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Abstract

High performance Internet routers require a mechanism for very efficient IP
address look-ups. Some techniques used to this end, such as binary search on
levels, need to construct quickly a good hash table for the appropriate IP prefixes.
In this paper we describe an approach for obtaining good hash tables based on
using multiple hashes of each input key (which is an IP address). The methods
we describe are fast, simple, scalable, parallelizable, and flexible. In particular,
in instances where the goal is to have one hash bucket fit into a cache line, us-
ing multiple hashes proves extremely suitable. We provide a general analysis of
this hashing technique and specifically discuss its application to binary search on
levels.

1 Introduction

We describe a new hashing approach suitable for use in network routing software
and hardware. This hashing approach can be applied to improve IP lookups
using the technique of binary search on levels to find the longest matching prefix.
In particular, we expect that this approach will prove highly suitable for IP-v6
addresses (when combined with previous techniques such as prefix expansion),
and for new programmable network processors [4]. We expect that it will also
be useful for similar problems, such as packet classification and filtering, where
hashing is commonly used as a subroutine to allow fast lookups [13].

The basic idea of the approach is to use multiple hash functions. The idea has
been been analyzed and developed in several recent theoretical works. We therefore
specifically address how this approach can be used to improve performance on
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the real problem of IP lookups. In particular, we emphasize that by properly
structuring the data, one can parallelize memory accesses so that using multiple
hash functions is desirable.

1.1 Hashing for IP lookups

The standard approach used by an IP router to forward a packet is to keep a
forwarding table based on IP destination address prefixes. Each prefix is associated
with the next hop towards the destination. The IP router looks in its table for the
longest prefix that matches the destination address of the packet, and forwards
according to that match.

One attack for solving the longest matching prefix problem is to perform binary
search on levels [14, 17]. We briefly review the main ideas.! Prefixes are divided
according to length, with all prefixes of a given length in a table. We then perform
a binary search for matching prefixes of the destination address according to prefix
lengths. A match in a given table implies that the longest matching prefix is at
least as long as the size of prefixes in the table, whereas a failure to match implies
the longest matching prefix is shorter. Tables for each prefix length can be stored
as a hash table. In this case, if there are W different possible prefix lengths and
n different prefixes, the search requires O(nlog, W) memory and O(log, W) time.
This technique is enhanced by using the process of controlled prefix expansion in
order to reduce the number of distinct prefix lengths, as described by Srinivasan
and Varghese [14]. If the number of distinct prefix lengths used is only ¢ instead
of the W possible, then only log, £ table lookups are required, instead of log, W.
This reduces the search to O(log, £) time; the amount of memory used depends on
the increase in the number of prefixes. Srinivasan and Varghese suggest that from
experiments on real data, the possible increase in the number of prefixes does not
lead to large increases in memory requirements [14].

The binary search on levels scheme depends on being able to create suitable
hash tables in order to minimize the number of memory accesses. Since a memory
access requires reading in a cache line, a natural goal is to ensure that the number
of items that fall in a bucket corresponds to the capacity of a single cache line,
so that each hash bucket corresponds to a cache line of memory. This ensures
that each level examined during the binary search only requires a single memory
access. Srinivasan and Varghese therefore suggest searching for a “semi-perfect”
hash function where each bucket has only ¢ collisions, where ¢ is the number of
items that can fit in a single cache line [14]. In their case, ¢ = 6.

One potential problem with the above method is that finding a suitable semi-
perfect hash function can be a slow process. As reported in [14], for the MaeEast
database of IP addresses, constructing such a hash function took almost 13 min-
utes. The authors argue that this time may not be a problem, as prefixes change
rarely enough that this computation can be done off-line. Note that if one attempts

LOf course there are other possible attacks for this problem as well, as detailed for example in recent
works [2, 14].



to handle table modifications on-line, there is the possibility that the capacity of
a bucket could be exceed by an unfortunate selection of values to be hashed. Such
a problem could be handled by choosing a new hash function and re-hashing all
entries; however, if finding a suitable hash function requires significant time, this
is not desirable.

A related potential problem is that the above scheme potentially wastes signif-
icant memory. When some buckets have fewer than six elements, space is wasted
for cache lines that do not hold their full contingent of items.

Our hashing scheme is designed to solve the problems introduced by searching
for a semi-perfect hash function, by instead using multiple hash functions. The
approach is very general and hence should prove highly suitable for IP-v6 addresses
(when combined with previous techniques such as prefix expansion), as well as
other similar lookup problems that use hashing.

1.2 Multiple hash functions

For some time it has been known that using multiple hash functions can lead to
different performance behavior than using a single hash function. One of the first
analyses suggested using multiple tables, with a separate function for each table.
Elements that collide in one table percolate to the next. The tables shrunk in size
and the hashes could be computed in parallel [3].

A seminal result in the area considered the following natural hashing scheme
[1], which we here call the d-random scheme. Suppose that n items are hashed
sequentially into a table with n buckets, in the following manner. Each item is
hashed using d hash functions, which we assume yield independent and identically
distributed buckets for each item. The item is placed in the least loaded bucket
(that is, the bucket with the fewest items); ties are broken arbitrarily. A search
for an item now requires examining the d possible buckets; however, as shown in
[1] the maximum load in a bucket (with high probability) is °81%% L O(1). This

logd
compares quite favorably to the situation where just one hash function is used, in
which case the maximum load is 1;&% + O(1). The key point of this result is

that using two hash functions leads to a completely different behavior than using
a single hash function, while three is not too much different from two. Besides
improving the maximum load, using two hash functions in this way leads to a
more equal distribution of the load across buckets. A numerical analysis of this
hashing process is given in [11], and extensions to queueing models are presented
in [10, 9, 16].

The hashing scheme we examine here is a variation of the d-random scheme,
with better performance and characteristics that make it more suitable for the IP
lookup problem. It was first introduced and analyzed theoretically by Vocking
[15]; a simpler analysis more relevant to our discussion was developed by Vocking
and Mitzenmacher [12].
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Figure 1: The 2-left scheme. A newly inserted item, labeled z, is placed in the less filled
of two random buckets, one from the left and one from the right. Ties are broken to the
left. A search for z may require searching both of the buckets in which z might have
been placed.

2 Multiple hashes: the d-left scheme

We begin by focusing on the case of two hash functions. The scheme we describe
was introduced by Vocking in [15] and is referred to as the 2-left scheme in [12].
Our hash table consists of n buckets. (We assume n is even.) We split the n
buckets into two disjoint equal parts, which for convenience we call the left and
the right.? When an item is inserted, we call both hash functions, where each
hash function has a range of [1,n/2]. The first hash function determines a bucket
on the left, the second a bucket on the right. The item is placed in the bucket
with the smaller number of existing items; in case of a tie, the item is placed in
the bucket on the left. In order to do a lookup, one must examine the contents of
the two possible buckets corresponding to the two hashes of an item.

An obvious disadvantage of this approach is that it requires two hash table
lookups for each level. Note, however, that these lookups are independent, in that
they can be performed in parallel. Specifically, if the hash table is placed into
memory so that the left and right parts of the table are guaranteed to map to
different memory areas, then accessing the two buckets corresponding to an item
can naturally be pipelined. For example, in software one might arrange so that
the left side of the table corresponds to even cache lines and the right side to odd
cache lines. Alternatively, in hardware one could store different parts of the table in
distinct memory bank subsystems. Hence we do not feel that the requirement that
two memory accesses are required will have an important negative performance
impact. (Similarly, if the machine can issue multiple instructions, then the two

2We emphasize that “left” and “right” are terms chosen simply for convenience; the point is simply
that the table consists of two disjoint parts.



buckets may be searched for the item in parallel as well.) We show that in return
for this price, we obtain significant benefits.

We may generalize the above to more hash functions, with the d-left scheme
using d hash functions. Initially the n buckets of the hash table are divided into
d groups of n/k buckets. (Again, we assume n/k is an integer.) We think of the
groups as running consecutively from left to right. An incoming item is placed in
the bucket with the smallest number of existing items; in case of a tie, the item is
placed in the bucket of the leftmost group with the smallest number of items. In
order to search for an item in the hash table, the contents of d buckets must be
checked. Again, the corresponding memory lookups can easily be pipelined. We
show that by increasing the number of hash functions used, one can reduce the
memory required for the hash table at the potential expense of more (pipelined)
memory accesses and computation.

An interesting question is why we suggest that ties be broken towards the left,
rather than breaking ties randomly as in the d-random scheme. Surprisingly, the
asymmetry introduced by breaking ties toward the left actually improves perfor-
mance, in that the maximum number of items placed in a bucket is smaller (in a
probabilistic sense) when one breaks ties in this manner. The intuition for this im-
provement is that as items are added, the cases where there are ties are extremely
significant. For example, suppose the largest load thus far is four. In order to
obtain a bucket with load five, we must choose two buckets with load four. Ties
are therefore necessary to push the maximum load to new, higher levels.

By breaking ties asymmetrically, one actually reduces the number of ties during
the course of the process, and this improves the overall balance. To see this, again
suppose the system is in a state with several buckets of load four. Buckets with
load five are created when two buckets of load four are chosen; subsequently,
buckets of load six are created when two buckets of load five are chosen. If ties are
broken randomly, the buckets of load five are spread evenly on the left and right
sides. If, however, ties are broken asymmetrically, the buckets of load five initially
are all placed on the left hand side. Since our random bucket choices are taken
one from each side, this causes it to take longer before a bin of load six can arise.

In the context of IP lookups, this asymmetry is also helpful in that it can be
used to slightly reduce the average lookup time, in the case where the item being
searched for is actually in the table. As the leftmost groups are more likely to
hold more items, they can be examined first. If the pattern is found in one hash
bucket, the other need not be searched. Hence, for the 2-left scheme, more than
half the time the second (pipelined) memory access for each level will not have to
be examined when the item is to be found in the table.

2.1 A Basic Analysis

We provide a simple approximate fluid limit analysis of the d-left scheme, following
[12]. The fluid limit analysis captures the behavior of the system as the number
of buckets grows to infinity. The analysis depends on viewing the insertion of



items as a deterministic process, where loads behave essentially according to their
expectations. Appropriate large deviation theory yields that for sufficiently large
systems, this approach is quite accurate; Chernoff-like bounds can be obtained,
using theory that dates back to Kurtz [6, 7, 8]. Essentially, the theory demonstrates
that the law of large numbers applies to these systems. Hence, from these Chernoff-
like bounds, the probability of deviating signficantly from the loads given by the
differential equations falls exponentially in the size of the system, in terms of the
number of buckets n. In practice, as we shall see, this analysis proves accurate
even for systems of reasonable size, as the theory would suggest.

For this section we follow [12]; however, we present the analysis here for com-
pleteness. For convenience we begin with the case d = 2; thus we have two groups
and n/2 buckets. Let y;(t) be the fraction of the n hash buckets that contain at
least ¢ items and are in the first, that is, leftmost, group when nt items have been
placed. Similarly, let z;(t) be the fraction of the n hash buckets that contain at
least ¢ items and are in the second group when nt items have been placed. Note
that y;(¢),z;(t) < 1/2 and that yo(t) = 29(¢t) = 1/2 for all ¢. We will drop the
explicit reference to ¢ and simply use y; and z; where the meaning is clear.

If we choose a random hash bucket on the left, the probability that it has at
least ¢ items is 1% = 2y;. Analogously, if we choose a random hash bucket on the
right, the probability that it has load at least 4 is 2z;.

The fluid limit behavior expresses the deterministic behavior the system would
follow in the limit as the number of buckets n and the number of items nt grow
to infinity. It is expressed by a family of differential equations, where for ¢ > 1:

dus
% = 2(yi—1 — vi) (2zi—1) ;
dz;

Pl 2(zi—1 — #i) (2y;).

These equations express the following natural intuition. Let dt represent the
amount of time during which one item is placed in the hash table. For y; to
increase over some interval dt, the newly inserted item must choose a bucket on
the left with exactly 7 — 1 items and a bucket on the right with at least 7+ — 1 items.
The probability of this occurring is simply 2 (y;—1 — ;) (2z;—1). Similarly, for z;
to increase over some interval dt, the newly inserted item must choose a bucket on
the left with at least ¢ items and a bucket on the right with exactly ¢ — 1 items.

It will be somewhat more convenient to generalize to the case of general d if
we write these equations all in terms of a single sequence z;. If we substitute xy;
for y; and 9;41 for z;, the equations above nicely simplify to the following (for
i>2):

dz;
=2 =9 (-9 — x;) (2zi—1)

dt
:4(1'1_2 —Ii) Lj—1- (1)

For the d-left scheme, we may think of x4, as representing the fraction of
the buckets that have at least j items in the kth group from the left (where the



leftmost group is the Oth group from the left). Then the fluid limit model yields
the following family of differential equations:

d$~ i_l
dtl =d'(ziqa—z) ][] (2)
jmiedt1

We will use these equations to derive the approximate behavior when multiple
hash functions are used. It is also worth noting what these families of differential
equations tell us about the distribution of items to hash buckets. For example,
suppose we have n items and n hash buckets (so that we can think of the equations
as running until time ¢ = 1). How do the z; behave?

As in [15, 12], to describe this behavior, we define the generalized Fibonacci
number Fy(k) by Fy(k) = 0 for k < 0, Fy(1) = 1. and Fy(k) = X%, Fy(k — 1)
when k£ > 1. Note that for d = 2 the generalized Fibonacci numbers are just the
standard Fibonacci numbers. Then the behavior of the x; is essentially

z;(1) ~ 27,

We provide a loose justification. From equation 2, we have

so by integrating

Now suppose z;(1) < 27F40)=1/d for i —d < j <i—1. Then

i—l 5 Fy(j)-1
r(l) <dt ] ZT

j=i—d
i—1
< H 9—Fa(j)—1
j=i—d
< 27d2_ Z;;i—d Fd(])
9—Fa(i)
< .
- d



Hence, once the tails become sufficiently small, a simple induction can be used to
show the tails decrease faster than 27%4(); that is, the decrease has a generalized
Fibonacci number in the exponent.

Because z ;4 represents the fraction of the buckets that have at least j items
in the kth group from the left, the fraction of buckets with load at least ¢ is
Zi;é Tigek & 2—Fa(di)  Recall that for large i, Fy(k) grows exponentially; that
is, Fy(k) =~ ¢k for some constant ¢y. In fact ¢o is the golden ratio # =
1.618..., and the ¢q form an increasing sequence satisfying 2(4-1/¢ < ¢, < 2.
(For reference, ¢3 = 1.839... and ¢4 = 1.927...) So, for example, when d = 2 the
fraction of buckets with load at least i falls approximately like 2726"; note that
the 4 is in the exponent of the exponent. Intuitively, this implies that the x; fall
extremely quickly with ¢, and hence the maximum load is very small.

Indeed, an alternative proof technique based on witness trees demonstrates that
the maximum load is ‘$E°" +O(1) with high probability [15). The analysis based
on differential equations is not completely suitable for obtaining such fine bounds
[11]; however, it does yield accurate numerical information useful for predicting
the behavior of the hash function in practice.

2.2 Modeling Dynamic Deletions and Additions

In the section, we consider how to modify the basic equation (1) to handle dynamic
additions and deletions to the table. Our goal here is to suggest that additions and
deletions of addresses can be handled on-line with our suggested hashing scheme.
We emphasize, however, that when attempting to handle table additions on-line
there is always the possibility that the load on a bucket will exceed the maximum
capacity, as given by the cache line size. In such a case, one must be prepared to
take an action such as re-hashing the data using new hash functions. An advantage
of our multiple hash function approach is that finding suitable new hash functions
is very quick, and our analysis demonstrates that the need for such emergency
procedures can generally be made so rare that it is not a significant issue.

Note that if we are required to handle dynamic additions only, equation (1)
still holds. One only needs an upper bound on the number of items to be hashed,
and the equation can be used to determine the distribution when the number of
items hashed reaches this upper bound.

If there additions and deletions, we must model how deletions occur. Two
important points are the rate of deletions compared with the rate of additions, and
how the items to be deleted are chosen. For the first issue, a natural breakdown is
to assume that items are added only up to some point in time, and then additions
and deletions vary. We let the probability that an event is an insertion be p and
the probability that an event is a deletion be 1 — p. For the second issue, we can
vary our equations to analyze the case where, when a item is to be deleted, the
item is chosen uniformly at random from all items. More concretely, we can model
the situation where all addresses have lifetimes that are exponentially distributed
with the same mean. More general deletion models, such as models where the age



of an item can affect its probability of being deleted, can be handled using the
analysis of [15], although this approach does not give the numerical answers we
desire here. The model where a random bucket is chosen and an item is deleted
from that bucket can also be handled using these techniques, however [9].

We modify the equation (1) to account for deletions by noting that the total
number of balls is >~ i(z2; + T2;+1), and the number of balls that can be deleted
that cause a reduction in z; is | |(z; — z;42). Hence the equations that describe
the behavior of the system are given by

i, /2] (i — iso)
=4p (wi—2 —xi) wi1 — (1 — ' '
o p (i 2 )i = p)2j202($2j+x2j+1)

(3)

Intuitively, the final distribution is likely to be smoother when deletions occur
in this manner, as heavily loaded buckets are more likely to incur a deletion than
lightly loaded buckets.

3 Data

3.1 Evaluating the differential equations

number of items

n/2 n 2n 3n 4n

6.1e-01 | 3.7e-01 | 1.4e-01 | 5.0e-02 | 1.8e-02
3.0e-01 | 3.7e-01 | 2.7e-01 | 1.5e-01 | 7.3e-02
7.6e-02 | 1.8e-01 | 2.7e-01 | 2.2e-01 | 1.5e-01
1.3e-02 | 6.1e-02 | 1.8e-01 | 2.2e-01 | 2.0e-01
1.6e-03 | 1.5e-02 | 9.0e-02 | 1.7e-01 | 2.0e-01
1.6e-04 | 3.1e-03 | 3.6e-02 | 1.0e-01 | 1.6e-01
1.3e-05 | 5.1e-04 | 1.2e-02 | 5.0e-02 | 1.0e-01
9.4e-07 | 7.3e-05 | 3.4e-03 | 2.2e-02 | 6.0e-02
5.9e-08 | 9.1e-06 | 8.6e-04 | 8.1e-03 | 3.0e-02
3.3e-09 | 1.0e-06 | 1.9e-04 | 2.7e-03 | 1.3e-02
1.6e-10 | 1.0e-07 | 3.8e-05 | 8.1e-04 | 5.3e-03
7.4e-12 | 9.2e-09 | 6.9e-06 | 2.2e-04 | 1.9e-03
3.1e-13 | 7.7e-10 | 1.2e-06 | 5.5e-05 | 6.4e-04
13 || 1.2e-14 | 5.9e-11 | 1.8e-07 | 1.3e-05 | 2.0e-04
14 || 4.2e-16 | 4.2e-12 | 2.5e-08 | 2.7e-06 | 5.6e-05
15 || 1.4e-17 | 2.8e-13 | 3.4e-09 | 5.5e-07 | 1.5e-05

Load

OO T =W N —|O

—| —
= o

—
DO

Table 1: Loads in the fluid limit (n buckets, 1 choice). Entries represent the fraction of
buckets with that load.



number of items

n/2 n 2n 3n 4n

5.3e-01 | 2.3e-01 | 3.4e-02 | 4.6e-03 | 6.2e-04
4.4e-01 | 5.5e-01 | 2.1e-01 | 4.0e-02 | 6.9e-03
3.0e-02 | 2.2e-01 | 5.0e-01 | 2.0e-01 | 4.3e-02
8.6e-06 | 4.4e-03 | 2.6e-01 | 4.8e-01 | 1.9e-01
9.2e-16 | 5.2e-08 | 9.1e-03 | 2.7e-01 | 4.7e-01
1.4e-42 | 1.2e-21 | 5.0e-07 | 1.2e-02 | 2.8e-01
0.3e-58 | 7.2e-19 | 1.1e-06 | 1.3e-02
1.5e-50 | 6.6e-18 | 1.6e-06
0.7e-48 | 1.8e-17
8.4e-47

Load

OO0 || O =W N~ O

Table 2: Loads in the fluid limit (n buckets, 2 choices). Entries represent the fraction
of buckets with that load.

We first demounstrate what results we obtain by evaluating the fluid limit system
given by the family of differential equations. The results obtained here were found
by simulating the progress of the differential equations using discrete time steps of
5-10~7, which prove more than sufficient for this level of accuracy. For example,
to obtain a result for n/2 items and n buckets, we run the differential equations
up to t = 1/2. Values of less than 1le—100 are left blank in our tables.

For comparison purposes, we include in Table 1 equivalent results in the case
where a single hash function is used, assuming that the hash function distributes
items independently and uniformly at random into buckets. We note the well-
known fact that as n grows to infinity the fraction of buckets with load & when
the average load is 4 approaches a Poisson random variable, and hence the fraction
with load k is simply <"

Two important points are manifest from Tables 1, 2, and 3. First, when using
two or more hash functions, the fraction of buckets with a given load decreases
remarkably quickly with the load, especially in comparison with the single choice.
This is to be expected given our previous discussion. As an example, consider
when n items are hashed into n buckets, for large n. Our results show that 1le-06
of the buckets will have load at least 9 if a single hash function is used; with two
hash functions, only about 5.2e-08 + 1.2e-21 + 5.3e-58 =~ 5.2e-08 of the buckets
will have load four or greater, and similarly with three hash functions, only 4.4e-33
of the buckets will even have load four!

Second, when tn items are placed, the loads are strongly centered around the
integers nearest to ¢. This follows naturally from the above, since the average
bucket load is of course ¢, and the probability of high bucket loads decreases so
quickly. These two effects are exactly what we desire from our hash table. We
wish the probability of having a heavily loaded bucket should be small, so that we

10



number of items

n/2 n 2n 3n 4n

5.1e-01 | 1.6e-01 | 9.1e-03 | 4.6e-04 | 2.3e-05
4.9e-01 | 6.8e-01 | 1.6e-01 | 1.0e-02 | 6.0e-04
6.8e-03 | 1.6e-01 | 6.6e-01 | 1.5e-01 | 1.1e-02
5.5e-15 | 1.1e-05 | 1.7e-01 | 6.6e-01 | 1.5e-01
2.9e-92 | 4.4e-33 | 2.0e-05 | 1.8e-01 | 6.6e-01
2.2e-31 | 2.2e-05 | 1.8e-01
4.6e-31 | 2.3e-05
5.6e-31

Load

N[O | W N RO

Table 3: Loads in the fluid limit (n buckets, 3 choices). Entries represent the fraction
of buckets with that load.

do not overload a cache line; however, we wish most cache lines to be reasonably
full.

It is worth noting that there is a noticeable gain in moving from two hash
functions to three. The difference follows from the Fibonacci decrease of the
tails; the tails decrease significantly faster with each additional choice. (From our
theoretical analysis, we have that when d = 2 the fraction of buckets with load
at least ¢ falls approximately like 2_2_'61; for d = 3, the fraction of buckets with
load at least 4 falls instead like 2752°.) Hence one can trade off the number of
memory accesses required in order to improve the memory usage. Using more hash
functions requires more memory accesses (although they can still be pipelined in
a straightforward fashion); in return, more entries can be stored without violating
the constraint given by the number of entries that can fit on a cache line.

3.2 Comparing the differential equations and simula-
tions

Because the results given by the differential equations describe asymptotic behav-
ior, it is worth comparing their behavior to simulations of the underlying random
process. In particular, we are interested in whether the differential equations ac-
curately predict the maximum load of a bucket for numbers of items and buckets
likely to arise in practice. For this reason, we focus on instances where the number
of buckets and items are in the small tens of thousands. Our differential equa-
tions would better match larger systems, and give less accurate results for smaller
systems.

For the case of one or two hash functions, we simulated systems with 32,000
items with varying numbers of buckets: 8,000, 16,000, 32,000, and 64,000. In
order to divide groups evenly, we used slightly different numbers of buckets for the
case of three choices (see Table 6). These simulations are idealized, in that the

11



Items | Buckets | Results

32000 | 64000 Max. load 5 for 3992 trials
Max. load 6 for 5375 trials
Max. load 7 for 598 trials
Max. load 8 for 34 trials
Max. load 9 for 1 trials
32000 | 32000 Max. load 6 for 675 trials
Max. load 7 for 6487 trials
Max. load 8 for 2485 trials
Max. load 9 for 320 trials
Max. load 10 for 30 trials
Max. load 11 for 3 trials
32000 | 16000 Max. load 8 for 233 trials
Max. load 9 for 4437 trials
Max. load 10 for 4075 trials
Max. load 11 for 1040 trials
Max. load 12 for 178 trials
Max. load 13 for 29 trials
Max. load 14 for 7 trials
Max. load 15 for 1 trials
32000 | 8000 Max. load 11 for 2 trials
Max. load 12 for 1105 trials
Max. load 13 for 4354 trials
Max. load 14 for 3018 trials
Max. load 15 for 1139 trials
Max. load 16 for 287 trials
Max. load 17 for 74 trials
Max. load 18 for 15 trials
Max. load 19 for 2 trials

Table 4: Simulation results, random insertions, 1 choice.
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Items | Buckets | Results

32000 | 64000 Max. load 2 for 5826 trials
Max. load 3 for 4174 trials
32000 | 32000 Max. load 3 for 9980 trials
Max. load 4 for 20 trials
32000 | 16000 Max. load 4 for 9911 trials
Max. load 5 for 89 trials
32000 | 8000 Max. load 6 for 9895 trials
Max. load 7 for 105 trials

Table 5: Simulation results, random insertions, 2 choices.

Items | Buckets | Results

30000 | 60000 Max. load 2 for 10000 trials
30000 | 30000 Max. load 2 for 7154 trials
Max. load 3 for 2846 trials
30000 | 15000 Max. load 3 for 7441 trials
Max. load 4 for 2559 trials
30000 | 7500 Max. load 5 for 8462 trials
Max. load 6 for 1538 trials
30000 | 6000 Max. load 6 for 8735 trials
Max. load 7 for 1265 trials

Table 6: Simulation results, random insertions, 3 choices.
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Figure 2: One vs. two hash functions, over 10,000 trials. In the legend, the the number
of items (in thousands) is followed by the number of buckets (in thousands).

buckets for each item were chosen independently and uniformly at random from
the left and right hand sides (using the pseudo-random generator random). We
emphasize that this idealization does not necessarily correspond to the data itself
being random in practice, but rather that the hashes of the initial data appear
random. Using an computationally expensive but powerful hash function such
as MDb could approximate this behavior. In practice, we suggest simpler hash
functions, as described in Section 4.

As an example of how to compare these results with the fluid limits, consider
the case of 32,000 items and 32,000 buckets. The fluid limit suggests that a fraction
5.2e-08 of the buckets will have load 4 (or greater) in this case. Hence, over 10,000
runs, we would expect to see around 16 or 17 buckets with load 4. In simulations
we see a maximum load of 4 only 14 times, suggesting the fluid limit provides an
excellent guide to the behavior of realistic sized systems.

We provide a graphical representation of the difference between using one and
two hash functions in Figure 3.2. The legend gives the number of items (in thou-
sands) followed by the number of buckets (in thousands). The main points here is
that using two hash functions allows greater predictability and a smaller maximum
load, even while using much less memory.

The power of using three hash functions is rather surprising. Consider the case
where there are tens of thousands of items, and six items can fit into a cache line;
this is essentially the situation considered in [14]. With 30,000 items and 6,000
buckets using three hash functions, even though the average load is five items per
bucket, the maximum load is only six! Using two hash functions, we see that with
32,000 items and 8,000 buckets the maximum load is very likely to be six. Hence
we can achieve an average load of four and a maximum load of six, using two hash
functions. In general, we see that for parameters that appear reasonable for the
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IP routing scenario, we can achieve a very good utilization of memory with our
hash table using a small number of hash functions.

For a more direct comparison between our simulations and the fluid limit calcu-
lation, we provide detailed results for each of our sets of 10,000 trials. We present
the fraction of buckets of each load. The results of Tables 7 and 8 are almost ex-
actly the same as predicted by our analysis as given in Tables 2 and 2. The small
differences might simply be the statistical effect of having too small a sample for
rare events. Alternatively, the analysis might slightly underestimate the fraction
of buckets with the largest load for our simulations; for larger numbers of items
and buckets this discrepancy would shrink.

The results are strongly robust. For example, we ran 1,000,000 experiments
with 32,000 items and 8,000 buckets, using two choices. The maximum load was
6 for 987,296 of these trials, and 7 for the remaining 12,704 trials.

Again, the results make clear that using two or three hash functions can dras-
tically reduce the maximum load and the variance in the maximum load, leading
to better and more predictable hashing performance. Further, using multiple hash
functions can dramatically improve upon the total space used to store the hash
table by reducing the amount of unused space.

number of buckets

64,000 | 32,000 | 16,000 | 8,000

0 || 5.3e-01 | 2.3e-01 | 3.4e-02 | 6.3e-04
1 || 4.4e-01 | 5.5e-01 | 2.1e-01 | 6.9e-03
Load 2 || 3.0e-02 | 2.2e-01 | 4.9e-01 | 4.3e-02
3 || 8.6e-06 | 4.5e-03 | 2.6e-01 | 1.9¢-01
4 6.3e-08 | 9.1e-03 | 4.7e-01
5) 5.6e-07 | 2.8e-01
6 1.3e-02
7 1.3e-06

Table 7: Loads found by simulations (32,000 items, varying numbers of buckets, 2
choices). Entries represent the fraction of buckets with that load.

3.3 Simulations for Deletions and Additions

The differential equations (3) describe the behavior of a system with insertions
and random deletions. Such equations can be used to determine the end state of
the system. However, what is important in the setting of deletions is not the end
state, but the amount of time until the number of items hashed to a single bucket
becomes too large. At such time, a cache line cannot store a bucket, and we are
forced to do a potentially expensive re-hash to create a new hash table.
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number of buckets

60,000 | 30,000 | 15,000 | 7,500

0| 5.1e-01 | 1.6e-01 | 9.1e-03 | 2.4e-05
1| 4.9e-01 | 6.8e-01 | 1.6e-01 | 5.9e-04

Load 2 ]| 6.8e-03 | 1.6e-01 | 6.6e-01 | 1.1e-02
3 1.1e-05 | 1.7e-01 | 1.5e-01
4 2.0e-05 | 6.6e-01
5 1.8e-01
6 2.3e-05
7

Table 8: Loads found by simulations (30,000 items, varying numbers of buckets, 3
choices). Entries represent the fraction of buckets with that load.

The results from the differential equations can be used to obtain very loose
approximations for the probability that some bucket exceeds its capacity during
the course of a process. Since z9; + z9;41 is meant to approximate the fraction of
buckets with load at least ¢ as the number of buckets and buckets grows large, the
total expected number of buckets with load at least ¢ over the first T steps can
approximately be upper bounded by

T-1
; To; (t) + $2¢+1(t) < TOgrtngaﬁ)“(fl To; (t) + $2¢+1(t).

The expected number of buckets with load at least ¢ over the first T steps is
certainly larger than the probability of seeing a bin with load at least ¢ over
the first T steps. Hence, if this expectation is small, we obtain a bound on the
corresponding probability.

We emphasize that the point here is not so much to get accurate upper bounds
for the probability a bin ever exceeds some load. Rather, the point is that the z;
shrink so fast that we would expect to run a significant number of steps before
needing to re-hash if we choose our parameters appropriately. We consider a
specific example: suppose we start by inserting 32,000 items into 16,000 buckets.
We then either insert or delete an item, each with equal probability, until we see a
bucket with load six. For convenenience, we refer to each insert or delete operation
as a step.

From Table 2, the asymptotic fraction of buckets with load at least six is 7.2e-
19 after the insertion stage. As deletions tend to reduce the number of highly
loaded buckets, we would therefore expect that our hash table could deal with
insertions and deletions for a long time before a bucket with load six appears. In
practice, however, with such a small number of bins, the variance has a very large
effect.
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We simulated the process with 32,000 items and 16,000 bins, stopping when we
saw a bucket with load six or the number or when we had performed 10,000,000
steps. In one hundred trials, we reached 10,000,000 steps without seeing a bucket
with load six seventy-five times. Of the remaining twenty-five trials, the smallest
number of steps was only 121,805, but the average was approximately 4.54 million.
In all of these twenty-five trials, the number of hashed items was greater than
32,000 when the process stopped; the average was over 34,500 items. Hence the
maximum number of items that one expects to be in the system should be a
major concern when deciding the appropriate size of the hash table. These results
justify our assertion that our hashing schemes are highly robust under deletions
and insertions.

3.4 Implications

It is worth summarizing some of the benefits and the new tradeoffs that our ap-
proach yields.

One important benefit is that under the assumption that hash functions are
sufficiently random (which we discuss below), the performance of these hashing
schemes for various values of the memory size, cache line size, etc. can easily
be tested numerically using the appropriate differential equations. Although the
results obtained in this fashion are asymptotic, they appear quite accurate for
systems of reasonable size (say, in the tens of thousands). This is not surprising,
given that Chernoff-like bounds apply.

Similarly, when a fixed number of items are to be inserted in the hash table,
one can use the asymptotic results to predict the probability of success for a given
cache line size. This number can be used to trade pre-processing time for space.
In particular, in order to use less memory, it may be suitable to aim for a setup
where the probability that no cache line size is exceeded is, say, only 20%. In this
case, trying several combinations of hash functions may be necessary; the set of
items can be re-hashed offline until a suitable hash table is produced. Knowing
the probability of success allows one to estimate the time to find an appropriate
combination. The search for good hash functions is likely to be very efficient, as
we describe in Section 4.

There are tradeoffs between the number of hash functions used, the memory
used, and the applicable cache line size. Increasing the number of hash functions
decreases the maximum load, and hence allows smaller cache lines. While two
hash functions appear generally sufficient, three can be used to improve memory
utilization. Similarly, increasing the hash table size reduces the maximum load
while increasing the total memory used.

Our hash scheme also performs well when items are inserted and deleted from
the table. Deletions have a tendency to decrease more full buckets, and therefore
the system can handle a significant number of insertion and deletion steps before
unfortunate circumstances necessitate a re-hashing of the data.

Finally, we reiterate that all memory look-ups required by this scheme can be
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done in parallel, in either hardware or software, since each hash function yields
buckets that can be stored in completely separate areas of memory.

4 Implementation Details

In practice one cannot simply obtain a perfectly random hash function; instead
one generally chooses a hash function from a small family of hash functions. Our
analysis thus far has assumed that our hash functions are perfectly random, and
unfortunately we don’t know how to analyze the use of smaller hash families (e.g.,
2-ungversal families [3, 5]) in this context, although our belief is that standard hash
families will provide performance similar to the analysis in practice. Our belief is
centered on the fact that in practice we will not have adversarially chosen worst
case data, and hence our hash functions are likely to be “sufficiently random” that
our analysis describes actual behavior. An interesting question that is outside the
scope of this paper is to consider what the best hash functions to use on IP routing
data. A related question is how random does IP routing data appear.

A simple hash function (for both hardware and software) that one can use is
to treat the input as an element in an appropriate finite field Z [2’“] and multiply
by a random element in the field Z[2*], that is, modulo a given irreducible prime
polynomial. This is simply implemented as a multiplier without carries and a CRC
(cyclic redundancy check). Each hash function can be based on a different random
multiplier and a different irreducible prime polynomial. Using a more complex and
larger family of hash functions based on using several random multipliers (see, e.g.,
[3]) more closely approximates the family of all possible hash functions, if this is
desired.

An IP router that needed to build a hash table could simply choose two random
elements of the field, using one element as a multiplier for each hash function. If
the hash table is found suitable, in that the maximum number of items in a bucket
fits on a cache line, these multipliers are used; otherwise, new random elements
are chosen. The process is repeated until a suitable hash function is found.

To test how realistic hash functions perform, we implemented a simple scheme
that derives two hash values from prefixes by computing the standard 16 bit CRCs,
CRC-16 and CRC-CCITT, on them. (Hence we have not even bothered with
random multipliers for the hash function.) Note that if we assume that our prefixes
are, for example, 32 bit strings generated uniformly at random, then it is as though
our hashes give two uniform, independent values for each hash function. (This
follows simply from the Chinese remainder theorem, applied over this polynomial
domain.) We checked our implementation by testing it on 32 bit strings generated
uniformly at random, and found that it indeed behaves entirely similarly to the
simulations based on hashes being perfectly random.?

3Because our hashes are 16 bits and our simulations use a number of buckets that is not a power
of 2, some buckets are slightly more likely to be chosen. We have not found this to have a significant
impact.
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Consecutive prefixes (which may be likely to arise in practice) naturally land
in distinct buckets for each hash function, which should actually improve per-
formance. We tested this with the following experiment. Items are divided into
blocks. The first 32 bit string for each block is generated randomly; the rest of
the bit strings in the block are just consecutive integers. The results appear in
Table 9. Although performance appears quite similar to our simulations where
items are hashed independently and uniformly at random when the block size is
small, when the block size is large performance actually improves. This is because
the small stride ensures that all items within a block hash to different buckets.

Items | Buckets | Block size | Results

32000 | 16000 10 Max. load 4 for 9925 trials
Max. load 5 for 75 trials

32000 | 16000 100 Max. load 4 for 9966 trials
Max. load 5 for 34 trials

32000 | 16000 1000 Max. load 3 for 1919 trials

Max. load 4 for 8075 trials
Max. load 5 for 6 trials

32000 | 8000 10 Max. load 6 for 9866 trials
Max. load 7 for 134 trials

32000 | 8000 100 Max. load 6 for 9942 trials
Max. load 7 for 58 trials

32000 | 8000 1000 Max. load 5 for 3128 trials

Max. load 6 for 6870 trials
Max. load 7 for 2 trials

Table 9: Simulation results, 2 CRCs as hash functions, with blocked inputs (stride 1).

We performed similar tests using different strides; for example, we tried hav-
ing consecutive elements in the same block differ by 256 or 173. For most strides,
performance was similar to that of our simulations where items are hashed inde-
pendently and uniformly at random. However, for a stride of 256, performance
degraded for large block sizes. We believe that this particular stride interacts
with the hash function in some way that some buckets tend to be repeated. Fur-
ther tests suggested that there may be a small number of stride values that have
worse performance than expected. This problem disappears, however, when we
introduce random multipliers as described above, as shown in Table 10.

4.1 Using Real IP Data

We also examined the performance of these hash functions on real data obtained
from Srinivasan and Varghese, who used this data in [14]. Our tests were based
on a snapshot of the MaeEast database with 38,816 prefixes.
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Items | Buckets | Block size | Results

32000 | 16000 10 Max. load 4 for 9902 trials
Max. load 5 for 98 trials

32000 | 16000 100 Max. load 4 for 9700 trials
Max. load 5 for 300 trials

32000 | 16000 1000 Max. load 4 for 668 trials

Max. load 5 for 8565 trials
Max. load 6 for 765 trials
Max. load 7 for 2 trials
32000 | 16000 1000 Max. load 4 for 9562 trials
with | random | multiplier | Max. load 5 for 436 trials
Max. load 6 for 2 trials

Table 10: Simulation results, 2 CRCs as hash functions, with blocked inputs (stride
256).

Our primary test was to take the input data that arises for one of the hash
tables using the Binary Search on Levels with controlled prefix expansion. Using
three levels (with prefixes of 16, 24, and 32 bits), the table of 24-bit prefixes has
198,734 entries. (The other tables are significantly smaller, and we ignore them
here.) The hash function determined in [14] used 131,072 buckets of 32 bytes, and
therefore requires four megabytes of space, in order to ensure that at most six
entries were held in each cache line. The hash function took a few minutes to find
on a modern Alpha system. Using just the two CRCs as hash functions and 65,536
buckets, we obtained a maximum load of five. Using 50,000 buckets suffices for
a maximum load of six. Our hash table requires half the space (or less) and was
found essentially instanteously. Experiments using random multipliers along with
the CRCs show essentially the behavior, although it appears that using just the
two CRCs is somewhat fortuante. For 1,000 trials with random multipliers and
65,536 buckets, the maximum load was five for 835 trials and six for the remaining
trials.

We repeated the experiment when the first prefix level uses 18 bits. In this
case, the number of entries for the 24 bit hash table is reduced to 117,131. Again,
in this instance the hash function determined in [14] requires four megabytes of
space and some time to find. Using the two CRCs, we can achieve a maximum
load of six with only 32,768 buckets. In this case, we require only one quarter
the space, and again the first pair of hash functions we tried prove successful. In
fact, when this experiment was repeated 1,000 times with random multipliers, the
maximum load was six every time.

Just for fun, tried creating a hash table using just the 38,816 prefixes, all
converted into 32 bit numbers. With 9,000 buckets we achieved a maximum load
of six, again just using the CRCs.

From these results, we suggest that although we cannot make statements re-
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garding worst case behavior for using multiple hash functions when the hash func-
tions are chosen from a small, easily implemented family, we believe that in practice
a reasonable implementation will perform similarly to our analysis. The families
we have tested (with a single random multiplier per hash function) perform close
to the analysis and are simple to implement in hardware or software. In fact, they
are quite minimal; one could undoubtedly design more complex hash functions
that would improve results. Determining what hash functions are most appropri-
ate depends in part on the underlying data and in part on the desired tradeoff
between hashing complexity and performance. For the specific case of IP routing,
this is an avenue for possible future study.

We note that there are also further possibilities for saving space in the hash
table. For example, it may be possible not to store the entire IP prefix in the hash
table. Suppose we use a 1-1 hash function (a random permutation) that maps
32 bit IP prefixes (in, say, IPv-6) to 32 bit values. We may use the first 16 bits
as an index into a hash table, and identify the prefix in the table using only the
remaining 16 bits from the hash.

5 Conclusions

We have suggested a hashing scheme, d-left, based on using multiple hash functions
that is suitable for situations where it is important to bound the maximum number
of items that fall into a bucket, such as when the bucket is meant to fit in a cache
line. A key feature of the d-left scheme is that all hashes and memory lookups can
be done in parallel in a straightforward manner.

We have also discussed the applicability of d-left to IP routing, using the binary
search on levels approach. Important future work includes building a more com-
plete testbed for testing the d-left hashing scheme on real data and comparing its
performance against other approaches. We also believe that d-left hashing is a sim-
ple but extremely powerful technique that will prove useful in other applications
as well, and we are actively seeking possible applications.

6 Acknowledgments

The authors would like to thank V. Srinivasan and G. Varghese for providing us
with data from their work on prefix expansion.

References

[1] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced Allocations. In Pro-
ceedings of the 26th ACM Symposium on the Theory of Computing, 1994, pp.
593-602.

21



2]
3]
[4]

[11]

[12]

A. Bremler-Barr, Y. Afek, and S. Har-Peled. Routing with a Clue. In Pro-
ceedings of the ACM SIGCOMM 99 Conference, 1999, pp. 203-213.

A. Broder and A. Karlin. Multilevel Adaptive Hashing. In Proceedings of the
1st ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 43-53.

D. Carrigan. Network Processors Help En-
able the Internet Economy. Available at
//developer.intel.com/solutions/archive/issuel9/stories/top3.htm.

L. Carter and M. Wegman. Universal Classes of Hash Functions. Journal of
Computer Systems and Science, 18:2, 1979, pp. 143-154.

S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and
Convergence, 1986, John Wiley and Sous.

T. G. Kurtz. Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes. Journal of Applied Probability Vol. 7, 1970, pp. 49-
8.

T. G. Kurtz, Approximation of Population Processes, STAM, 1981.

M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
Ph.D. thesis, University of California, Berkeley, September 1996.

M. Mitzenmacher. Load Balancing and Density Dependent Jump Markov
Processes. In Proc. of the 37" IEEE Symp. on Foundations of Computer
Science, 1996, pp. 213-222.

M. Mitzenmacher. Studying Balanced Allocations with Differential Equa-
tions. To appear in Combinatorics, Probability, and Computing.

M. Mitzenmacher and B. Vocking. The Asymptotics of Select-
ing the Shortest of Two, Improved. Extended abstract available at
www.eecs.harvard.edu/“michaelm/NEWWORK /papers.html.  Short ab-
stract to appear in Proc. of the 39" Allerton Conference.

V. Srinivasan, S. Suri, and G. Varghese. Packet Classification using Tuple
Space Search. In Proc. of SIGCOMM 99, pp. 135-146.

V. Srinivasan and G. Varghese. Fast Address Lookups using Controlled Prefix
Expansion. ACM Transactions on Computer Systems, vol. 17, no. 1, 1999, pp.
1-40.

B. Vicking. How Asymmetry Helps Load Balancing. To appear in FOCS ’99.

N.D. Vvedenskaya, R.L. Dobrushin, and F.I. Karpelevich. Queueing System
with Selection of the Shortest of Two Queues: an Asymptotic Approach.
Problems of Information Transmission, Vol 32, 1996, pp. 15-27.

M. Wadvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High Speed
IP Routing Lookups. In Proc. of SIGCOMM 97, 1997.

22



