
Using Multiple Hash Functions to Improve IP
Lookups

Citation
Mitzenmacher, Michael and Andrei Broder. 2000. Using Multiple Hash Functions to Improve IP
Lookups. Harvard Computer Science Group Technical Report TR-03-00.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518798

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23518798
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Using%20Multiple%20Hash%20Functions%20to%20Improve%20IP%20Lookups&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=3f040887785943034d3580bc76743758&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Using Multiple Hash Fun
tions to Improve

IP Lookups

Mi
hael Mitzenma
her

and

Andrei Broder

TR-03-00

Computer S
ien
e Group

Harvard University

Cambridge, Massa
husetts

Using Multiple Hash Fun
tions to Improve IP

Lookups

Andrei Broder

�

Mi
hael Mitzenma
her

y

Abstra
t

High performan
e Internet routers require a me
hanism for very eÆ
ient IP

address look-ups. Some te
hniques used to this end, su
h as binary sear
h on

levels, need to
onstru
t qui
kly a good hash table for the appropriate IP pre�xes.

In this paper we des
ribe an approa
h for obtaining good hash tables based on

using multiple hashes of ea
h input key (whi
h is an IP address). The methods

we des
ribe are fast, simple, s
alable, parallelizable, and
exible. In parti
ular,

in instan
es where the goal is to have one hash bu
ket �t into a
a
he line, us-

ing multiple hashes proves extremely suitable. We provide a general analysis of

this hashing te
hnique and spe
i�
ally dis
uss its appli
ation to binary sear
h on

levels.

1 Introdu
tion

We des
ribe a new hashing approa
h suitable for use in network routing software

and hardware. This hashing approa
h
an be applied to improve IP lookups

using the te
hnique of binary sear
h on levels to �nd the longest mat
hing pre�x.

In parti
ular, we expe
t that this approa
h will prove highly suitable for IP-v6

addresses (when
ombined with previous te
hniques su
h as pre�x expansion),

and for new programmable network pro
essors [4℄. We expe
t that it will also

be useful for similar problems, su
h as pa
ket
lassi�
ation and �ltering, where

hashing is
ommonly used as a subroutine to allow fast lookups [13℄.

The basi
 idea of the approa
h is to use multiple hash fun
tions. The idea has

been been analyzed and developed in several re
ent theoreti
al works. We therefore

spe
i�
ally address how this approa
h
an be used to improve performan
e on

�

AltaVista Company, 1825 S. Grant Street, Suite 410, San Mateo, CA 94402, USA. This work was

done while at Compaq Systems Resear
h Center, Palo Alto.

E-mail: andrei.broder�altavista.
om.

y

Harvard University, Computer S
ien
e Department. 33 Oxford St., Cambridge, MA 02138. Part of

this work was done while visiting Compaq Systems Resear
h Center.

E-mail: mi
haelm�ee
s.harvard.edu.

1

the real problem of IP lookups. In parti
ular, we emphasize that by properly

stru
turing the data, one
an parallelize memory a

esses so that using multiple

hash fun
tions is desirable.

1.1 Hashing for IP lookups

The standard approa
h used by an IP router to forward a pa
ket is to keep a

forwarding table based on IP destination address pre�xes. Ea
h pre�x is asso
iated

with the next hop towards the destination. The IP router looks in its table for the

longest pre�x that mat
hes the destination address of the pa
ket, and forwards

a

ording to that mat
h.

One atta
k for solving the longest mat
hing pre�x problem is to perform binary

sear
h on levels [14, 17℄. We brie
y review the main ideas.

1

Pre�xes are divided

a

ording to length, with all pre�xes of a given length in a table. We then perform

a binary sear
h for mat
hing pre�xes of the destination address a

ording to pre�x

lengths. A mat
h in a given table implies that the longest mat
hing pre�x is at

least as long as the size of pre�xes in the table, whereas a failure to mat
h implies

the longest mat
hing pre�x is shorter. Tables for ea
h pre�x length
an be stored

as a hash table. In this
ase, if there are W di�erent possible pre�x lengths and

n di�erent pre�xes, the sear
h requires O(n log

2

W) memory and O(log

2

W) time.

This te
hnique is enhan
ed by using the pro
ess of
ontrolled pre�x expansion in

order to redu
e the number of distin
t pre�x lengths, as des
ribed by Srinivasan

and Varghese [14℄. If the number of distin
t pre�x lengths used is only ` instead

of the W possible, then only log

2

` table lookups are required, instead of log

2

W .

This redu
es the sear
h to O(log

2

`) time; the amount of memory used depends on

the in
rease in the number of pre�xes. Srinivasan and Varghese suggest that from

experiments on real data, the possible in
rease in the number of pre�xes does not

lead to large in
reases in memory requirements [14℄.

The binary sear
h on levels s
heme depends on being able to
reate suitable

hash tables in order to minimize the number of memory a

esses. Sin
e a memory

a

ess requires reading in a
a
he line, a natural goal is to ensure that the number

of items that fall in a bu
ket
orresponds to the
apa
ity of a single
a
he line,

so that ea
h hash bu
ket
orresponds to a
a
he line of memory. This ensures

that ea
h level examined during the binary sear
h only requires a single memory

a

ess. Srinivasan and Varghese therefore suggest sear
hing for a \semi-perfe
t"

hash fun
tion where ea
h bu
ket has only

ollisions, where
 is the number of

items that
an �t in a single
a
he line [14℄. In their
ase,
 = 6.

One potential problem with the above method is that �nding a suitable semi-

perfe
t hash fun
tion
an be a slow pro
ess. As reported in [14℄, for the MaeEast

database of IP addresses,
onstru
ting su
h a hash fun
tion took almost 13 min-

utes. The authors argue that this time may not be a problem, as pre�xes
hange

rarely enough that this
omputation
an be done o�-line. Note that if one attempts

1

Of
ourse there are other possible atta
ks for this problem as well, as detailed for example in re
ent

works [2, 14℄.

2

to handle table modi�
ations on-line, there is the possibility that the
apa
ity of

a bu
ket
ould be ex
eed by an unfortunate sele
tion of values to be hashed. Su
h

a problem
ould be handled by
hoosing a new hash fun
tion and re-hashing all

entries; however, if �nding a suitable hash fun
tion requires signi�
ant time, this

is not desirable.

A related potential problem is that the above s
heme potentially wastes signif-

i
ant memory. When some bu
kets have fewer than six elements, spa
e is wasted

for
a
he lines that do not hold their full
ontingent of items.

Our hashing s
heme is designed to solve the problems introdu
ed by sear
hing

for a semi-perfe
t hash fun
tion, by instead using multiple hash fun
tions. The

approa
h is very general and hen
e should prove highly suitable for IP-v6 addresses

(when
ombined with previous te
hniques su
h as pre�x expansion), as well as

other similar lookup problems that use hashing.

1.2 Multiple hash fun
tions

For some time it has been known that using multiple hash fun
tions
an lead to

di�erent performan
e behavior than using a single hash fun
tion. One of the �rst

analyses suggested using multiple tables, with a separate fun
tion for ea
h table.

Elements that
ollide in one table per
olate to the next. The tables shrunk in size

and the hashes
ould be
omputed in parallel [3℄.

A seminal result in the area
onsidered the following natural hashing s
heme

[1℄, whi
h we here
all the d-random s
heme. Suppose that n items are hashed

sequentially into a table with n bu
kets, in the following manner. Ea
h item is

hashed using d hash fun
tions, whi
h we assume yield independent and identi
ally

distributed bu
kets for ea
h item. The item is pla
ed in the least loaded bu
ket

(that is, the bu
ket with the fewest items); ties are broken arbitrarily. A sear
h

for an item now requires examining the d possible bu
kets; however, as shown in

[1℄ the maximum load in a bu
ket (with high probability) is

log log n

log d

+O(1). This

ompares quite favorably to the situation where just one hash fun
tion is used, in

whi
h
ase the maximum load is

log n

log log n

+ O(1). The key point of this result is

that using two hash fun
tions leads to a
ompletely di�erent behavior than using

a single hash fun
tion, while three is not too mu
h di�erent from two. Besides

improving the maximum load, using two hash fun
tions in this way leads to a

more equal distribution of the load a
ross bu
kets. A numeri
al analysis of this

hashing pro
ess is given in [11℄, and extensions to queueing models are presented

in [10, 9, 16℄.

The hashing s
heme we examine here is a variation of the d-random s
heme,

with better performan
e and
hara
teristi
s that make it more suitable for the IP

lookup problem. It was �rst introdu
ed and analyzed theoreti
ally by V�o
king

[15℄; a simpler analysis more relevant to our dis
ussion was developed by V�o
king

and Mitzenma
her [12℄.

3

.

Left Right

z

9 10 11 121 2 3 4 5 6 7 8 13 14 15 16

Figure 1: The 2-left s
heme. A newly inserted item, labeled z, is pla
ed in the less �lled

of two random bu
kets, one from the left and one from the right. Ties are broken to the

left. A sear
h for z may require sear
hing both of the bu
kets in whi
h z might have

been pla
ed.

2 Multiple hashes: the d-left s
heme

We begin by fo
using on the
ase of two hash fun
tions. The s
heme we des
ribe

was introdu
ed by V�o
king in [15℄ and is referred to as the 2-left s
heme in [12℄.

Our hash table
onsists of n bu
kets. (We assume n is even.) We split the n

bu
kets into two disjoint equal parts, whi
h for
onvenien
e we
all the left and

the right.

2

When an item is inserted, we
all both hash fun
tions, where ea
h

hash fun
tion has a range of [1; n=2℄. The �rst hash fun
tion determines a bu
ket

on the left, the se
ond a bu
ket on the right. The item is pla
ed in the bu
ket

with the smaller number of existing items; in
ase of a tie, the item is pla
ed in

the bu
ket on the left. In order to do a lookup, one must examine the
ontents of

the two possible bu
kets
orresponding to the two hashes of an item.

An obvious disadvantage of this approa
h is that it requires two hash table

lookups for ea
h level. Note, however, that these lookups are independent, in that

they
an be performed in parallel. Spe
i�
ally, if the hash table is pla
ed into

memory so that the left and right parts of the table are guaranteed to map to

di�erent memory areas, then a

essing the two bu
kets
orresponding to an item

an naturally be pipelined. For example, in software one might arrange so that

the left side of the table
orresponds to even
a
he lines and the right side to odd

a
he lines. Alternatively, in hardware one
ould store di�erent parts of the table in

distin
t memory bank subsystems. Hen
e we do not feel that the requirement that

two memory a

esses are required will have an important negative performan
e

impa
t. (Similarly, if the ma
hine
an issue multiple instru
tions, then the two

2

We emphasize that \left" and \right" are terms
hosen simply for
onvenien
e; the point is simply

that the table
onsists of two disjoint parts.

4

bu
kets may be sear
hed for the item in parallel as well.) We show that in return

for this pri
e, we obtain signi�
ant bene�ts.

We may generalize the above to more hash fun
tions, with the d-left s
heme

using d hash fun
tions. Initially the n bu
kets of the hash table are divided into

d groups of n=k bu
kets. (Again, we assume n=k is an integer.) We think of the

groups as running
onse
utively from left to right. An in
oming item is pla
ed in

the bu
ket with the smallest number of existing items; in
ase of a tie, the item is

pla
ed in the bu
ket of the leftmost group with the smallest number of items. In

order to sear
h for an item in the hash table, the
ontents of d bu
kets must be

he
ked. Again, the
orresponding memory lookups
an easily be pipelined. We

show that by in
reasing the number of hash fun
tions used, one
an redu
e the

memory required for the hash table at the potential expense of more (pipelined)

memory a

esses and
omputation.

An interesting question is why we suggest that ties be broken towards the left,

rather than breaking ties randomly as in the d-random s
heme. Surprisingly, the

asymmetry introdu
ed by breaking ties toward the left a
tually improves perfor-

man
e, in that the maximum number of items pla
ed in a bu
ket is smaller (in a

probabilisti
 sense) when one breaks ties in this manner. The intuition for this im-

provement is that as items are added, the
ases where there are ties are extremely

signi�
ant. For example, suppose the largest load thus far is four. In order to

obtain a bu
ket with load �ve, we must
hoose two bu
kets with load four. Ties

are therefore ne
essary to push the maximum load to new, higher levels.

By breaking ties asymmetri
ally, one a
tually redu
es the number of ties during

the
ourse of the pro
ess, and this improves the overall balan
e. To see this, again

suppose the system is in a state with several bu
kets of load four. Bu
kets with

load �ve are
reated when two bu
kets of load four are
hosen; subsequently,

bu
kets of load six are
reated when two bu
kets of load �ve are
hosen. If ties are

broken randomly, the bu
kets of load �ve are spread evenly on the left and right

sides. If, however, ties are broken asymmetri
ally, the bu
kets of load �ve initially

are all pla
ed on the left hand side. Sin
e our random bu
ket
hoi
es are taken

one from ea
h side, this
auses it to take longer before a bin of load six
an arise.

In the
ontext of IP lookups, this asymmetry is also helpful in that it
an be

used to slightly redu
e the average lookup time, in the
ase where the item being

sear
hed for is a
tually in the table. As the leftmost groups are more likely to

hold more items, they
an be examined �rst. If the pattern is found in one hash

bu
ket, the other need not be sear
hed. Hen
e, for the 2-left s
heme, more than

half the time the se
ond (pipelined) memory a

ess for ea
h level will not have to

be examined when the item is to be found in the table.

2.1 A Basi
 Analysis

We provide a simple approximate
uid limit analysis of the d-left s
heme, following

[12℄. The
uid limit analysis
aptures the behavior of the system as the number

of bu
kets grows to in�nity. The analysis depends on viewing the insertion of

5

items as a deterministi
 pro
ess, where loads behave essentially a

ording to their

expe
tations. Appropriate large deviation theory yields that for suÆ
iently large

systems, this approa
h is quite a

urate; Cherno�-like bounds
an be obtained,

using theory that dates ba
k to Kurtz [6, 7, 8℄. Essentially, the theory demonstrates

that the law of large numbers applies to these systems. Hen
e, from these Cherno�-

like bounds, the probability of deviating sign�
antly from the loads given by the

di�erential equations falls exponentially in the size of the system, in terms of the

number of bu
kets n. In pra
ti
e, as we shall see, this analysis proves a

urate

even for systems of reasonable size, as the theory would suggest.

For this se
tion we follow [12℄; however, we present the analysis here for
om-

pleteness. For
onvenien
e we begin with the
ase d = 2; thus we have two groups

and n=2 bu
kets. Let y

i

(t) be the fra
tion of the n hash bu
kets that
ontain at

least i items and are in the �rst, that is, leftmost, group when nt items have been

pla
ed. Similarly, let z

i

(t) be the fra
tion of the n hash bu
kets that
ontain at

least i items and are in the se
ond group when nt items have been pla
ed. Note

that y

i

(t); z

i

(t) � 1=2 and that y

0

(t) = z

0

(t) = 1=2 for all t. We will drop the

expli
it referen
e to t and simply use y

i

and z

i

where the meaning is
lear.

If we
hoose a random hash bu
ket on the left, the probability that it has at

least i items is

y

i

1=2

= 2y

i

. Analogously, if we
hoose a random hash bu
ket on the

right, the probability that it has load at least i is 2z

i

.

The
uid limit behavior expresses the deterministi
 behavior the system would

follow in the limit as the number of bu
kets n and the number of items nt grow

to in�nity. It is expressed by a family of di�erential equations, where for i � 1:

dy

i

dt

= 2 (y

i�1

� y

i

) (2z

i�1

) ;

dz

i

dt

= 2 (z

i�1

� z

i

) (2y

i

):

These equations express the following natural intuition. Let dt represent the

amount of time during whi
h one item is pla
ed in the hash table. For y

i

to

in
rease over some interval dt, the newly inserted item must
hoose a bu
ket on

the left with exa
tly i�1 items and a bu
ket on the right with at least i�1 items.

The probability of this o

urring is simply 2 (y

i�1

� y

i

) (2z

i�1

). Similarly, for z

i

to in
rease over some interval dt, the newly inserted item must
hoose a bu
ket on

the left with at least i items and a bu
ket on the right with exa
tly i� 1 items.

It will be somewhat more
onvenient to generalize to the
ase of general d if

we write these equations all in terms of a single sequen
e x

i

. If we substitute x

2i

for y

i

and x

2i+1

for z

i

, the equations above ni
ely simplify to the following (for

i � 2):

dx

i

dt

= 2 (x

i�2

� x

i

) (2x

i�1

)

= 4 (x

i�2

� x

i

) x

i�1

: (1)

For the d-left s
heme, we may think of x

jd+k

as representing the fra
tion of

the bu
kets that have at least j items in the kth group from the left (where the

6

leftmost group is the 0th group from the left). Then the
uid limit model yields

the following family of di�erential equations:

dx

i

dt

= d

d

(x

i�d

� x

i

)

i�1

Y

j=i�d+1

x

j

: (2)

We will use these equations to derive the approximate behavior when multiple

hash fun
tions are used. It is also worth noting what these families of di�erential

equations tell us about the distribution of items to hash bu
kets. For example,

suppose we have n items and n hash bu
kets (so that we
an think of the equations

as running until time t = 1). How do the x

i

behave?

As in [15, 12℄, to des
ribe this behavior, we de�ne the generalized Fibona

i

number F

d

(k) by F

d

(k) = 0 for k � 0, F

d

(1) = 1. and F

d

(k) =

P

d

i=1

F

d

(k � i)

when k > 1. Note that for d = 2 the generalized Fibona

i numbers are just the

standard Fibona

i numbers. Then the behavior of the x

i

is essentially

x

i

(1) � 2

�F

d

(i)

:

We provide a loose justi�
ation. From equation 2, we have

dx

i

dt

� d

d

i�1

Y

j=i�d

x

j

;

so by integrating

x

i

(1) � d

d

Z

1

0

i�1

Y

j=i�d

x

j

(t)dt

� d

d

i�1

Y

j=i�d

Z

1

0

x

j

(t)dt

� d

d

i�1

Y

j=i�d

x

j

(1):

Now suppose x

j

(1) � 2

�F

d

(j)�1

=d for i� d � j � i� 1. Then

x

i

(1) � d

d

i�1

Y

j=i�d

2

�F

d

(j)�1

d

�

i�1

Y

j=i�d

2

�F

d

(j)�1

� 2

�d

2

�

P

i�1

j=i�d

F

d

(j)

�

2

�F

d

(i)

d

:

7

Hen
e, on
e the tails be
ome suÆ
iently small, a simple indu
tion
an be used to

show the tails de
rease faster than 2

�F

d

(i)

; that is, the de
rease has a generalized

Fibona

i number in the exponent.

Be
ause x

jd+k

represents the fra
tion of the bu
kets that have at least j items

in the kth group from the left, the fra
tion of bu
kets with load at least i is

P

d�1

k=0

x

id+k

� 2

�F

d

(di)

: Re
all that for large i, F

d

(k) grows exponentially; that

is, F

d

(k) � �

k

d

for some
onstant �

d

. In fa
t �

2

is the golden ratio

1+

p

5

2

=

1:618 : : :, and the �

d

form an in
reasing sequen
e satisfying 2

(d�1)=d

< �

d

< 2.

(For referen
e, �

3

= 1:839 : : : and �

4

= 1:927 : : :) So, for example, when d = 2 the

fra
tion of bu
kets with load at least i falls approximately like 2

�2:6

i

; note that

the i is in the exponent of the exponent. Intuitively, this implies that the x

i

fall

extremely qui
kly with i, and hen
e the maximum load is very small.

Indeed, an alternative proof te
hnique based on witness trees demonstrates that

the maximum load is

log log n

d log �

d

+O(1) with high probability [15℄. The analysis based

on di�erential equations is not
ompletely suitable for obtaining su
h �ne bounds

[11℄; however, it does yield a

urate numeri
al information useful for predi
ting

the behavior of the hash fun
tion in pra
ti
e.

2.2 Modeling Dynami
 Deletions and Additions

In the se
tion, we
onsider how to modify the basi
 equation (1) to handle dynami

additions and deletions to the table. Our goal here is to suggest that additions and

deletions of addresses
an be handled on-line with our suggested hashing s
heme.

We emphasize, however, that when attempting to handle table additions on-line

there is always the possibility that the load on a bu
ket will ex
eed the maximum

apa
ity, as given by the
a
he line size. In su
h a
ase, one must be prepared to

take an a
tion su
h as re-hashing the data using new hash fun
tions. An advantage

of our multiple hash fun
tion approa
h is that �nding suitable new hash fun
tions

is very qui
k, and our analysis demonstrates that the need for su
h emergen
y

pro
edures
an generally be made so rare that it is not a signi�
ant issue.

Note that if we are required to handle dynami
 additions only, equation (1)

still holds. One only needs an upper bound on the number of items to be hashed,

and the equation
an be used to determine the distribution when the number of

items hashed rea
hes this upper bound.

If there additions and deletions, we must model how deletions o

ur. Two

important points are the rate of deletions
ompared with the rate of additions, and

how the items to be deleted are
hosen. For the �rst issue, a natural breakdown is

to assume that items are added only up to some point in time, and then additions

and deletions vary. We let the probability that an event is an insertion be p and

the probability that an event is a deletion be 1� p. For the se
ond issue, we
an

vary our equations to analyze the
ase where, when a item is to be deleted, the

item is
hosen uniformly at random from all items. More
on
retely, we
an model

the situation where all addresses have lifetimes that are exponentially distributed

with the same mean. More general deletion models, su
h as models where the age

8

of an item
an a�e
t its probability of being deleted,
an be handled using the

analysis of [15℄, although this approa
h does not give the numeri
al answers we

desire here. The model where a random bu
ket is
hosen and an item is deleted

from that bu
ket
an also be handled using these te
hniques, however [9℄.

We modify the equation (1) to a

ount for deletions by noting that the total

number of balls is

P

i�0

i(x

2i

+x

2i+1

), and the number of balls that
an be deleted

that
ause a redu
tion in x

i

is b

i

2

(x

i

� x

i+2

). Hen
e the equations that des
ribe

the behavior of the system are given by

dx

i

dt

= 4p (x

i�2

� x

i

) x

i�1

� (1� p)

bi=2
(x

i

� x

i+2

)

P

j�0

i(x

2j

+ x

2j+1

)

: (3)

Intuitively, the �nal distribution is likely to be smoother when deletions o

ur

in this manner, as heavily loaded bu
kets are more likely to in
ur a deletion than

lightly loaded bu
kets.

3 Data

3.1 Evaluating the di�erential equations

Load

number of items

n=2 n 2n 3n 4n

0 6.1e-01 3.7e-01 1.4e-01 5.0e-02 1.8e-02

1 3.0e-01 3.7e-01 2.7e-01 1.5e-01 7.3e-02

2 7.6e-02 1.8e-01 2.7e-01 2.2e-01 1.5e-01

3 1.3e-02 6.1e-02 1.8e-01 2.2e-01 2.0e-01

4 1.6e-03 1.5e-02 9.0e-02 1.7e-01 2.0e-01

5 1.6e-04 3.1e-03 3.6e-02 1.0e-01 1.6e-01

6 1.3e-05 5.1e-04 1.2e-02 5.0e-02 1.0e-01

7 9.4e-07 7.3e-05 3.4e-03 2.2e-02 6.0e-02

8 5.9e-08 9.1e-06 8.6e-04 8.1e-03 3.0e-02

9 3.3e-09 1.0e-06 1.9e-04 2.7e-03 1.3e-02

10 1.6e-10 1.0e-07 3.8e-05 8.1e-04 5.3e-03

11 7.4e-12 9.2e-09 6.9e-06 2.2e-04 1.9e-03

12 3.1e-13 7.7e-10 1.2e-06 5.5e-05 6.4e-04

13 1.2e-14 5.9e-11 1.8e-07 1.3e-05 2.0e-04

14 4.2e-16 4.2e-12 2.5e-08 2.7e-06 5.6e-05

15 1.4e-17 2.8e-13 3.4e-09 5.5e-07 1.5e-05

Table 1: Loads in the
uid limit (n bu
kets, 1
hoi
e). Entries represent the fra
tion of

bu
kets with that load.

9

Load

number of items

n=2 n 2n 3n 4n

0 5.3e-01 2.3e-01 3.4e-02 4.6e-03 6.2e-04

1 4.4e-01 5.5e-01 2.1e-01 4.0e-02 6.9e-03

2 3.0e-02 2.2e-01 5.0e-01 2.0e-01 4.3e-02

3 8.6e-06 4.4e-03 2.6e-01 4.8e-01 1.9e-01

4 9.2e-16 5.2e-08 9.1e-03 2.7e-01 4.7e-01

5 1.4e-42 1.2e-21 5.0e-07 1.2e-02 2.8e-01

6 5.3e-58 7.2e-19 1.1e-06 1.3e-02

7 1.5e-50 6.6e-18 1.6e-06

8 5.7e-48 1.8e-17

9 8.4e-47

Table 2: Loads in the
uid limit (n bu
kets, 2
hoi
es). Entries represent the fra
tion

of bu
kets with that load.

We �rst demonstrate what results we obtain by evaluating the
uid limit system

given by the family of di�erential equations. The results obtained here were found

by simulating the progress of the di�erential equations using dis
rete time steps of

5 � 10

�7

, whi
h prove more than suÆ
ient for this level of a

ura
y. For example,

to obtain a result for n=2 items and n bu
kets, we run the di�erential equations

up to t = 1=2. Values of less than 1e�100 are left blank in our tables.

For
omparison purposes, we in
lude in Table 1 equivalent results in the
ase

where a single hash fun
tion is used, assuming that the hash fun
tion distributes

items independently and uniformly at random into bu
kets. We note the well-

known fa
t that as n grows to in�nity the fra
tion of bu
kets with load k when

the average load is � approa
hes a Poisson random variable, and hen
e the fra
tion

with load k is simply

e

��

�

k

k!

.

Two important points are manifest from Tables 1, 2, and 3. First, when using

two or more hash fun
tions, the fra
tion of bu
kets with a given load de
reases

remarkably qui
kly with the load, espe
ially in
omparison with the single
hoi
e.

This is to be expe
ted given our previous dis
ussion. As an example,
onsider

when n items are hashed into n bu
kets, for large n. Our results show that 1e-06

of the bu
kets will have load at least 9 if a single hash fun
tion is used; with two

hash fun
tions, only about 5.2e-08 + 1.2e-21 + 5.3e-58 � 5.2e-08 of the bu
kets

will have load four or greater, and similarly with three hash fun
tions, only 4.4e-33

of the bu
kets will even have load four!

Se
ond, when tn items are pla
ed, the loads are strongly
entered around the

integers nearest to t. This follows naturally from the above, sin
e the average

bu
ket load is of
ourse t, and the probability of high bu
ket loads de
reases so

qui
kly. These two e�e
ts are exa
tly what we desire from our hash table. We

wish the probability of having a heavily loaded bu
ket should be small, so that we

10

Load

number of items

n=2 n 2n 3n 4n

0 5.1e-01 1.6e-01 9.1e-03 4.6e-04 2.3e-05

1 4.9e-01 6.8e-01 1.6e-01 1.0e-02 6.0e-04

2 6.8e-03 1.6e-01 6.6e-01 1.5e-01 1.1e-02

3 5.5e-15 1.1e-05 1.7e-01 6.6e-01 1.5e-01

4 2.9e-92 4.4e-33 2.0e-05 1.8e-01 6.6e-01

5 2.2e-31 2.2e-05 1.8e-01

6 4.6e-31 2.3e-05

7 5.6e-31

Table 3: Loads in the
uid limit (n bu
kets, 3
hoi
es). Entries represent the fra
tion

of bu
kets with that load.

do not overload a
a
he line; however, we wish most
a
he lines to be reasonably

full.

It is worth noting that there is a noti
eable gain in moving from two hash

fun
tions to three. The di�eren
e follows from the Fibona

i de
rease of the

tails; the tails de
rease signi�
antly faster with ea
h additional
hoi
e. (From our

theoreti
al analysis, we have that when d = 2 the fra
tion of bu
kets with load

at least i falls approximately like 2

�2:6

i

; for d = 3, the fra
tion of bu
kets with

load at least i falls instead like 2

�6:2

i

.) Hen
e one
an trade o� the number of

memory a

esses required in order to improve the memory usage. Using more hash

fun
tions requires more memory a

esses (although they
an still be pipelined in

a straightforward fashion); in return, more entries
an be stored without violating

the
onstraint given by the number of entries that
an �t on a
a
he line.

3.2 Comparing the di�erential equations and simula-

tions

Be
ause the results given by the di�erential equations des
ribe asymptoti
 behav-

ior, it is worth
omparing their behavior to simulations of the underlying random

pro
ess. In parti
ular, we are interested in whether the di�erential equations a
-

urately predi
t the maximum load of a bu
ket for numbers of items and bu
kets

likely to arise in pra
ti
e. For this reason, we fo
us on instan
es where the number

of bu
kets and items are in the small tens of thousands. Our di�erential equa-

tions would better mat
h larger systems, and give less a

urate results for smaller

systems.

For the
ase of one or two hash fun
tions, we simulated systems with 32,000

items with varying numbers of bu
kets: 8,000, 16,000, 32,000, and 64,000. In

order to divide groups evenly, we used slightly di�erent numbers of bu
kets for the

ase of three
hoi
es (see Table 6). These simulations are idealized, in that the

11

Items Bu
kets Results

32000 64000 Max. load 5 for 3992 trials

Max. load 6 for 5375 trials

Max. load 7 for 598 trials

Max. load 8 for 34 trials

Max. load 9 for 1 trials

32000 32000 Max. load 6 for 675 trials

Max. load 7 for 6487 trials

Max. load 8 for 2485 trials

Max. load 9 for 320 trials

Max. load 10 for 30 trials

Max. load 11 for 3 trials

32000 16000 Max. load 8 for 233 trials

Max. load 9 for 4437 trials

Max. load 10 for 4075 trials

Max. load 11 for 1040 trials

Max. load 12 for 178 trials

Max. load 13 for 29 trials

Max. load 14 for 7 trials

Max. load 15 for 1 trials

32000 8000 Max. load 11 for 2 trials

Max. load 12 for 1105 trials

Max. load 13 for 4354 trials

Max. load 14 for 3018 trials

Max. load 15 for 1139 trials

Max. load 16 for 287 trials

Max. load 17 for 74 trials

Max. load 18 for 15 trials

Max. load 19 for 2 trials

Table 4: Simulation results, random insertions, 1
hoi
e.

12

Items Bu
kets Results

32000 64000 Max. load 2 for 5826 trials

Max. load 3 for 4174 trials

32000 32000 Max. load 3 for 9980 trials

Max. load 4 for 20 trials

32000 16000 Max. load 4 for 9911 trials

Max. load 5 for 89 trials

32000 8000 Max. load 6 for 9895 trials

Max. load 7 for 105 trials

Table 5: Simulation results, random insertions, 2
hoi
es.

Items Bu
kets Results

30000 60000 Max. load 2 for 10000 trials

30000 30000 Max. load 2 for 7154 trials

Max. load 3 for 2846 trials

30000 15000 Max. load 3 for 7441 trials

Max. load 4 for 2559 trials

30000 7500 Max. load 5 for 8462 trials

Max. load 6 for 1538 trials

30000 6000 Max. load 6 for 8735 trials

Max. load 7 for 1265 trials

Table 6: Simulation results, random insertions, 3
hoi
es.

13

0

20

40

60

80

100

4 5 6 7 8 9 10 11

Maximum Load

P
er

ce
n

t o
f T

ri
al

s

1 choice, 32/64

1 choice, 32/32

2 choices, 32/16

2 choices, 32/8

Figure 2: One vs. two hash fun
tions, over 10,000 trials. In the legend, the the number

of items (in thousands) is followed by the number of bu
kets (in thousands).

bu
kets for ea
h item were
hosen independently and uniformly at random from

the left and right hand sides (using the pseudo-random generator random). We

emphasize that this idealization does not ne
essarily
orrespond to the data itself

being random in pra
ti
e, but rather that the hashes of the initial data appear

random. Using an
omputationally expensive but powerful hash fun
tion su
h

as MD5
ould approximate this behavior. In pra
ti
e, we suggest simpler hash

fun
tions, as des
ribed in Se
tion 4.

As an example of how to
ompare these results with the
uid limits,
onsider

the
ase of 32,000 items and 32,000 bu
kets. The
uid limit suggests that a fra
tion

5.2e-08 of the bu
kets will have load 4 (or greater) in this
ase. Hen
e, over 10,000

runs, we would expe
t to see around 16 or 17 bu
kets with load 4. In simulations

we see a maximum load of 4 only 14 times, suggesting the
uid limit provides an

ex
ellent guide to the behavior of realisti
 sized systems.

We provide a graphi
al representation of the di�eren
e between using one and

two hash fun
tions in Figure 3.2. The legend gives the number of items (in thou-

sands) followed by the number of bu
kets (in thousands). The main points here is

that using two hash fun
tions allows greater predi
tability and a smaller maximum

load, even while using mu
h less memory.

The power of using three hash fun
tions is rather surprising. Consider the
ase

where there are tens of thousands of items, and six items
an �t into a
a
he line;

this is essentially the situation
onsidered in [14℄. With 30,000 items and 6,000

bu
kets using three hash fun
tions, even though the average load is �ve items per

bu
ket, the maximum load is only six! Using two hash fun
tions, we see that with

32,000 items and 8,000 bu
kets the maximum load is very likely to be six. Hen
e

we
an a
hieve an average load of four and a maximum load of six, using two hash

fun
tions. In general, we see that for parameters that appear reasonable for the

14

IP routing s
enario, we
an a
hieve a very good utilization of memory with our

hash table using a small number of hash fun
tions.

For a more dire
t
omparison between our simulations and the
uid limit
al
u-

lation, we provide detailed results for ea
h of our sets of 10,000 trials. We present

the fra
tion of bu
kets of ea
h load. The results of Tables 7 and 8 are almost ex-

a
tly the same as predi
ted by our analysis as given in Tables 2 and 2. The small

di�eren
es might simply be the statisti
al e�e
t of having too small a sample for

rare events. Alternatively, the analysis might slightly underestimate the fra
tion

of bu
kets with the largest load for our simulations; for larger numbers of items

and bu
kets this dis
repan
y would shrink.

The results are strongly robust. For example, we ran 1,000,000 experiments

with 32,000 items and 8,000 bu
kets, using two
hoi
es. The maximum load was

6 for 987,296 of these trials, and 7 for the remaining 12,704 trials.

Again, the results make
lear that using two or three hash fun
tions
an dras-

ti
ally redu
e the maximum load and the varian
e in the maximum load, leading

to better and more predi
table hashing performan
e. Further, using multiple hash

fun
tions
an dramati
ally improve upon the total spa
e used to store the hash

table by redu
ing the amount of unused spa
e.

Load

number of bu
kets

64,000 32,000 16,000 8,000

0 5.3e-01 2.3e-01 3.4e-02 6.3e-04

1 4.4e-01 5.5e-01 2.1e-01 6.9e-03

2 3.0e-02 2.2e-01 4.9e-01 4.3e-02

3 8.6e-06 4.5e-03 2.6e-01 1.9e-01

4 6.3e-08 9.1e-03 4.7e-01

5 5.6e-07 2.8e-01

6 1.3e-02

7 1.3e-06

Table 7: Loads found by simulations (32; 000 items, varying numbers of bu
kets, 2

hoi
es). Entries represent the fra
tion of bu
kets with that load.

3.3 Simulations for Deletions and Additions

The di�erential equations (3) des
ribe the behavior of a system with insertions

and random deletions. Su
h equations
an be used to determine the end state of

the system. However, what is important in the setting of deletions is not the end

state, but the amount of time until the number of items hashed to a single bu
ket

be
omes too large. At su
h time, a
a
he line
annot store a bu
ket, and we are

for
ed to do a potentially expensive re-hash to
reate a new hash table.

15

Load

number of bu
kets

60,000 30,000 15,000 7,500

0 5.1e-01 1.6e-01 9.1e-03 2.4e-05

1 4.9e-01 6.8e-01 1.6e-01 5.9e-04

2 6.8e-03 1.6e-01 6.6e-01 1.1e-02

3 1.1e-05 1.7e-01 1.5e-01

4 2.0e-05 6.6e-01

5 1.8e-01

6 2.3e-05

7

Table 8: Loads found by simulations (30; 000 items, varying numbers of bu
kets, 3

hoi
es). Entries represent the fra
tion of bu
kets with that load.

The results from the di�erential equations
an be used to obtain very loose

approximations for the probability that some bu
ket ex
eeds its
apa
ity during

the
ourse of a pro
ess. Sin
e x

2i

+ x

2i+1

is meant to approximate the fra
tion of

bu
kets with load at least i as the number of bu
kets and bu
kets grows large, the

total expe
ted number of bu
kets with load at least i over the �rst T steps
an

approximately be upper bounded by

T�1

X

t=0

x

2i

(t) + x

2i+1

(t) � T max

0�t�T�1

x

2i

(t) + x

2i+1

(t):

The expe
ted number of bu
kets with load at least i over the �rst T steps is

ertainly larger than the probability of seeing a bin with load at least i over

the �rst T steps. Hen
e, if this expe
tation is small, we obtain a bound on the

orresponding probability.

We emphasize that the point here is not so mu
h to get a

urate upper bounds

for the probability a bin ever ex
eeds some load. Rather, the point is that the x

i

shrink so fast that we would expe
t to run a signi�
ant number of steps before

needing to re-hash if we
hoose our parameters appropriately. We
onsider a

spe
i�
 example: suppose we start by inserting 32,000 items into 16,000 bu
kets.

We then either insert or delete an item, ea
h with equal probability, until we see a

bu
ket with load six. For
onvenenien
e, we refer to ea
h insert or delete operation

as a step.

From Table 2, the asymptoti
 fra
tion of bu
kets with load at least six is 7.2e-

19 after the insertion stage. As deletions tend to redu
e the number of highly

loaded bu
kets, we would therefore expe
t that our hash table
ould deal with

insertions and deletions for a long time before a bu
ket with load six appears. In

pra
ti
e, however, with su
h a small number of bins, the varian
e has a very large

e�e
t.

16

We simulated the pro
ess with 32,000 items and 16,000 bins, stopping when we

saw a bu
ket with load six or the number or when we had performed 10,000,000

steps. In one hundred trials, we rea
hed 10,000,000 steps without seeing a bu
ket

with load six seventy-�ve times. Of the remaining twenty-�ve trials, the smallest

number of steps was only 121,805, but the average was approximately 4.54 million.

In all of these twenty-�ve trials, the number of hashed items was greater than

32,000 when the pro
ess stopped; the average was over 34,500 items. Hen
e the

maximum number of items that one expe
ts to be in the system should be a

major
on
ern when de
iding the appropriate size of the hash table. These results

justify our assertion that our hashing s
hemes are highly robust under deletions

and insertions.

3.4 Impli
ations

It is worth summarizing some of the bene�ts and the new tradeo�s that our ap-

proa
h yields.

One important bene�t is that under the assumption that hash fun
tions are

suÆ
iently random (whi
h we dis
uss below), the performan
e of these hashing

s
hemes for various values of the memory size,
a
he line size, et
.
an easily

be tested numeri
ally using the appropriate di�erential equations. Although the

results obtained in this fashion are asymptoti
, they appear quite a

urate for

systems of reasonable size (say, in the tens of thousands). This is not surprising,

given that Cherno�-like bounds apply.

Similarly, when a �xed number of items are to be inserted in the hash table,

one
an use the asymptoti
 results to predi
t the probability of su

ess for a given

a
he line size. This number
an be used to trade pre-pro
essing time for spa
e.

In parti
ular, in order to use less memory, it may be suitable to aim for a setup

where the probability that no
a
he line size is ex
eeded is, say, only 20%. In this

ase, trying several
ombinations of hash fun
tions may be ne
essary; the set of

items
an be re-hashed o�ine until a suitable hash table is produ
ed. Knowing

the probability of su

ess allows one to estimate the time to �nd an appropriate

ombination. The sear
h for good hash fun
tions is likely to be very eÆ
ient, as

we des
ribe in Se
tion 4.

There are tradeo�s between the number of hash fun
tions used, the memory

used, and the appli
able
a
he line size. In
reasing the number of hash fun
tions

de
reases the maximum load, and hen
e allows smaller
a
he lines. While two

hash fun
tions appear generally suÆ
ient, three
an be used to improve memory

utilization. Similarly, in
reasing the hash table size redu
es the maximum load

while in
reasing the total memory used.

Our hash s
heme also performs well when items are inserted and deleted from

the table. Deletions have a tenden
y to de
rease more full bu
kets, and therefore

the system
an handle a signi�
ant number of insertion and deletion steps before

unfortunate
ir
umstan
es ne
essitate a re-hashing of the data.

Finally, we reiterate that all memory look-ups required by this s
heme
an be

17

done in parallel, in either hardware or software, sin
e ea
h hash fun
tion yields

bu
kets that
an be stored in
ompletely separate areas of memory.

4 Implementation Details

In pra
ti
e one
annot simply obtain a perfe
tly random hash fun
tion; instead

one generally
hooses a hash fun
tion from a small family of hash fun
tions. Our

analysis thus far has assumed that our hash fun
tions are perfe
tly random, and

unfortunately we don't know how to analyze the use of smaller hash families (e.g.,

2-universal families [3, 5℄) in this
ontext, although our belief is that standard hash

families will provide performan
e similar to the analysis in pra
ti
e. Our belief is

entered on the fa
t that in pra
ti
e we will not have adversarially
hosen worst

ase data, and hen
e our hash fun
tions are likely to be \suÆ
iently random" that

our analysis des
ribes a
tual behavior. An interesting question that is outside the

s
ope of this paper is to
onsider what the best hash fun
tions to use on IP routing

data. A related question is how random does IP routing data appear.

A simple hash fun
tion (for both hardware and software) that one
an use is

to treat the input as an element in an appropriate �nite �eld Z[2

k

℄ and multiply

by a random element in the �eld Z[2

k

℄, that is, modulo a given irredu
ible prime

polynomial. This is simply implemented as a multiplier without
arries and a CRC

(
y
li
 redundan
y
he
k). Ea
h hash fun
tion
an be based on a di�erent random

multiplier and a di�erent irredu
ible prime polynomial. Using a more
omplex and

larger family of hash fun
tions based on using several random multipliers (see, e.g.,

[3℄) more
losely approximates the family of all possible hash fun
tions, if this is

desired.

An IP router that needed to build a hash table
ould simply
hoose two random

elements of the �eld, using one element as a multiplier for ea
h hash fun
tion. If

the hash table is found suitable, in that the maximum number of items in a bu
ket

�ts on a
a
he line, these multipliers are used; otherwise, new random elements

are
hosen. The pro
ess is repeated until a suitable hash fun
tion is found.

To test how realisti
 hash fun
tions perform, we implemented a simple s
heme

that derives two hash values from pre�xes by
omputing the standard 16 bit CRCs,

CRC-16 and CRC-CCITT, on them. (Hen
e we have not even bothered with

random multipliers for the hash fun
tion.) Note that if we assume that our pre�xes

are, for example, 32 bit strings generated uniformly at random, then it is as though

our hashes give two uniform, independent values for ea
h hash fun
tion. (This

follows simply from the Chinese remainder theorem, applied over this polynomial

domain.) We
he
ked our implementation by testing it on 32 bit strings generated

uniformly at random, and found that it indeed behaves entirely similarly to the

simulations based on hashes being perfe
tly random.

3

3

Be
ause our hashes are 16 bits and our simulations use a number of bu
kets that is not a power

of 2, some bu
kets are slightly more likely to be
hosen. We have not found this to have a signi�
ant

impa
t.

18

Conse
utive pre�xes (whi
h may be likely to arise in pra
ti
e) naturally land

in distin
t bu
kets for ea
h hash fun
tion, whi
h should a
tually improve per-

forman
e. We tested this with the following experiment. Items are divided into

blo
ks. The �rst 32 bit string for ea
h blo
k is generated randomly; the rest of

the bit strings in the blo
k are just
onse
utive integers. The results appear in

Table 9. Although performan
e appears quite similar to our simulations where

items are hashed independently and uniformly at random when the blo
k size is

small, when the blo
k size is large performan
e a
tually improves. This is be
ause

the small stride ensures that all items within a blo
k hash to di�erent bu
kets.

Items Bu
kets Blo
k size Results

32000 16000 10 Max. load 4 for 9925 trials

Max. load 5 for 75 trials

32000 16000 100 Max. load 4 for 9966 trials

Max. load 5 for 34 trials

32000 16000 1000 Max. load 3 for 1919 trials

Max. load 4 for 8075 trials

Max. load 5 for 6 trials

32000 8000 10 Max. load 6 for 9866 trials

Max. load 7 for 134 trials

32000 8000 100 Max. load 6 for 9942 trials

Max. load 7 for 58 trials

32000 8000 1000 Max. load 5 for 3128 trials

Max. load 6 for 6870 trials

Max. load 7 for 2 trials

Table 9: Simulation results, 2 CRCs as hash fun
tions, with blo
ked inputs (stride 1).

We performed similar tests using di�erent strides; for example, we tried hav-

ing
onse
utive elements in the same blo
k di�er by 256 or 173. For most strides,

performan
e was similar to that of our simulations where items are hashed inde-

pendently and uniformly at random. However, for a stride of 256, performan
e

degraded for large blo
k sizes. We believe that this parti
ular stride intera
ts

with the hash fun
tion in some way that some bu
kets tend to be repeated. Fur-

ther tests suggested that there may be a small number of stride values that have

worse performan
e than expe
ted. This problem disappears, however, when we

introdu
e random multipliers as des
ribed above, as shown in Table 10.

4.1 Using Real IP Data

We also examined the performan
e of these hash fun
tions on real data obtained

from Srinivasan and Varghese, who used this data in [14℄. Our tests were based

on a snapshot of the MaeEast database with 38,816 pre�xes.

19

Items Bu
kets Blo
k size Results

32000 16000 10 Max. load 4 for 9902 trials

Max. load 5 for 98 trials

32000 16000 100 Max. load 4 for 9700 trials

Max. load 5 for 300 trials

32000 16000 1000 Max. load 4 for 668 trials

Max. load 5 for 8565 trials

Max. load 6 for 765 trials

Max. load 7 for 2 trials

32000 16000 1000 Max. load 4 for 9562 trials

with random multiplier Max. load 5 for 436 trials

Max. load 6 for 2 trials

Table 10: Simulation results, 2 CRCs as hash fun
tions, with blo
ked inputs (stride

256).

Our primary test was to take the input data that arises for one of the hash

tables using the Binary Sear
h on Levels with
ontrolled pre�x expansion. Using

three levels (with pre�xes of 16, 24, and 32 bits), the table of 24-bit pre�xes has

198,734 entries. (The other tables are signi�
antly smaller, and we ignore them

here.) The hash fun
tion determined in [14℄ used 131,072 bu
kets of 32 bytes, and

therefore requires four megabytes of spa
e, in order to ensure that at most six

entries were held in ea
h
a
he line. The hash fun
tion took a few minutes to �nd

on a modern Alpha system. Using just the two CRCs as hash fun
tions and 65,536

bu
kets, we obtained a maximum load of �ve. Using 50,000 bu
kets suÆ
es for

a maximum load of six. Our hash table requires half the spa
e (or less) and was

found essentially instanteously. Experiments using random multipliers along with

the CRCs show essentially the behavior, although it appears that using just the

two CRCs is somewhat fortuante. For 1,000 trials with random multipliers and

65,536 bu
kets, the maximum load was �ve for 835 trials and six for the remaining

trials.

We repeated the experiment when the �rst pre�x level uses 18 bits. In this

ase, the number of entries for the 24 bit hash table is redu
ed to 117,131. Again,

in this instan
e the hash fun
tion determined in [14℄ requires four megabytes of

spa
e and some time to �nd. Using the two CRCs, we
an a
hieve a maximum

load of six with only 32,768 bu
kets. In this
ase, we require only one quarter

the spa
e, and again the �rst pair of hash fun
tions we tried prove su

essful. In

fa
t, when this experiment was repeated 1,000 times with random multipliers, the

maximum load was six every time.

Just for fun, tried
reating a hash table using just the 38,816 pre�xes, all

onverted into 32 bit numbers. With 9,000 bu
kets we a
hieved a maximum load

of six, again just using the CRCs.

From these results, we suggest that although we
annot make statements re-

20

garding worst
ase behavior for using multiple hash fun
tions when the hash fun
-

tions are
hosen from a small, easily implemented family, we believe that in pra
ti
e

a reasonable implementation will perform similarly to our analysis. The families

we have tested (with a single random multiplier per hash fun
tion) perform
lose

to the analysis and are simple to implement in hardware or software. In fa
t, they

are quite minimal; one
ould undoubtedly design more
omplex hash fun
tions

that would improve results. Determining what hash fun
tions are most appropri-

ate depends in part on the underlying data and in part on the desired tradeo�

between hashing
omplexity and performan
e. For the spe
i�

ase of IP routing,

this is an avenue for possible future study.

We note that there are also further possibilities for saving spa
e in the hash

table. For example, it may be possible not to store the entire IP pre�x in the hash

table. Suppose we use a 1-1 hash fun
tion (a random permutation) that maps

32 bit IP pre�xes (in, say, IPv-6) to 32 bit values. We may use the �rst 16 bits

as an index into a hash table, and identify the pre�x in the table using only the

remaining 16 bits from the hash.

5 Con
lusions

We have suggested a hashing s
heme, d-left, based on using multiple hash fun
tions

that is suitable for situations where it is important to bound the maximum number

of items that fall into a bu
ket, su
h as when the bu
ket is meant to �t in a
a
he

line. A key feature of the d-left s
heme is that all hashes and memory lookups
an

be done in parallel in a straightforward manner.

We have also dis
ussed the appli
ability of d-left to IP routing, using the binary

sear
h on levels approa
h. Important future work in
ludes building a more
om-

plete testbed for testing the d-left hashing s
heme on real data and
omparing its

performan
e against other approa
hes. We also believe that d-left hashing is a sim-

ple but extremely powerful te
hnique that will prove useful in other appli
ations

as well, and we are a
tively seeking possible appli
ations.

6 A
knowledgments

The authors would like to thank V. Srinivasan and G. Varghese for providing us

with data from their work on pre�x expansion.

Referen
es

[1℄ Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balan
ed Allo
ations. In Pro-

eedings of the 26th ACM Symposium on the Theory of Computing, 1994, pp.

593{602.

21

[2℄ A. Bremler-Barr, Y. Afek, and S. Har-Peled. Routing with a Clue. In Pro-

eedings of the ACM SIGCOMM '99 Conferen
e, 1999, pp. 203{213.

[3℄ A. Broder and A. Karlin. Multilevel Adaptive Hashing. In Pro
eedings of the

1st ACM-SIAM Symposium on Dis
rete Algorithms, 1990, pp. 43{53.

[4℄ D. Carrigan. Network Pro
essors Help En-

able the Internet E
onomy. Available at

//developer.intel.
om/solutions/ar
hive/issue19/stories/top3.htm.

[5℄ L. Carter and M. Wegman. Universal Classes of Hash Fun
tions. Journal of

Computer Systems and S
ien
e, 18:2, 1979, pp. 143{154.

[6℄ S. N. Ethier and T. G. Kurtz.Markov Pro
esses: Chara
terization and

Convergen
e, 1986, John Wiley and Sons.

[7℄ T. G. Kurtz. Solutions of Ordinary Di�erential Equations as Limits of Pure

Jump Markov Pro
esses. Journal of Applied Probability Vol. 7, 1970, pp. 49-

58.

[8℄ T. G. Kurtz, Approximation of Population Pro
esses, SIAM, 1981.

[9℄ M. Mitzenma
her. The Power of Two Choi
es in Randomized Load Balan
ing.

Ph.D. thesis, University of California, Berkeley, September 1996.

[10℄ M. Mitzenma
her. Load Balan
ing and Density Dependent Jump Markov

Pro
esses. In Pro
. of the 37

th

IEEE Symp. on Foundations of Computer

S
ien
e, 1996, pp. 213{222.

[11℄ M. Mitzenma
her. Studying Balan
ed Allo
ations with Di�erential Equa-

tions. To appear in Combinatori
s, Probability, and Computing.

[12℄ M. Mitzenma
her and B. V�o
king. The Asymptoti
s of Sele
t-

ing the Shortest of Two, Improved. Extended abstra
t available at

www.ee
s.harvard.edu/~mi
haelm/NEWWORK/papers.html. Short ab-

stra
t to appear in Pro
. of the 39

th

Allerton Conferen
e.

[13℄ V. Srinivasan, S. Suri, and G. Varghese. Pa
ket Classi�
ation using Tuple

Spa
e Sear
h. In Pro
. of SIGCOMM '99, pp. 135{146.

[14℄ V. Srinivasan and G. Varghese. Fast Address Lookups using Controlled Pre�x

Expansion. ACM Transa
tions on Computer Systems, vol. 17, no. 1, 1999, pp.

1{40.

[15℄ B. V�o
king. How Asymmetry Helps Load Balan
ing. To appear in FOCS '99.

[16℄ N.D. Vvedenskaya, R.L. Dobrushin, and F.I. Karpelevi
h. Queueing System

with Sele
tion of the Shortest of Two Queues: an Asymptoti
 Approa
h.

Problems of Information Transmission, Vol 32, 1996, pp. 15{27.

[17℄ M. Wadvogel, G. Varghese, J. Turner, and B. Plattner. S
alable High Speed

IP Routing Lookups. In Pro
. of SIGCOMM 97, 1997.

22

