheprotect clients, publishers and caches from one anoth@miS|
who rely on accurate hit counts to justify their advertisatne and publishers are assured of proper content generatioacand
driven revenue model, and to publishers who wish to obtain arate logging by the cache, while caches are protected from
curate representations of the size and information coniamp malicious code from publishers. Our incremental deployimen
behavior of their audience. Finally, caches unilateralgkm strategy allows Gemini caches and Gemini-aware servers to b
local copies of web objects, often without the consent onevgradually introduced without disturbing existing cligrgsrvers,
the awareness of the publishers. Publishers have no knownd legacy caches. Gemini caches automatically discowkr an
edge of the number and locations of cached copies of their atse Gemini versions of documents, which legacy caches belp t
jects, making object consistency impossible to maintais.aA distribute.
result, caches may be serving stale or outdated objectseto thThe rest of the paper is organized as follows. Section Il de-
clients. For these reasons, many publishers have resartedgdribes the different dynamic content generation techesgund
cache-busting, i.e., bypassing the caches by taggingdhjgicts applications supported by Gemini. Sections Il and IV diescr
'non-cacheable’. This forces the caches to forward all dbjethe security architecture and incremental deploymentegiya
requests back to the origin server. While this practice ressuThe design and prototype implementation of the Gemini node,
proper dynamic page generation, accurate hit counts, data dased on the open source Squid [1] caching software, are pre-



sented in Section V. We discuss the performance of our ipages. For example, a page may be laid out in different ways
plementation in Section VI, and identify related work in Seaccording to user-specified preferences stored in a codkie.
tion VIl before we conclude the paper. publisher code may also create different versions of the frarg
the same user based on the hardware device (e.g., desktop and
[I. GEMINI APPLICATIONS handheld computers have different display capabilit@sjess

. . : . . ndwidth, operating system, and browser used to issuethe r
In this section, we give an overview of the potential set %@ P gsy

s : O uest.
applications that can benefit from Gemini. The purpose &f thf \yhjje e have used the example of a customized news page,
section is to argue by example that Gemini is relevant and Uggege techniques can also be beneficially employed by other
ful. However, the focus of this paper is not on applicatidns,

th L d deol i iated withib .Idtypes of web sites. For example, a consumer e-commerce mer-
OGr;miiisecu” y and aeployment ISSues associated withibglitcp g may tailor web pages to individual customers with prod

" . . uct recommendations, special offers, etc., based on theres
Traditional caches can only handle static objects such

> file filter.
HTML pages. Gemini caches, on the other hand, are capag]z)
of ts_torinfg and prg;;ers]sing ?ﬁtiveddoc%rr]nedntsk; incléjdingrmegib 1. SECURITY
cation of any publisher-authored methods based on sandboxe " . o
languages such as Java. This allows the Gemini caches to sup” trad't'O”?fl. d_|st;|kt)uted comgwl:nlcan?rt\), ?nd-to-tehnd 'F:hct
port, among a wide range of publisher-centric applicatioms N'SMS are suificient to secure data sent between the client an
generation and delivery of dynamic content the publisher because intermediate nodes do not alterr@onte
; o . In our system, caches are active participants in conterdrgen
There are two main types of dynamic content. In the fir SO )e/nd-to-end security mecha?nismspare no Iongermu?ﬁc
case, aweb page is dynamic because the underlying datzesl =0 fL)J it is not only dynamic content that affects the end-td-en
Fhangeerteq#_ently. E>t<am|pltehs mcludedstock tlckerst,)n n ture of securing content delivery. Caches are now regpons
ines, and traffic reports. In the second case, a web page is ? . ; L e
: o e for logging user hits as well. Publishers need assusance
namic because it is constructed on the fly on a per request b: I'tcachgg ngjll log accesses correctly, and that thesewilys
]:I'he etﬁactlforrtn and substgpce of Lhe [I)Eage mla y be tl)acsmehdnmons : eﬁtransported back to the publisher in’tact. To accomphish t
or;) ;nearghcrlsgpbiesrgg,rbﬁgtog{iggg neéws),(?i??g ceussltrg)cmuizecbgagecﬁzhes must belcome fu_I(ij inVOIV%Oll. ir%th? ZYSFteT,S. secturity.

; : : y s an example, consider a publisher’s digital signature on a
gu':ks].tUsmg ?(;/anety_ of te(ihmtques, Gt¢m|n| caches can Smppé)ocumen]t Prerz/iously a cIientF\)/vouId be ablg to usge the signa-
oth types of dynamic content generation. " 1 &M ; o

; re to verify the authenticity of the document. With Gemini
When the underlying data source changes frequently, the Céigcache bef%/ween the publisyher and client might transforrnm the
tegfegtl\t/eni/lss of cach_lfng hs dtehpetnhden';]o?dt?e exp?](_:tedm document according to a publisher’s instructions, but Hehe
e data. More specifically, the threshold for caching . " Sl U
; ; ; is unable to alter the publisher’s signature because it does
a function of the ratio of read-to-write frequency. For exéen ssess the publisherps secret key gl'he result is thatm?s?
online stock tickers may be updated on a minute-to-minute tﬁﬁable to use the publisher's signéture to verify the versib
-Slsi[-but popuLa_lr tlcll<ers may be readdmultlpl_e times perSin;nu he document it receives. The obvious solution to this bl
Sl ot ety ute e embecded -1 be 0 JSTbut e publshers seqet e [ cachoe,
static data. Instead of treating the entire page as un © able to sign any content whatsoever on behalf of the pub-
a Gemini node can cache portions of a page according to p 8ﬁer Even if the cache’s owner is honest enough not tcodixpl
lisher directives. Then it can generate new pages based dn ﬁis crackers who break into the cache may not be as polite
ular and differential page construction techniques. F@nex O desian i ided by f incinles: y P '
ple, delta encoding [2], [3] combines the data already ifheac ur aesign IS guided by four principies.

with any differential updates from the origin server. Ottemh- ' Otect the publisher and client—not just the cachany pre-
niques include partial transfers, cache-based compagtipn YI0US systems have focused on protecting caches and clients
and HTML macros [5]. from the publisher. However, it is just as important to pebte

publisher and clients from caches.

In the second case, Gemini supports on-the-fly page Costr e main risk to the publisher and client is of content being

tion by running publisher-authored code for filtering and-ve S : . ;
sioning, etc. Consider the application of filtering to the dy’iltered before it is delivered to the client. An attackingrea

; - ; uld edit or delete the publisher’s objects, or add entinelw
namic generation of customized news pages (e.g., MyYahor%%, : k
: s - ; ects which appear to be from the publisher, so that what a
The publﬁther ctode rest|d|ntg at th? Ge_mlgl cache WIJLanFW %é 'ént receives isprl?ot what the publishee intended to semdd}
of maore MWIErs 10 consiruct a customized page on tne Ty. ion to simply altering content, a cache could run a puiais
filters may be derived from several sources. First, filterg brea . Ply atering ? , pUre
supplied by the user in the form of cookies in the HTTP reque(‘s(?de incorrecily (either corrupting the program’s stattherin-

i iven to the program).
header. For example, a user may specify the news catego%%l given _ _ ,
and stock symbols that she wants to keep track of. Second, fif hes can also mishandle a publisher’s content by preetgatur

; - - ecting it, by not respecting the quality of service that pluib-
Lers ma%/bbe derived Ijrom ahus_er pkr](_)ﬂtle m".irtﬁh F[hat mfcﬁ(i)i[[psraffisher rgeque)s/ted for ?he CO%tentqor b);/ serving a stalgmmrsi
er past browsing and purchasing history. ThiStype OTiMay yne content. The first two of these affect performance but
be used for delivery of targeted ad banners, product recemm ot correctnes.s while the last does affect cor?ectnemll?i
dations and offers. Finally, the publisher code can geaedtsit ' ;

: ; . g a cache could add, alter, or delete entries from the log eftli
own filters by incorporating data that are specific to thellena esses recorded by the cache and returned to the publisher

vironment. For example, when the user accesses the URL r lishers decide whom to trustike the other hardware in the
within her home area, the customized page may include lo L
ernet, we expect caches to be owned and administrated by a

weather, traffic and sports news. When the user is travelimg o, - ; o .
side her home area, the page may include links to restauram'éje variety of organizations. We cannot expect every [sieli

accommo_dat'(_)n' and maps for the forelg_n area 'nSte_ad' 1We consider a “document”to be a single object, rather thahalev‘page,”
Versioning is also useful for producing customized news group of objects which a browser might display together.



to trust every organization, nor can we even expect all ghblis require that each cache include a secure coprocessor [@hwh

to agree on which organizations are trustworthy. For thés res a processor and memory encased in a secure, tamper-proof

son, we must let publishers decide which caches store amel senclosure. The idea is that all parties can trust the copsoce

their content. Further, because some of a publisher’s dentsn to oversee the generation of all content on the cache. Unfor-

may be more valuable than others, publishers must be abléupately, secure coprocessor technology is usually yesdrsb

specify trust on a document by document basis. This allowsammodity processor technology and more expensive dueto th

publisher to widely distribute less important content wiki€éep- additional engineering and certification necessary to nthke

ing its most vital content in a smaller number of highly tedst device tamper-proof. The resulting lack of performance esak

caches. a secure coprocessor unattractive for use in a web cache.

Each publisher may choose to trust a set of cachesp serve  We employ two techniques to enforce the trust relationships

a set of documents). Any cache not inC' is not trusted to outlined above: cache authorization and verification. Tiseif

correctly run code from the objects in. The publisher trusts a way for publishers to explicitly specify which content &lva

that any cache which is a member@fwill correctly store and can generate. One key feature is that a client can deterime t

run code from any object ifv. Because there is a chance that the content it receives is generated by an authorized cadtee.

trusted cache will be compromised by an attacker, the pudalis client is the entity most interested in verifying that thentamt

must still verify that trusted caches are functioning ccilse it receives has been produced by an authorized cache. And the

A client will trust a publisher to deliver its own content. &h client machine is often the least-contended-for resourcthe

client will also trust a publisher to delegate content delyv path from the publisher.

Thus, if a publisher trusts some cache to deliver some docu-Our second technique is a way for publishers and clients to

ment, the client will also trust that cache for that documéot verify that authorized caches are performing correctlyis i

the same reasons as the publisher, the client needs to treaify lows the publisher to find out when a cache deemed trustworthy

the cache is performing correctly. should not be trusted. We cannot prevent a cache from gener-

A cache also trusts the publisher, and any cache the publishiing content or logging accesses incorrectly. Insteaduse

trusts, to deliver the publisher’s content. Other cachescam- non-repudiation of a cache’s output to make establishinighvh

pletely untrusted, with one exception: a cache may trustrotttache is at fault easy. Coupled with random sampling tech-

caches in the same administrative domain to deliver any-doaiques, any cache which misbehaves enough will be caught wit

ment. Finally, even if it can be sure which publisher seniea@i high probability. Both publishers and clients can perfoams

of code, a cache will not trust that code to function corgectl  pling to catch crooked caches.

Publishers/clients find out about attacks eventualfythe pub- Next, we present the details of our system. We begin by cov-

lisher only trusts honest caches which are never compraimisering the authorization mechanism and security for corgent

its content will always be safe. But if trusted caches becoreeation, which together address the first and second design p

dishonest, the system’s security is endangered. Puldigtnel ciples. We then discuss our verification mechanism, whieh ad

clients must have a way to detect these breaches of trust.  dresses the third design principle. Lastly, we consideother

Many applications require that attacks be detected ingfdmit side of the issue, describing how a cache can be protected fro

in a caching infrastructure, instant detection is expend&ie- publishers. The fourth design principle, incremental dgpl

cause it requires the publisher to verify all content defide ment, is addressed in the design of all the mechanisms throug

If we loosen the restriction and increase the amount of time aut this section.

attack can go undiscovered, the cost of verification can be P

duced since it can be done less often. Each publisher ShoﬁdAuthorlzatlon ) ) )

be allowed to make its own decision about how long an attackVVe rely on a public key infrastructure (PKI) to provide key

can continue undiscovered since each publisher’s conganah distribution so that clients, caches, and publishers catich

different value. each other’s digital signatures. There are several diftdP«l

We believe that for most content, the value to a publisher ofogoposals [7], [8], but they all provide the basic servicasgo-

single page being served correctly is very smalll. If a piiglis ~ Ciating a public key with an identity. This association isoeded

content is temporarily altered or made unavailable, the tos in a certificate, which is a document signed by a certificate au

the publisher is tolerably small. On the other hand, a phblis thority (CA). Each entity with a certificate can produce more

might wish to frequently verify highly valued content sireseen ~ certificates for other entities by acting as a CA. We assumeeth

a short attack would have a significant cost. In this caseitite is a global root certificate authority which everyone knowd a

value of the content justifies a higher cost of verification. trusts. ) - _ - )

The system should be incrementally deployaBlee heteroge- Each publisher needs a certificate identifying its web site a

neous nature of the Internet prevents any system from beigplic key. The format of the certificate is

universally deployed in a short amount of time. Instead, new ~ . .

systems must be able to be deployed gradually, and must-notin {P, Kp, Valid, Expires, CA}K(;;’

terfere with existing systems. On the other hand, the sysdem ] ] ] ]

not secure until the whole path from the publisher to thentliewhereP is the publisher's name and URK ¢ is the publisher’s

is secured. public key, fromV alid to Ezpires is the range of time that

Neither caches nor client browsers should need to be modifite certificate is valid, and'A is the name of the certificate

The caching infrastructure should be secure from the plis authority who created the certificate. The certificate inieth

all the way to the last cache or browser which has our systavith the certificate authority’s private keyk(; ;). Note that we

installed. Clients which do not run our system will be as vuBlso require each cache to have a public key and a certificate.

nerable to attack as they are today since an attacker caeld al A publisher handles cache authorization decisions on an

content right before it arrives at the unmodified client. object-by-object basis. Each object includes an accessaton
list (ACL) with which the publisher specifies which caches ar

The challenge in securing the cache is to come up with an alowed to store the object. The format of the ACL is
proach that is both powerful enough to provide protectiosh an
generally applicable. For example, one approach would be to  {URL, Ky, Ky, ..., Ky, Valid, Expires, P}y,



whereU RL is the name of the object and eagh is a public One vital issue is how the cache can send this security infor-
key. Each of the keys refers to a cache which is allowed t@stanation to the client in a manner that does not confuse legacy
the object. Instead of a list of public keys, the publisheraso clients. Note that standard HTTP/1.1 [9] headers already co
specify a wildcard, indicating that any cache may process ttain the date, the cache name, and the URL. Further, the clien
current document. Observe that an ACL is just a special typeammputes the hash of the request itself. All the cache needs t
certificate, with the publisher acting as the CA. send are the ACL, the signature, and certificates. We include
A publisher can use entries in the ACL in two ways. Onthese three items in the HTTP/1.1 Pragma header field. The
way is to authorize a single cache. This is accomplished BM TP specification states that clients and caches whichrare u
including a cache’s public key in the ACL. The other way iable to parse this information willignore it. Note that déchtes
to delegate the authorization decision to a third party.sT&i are on the order of thousands of bytes in size. As an optimiza-
accomplished through a layer of indirection: the publisher tion, replies can contain the names of certificates ratlaer the
cludes the public key of the third party in the ACL. Then theertificates themselves. Certificates can then be cacheu¢o s
third party creates certificates (signed with the key memtibin  bandwidth. Clients which do not implement Gemini security d
the ACL) for caches it wishes to authorize. For example, a-comot have to suffer the overhead of certificate transfer.
pany such as Underwriters Laboratories might test caches foThe client, after receiving the cache’s response, needsrio v
functionality and security and might issue certificategried ify two things: that the cache is mentioned in the ACL, and tha
by key Ky rapprove) fOr those models of caches that meet ithe cache’s signature is valid. A valid signature impliezst the
criteria. The publisher could mentidts 7 .00 iN its ACL i content was not altered between the cache and client, and tha
it trusts Underwriters Labs’ judgment. A cache that has a cdyoth the client and cache agree on what the client’s requast w
tificate stating that it is a model that has been approved by Uhthere is a problem in any aspect of the response, the client
derwriters Labs would then be able to store the publishérs cshould discard it.
jects. As another example, consider an ISP with many cacheslf the publisher desires, the cache can perform access con-
Assume the ISP uses the public k&ysp to sign each of its trol on the content using standard mechanisms such as user-
caches’ public keys. A publisher could mention all of thedSPname/password pairs, a cookie given to the client by the pub-
caches as a group by includiag s p in its ACL. lisher, or according to the client’s network address or haiste.
Altogether, a publisher would give the following to a cachdf the publisher believes it is necessary, the cache can @sen
ACL,{Headers, Body}KI;l. This is the ACL followed by the quire clients to access private data via SSL [10] or somerothe

object itself. Note that the document and ACL are signed segiCryption layer. Standard SSL would not allow a cache to
arately since the ACL will need to be passed directly on to t@mmunicate on a publisher's behalf, but with the publisher
client while the document may be modified by the cache. TE&ned ACL, the client can be sure that the cache with which
Headers field contains the URL and directives to the cacht IS communicating is authorized by the publisher. Unlikeo
about how to handle the object (consistency, QoS paramet&ifier mechanisms, allowing the cache to act as an SSL ertdpoin
log format, etc.). TheBody contains code and data which thén behalf of the publisher requires modifications to thentlie
cache uses to generate a reply to a client’s request for feetob C. Verification

Along with its response to the client’s request, the cache in : : .
cludes the ACL. The client is able to check the signature en th Because a cache signs all of its responses to client requests
ACL and use it to verify whether or not the cache is authorizeliS N0t able to later deny creating those responses. Arigyent
to produce the requested object. If the cache is not authﬂ:rizw'th access to the cache’s certificate can verify the sigeain a

the client should reject the document. Unauthorized caahes "€SPOnse. If a cache were to produce bogus content, itdsigna
unable to convince the client that they are authorized. would be tantamount to a confession that it was the culprit. A

client only needs to present the faulty output to the publish

B. Content generation prove that the cache misbehaved. Once a publisher is cainc
A cache’s reply to the client has the following format: it can remove that cache from all of its ACLs, preventing the
cache from mishandling the publisher’s documents in theréut
ACL,{URL, Cache, Client, H(Request), The same technique works for catching a cache which fails to
CurrDate, Body} -1 . report log information. If a client presents the publishéhva

Cache

signed response from a cache, the publisher can know totexpec
Except for the ACL, signed by the publisher, the cache siges ta log entry from the cache for that response. If the cache fail
rest of the message: the URL requested, the cache’'s name,ttheeturn the log entry, the publisher knows that the cache is
client's name, a hash of any data sent in the request (e.dafar cheating.

conveyed in an HTTP POST message), the current date, and thEhe challenge is in determining when to question the cache’s
requested content. There are three purposes for the caifpe’'sresponses. We suggest two schemes: publisher-initiatit au
nature. First, it enables the client to detect tamperingpthie ing and client-initiated auditing. Both are based on randam-
document on the path from the cache to the client. Secondpliing so that the more a cache misbehaves, the higher thaprob
tells the client which cache generated the response. Thiden bility that it will be caught. In client-initiated auditinghe client

the client to be sure that the author of the response is daébr sets a probability of verifying a cache’s response with thie-p

by the publisher's ACL. And third, the cache’s signature-prdisher. After each response, the client flips a coin to detaem
vides non-repudiation, linking the input (the URL and resfuewhether to query the publisher.

data) to the output. The date and the client's name in the mesPublisher-initiated auditing involves the publisher wgsia
sage serve to prevent replay attacks, where a third partisssennumber of “fake” clients around the network to issue regaiest
client stale data. In addition to the above information,dhehe for the publisher's documents and return the responseseto th
needs to provide the client with a chain of certificates wigsh publisher. Caches must not know which clients are fake so
tablishes that the cache is authorized by the publishers. AChat the caches do not change their behavior when dealirg wit
This is done because the client cannot always determinehwhiake clients. Note that companies such as Keynote (http://
certificates are needed to link the cache’s public key to dnewaww.keynote.com/) already have such clients set up to roonit
the keys mentioned in the ACL. web site performance. The publisher can look at the resgonse



received by the fake clients to see that the cache has praduce
correct output. In addition, the publisher can verify thae t
fake client accesses were not over-reported or undertezpby
caches, helping to assure the publisher that caches awgmerf
ing logging correctly. In general, this technique cannopst
cache from adding fake log entries by carefully inventing re
qguests from non-existent clients. If a publisher is conedrn
about this attack, it can have a more trusted set of cachie®del
some objects so it can be more confident about the logs returne
Another option is for the publisher to make some (small) cbje
on a page uncacheable so that the publisher can handle all the
logging itself while leaving most of the data distributianthe
caching infrastructure. c1
Determining how much auditing should be done is a matter of
_tradlng network an(_j cache resources f_or catching a m'Sb_ehﬁ\j. 1. Example caching hierarchy with Gemini caches (shshaded). The
ing cache more quickly. As the sampling frequency is raised, regular version of the documentis called D and the Gemirsiveris called
caches are caught sooner but more system capacity is Iég tot D"

sampling process. Finding the right point on this continusim || request and receive D, not D'. In general, clients areene
beyond the scope of this paper. exposed to Gemini documents. Gemini caches are alerted by
D. Cache protection publisher P of the availability of D’ (we describe the mecha-

Th it hani di d so far deal with prot nism for this later in this section), but legacy caches camaig
__N€ Security mechaniSms diSCUSSed So far aeal with pro e&ﬁ'mpletely oblivious to the Gemini scheme and treat D and D’
ing clients and publishers from malicious caches. Howearer.

: ; L ' in identical fashion. Only Gemini caches (and publishers) u
other concern is protecting caches from malicious attacker . stand the association between D and D’
example, a publisher's code could attempt to access Gemini d Let us illustrate Gemini caching by considering object re-
uments from other publishers or the cache’s underlyingaiper uests by clients C1. C2 and C3 respectively. We assume all
ing system. This problem is similar to the problem of prategt 9 y ’ P Y.

a web browser from malicious Java applet, so we adopt sirﬁﬁChesl arteoiirliti?rl]ly empltyk').lbtm (?%mini_ c_actr;_es tGDl Zlind G2 have
lar protection mechanisms. All of a publisher’s code is nomn i een alerted to the avarlability of >emini object L. In resse

side a sandboxed Java virtual machine so that a cache can r#g&request for ?bjecltjl? bg,Clat_he Gemini cacthfe ?ﬁ vxgll per-
strict control over what operations the code is permittepege 011 @ Mapping from Lo Ly and IsSue a request for the Lsemint

. : ion, D'. Caches G1 and X will forward the request back to P
form. In total, the API exposed to publisher code consists Ygrsion ; )
functions for performing the following operations: readom- and P returns D'. Caches X, G1, and G2 all make local coples of

; C o ; i D'. Note that the legacy cache X does not know or care that D’
ing request headers; write outgoing reply headers; writgau . a Gemini object. it simply treats it as an opague objectNo

ing data; request arbitrary URLS to be loaded; and geneeaaté en D’ arrives at cache G2, itis used to dynamically geeerat
limited amount of) log info for each request. Another dang e object D for client C1. Next, client C2 issues a request fo

to caches is denial-of-service attacks, that is, code wbach A cache miss occurs at the leaacy cache 7. but a cache hit
sumes more than its fair share of resources. To counter aIdeFl)l' L gacy "
of service attack, the quantity of CPU time, memory, and néfccUrs at the Gemini cache G1. Since G1 received a request for
work bandwidth assigned to a publisher's code has to be Iig-(10t D) itknows it is the leaf cache. This is true in general
ited. In our current prototype, we have implemented the ABIE ¢ache which translates a request for a regular document |
restrictions, but we have not implemented the resourcadimi & reduest for a Gemini document will be the leaf cache. There-
fore, it executes D’ to dynamically generate D and sends it to
IV. | NCREMENTAL DEPLOYMENT C2. In this case, G2 may (at the publisher’s request) malee thi
. : . : _ copy of D non-cacheable by Z. Finally, C3 makes a request for
Having described Gemini's security architecture, we NoW anq it is propagated all the way back to the publisher. P will

present our deployment strategy. The Gemini infrastrécisir senq the regular version D and may choose to mark the copy
designed to be incrementally deployable and fully interabe  ,on-cacheable.

with existing caches, servers, and clients. Gemini workk ®li
types of cooperative caching, including hierarchical eastga-

_—
| ——

B,

In the rest of this section, we describe how Gemini caches
find out about the existence of Gemini documents. First, we

gggﬂggshdvzeoggﬁemehag%v iQ%edﬁgﬁsei%?nli)(r:iggﬂgi:o-exist andoresent a method which utilizes the features of HTTP/1.1= Un
9 tunately, at least one widely deployed brand of web cache

ngsri)grrgte with legacy caches; not all documents have Genﬁ@es not implement the features of HTTP on which this method

Transparency to clientsClients need not be modified (excep{,vegreks\}v}l;ﬂeer\i?rec'z;'(\':ﬁglso presenta second method whichidho
to achieve security). y '

Transparency to legacy cachekegacy caches do not need tqa, Discovering Gemini documents via HTTP
distinguish between Gemini and regular documents. They can

fetch and cache Gemini documents, thereby assisting in theiThe HTTP/1.1 standard [9] allows a single URL to stand for
distribution. However, legacy caches will never serve Gemimultiple versions of the same document. This allows a server
documents to clients. to offer a document in different languages (English, French
Proximity. Gemini content will be served by the authorize®' Russian), or with a different encoding (JPEG or GIF; com-
Gemini cache closest to the client, which we call ks cache. Pressed, gzip'd, or without compression). We can use tlis fe
Figure 1 shows an example caching hierarchy with a mixtuiere to distribute Gemini and legacy versions of a documgnt b
of regular caches (X,Y,Z) and Gemini caches (G1, G2). Fyeating them as alternate encodings of the same URL.
interoperability the publisher P will have two versionstsfob- When a Gemini cache forwards a request for a URL
ject, the regular version D and the Gemini version D'. Cleento another cache or the server, it adds a header which
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says that it can accept Gemini encodings. For example, Gemi“i
a Gemini cache would add this line to say that it prefers H ipc | | Lookup Table Client Request

the Gemini version of a document to any other encoding: Request to Server

. . . Documents from
Accept - Encodi ng: gem ni ; g=1. 0. A server or cache Server/Cache
which receives such a request can either reply with a regu-

—]

Worker Checke

lar version of the document or the Gemini version. If the Gemini Document | Sauid Cach
reply is a Gemini version, then it will contain this header:
Cont ent - Encodi ng: gemini . Gemini Objects

Note that a cache can store both the regular and Gemini Vesy o cient

sions of a document. The cache determines which version to e

send based on the requesiscept - Encodi ng header. Be- |

cause a client will never specify that it accepts Geminieeled

documents, it will never receive the Gemini version of a doc- Fig. 2. Node Architecture.

ument. And since these headers are a standard part of HT'IIP, ill be the leaf ith authorizati v thith
legacy caches can participate in Gemini document distahut Cll€nt will be the leaf. But with authorization, only traitho-
without a problem. Unfortunately, some legacy caches igndiZ€d Gemini cache closest to the client can be the leaf. When
alternate encodings when selecting a document to return tg §2Che receives a Gemini document, it can examine the ACL

client, meaning that the cache could return a Gemini docamd® determine whether it is authorized. But we can optimize th
to a client or cache not capable of handling the Gemini dodpocess slightly to avoid sending documents to caches vetneeh

ment. Thus, if our system is to be truly reverse-compatibks, Unable to use them.

must handle Gemini document discovery in a different way. . When a cache, C, initiates a request for a Gemini document,
it also includes the names of its identification certificatés

B. Second method for discovering Gemini documents upstream cache (or the publisher) will look at these ceatifis

The approach we have chosen to implement is, in brief, to Jéeedetermine whether C is authorized to serve the Gemini-docu
different URLs for the legacy and Gemini versions of a doctitent. Ifitis, the document is returned. If not, an error ragss
ment. Gemini caches are able to convert the URL of a regultll be returned. Note that even if C lies about which ceréifes
document into the URL of the regular document's associatédP0Ssesses to acquire a document for which it is unautbayiz
Gemini document. Legacy caches are unaware of the relatiénstill cannot produce a valid reply since it does not postiess
ship between the Gemini and regular versions of a documepfoPer keys.
and merely send whichever one of the documents is requestesl. Discussion

There are two challenges to this approach. First, we requirel_ . f desi ke'i iall labl
a robust way of transforming a regular document's URL into_ WO Properties of our design make it especially scalable. By

a Gemini document’s URL. And second, we need a way forcQexisting with the current caching infrastructure, weabke to
server to notify Gemini caches about which of its documenle/eérage thousands of legacy caches to help deliver Gemmi d
have Gemini versions. One simple solution to these chatiend!Ments. Also, observe that the leaf cache’s task of progucin
would be to define URL naming conventions so that a reguigr€gular document from a Gemini document, which involves
document’s name would indicate whether or not it had an dublic key cryptography and possibly running code from the
sociated Gemini document (and what the name of that GemiyPlisher, is a heavy-weight operation. We push this compu-
document is). However, this approach is not robust. If a do@tional burden as close to the edge of the network as pessibl
ument’s URL inadvertently contained the notation indiogtit aches in the middle of the network, where resources arerunde
had an associated Gemini document, a Gemini cache might{@g Most contention, will usually only need to forward docu-
tempt to load the non-existent Gemini version. This couddile MeNts
to increased delay for clients and additional useless stgue

the server.

Our solution is to require the publisher to explicitly ngtif  In this section, we discuss the design and implementation of
Gemini caches about which regular documents have assiciaésemini node. The performance of the implementation will be
Gemini documents. With each of its replies, a Gemini-awatiscussed in Section VI. We have implemented Gemini by ex-
server includes a notification in an HTTP Pragma header fietdnding an existing web cache, Squid. A block diagram of our
Legacy caches ignore the pragma, but Gemini caches storedygtem is shown in Figure 2. On the right is the Squid process,
publisher notifications as soft state. Each notificationt@mis with three modifications: (i) a lookup table to store so#itstin-
three pieces of information: a server name, a suffix to matdormation on the availability of Gemini document versiofig,
and a “tail,” or string of characters, used to convert a ragulability to fetch documents requested by the Gemini process,
document’s URL into the associated Gemini document’s URL(ii) forwarding of Gemini request (and document if apphtz)

When a request arrives, a Gemini cache looks at the URL. Tteethe Gemini process. On the left is the Gemini process, lwhic
cache finds all notifications with a server name the same as itheludes a security module and a Java virtual machine (JVM).
server named by the URL. For each of these notifications, tAl code written by publishers is run inside the JVM. The secu
cache tries to match the end of the path (the piece of the URty module is used to verify signatures on incoming docursen
after the server name and port number) in the URL against #ed to sign outgoing documents.
suffix in the notification. A match indicates that there is asa A
ciated Gemini document. On a match, the Gemini document’s
URL is formed by appending the tail to the URL in the request. Inthis section, we describe the operation of the Geminieach
node, and explain the interactions between the various cemp
nents shown in Figure 2. The Squid front end receives a docu-

The authorization mechanism described in Section Ill cémpment request, and in the event of a cache hit, satisfies theseq
cates matters slightly when determining which cache ise¢h& | immediately using the cache’s copy to produce a reply for the
cache. Without authorization, the Gemini cache closesh¢o tclient. In the event of a miss, it performs a table lookup pet-

V. NODE DESIGN AND IMPLEMENTATION

Node operation

C. Authorization and leaf discovery



tion IV-B) to determine whether there is a Gemini versiorthi ‘ ‘ ,\Aﬂ‘lgﬁ””e(rsrg%tg’)‘ Mea'\rqua(hS?gdev)
Gemini version exists, and is cached locally, the Squidgssc

will pass the request over to the Gemini process via IPC.1©the Ei{fgﬂﬂon 2‘2‘8 (%5’;2)) 557253; (%i'%))

wise, Squid will initiate a fetch of the object using the stard Sig. Check || 2005 (10.7)| 2079 (142.8)

caching hierarchy. When the object arrives, the Squid mpoce Total 3926 (104.1)[ 8911 (173.8)

stores the document in its cache and hands the Gemini process TABLE |

a pointer to the document together with the original request TIME TO UNPACK AN ACTIVE GEMINI DOCUMENT (1:S).
The Gemini process consists of three types of threads: a sin-

‘ ‘ Ad banner rotation MyYahoo

gle dispatcher thread, a pool of checker threads, and a fjool o Mean (Stddev)| Mean (Std dev)

worker threads. The dispatcher thread receives requedts an PC 144 @82 144 29.0)
documents from Squid and puts them into a request queue and Parsing 158 (31.1) 165 (30.0)
a document queue, respectively, for subsequent procesgieg M. 21280 ﬂggg -g) 97210 (3§g§-g)
checker threads are assigned to documents from the document T(')%gl'ng 37016 (5841'.8)) 106755 (g678'.4))
gueue, and they perform extraction of document parts amésig Logging 178 (88) 230 (8.8)
ture verifications. Depending on the Gemini document tygre, f TABLE I

ther processing is performed. Two types of Gemini documents
are supported: active and non-active Gemini documents.- Noh'ME TO PROCESS A REQUEST FOR AN ACTIVIBEMINI DOCUMENT (1S).
active Gemini documents are simply regular documents witizes the Gemini cache—no delegation of authorizationéslus
appended signatures and the presence of some Gemini hga@ publisher’s certificate is appended to the Gemini dociime
ers. These headers indicate, for example, the informatitvet delivered to the cache. It is assumed that the client magciiine
logged when the document is requested. After checking tbe deeady has the publisher’s certificate cached locally, scéche
ument's signature and parsing headers, non-active dodemejends only its signature along with the document.
are stored by Gemini in its own cache. Active Gemini doc%-b Look head
ments, on the other hand, may include Java classes in auditi OOkup overnea
to headers and signatures. These classes are extractadraad s As explained in Section IV-B, Gemini needs to search for a
in a per-document directory. notification entry in a lookup table for each request reakive
The worker threads process the requests from the requ@sr first experiment is to determine the cost of this operatio
queue. The JVM is invoked on the requests for active Gerfer regular documents without associated Gemini versidvs.
ini documents. It loads the Java class belonging to the do@xamine two cases: In the first case, there are no entriegin th
ment and runs it. The output is the document which will bl@okup table for the server named in the request. In the secon
sent to the client after being signed by the worker threace Thase, there are lookup table entries for the server, buetheest
Java code may also create its own logging string. Alteretiv does not match the pattern specified by the entries. For dgamp
the standard Gemini logging facilities will log the requdéthe ~ a request might be for a URL ending in “.gif” but the entry’s
code fails for a client request (due to programming errosge-  pattern only matches URLs ending in “.html”. In both cases, i
sive resource consumption, etc.) the Gemini process widlite takes about 2@s for Gemini to perform the lookup operation.
control of this request back to the Squid process. In this cdsompared with the normal hundreds of microseconds to tens of
the Squid process will handle the request as a regular dadunmilliseconds required to process a document in an unmodified

without a corresponding Gemini version. version of Squid, the penalty imposed by the lookup table is
fairly small.
VI. PERFORMANCE EVALUATION B. Active Gemini document

In this section, we present our preliminary performance re- Our second experiment shows how long a request spends in
sults. Our main concern is in measuring the performancedmpaach step during its processing. The processing consistgof
of our changes to the cache. We have conducted three expstidges: First, unless the document is already in the calhe, t
ments to quantify this impact: first, we measure the additiorsystem has to download the requested Gemini document and to
overhead on document lookups; second, we examine how largify its integrity. Second, the reply for the request ing&ted
each stage of processing for a Gemini document takes; and thby running the Java code in the Gemini document. We instru-
we explore the overhead of a Gemini document without codlgented Gemini to timestamp the various processing stepls, an
(security is still in use, though). For all of these expemisewe we created 10 documents with identical content. To perform a
use latency as our performance metric because we are tegresneasurement, we issue requests for all 10 documents, are aft
in the potential response time degradation due to Gemini.  other. We repeat this procedure 10 times for 100 total regues

We have implemented Gemini on top of Squid versiomhe very first request serves as warmup and is excluded from
2.2STABLES running on Linux (kernel version 2.2.13). For outhe results.
Java virtual machine, we use IBM'’s Java Development Kit3L.1. Tables | and Il list the steps we are most interested in. We
with native threads. The server, cache, and client are dachg show both the mean and the standard deviation for each of them
on separate machines (550 MHz Pentium III's with 128 MB dfhey correspond to tasks of the major components of the Gem-
RAM) connected to the same 10BaseT Ethernet hub. All cryj process in Figure 2. Note that for all steps, the standard
tographic algorithms are implemented using the Cryptpl1] deviation is small when compared to the mean.
library (version 3.1). As an attempt to make the load impased We issue requests for two active Gemini documents, one con-
the cache due to cryptography as light as possible, we use taiming simple code and the other containing complex code,
different signature algorithms. The publisher signs itgifte in order to illustrate how code complexity affects node perf
cates and documents using RSA [12], which has the propemtance. The simple code (131 lines of Java) randomly indwests t
that signature verifications are fairly inexpensive. Thehea URL of an advertising banner (from a static list of URLS) into
signs all of its documents using DSA [13], with which signaa template HTML page. The complex code (559 lines of Java)
ture production is fairly inexpensive. In all of the evaloat generates a per-user, customized, MyYahoo-like page. r@ur i
the publisher issues a single certificate which explicititha- plementation of this application is simpler than an actud#-



w
a

ployed version would be: all of its required data is disttdalin .
the Gemini document itself. In reality, certain data (estpck | |55 Regula doo cache mits

w
o

*--—%  Gemini doc (cache hit)

guotes) would have to be dynamically downloaded by the Java ¥~ =y Gemin doc (Gache miss)
code for each request and the Gemini document would contain
only its HTML template. However, in our measurements, we
are mainly interested in the time it takes to dynamically pose

and sign a customized document and not in network lateney. Fo
this purpose, our simple implementation is sufficient.

Table | lists the various steps involved in unpacking a newly
downloaded Gemini document. In the “Sig. Check” step, the
system checks the signature attached to the Gemini document
and verifies that the URL used for downloading the document D S—
matches the URL in the publisher’s certificate. The overhead 4 6 8 10 1 1 16
for this step is constant at about 2 ms, regardless of thedfype Document Size( KBytes)

Gemini document. Parsing of the reply headers also requiggs 3. performance comparison of non-active Gemini doousand regular
constant time for both documents, as opposed to the exdracti ~ documents (ms).
step, which is much faster for the smaller Ad banner document

N
a
T

-

Performance Latency( ms))
(= = N
o (& o

3]
T

o

(5 KB) than for the larger MyYahoo document (38 KB). depending on the document size.
Table Il shows the overhead of the single steps during the ac-
tual processing of the request. Running Java code and gignin VIl. RELATED WORK

the freshly generated document are the most expensive steps o o
The running time for the code strongly depends on the type ofRelated work comes from four areas: building distributed
active document: composing a MyYahoo-like page takes peafRching systems, web security, active systems (agents, net
four times as long as inserting URLs into a template page. TWOrks, and caches), and research on securing active systems
overhead for the signing operation is almost constant attabo here has been a large body of literature on web caching-archi
ms because signing a document consists of computing a (chggtures (e.g. hierarchical and cooperative) and perfocean-
constant-length hash over the whole the document and thhen jéncement techniques (e.g. cache routing, push-cache)- Ge
forming (expensive) cryptography on the hash. Sendingahe i caches can work seamlessly in these caching architsctur
quest from Squid to Gemini via IPC and parsing of the requedtd most of the techniques are equally applicable to a Gemini
headers by Gemini also require a constant amount of time. Téfghanced caching infrastructure. Within the last year; sev
“Total” line corresponds to the time elapsed between thiearr €ral private infrastructures such as Akamai [14], Adero][15
of the request in the Squid process and sending the last byt&@d Sandpiper [16] have been built to provide publishetraen
the reply by the Gemini process. It does not include loggingaching services. At the architectural level, the key défice
since logging is performed after the reply has been sent- L&gtween these systems and Geminiis that they assume aticach
ging is more expensive for the MyYahoo code than for the A@l® under the same administrative domain, while Gemini as-
banner code, since the former composes its own logginggstrifUMmes an environment where there are heterogeneous admin-
whereas the latter uses Gemini's default logging facility. istrative domains and heterogeneous nodes (Gemini and non-
In general, by optimizing the security operations, (e.g., §3emini). Because of this, Gemini has a strong emphasis on
using cryptography routines implemented in hardware),land security and incremental deployment issues, which are diot a
applying more-advanced Java techniques (e.g., compiting Jdressed in other systems. In addition, Gemini nodes support
byte code to native code as soon as it is downloaded), we exgdghamic content, which, to the best of our knowledge, is not
the performance penalties due to security and running dale cSupported in these other systems.

to decrease. There have been several efforts to bring increased security
. ini d to the web. These include SSL [10], S-HTTP [17], [18], and
C. Non-active Gemini document the Digital Signature Initiative (DSig) [19]. All three ohése

Our last experiment shows the latency increase from ygrotocols provide end-to-end security between the puétiahd
ing non-active Gemini documents (Gemini documents withodlient, whereas the thrust of our work is in providing seturi
code) rather than regular documents. We evaluate fouriffe even when a third party is generating content.
document sizes from 4 KB up to 16 KB with an interval of 4 Gemini can be viewed as a special type of active network [20]
KB. The non-active Gemini documents are identical to the cowith a focus on content delivery applications. Rather thak-m
responding regular documents. In this experiment, we peejpaing a router platform active, we make the cache platfornvacti
100 identical versions of each document, and then fetchekthin addition, we have a strong emphasis on trust and secsrity i
sequentially for 100 total requests. Figure 3 shows theageer sues, and discuss incremental deployment issues in thextont
processing time for these requests. The first request sasvesf today’s caching infrastructure. There are two otherteela
warmup and is excluded from the results. active cache projects. Douglis et al. [5] proposes a highéy s

From Figure 3, we can see that in the case of a cache hit winialized “macro” language which attempts to separatecstatil
the document is already in the cache, the latency for nameactdynamic content in an HTML file. Their scheme allows a cache
Gemini documents is about a constant time larger than that fo store some parts of an HTML file while fetching other parts
the regular version. If we examine the times more closely, vimm the publisher. In contrast, Gemini uses a general p&po
find that the performance degradation is about 8 ms, amdagguage, Java, for data plane operations, and also, Wwsllo
which signing the reply is the most expensive, accounting fpublishers to specify control plane behavior. Cao et al} fiave
92% of the degradation. However, if there is a cache miss whalso enhanced a web cache with a Java runtime in order to allow
the documents need to be fetched from the server first, thre ov@ches to store dynamically-generated content. They esiggha
all processing time degradation is not constant. Whilelkiesa the cache-centric features of their system: caches cansehoo
a constant time to perform the security check, about 2 ms, thhich applets to store and how many resources an applet may
time spent on document extraction varies from 0.6 ms to 2,7 ni@ke up. Further, their security model only considers mtete



ing the cache. Our security model seeks to protect the fheslissecurity.

as well as the cache. Also, we give publishers more control
over when and how their content is cached. Finally, we have
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