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Abstract— This papers explores, primarily by means of analy-
sis, the differences that can exist between individual and aggregate
loss guarantees in an environment where guarantees are only pro-
vided at an aggregate level. The foc us is on understanding which
traffic parameters are responsible for inducing possible deviations
and to what extent. In addition, we seek to evaluate the level of
additional resources, e.g., bandwidth or buffer, required to ensure
that all individual loss measures remain below their desired tar-
get. The paper’s contributions are in developing analytical models
that enable the evaluation of individual loss probabilities in set-
tings where only aggregate losses are controlled, and in identifying
traffic parameters that play a dominant role in causing differences
between individual and aggregate losses. The latter allows the con-
struction of guidelines identifying what kind of traffic can be safely
multiplexed into a common service class.

I. INTRODUCTION

The provision of QoS guarantees is by now an extensively
investigated and reasonably well understood topic. The liter-
ature abounds with algorithms for enforcing different levels of
service and results evaluating their respective performance, see,
e.g., [9] for a recent survey. Similarly, technology is now avail-
able that implements sophisticated QoS capabilities, see, e.g.,
[13]. However, despite all this progress, the deployment of QoS
capabilities in operational networks has been by most accounts
slow. Many factors have conspired to this, but one of them has
been a recurring theme in discussions aimed at understanding
the reasons behind this slow pace. Specifically, the complex-
ity of managing a broad range of fine grain (individual) QoS
requirements across a network of the scale of the Internet is a
daunting task. As a result, there has been a renewed interest in
designing scalable QoS solutions.

There have been two main directions aimed at developing
scalable QoS solutions. The first, embodied in works such as
[20], [21], [24], targets the emulation of fine-grain QoS solu-
tions without requiring per flow information. The second, rep-
resented by proposals such as Diff-Serv [3], relies on coars-
ening the different levels of QoS that the network offers into a
small number of service classes. Our focus is on this latter class
of solutions.

Limiting the number of service classes that the network of-
fers clearly improves scalability. However, this comes at a cost,
namely the lack of awareness of the exact level of performance
that an individual user/application experiences. In other words,
implicit in the use of service classes is the assumption that the
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users aggregated into a given service class all experience the
same level of service, or a least a level of service better than the
desired target for the service class. The extent to which this is
true certainly depends on the level of sophistication used when
making decisions on whether or not to accept additional traffic.
In particular, there has been extensive work on call admission
procedures aimed at deciding if and when to accept a new re-
quest. The methods they use vary and rely either on models
for computing the amount of resources required by a given re-
quest, e.g., [8], [5], or on some combinations of measurements
and traffic characterization, e.g., [6], [7], [12]. However, they
typically require some flow level awareness, e.g., in the form
of traffic parameters that are signalled to the network when the
request is made. Our focus is somewhat different in that we as-
sume that provisioning is the primary tool used to monitor net-
work performance and make decisions on whether additional
traffic can be accommodated.

By its nature and in order to ensure its scalability, monitor-
ing is typically done at an aggregate level, e.g., the losses ex-
perienced by a service class. In that context, our objective is
to gain a better understanding of how such aggregate measures
map into individual performance, and in particular determine if
specific guidelines can be formulated to avoid situations where
the two differ significantly. For example, such guidelines could
specify which range of traffic can be safely multiplexed in the
same service class. Note that such recommendations would ob-
viously be formulated in terms of traffic parameters. However,
contrary to an environment where call admission is used to dy-
namically make decisions on accepting new traffic, these would
be primarily used for making off-line decisions on how to as-
sign different traffic types to service classes.

In this initial study, we focus on a specific performance mea-
sure, namely, the packet loss probability. Our approach is pri-
marily analytical, although we also rely on simulations to in-
vestigate certain configurations where analysis is difficult, if
not impossible. Our main thrust is to develop a number of
new models or extensions to existing models, which allow us
to evaluate the loss probability experienced by an individual
flow when only the overall loss probability of the service class
to which this flow belongs is observable. This enables us to
evaluate the influence of the different traffic parameters of a
flow, e.g., its peak rate, average rate, burst duration, etc., on
the potential deviation between its own loss probability and the
overall loss probability. In that context, the identification of pa-
rameters that can result in significant deviations is of special
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interest, as it can be translated into guidelines for safely ag-
gregating flows. In addition, we also investigate the sensitivity
of any performance deviation in terms of the amount of addi-
tional resources, i.e., bandwidth or buffer, required to ensure
that even the worst performer in a service class experiences a
level of performance equal to or better than the desired target
for the service class.

We believe that the results of this paper provide an impor-
tant tool to assess the feasibility and limitations of aggregate
QoS solutions, and improve our understanding of how to use
them. The rest of this paper is structured as follows. Section II
introduces and motivates the different models and systems as-
sumptions. Analytical expressions of individual loss probabili-
ties are provided for those models in Section III, with most of
the derivations being relegated to an extended version of the
paper available on-line [23]. Sections IV and V report results
obtained from the models of Section III. Finally, Section VII
summarizes the main findings of the paper and their implica-
tions for aggregate QoS solutions.

II. MODEL AND METHODOLOGY

In this section, we describe the model and methodology we
rely on to investigate the behavior of individual loss probabili-
ties in an environment based on aggregate service classes. This
includes the traffic model we assume for users, the different
service configurations we analyze, and how we measure dif-
ferences between individual and aggregate loss probabilities.
Specifically, the system we consider is that of a single server,
finite buffer, FIFO queue that represents the queue associated
with a given service class on a network link. Parameters that
influence our ability to analyze such a system include the statis-
tics of the traffic generated by individual users, as well as the
total number of users that are aggregated into this single queue.

A. Input Traffic Model

We consider two different models for characterizing the traf-
fic generated by an individual user. The first is a standard ON-
OFF Markov source [1], with exponentially distributed ON and
OFF periods and a fixed transmission rate when ON (active).
Such a source can be described using a 3-tuple < R, b, ρ >,
where R is the transmission (peak) rate when the source is ac-
tive, b is the average duration of an active or ON period, and ρ
represents the fraction of time the source is active, or its utiliza-
tion. The rationale for such a source model is both that it lends
itself to the development of tractable analytical models from
which intuition and insight can be derived, and that its simple
three parameters description can be easily mapped onto popular
traffic control devices such as leaky buckets, e.g., see [11] for a
discussion on this issue. As a result, it captures the behavior of
configurations in which performance is mainly determined by
“burst-level” congestion. This will be the case when provision-
ing used for the service class allows for periods of time during
which the incoming traffic exceeds the allocated capacity.

The second model considered is the
∑
Di/D/1 queue [22],

[18], [17]. In this model, each source is assumed to be constant
rate and to periodically (every Di units of time) generate a sin-
gle, unit size1 packet. Sources can differ in terms of both their

1Its transmission takes one unit of time

period and the position at which they generate their packet in a
period. The choice of the position at which a given source gen-
erates its packet within a period is assumed to be independent
of that of other sources, and to be drawn from a uniform dis-
tribution over the interval [0,Di). This second model captures
a different environment and system configuration from the first
one in which congestion primarily occurs at the packet level.
This is the case when provisioning is done based on the “worst-
case” assumptions regarding the traffic that a user can gener-
ate. For example, this could apply to provisioning rules used
to support a constant rate, low delay service class based on the
Diff-Serv Expedited Forwarding Per Hop Behavior (PHB) [4],
or representative of a network that relies on conservative (peak
rate) provisioning.

We believe that these two traffic models, because of their dif-
ferences, bracket a broad and realistic range of possible config-
urations. When combined with other various combinations of
system parameters as described below, they should provide a
reasonably comprehensive investigation of the problem space.

B. System Parameters and Performance Measures

In developing models to explore possible deviations between
individual and aggregate loss probabilities, we consider several
configurations that sample the range of possible environments.

The first parameter we vary is the number of users aggre-
gated in the same service class, i.e., the number of distinct traf-
fic sources multiplexed in the FIFO queue. In particular, we
focus on two cases: a two-source configuration and a “many-
source” one. We select these two configurations not only be-
cause they are amenable to analysis, but also because they cor-
respond to different boundary conditions, i.e., an environment
where few large bandwidth connections share resources, and
one where many small (compared to the link capacity) flows
are multiplexed into the same queue. We expect these two envi-
ronments to exhibit different sensitivity to the traffic parameters
of individual sources, and to possibly yield deviations between
individual and aggregate losses of different magnitude.

Another system parameter we consider is the size of the
FIFO queue into which flows are multiplexed. In particular,
we consider both the cases of bufferless (buffer size of zero)
and buffered systems. In many instances, bufferless systems
lend themselves to more tractable analysis, while qualitatively
capturing performance trends. In cases where models are lim-
ited to bufferless systems, we also rely on simulations to extend
the investigation to buffered systems. In all cases of interest,
the simulation results confirmed the trends observed from the
bufferless analytical results.

Our focus is to derive explicit expressions, function of source
and system parameters, for both individual and aggregate loss
probabilities in different system configurations that we con-
sider. Loss probabilities correspond to the ratio of the total
number of bits lost to the total number of bits sent by either
an individual user or all users. We denote the overall loss prob-
ability PL, and the loss probability of user i as P i

L. PN
max cor-

responds to the maximum loss probability experienced by an
individual user (user N ) in the service class. Note that tradi-
tional models, e.g., [1], [19], have focused on expressions for
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the (overall) overflow probability rather than the loss probabil-
ity. The latter is in our mind a more realistic measure of the
performance that users experience. As outlined in Section III,
deriving expressions for the loss rather than the overflow prob-
ability in a finite buffer system calls for some slight modifica-
tions to the derivations.

The expressions of individual and aggregate loss probabili-
ties allow us to investigate cases when they potentially differ.
We carry out these investigations by first selecting a target loss
probability Pmax for the service class, and then computing the
{minimum} amount of bandwidth C needed to ensure an over-
all loss probability PL ≤ Pmax. We then identify the user
that experiences the highest individual loss probability PN

max,
and compute the ratio PN

max/PL. Note that for simplicity, in
most cases we limit our investigations to configurations that
only involve two types of users. This facilitates the identifica-
tion of which user (type) experiences the higher losses. In addi-
tion to computing the ratios between individual and aggregate
losses, we also evaluate the percentage by which the bandwidth
allocated to the service class needs to be increased to ensure
PN

max ≤ Pmax. In other words, if CN denotes the minimum
amount of bandwidth needed so that PN

max ≤ Pmax, we evalu-
ate the quantity (CN −C)/C. This serves as a useful metric to
evaluate the penalty that an aggregate service model incurs.

III. ANALYTICAL RESULTS

This section is devoted to the presentation of the analytical
results that allow us to compute and compare both individual
and aggregate loss probabilities. Proofs and additional details
are available from an extended version technical report [23].
Four distinct models are presented in this section. The first two
correspond to the two-source cases of both ON-OFF and peri-
odic sources, and the last two correspond to the “many-source”
scenario, again for ON-OFF and periodic sources.

A. The Two On-Off Sources Case

Since there is conceptually little difference in the derivation
of expressions for a two-source system or an N -source system,
we proceed to derive general expressions for an N -source sys-
tem, from which we subsequently specialize to the two-source
system by letting N equal to 2. The analysis of systems that
involve Markov modulated traffic sources is by now a mature
area, e.g., [1], [15], [19], and we rely on this existing body of
work to develop our model. The main difference between those
works and ours is that ours focus on loss as opposed to overflow
probability and, most important, on evaluating both individual
and aggregate performance.

Our initial model consists of N independent ON-OFF fluid
sources that feed an infinite buffer, single server queue. Source
i is characterized by the 3-tuple described in Section II-A, de-
noted by (Ri, bi, ρi). The input process to the buffer can then be
described through a state vector: S = (s1, s2, · · · , sN ), where
si is 0 when source i is OFF and 1 when it is ON. For any state,
the input rate γS to the system is given by γS

.= S ·RT, where
R = (R1, R2, · · · , RN ) is the peak rate vector of the sources.
If the stationary probability that the input is in state S is de-
noted by πS, under the standard assumption that the system is

ergodic the stationary loss probability experienced by source i
in a finite buffer system of size x can then be approximated by:

P i
L =

∑
S:(si=1,

γS>C)

(πS − FS(x))(Ri − C · Ri

γS
)

ρiRi
=
riL
riS
, (1)

where riL and riS correspond to the long term loss rate and
sending rate of source i. The quantity FS(x) is the stationary
probability that the queue length is smaller than x and the sys-
tem is in state S, which can be readily obtained from results of
either [15] or [19].

Similarly, the overall loss rate PL can be expressed as:

PL =

∑
S:γS>C

(πS − FS(x))(γS − C)

N∑
i

ρiRi

=
rL
rS
, (2)

where rL and rS correspond to the overall long term loss rate
and sending rate, respectively.

Expressions for individual and aggregate loss probabilities
can be readily obtained from equations (1) and (2) for the two-
source case simply by letting N = 2. For example, in the case
where R1 ≤ C, R2 ≤ C, and R1 + R2 > C, i.e., losses occur
only when both sources are active, we will have:

P 1
L =

(π(1,1) − F(1,1)(x)) · (R1 +R2 − C)
ρ1(R1 +R2)

P 2
L =

(π(1,1) − F(1,1)(x)) · (R1 +R2 − C)
ρ2(R1 +R2)

, (3)

where π(1,1) is the stationary probability that both sources
are active. As we shall discuss further in Section IV, the sim-
ple form of equation (3) helps explicitly identify the impact of
different parameters. In particular, we see that for this special
case, the ratio of individual loss probabilities is equal to the ra-
tio of the utilizations of the respective sources. In other words,
the source with the lower utilization will see a proportionally
higher loss probability. This simple but nevertheless interesting
observation is one that will be subsequently confirmed in other
and more general configurations.

B. The Two Periodic Sources Case

In this section, we consider the special case of the∑
Di/D/1 queue with only two sources of periodsD1 andD2,

respectively, i.e., the (D1 + D2)/D/1 queue. For this model,
we assume a bufferless system, since having a buffer of size
larger than or equal to even one packet will eliminate all losses.
In spite of its extreme simplicity, this system is again useful
because of the insight it provides. For this simple system, the
following proposition can be shown to hold.

Proposition 1: For a bufferless (D1 + D2)/D/1 queue,
where D1,D2 are integers and 2 ≤ D1 ≤ D2, the loss prob-
ability ratios P 2

L/P
1
L and P 2

L/PL satisfy:

P 2
L

P 1
L

=
D2

D1

P 2
L

PL
=

1 + D2
D1

2
(4)
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Moreover, if D1 can be divided byD2, then:

P 1
L =

1
D2

P 2
L =

1
D1

PL =
2

D1 +D2
(5)

Proof: The proof is given in [23].
The above proposition, though simple, states that the source

with the larger period sees greater losses in a proportion that is
in the ratio of its period to that of the other source. This is an
observation similar to the one made based on equation (3) for
two ON-OFF sources, which will occur in several other config-
urations, as we will see later.

C. The Many ON-OFF Sources Case

Equations (1) and (2) were derived for the general case of
N sources, but as N grows large, the required computations
quickly become prohibitive because of the well-known “state
explosion”, and this makes numerical evaluation difficult if not
impossible. As a result, we rely on simulations for evaluat-
ing buffered systems, and shift the focus of our analysis to a
bufferless system for which numerical evaluation remains fea-
sible. A bufferless model is a reasonable approximation when a
large number of sources are multiplexed. In this case, the input
traffic can be well approximated using the general technique
of rate envelope multiplexing [17, Section 4.1.1], and data loss
can then be characterized by relying on the fact that it only oc-
curs when the input rate (envelope) exceeds the available ser-
vice rate. Under these assumptions, models already exist [16]
that give explicit expressions for the quantities of interest in the
context of this paper, i.e., individual and aggregate loss proba-
bilities. For completeness, we briefly restate the relevant results
and assumptions of [16], and identify the minor generalization
we introduce. Note that [16] is one of the first works to ex-
plicitly target understanding when and why differences in per-
formance can arise when aggregating many different types of
sources. Some of its results are consistent with those we derive
in this paper, and the main differences are both in terms of the
broader investigation we undertake, and more important, of our
focus on explicitly identifying the impact of individual traffic
parameters across many different scenarios.

In the bufferless system we consider, the total input traffic
is divided into two parts: the background traffic and the traffic
associated with a specific source. This source (without loss of
generality, we assume it is source N ) is the one we focus on,
and whose traffic parameters we vary. We denote λt, λb

t and
λN

t as the random variables associated with the rate envelop at
time t of the total traffic, the background traffic, and the rate of
source N respectively. Similarly, the variablesm,mb, andmN

identify the corresponding mean rates. Under those assump-
tions, the overall loss probability PL and the loss probability
PN

L of source N can be obtained from a minor generalization
of the results of [16], by assuming a link capacity of C instead
of a unit link capacity, and by expanding the expression for PL

simply by conditioning on λN
t .

PN
L =

E
[
(λt − C)+ · λN

t

λt

]
ρN ∗RN

= E

[(
λb

t +RN − C
λb

t +RN

)+
]
, (6)

and

PL =
E[(λt − C)+]

m
(7)

=
ρNE[(λb

t +RN − C)+] + (1 − ρN )E[(λb
t − C)+]

m
,

The expectations in both equations (6) and (7) can be evaluated
numerically if λb

t is explicitly specified. In most of our tests,
the background traffic consists of homogeneous sources, as we
focus on the impact of varying the traffic parameters of source

N , so that λb
t

Rb
is simply a binomial distribution.

D. The Many Periodic Sources Case

The overflow probability for the
∑
Di/D/1 queue has been

investigated in [22], [18], [17]. Its derivation is based on the
Beneš approach that is extensively documented in [17]. In this
paper, we build on and extend the methods of [22] and [18] to
obtain upper and lower bounds for individual loss probabilities.
We briefly outline the model assumptions and state the final
results, while details and proofs can be found in [23].

The model we consider consists of J different types of
sources. There are Nj independent sources of type j, 1 ≤
j ≤ J , each with a period of Dj time units. The individ-
ual source we focus on is source i with period Di. In order
to ensure that the system is stationary and ergodic, we further
impose the condition that the total load ρ is less than 1, i.e.,
ρ = 1/Di +

∑J
j=1

Nj

Dj
< 1. The queue length or backlog in the

system at time t is denoted as Vt, and we use the expression

Pr{V0 > x|One arrival from sourceDi at 0+}

to approximate the loss probability of source Di in a finite
buffer system of size x. In [23], the following lower and up-
per bounds are established:

P i
L ≥

∑
n>x

n�=x+�NDi�−1

(1−ρ)·


 ∑

K(n,x)
=n−d(n,x)

J∏
j=1

qj(kj(n, x))


 (8)

P i
L ≤

∑
n>x

n�=x+�NDi�−1




∑
K(n,x)

=n−d(n,x)


 J∏

j=1

qj(kj(n, x)·

(
1 − Nj − kj(n, x)

Dj(1 − pj(n, x))

)+
]}
, (9)

where d(n, x) =
∑J

j=1Nj · 	n−x
Dj


 + 	n−x
Di


, pj(n, x) =
n−x
Dj

− 	n−x
Dj


 and K(n, x) =
∑J

j=1 kj(n, x). The value of
kj(n, x) can vary between 0 and Nj and qj(kj(n, x)) is the
probability density function of a binomial distribution with pa-
rameter (Nj , pj(n, x)).
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Upper and lower bounds for the overall loss probability PL

can be obtained from equations (9) and (8) based on the follow-
ing relation:

PL =

∑J
j=1

Nj

Dj
· P j

L + 1
Di

· P i
L∑J

j=1
Nj

Dj
+ 1

Di

(10)

The above upper and lower bounds have been numerically
evaluated for many different configurations, and found to be
consistently very close to each other (see [23] for a couple of
illustrative examples). In this paper, we use the upper bound of
equation (9) to approximate the individual loss probability P i

L

of source i.
In the next sections, we rely on the various expressions de-

rived in Section III to investigate when and why individual and
aggregate loss probabilities differ.

IV. LOSS DEVIATIONS IN THE TWO-SOURCE CASE

This section is devoted to exploring configurations that in-
volve only two sources. In all our investigations for both this
section and subsequent ones, Pmax is fixed at a level of 10−4.

A. Two On-Off Sources

In this section, we assume that only two ON-OFF sources
are multiplexed into a common queue that is served by a con-
stant rate server of speed C bits/sec, where the value of C has
been selected to ensure an overall loss probability PL ≤ 10−4.
The traffic parameters of source 1 are kept fixed at R1 =
108 bits/sec, b1 = 0.005 sec, and ρ1 = 0.5. In all scenar-
ios described in this section, the buffer size of the queue is set
equal to the total average burst size of the two sources. Addi-
tional experiments were conducted with different buffer sizes,
and did not yield drastically different behaviors. The parame-
ters of source 2 are then varied one or more at a time, with its
other parameters kept constant and identical to those of source
1. We rely on equations (1) and (2) to evaluate deviations be-
tween P 2

L and PL. We omit results related to varying the burst
duration as this parameter was found to have no or only minor
impact. Note that this doesn’t mean the burst duration has no
impact. It certainly does, and as it increases, the total allocated
bandwidthC increases to accommodate the burstier arrival pro-
cess of source 2. However, contrary to what happens with the
peak rate and the utilization, varying the burst duration while
maintaining the aggregate loss probability below the desired
target of PL = 10−4, does not introduce significant differences
between the two sources in terms of loss.

A first set of conclusions illustrated by Figure 1 and verified
through extensive additional experiments with different config-
urations, is that individual traffic parameters can indeed induce
differences in terms of the loss probability that a given source
experiences. In particular, we see that a higher peak rate and
a lower utilization (lower rate) both translate into a higher loss
probability for source 2 than for source 1, although the magni-
tude of the difference is not the same in the two cases.

The fact that both peak rate and utilization can affect the
performance of an individual source is reasonably intuitive. A
higher peak rate source dumps data faster into the buffer, which
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Fig. 1. Performance Deviations for Two ON-OFF Sources.

increases its likelihood of losing data. Hence, it becomes the
dominant contributor to the overall loss, as seen in Figure 1(a),
and ends-up experiencing a slightly worse loss probability than
the overall. A similar situation arises when the two sources have
different utilizations, but because of the potentially much larger
magnitude of the difference (see Figure 1(b)), this scenario de-
serves additional attention.

The main reason why utilization has a greater impact than
peak rate is because of how we choose to vary individual pa-
rameters and the resulting weight of each source in terms of its
traffic contribution. Specifically, as we vary a given parame-
ter of source 2, we keep the others fixed and equal to those of
source 1. When we vary (increase) the peak rate, because the
utilization of the two sources remains the same, source 2 ends-
up being the dominant contributor of traffic into the system.
Hence, although it does experience higher losses, because of its
higher weight in computing the overall loss probability PL, the
allocated bandwidthC that is chosen to ensure that PL ≤ 10−4,
also ensures that P 2

L remains close to this target value.
In contrast, when the utilization of source 2 is varied (de-

creased) while its peak rate remains identical to that of source
1, it is source 1 that becomes the dominant traffic contributor.
Hence, the allocated bandwidth C is determined based primar-
ily on the performance of source 1, which allows the loss curve
of source 2 to degrade arbitrarily. The reason for this degrada-
tion is that the lower utilization of source 2 limits its ability to
access the link. This provides source 1 with additional trans-
mission opportunities, which helps to lower its individual loss
probability. This is best illustrated through the specific scenario
already mentioned in Section III-A, where losses only occur
when both sources are active.

In this special case, the individual loss probabilities are
given in equation (3), which clearly identifies the impact of the
smaller utilization of source 2. Specifically, we have P 2

L =
P 1

L
ρ1
ρ2

, which increases in a way that is inversely proportional to
ρ2. This is because losses occur when both sources are active
and, therefore, losses are distributed fairly and in proportion to
the peak rate of each source, i.e., the individual loss rate riL
is proportional to the peak rate Ri. Meanwhile, the individual
transmission rate riS is proportional to both the peak rateRi and
the utilization ρi. Thus, the effect of the peak rates Ri cancel
out, and the ratio of the loss probabilities of the two sources
is then easily found to be inversely proportional to the ratio of
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their utilizations. A similar trend was also observed in cases
where the peak rate of each individual source exceeds the link
capacity. However, in such cases a trade-off exists between the
impact of the peak rate that influences the losses that a source
experiences when it is the only one active, and the utilization
that again affects how often both sources are simultaneously
active and sharing losses. From our observations, utilization
remains the dominant factor, primarily because the allocated
bandwidth was typically chosen so as to keep losses at a suffi-
ciently low level when only one source was active.
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Fig. 2. Additional Bandwidth for Two ON-OFF Sources.

The next aspect we investigate is the level of additional re-
sources that are required to ensure that both sources experience
a loss probability that is below the desired target of PL = 10−4.
The results of this investigation are shown in Figure 2 in the
form of the percentage of additional bandwidth required. The
figure reports the minimum amount of additional bandwidth
needed to ensure adequate performance for both sources. As
we can see, Figure 2(b) confirms the potentially severe penalty
imposed by mixing sources with very different utilizations. In
particular, we see from Figure 2(b) that the amount of additional
bandwidth needed can reach about 45%.

In [23], we carried out an additional set of experiments,
where we simultaneously varied two instead of only one traffic
parameters of source 2. In particular, we considered scenarios
that involved varyingR2 and b2, R2 and ρ2, and b2 and ρ2. The
findings from those experiments did not reveal any drastically
different behavior from those observed when varying only one
parameter at a time. Thus we omit reporting those results here.

B. Two Periodic Sources

From Proposition 1, we know that as with ON-OFF sources,
the source with longer period (smaller rate) experiences higher
losses. Similarly, its performance is worse than that of the
shorter period source in a way that is proportional to the ra-
tio of their respective periods. The basic reasons for this are
essentially the same as those outlined in the case of ON-OFF
sources, if the fact that longer period corresponds to smaller
utilization is considered.

Moreover, from equation (5), when D1 and D2 are integers
and if N = D2/D1 is also an integer, we see that in order to
ensure a target loss probability of ε, the additional bandwidth
in percentage needed (expressed in terms of the corresponding
increase of the sources’ period) is equal to N−1

2 = (D2/D1−1)
2 ,

which is independent of ε and can be made arbitrarily large by
increasingD2/D1.

V. LOSS DEVIATIONS IN THE MANY-SOURCE CASE

This section targets at what one can consider a more realis-
tic set of scenarios, namely, service classes that carry a large
number of flows. Such configurations will clearly be more ap-
propriate for high speed links, where one can expect to see just
a few service classes, e.g., built on top of a small numbers of
Diff-Serv PHBs, each carrying a large number of flows. Our
goal, however, remains the same, as we investigate the impact
that the individual traffic parameters of a flow can have on the
performance it experiences. Intuitively, our expectation is that
the presence of a large number of flows is likely to “soften”
possible deviations in performance. As we’ll see, this intuition
will indeed be confirmed.
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Fig. 3. Loss Probability Deviations for Many ON-OFF Sources.

A. Many ON-OFF Sources

In this sub-section, we assume that the input traffic consists
of many ON-OFF sources. For simplicity, we limit ourselves to
only two types of sources. Sources of type 1 form the “back-
ground” traffic, and we assume a total of 1000 such sources,
each with a peak rate R1 = 105 bits/sec, a burst duration
b1 = 0.005 seconds, and a utilization ρ1 = 0.5. As previously
mentioned in Section III-C, when the background is traffic is
homogenous, the number of active background sources follows
a binomial distribution. Using this fact together with the results
of a bufferless model in Section III-C, i.e., equations (6) and
(7), we evaluate the loss probability experienced by both type 1
sources and (initially) a single type 2 source whose traffic pa-
rameters we vary. Note that because the burst duration has no
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impact in a bufferless model, we first limit ourselves to vary-
ing the peak rate and the utilization of the type 2 source. This
is then followed by scenarios where both R2 and ρ2 are var-
ied while keeping their product constant, i.e., R2ρ2 = R1ρ1.
Following the methodology of Section IV-A, when any of the
parameters of the type 2 source are varied, its other parameters
are set to the same values as those of the type 1 sources.

The results are shown in Figure 3. The figure illustrates that
variations in either peak rate or utilization alone do yield some
differences between the two types of sources. However, those
differences are most significant when the type 2 source has
both a much higher peak rate and a much lower utilization than
the type 1 sources. In particular, Figure 3(c) shows that when
R2/R1 = ρ1/ρ2 = 200, the loss probability ratio is about 280.

These results are reasonably intuitive. First, when the peak
rate of the type 2 source increases, so does its impact, making
it more likely to create congestion when becoming active. The
extent to which this also triggers the allocation of additional
bandwidth to compensate for this potential increase in losses
depends on the impact of the type 2 source on the overall loss.
In particular, if its utilization is very low, such contribution will
be minor and won’t trigger the allocation of any substantial ad-
ditional bandwidth. Hence, bandwidth allocation is primarily
driven by the performance of the type 1 sources, and the higher
losses of the type 2 source will remain mostly undetected. This
explains why type 2 source can experience losses that are much
higher than the aggregate loss when both its peak rate and uti-
lization are varied while keeping its overall data rate constant.
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(c) Varying R2 and ρ2

Fig. 4. Additional Bandwidth for Many ON-OFF Sources.

In contrast, when only the peak rate of the type 2 source
is varied (increased), so will its overall data rate. This means
that the weight of its losses in the aggregate loss estimate will
also increase. This will typically ensure that those losses are
properly accounted for in the bandwidth allocation procedure,

so that the allocation of additional bandwidth to keep the ag-
gregate loss probability constant is sufficient to also keep the
losses of source 2 close to the desired target. This can be ob-
served in Figure 3(a), where the loss probability of the type 2
source is only slightly larger than the overall loss probability.
The figure also shows that the relative performance of the type
2 source initially degrades, as its peak rate increases, and then
gradually improves. The presence of such “cross-over” point
is merely a reflection of the fact that there is a lag between the
negative impact of a higher peak rate and its eventual detec-
tion by the bandwidth allocation procedure, as its impact on the
overall loss probability increases.

Figure 3(b) illustrates that when only the utilization of the
type 2 source is varied, the impact on performance differences
between the two types of sources is marginal. This is because
although its decreasing overall rate means that its weight in the
bandwidth allocation procedure becomes less and less, a type
2 source will sample the system in pretty much the same way
as a type 1 source due to the fact that its appearance will only
contribute a minor increase to the level of congestion. Hence,
the two types of sources see mostly the same loss probability.

Because the above results were obtained using a bufferless
model, we performed a number of simulations for a buffered
system to test our conclusions. A buffer size of 0.5 Mbits, i.e.,
the total average burst size that can be generated by the back-
ground sources, was used. Although we do not report the results
due to lack of space, the observed behavior was qualitatively
similar as with the bufferless model. In particular, we verified
that the burst duration parameter did not have much influence
on performance deviations. This is consistent with the conclu-
sions of the two-source configuration and validates the use of a
bufferless model that is oblivious to this parameter.

Another aspect that was investigated in the two-source case
was the amount of additional bandwidth needed to ensure that
the type 2 source saw the target loss. We carry out a similar in-
vestigation in the many-source case, and the results are reported
in Figure 4. The figure shows that across all the scenarios of
Figure 3, the maximum amount of additional bandwidth needed
is only 8%, as compared to levels in excess of 40% for some of
the two-source scenarios. This further confirms our earlier in-
tuition regarding the benefits of larger scale systems towards
ensuring consistent performance across users. However, note
that in absolute value, the additional bandwidth required to ad-
equately accommodate a low utilization, high peak rate source
remains high.

Finally, a last aspect that we investigated was the sensitiv-
ity of our findings to the fact that there was only a single type
2 source. In particular, as the proportion of type 2 sources
increase, so will their impact on the overall loss probability,
which should then improve their ability to attract sufficient ad-
ditional resources to ensure that they experience the desired loss
target. Clearly, no deviation would exist if all the background
traffic were made of only type 2 sources. Our goal is, therefore,
to determine how quickly this happens as we increase the pro-
portion of type 2 sources. To test this, we select the parameters
of type 2 sources to be R2/R1 = ρ1/ρ2 = 200, progressively
increase the traffic contributed by the type 2 sources to the back-
ground while keeping the total average background traffic fixed.
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The results of this experiment are displayed in Figure 5.
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Fig. 5. Increasing the Background Load Contributed By Type 2 Sources.

The figure shows the behavior of the loss probability ratio
as the proportion of type 2 sources in the background increases
(lhs), as well as the amount of additional bandwidth needed
to ensure that type 2 sources experience the desired loss target
(rhs). From the figure, we see that as expected, increasing the
number of type 2 sources helps decrease the magnitude of the
performance deviation they experience. However, while there
is a sharp initial decrease as the number of type 2 sources in-
creases from one, the slope rapidly levels off so that even when
the type 2 sources make up about 50% of the traffic they still
experience a loss probability that is twice as large as that of
type 1 sources. This behavior is further confirmed by the rela-
tively slow convergence of the amount of additional bandwidth
needed. This points to the fact that merging two service classes
used to carry significantly different traffic in terms of peak rate
and utilization, should probably be avoided.

To summarize, what we’ve seen is that in the many ON-OFF
sources case, the main factor responsible for causing signifi-
cant deviations in performance is a combination of high peak
rate and low utilization. This is different from what is observed
in the two-source case, where utilization alone can induce sig-
nificant deviations. The reason for this is that in order for an
individual source to experience losses that differ significantly
from the overall losses, it needs to not only contribute to con-
gestion, but do it in a way that does not trigger the allocation
of sufficient additional resources. In the case of two or a small
number of sources, because each source has an important im-
pact on congestion, even when they have similar peak rates,
decreasing the utilization of one of them decreases the overall
frequency of congestion periods and, therefore, improves the
overall performance but not its own. In contrast, when there are
many sources, decreasing solely the utilization of an individual
source has only minor impact on both the overall performance
and its own. In order for performance deviations to occur and
remain undetected at the aggregate level, the peak rate of the
source needs to be increased while its utilization is decreased to
ensure that the resulting additional losses do not substantially
contribute to the overall losses.

In the next sub-section, we investigate whether the conclu-
sions reached for many ON-OFF sources also apply to periodic
sources. Intuitively, we expect that the “smoother” nature of
periodic sources plus the large number of sources, should result
in relatively small performance deviations across all scenarios.

B. Many Periodic Sources

The configuration used in this section consists of 1000 type 1
sources with period D1 and a single type 2 source with period
D2. The ratio D2/D1 is then varied from 40 to 200. The link
load is initially fixed at 0.7 and the buffer size is set to ensure
an overall loss probability of 10−4 for all configurations. The
link load is then decreased until the type 2 source also achieve
the 10−4 target loss probability.

D2/D1 40 80 120 160 200
P 2

L/PL 1.0235 1.0238 1.0239 1.0240 1.0240
∆C/C% 0.0981 0.0997 0.1004 0.1004 0.1004

TABLE I
IMPACT OF SOURCE PERIOD: THE MANY SOURCE CASE.

The results of those experiments are reported in Table I. They
confirm our expectation that the large number of sources com-
bined with the relatively smooth nature of periodic traffic re-
sults in only minor differences. Differences in loss probability
are of the order of 2% and the amount of bandwidth required
to bring the type 2 source on par with type 1 sources is at most
0.1% of the allocated bandwidth. Intuitively, this is because
when the number of sources is large, packet arrival epochs are
more likely to be evenly distributed, which makes for smaller
queue length variations and, therefore, a lower sensitivity to the
frequency at which the queue is sampled. Hence, the type 2
source will sample the queue in almost the same way as the
type 1 sources. More formally, this can be deduced from the
well-known PASTA result, as the many type 1 sources result in
an overall arrival process that approaches Poisson, so that type
1 arrivals sample the queue at random times. Similarly, increas-
ing the period of the type 2 source will also have it sample the
queue at essentially a random time. Hence the two types of
sources should see similar queue statistics and performance.

The main significance of this finding is that it lends some va-
lidity to the use of aggregate QoS solutions to support constant
rate services. Clearly, there are aspects that the periodic model
does not capture, e.g., how interactions between flows affect the
periodic nature of the traffic as it traverses the network (see [2],
[10], [14] for relevant investigations of this issue). However,
it helps address an important issue, namely, when relying on
such a service model, whether differences in rate affect indi-
vidual performance. The answer, based on the models we have
developed, is that this is not the case, at least not when many
such sources are aggregated into a common service class. Note
that the answer obtained in Section IV-B was different in that
it pointed out the potential for significant differences in the two
(few) source case, when one of the sources had a much longer
period. The transition between these two behaviors is investi-
gated in greater details in Section VI.

VI. INTERMEDIATE CONFIGURATIONS

Because of the differences that were observed between the
two-source configurations and the many-source ones, it is of
interest to gain some understanding into how fast one transi-
tions from one set of behaviors to the other. Note that the dif-
ferences between the two configurations were not unexpected.
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As a matter of fact, the two-source and many-source cases were
chosen because of both their analytical tractability and the fact
that we expected them to provide results that would applicable
to “small” and “large” systems respectively. What we wish to
undertake in this last section, is to get a better understanding on
what exactly does “small” and “large” mean.

The approach we take is to test by means of simulations a
number of “intermediate” scenarios. The first scenario is for
ON-OFF sources. In particular, the number of background
(type 1) sources in the system is increased from 1 to 100.
When there’s only one type 1 source, its parameters are: R1 =
108 bits/sec,b1 = 0.005 sec, and ρ1 = 0.5. When the number
of type 1 sources increases, b1 and ρ1 remain fixed but R1 is
decreased so that the total mean rate of the background is kept
constant. As before, when considering differences in source
traffic parameters, we choose a large ratio of 200 between the
parameters of the two types of sources. Note that simulations
were carried out for both bufferless and buffered systems (the
buffer size was again 0.5 Mbits). Because results were essen-
tially similar, we only report those of the buffered system sim-
ulation. In addition, for the sake of brevity, we focus on scenar-
ios for which the behaviors of the two-source and many-source
scenarios differ. In particular, we considers cases that involve
differences in ρ and in both R and ρ.

N1 1 10 20 50 100
ρ1
ρ2

= 200 P 2
L/PL 100 3.3 1.8 1.1 1.4

∆C/C (%) 23.9 2.5 0.9 0.1 0.07

N1 1 10 20 50 100
ρ1
ρ2

= 200 P 2
L/PL 2 10.4 19.5 44 81

R2
R1

= 200 ∆C/C (%) 0.02 0.8 1.7 4.4 9.1

TABLE II
INTERMEDIATE ON-OFF SCENARIOS.

The results are reported in Table II. Note that the 95% confi-
dence intervals for most simulations are still relatively large (of
the order of 40%), which explains some of the “irregularities”
seen in the table. We draw a number of conclusions from the
results in the table.

First, when the two types of sources differ only in their uti-
lization, the convergence to the many-source results is rather
rapid. For example, to rely on the many-source results, a num-
ber of only 50 background sources is sufficient and by allo-
cating an additional 0.1% of bandwidth, both types of sources
would experience the desired target loss probability. This
means when sources differ only in their mean rate and not their
peak rate, e.g., because they have the same access speed con-
straints, aggregating even a relatively small number of (ON-
OFF) sources with different mean rates in the same service class
is reasonable.

The situation is somewhat different when dealing with
sources that differ in both their utilization and peak rate. In
such case, the transition from the two-source behavior to the
many-source one is much more progressive. More specifically,
the behavior of the two-source case prevails for some time, e.g.,
until a background traffic of about 10 to 20 sources, and then
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Fig. 6. Intermediate Scenarios for Periodic Sources.

slowly transitions to the many-source behavior. However, even
if it takes a large number of sources before reaching the very
large performance deviations that have been described in the
many-source regime in Section V-A, significant differences in
performance can already be observed even for a relatively small
number of sources. Specifically, even with only 10 sources the
loss probability ratio is already greater than 10. This implies
that aggregating even a small number of sources that differ in
both their peak rate and utilization can be dangerous.

The second intermediate configuration that was tested corre-
sponds to the

∑
j(Nj ·Dj +Di)/D/1 queue of Section V-B. In

this experiment, we do not rely on simulations and still use the
formula 8 and 9 in Section III-D. We vary the number of type
1 sources from 1 to 100, while the ratio D2/D1 remains fixed
at 200. The loss probability ratio and the additional bandwidth
needed to satisfy the performance requirements of the type 2
source are given in Figures 6(a) and 6(b), respectively.

As can be seen from the figure, the behavior of the many-
source scenario is reached rather rapidly, and a background
traffic of 100 sources is more than sufficient for that purpose.
Figures 6(c) also shows another interesting result, namely that
across all configurations performance deviations can be read-
ily handled through the addition of a single packet buffer. This
highlights the sensitivity of deviation to buffer size in systems
where congestion occurs at the packet level and further vali-
dates the ability to provide performance assurance using aggre-
gation, when dealing with this kind of sources.

VII. CONCLUSION

This paper is concerned with an environment where QoS
is provided using coarse mechanisms such as service classes,
which are used to aggregate many individual flows. In ad-
dition, we also assume that service guarantees are provided
through provisioning and the monitoring of aggregate perfor-
mance measures for each service class. In particular, our focus
is on loss guarantees. In that context, our goal is to determine if
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and when aggregate performance measures are a good predic-
tor of individual ones, and to identify scenarios where this may
not hold. For those, we seek to determine the combinations of
traffic parameters responsible for such deviations. We then use
them to formulate guidelines on which types of traffic can be
safely aggregated in the same service class.

Our approach is analytical in nature. We rely on two source
models, Markov ON-OFF and periodic, that we feel provide
an adequate coverage of the different possible environments.
We also investigate two limiting configurations, a two-source
model and a many-source model, that are expected to help us
characterize the likely range of possible behaviors.

The contributions of this paper are two-fold. First, we de-
rive a number of analytical models that allow the evaluation of
individual loss probabilities in environments that only provide
aggregate guarantees. Those models build on previous works
but do represent new contributions. In particular, the results
of Sections III-A and III-B provide some simple but yet useful
insight into the impact of individual traffic parameters in the
two-source case. Section III-D also provides new results.

Second, we identify a number of cases and traffic parame-
ters that introduce significant deviations between individual and
aggregate performance, and use those results to provide guide-
lines for avoiding such situations. In particular, we showed that
when service classes are used to aggregate only a small num-
ber of users, the utilizations of individual users were a key fac-
tor and one should avoid multiplexing users with significantly
different utilizations. This held for both the ON-OFF and the
periodic models. In contrast, when the number of users aggre-
gated is large, it is desirable to avoid multiplexing flows that
differ greatly in both their peak rate and utilization, at least
in environments where provisioning has some built-in assump-
tion regarding multiplexing efficiency, i.e., for which the ON-
OFF model is relevant. If a more conservative, e.g., peak rate
based, provisioning is used, then multiplexing flows with differ-
ent traffic characteristics (periods) is reasonably safe, as long as
the number of flows that are aggregated in the service class is
sufficiently large.

At last, the differences that were identified between the pro-
visioning environments corresponding to the ON-OFF and peri-
odic models, also carry over in how fast the many-source model
becomes applicable. In particular, in the periodic model the
impact of rate differences disappears rapidly as the number of
sources increase. However, the same does not hold for the ON-
OFF model, where a significantly larger number of sources is
needed before the many-source results hold, at least when the
sources differ in both their peak rate and utilization.

We believe that the results reported in this paper can provide
useful data points and guidelines regarding the capabilities and
limitations of aggregate QoS models. Obviously, the results
of this paper represent only a starting point, and we are cur-
rently investigating a number of extensions. In particular, one
aspect that is currently being investigated is the evaluation of
actual loss performance deviation when aggregating more re-
alistic traffic sources, e.g., voice sources and/or video sources
and the effectiveness of using the models described in this pa-
per, i.e, either ON-OFF sources or periodical sources, to predict
the magnitude or at a minimum the presence of such deviations.
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