
the nodes in these networks is congruent with the un- 
derlying IP-level topology. Similarly, in the case of replicated weh content, 
client nodes could use topological information in selecting one of multiple 
availahle servers. For such applications, one need not find the optimal sn- 
lutinn in order to achieve significant practical henefits. Thus, these appli- 
cations, and presumahly others like them, do not require urct topological 
information and can instead use sufficiently informative hints ahnut the rel- 
ative positions of Internet hosts. 

In this paper, we present a binning scheme wherehy nodes partition 
themselves into hins such that nodes that fall within a given hin are rel- 
atively close to one another in terms of network latency. Our binning 
strategy is simple (requiring minimal support from any measurement in- 
frastructure), scalable (requiring no form of glnhal knowledge, each node 
only needs knowledge of a small numher of well-known landmark nodes) 
and completely distrihuted (requiring no communication or cooperation 
hetween the nodes heing hinned). 

We apply this binning strategy to the two applications mentioned ahnve: 
overlay network construction and server selection. We test our binning 
strategy and its application using simulation and Internet measurement 
traces. Our results indicate that the performance of these applications can 
he significantly improved hy even the rather coarse-gained knowledge of 
topology offered hy our binning scheme. 

1. INTRODUCTION 

Several ongoing projects make use of application-level or 
overlay networks 111, 121, 131, 141, 1.51, 161, 171, 181, 191. In 
these applications, each participating end-host node is logically 
connected’ to a small subset of the other participant nodes (we 
call this subset the node’s neighbors) to form an overlay net- 
work. A path on the overlay network then consists of a series 
of application-level, not IP-level, hops between the source and 
destination nodes. However, in current applications, little effort 
is made to ensure that this application-level connectivity is con- 
gruent with the underlying IP-level network topology. This in 
turn can lead to inefficient routing where, for example, a node 
in Berkeley has its neighbor nodes in Europe and hence its path 
to a node in Stanford may traverse distant nodes in Europe. Ide- 
ally, one would like to improve routing performance by avoiding 
such unnecessary high latency hops. Thus, a fundamental chal- 
lenge in using large-scale overlay networks is to incorporate IP- 
level topological information in the construction of the overlay 
to improve routing performance. 

The utility of topological information is however, not re- 
stricted to overlay network construction. Content distribution 
over the Internet is another example where such information 
could improve performance. In recent years, the Web has moved 
from an architecture where data objects are located at a single 
origin server to one where objects are often replicated at multi- 

SRatnasamy, M.Handley,R.Karp and S.Shenker are with the ICSI Center for 
Internet Research, Berkeley, CA, USA. SRatnasamy and R.Karp are also with 
the Computer Science Division, University of California. Berkeley, CA, USA. 

‘For example, by a TCP connection. 

ple, geographically dispersed servers. Client requests for con- 
tent are redirected to a close-by replica server rather than the 
origin server. The process of selecting a “good” server, i.e. one 
that is close to the client in terms of latency, might be signif- 
icantly improved if both the client and servers could indicate 
their position on the Internet. Likewise, peer-to-peer file shar- 
ing applications such as Napster and Gnutella typically have the 
same file available at multiple peers. Topological information 
could be used to select a close-by peer for quicker down-loads. 

The problem we explore in this paper is whether it is possi- 
ble to gather topological information in a manner that is both 
practical and scalable and if so, how could this information be 
effectively incorporated into the design of distributed systems 
such as overlay networks and content distribution systems? 

At this point, it is worth briefly discussing the desirable prop- 
erties of a solution to the above problem. Administrator config- 
ured overlay networks, such as those used in CDNs [ 101, [ 111, 
[ 121, can be made to fit the underlying IP topology. However, 
such overlays are not generally applicable; the hand-crafted and 
centralized nature of the overlay construction process makes it 
untenable for large overlays (millions of nodes) and for overlays, 
such as peer-to-peer file sharing [ 11, 121, [ 131, where there is no 
single central administrator. One might also imagine central- 
ized solutions [ 141 wherein a single site gathers network topol- 
ogy and routing information to infer the relative proximity of 
hosts. Such solutions however result in a single point of fail- 
ure and potential bottleneck. Also, for completely decentralized 
applications such as peer-to-peer file sharing there is no clear in- 
centive, economic or otherwise, for a third party to offer such a 
service. We also wanted to avoid more elaborate solutions where 
the overlay network structure is improved slowly over time [ 15 1. 
This is because in many of the targeted applications [ 11, [ 2 1, [ 13 1 
for overlay networks participant nodes join and leave the appli- 
cation on short time-scales. A solution that operates over long 
time-scales would be continually reacting to fluctuating node 
membership without stabilizing. Thus, we concluded that a de- 
sirable solution should be simple, fast, distributed, and should 
scale to millions of nodes. 

Another question that arises is: what form of network mea- 
surements or data should we use to derive topological informa- 
tion? Network tools such as tuaceuoute are primarily intended 
for network diagnostic purposes and are too heavy-weight and 
intrusive for use by large scale applications. Using tuacewute 
in large scale applications would result in excessive load on the 
network. Additionally some edge sites disable ICMP for secu- 
rity reasons. The use of BGP routing table dumps [ 141 also faces 
certain problems. Such information is not directly available to 
end-user applications. One would thus either require privileged 
access to internal network information from ISPs, or would de- 
pend on third party monitoring services that do have such privi- 
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leged access and which publish such information on the Web as 
a service to the community. Neither of the above is a reasonable 
option in general. We thus chose to use network latency be- 
cause latency is often a direct indicator of the performance seen 
by end-host nodes and can be easily measured in a light-weight, 
end-to-end, non-intrusive manner. 

Finally, one might question the required accuracy of the topo- 
logical information. In both our targeted applications (over- 
lay construction and server selection), incorporating topology 
awareness is really a performance optimization and is not ye- 
quived for correct operation. More importantly, our results show 
that both server selection and overlay construction show signif- 
icant performance improvements with only approximate topo- 
logical information. For these reasons, we view scalability and 
practicality as more important goals than accuracy. Hence, un- 
like many research projects [ 161, [ 171, [ 181, the focus of our 
work is not on highly accurate topology modeling, nor on build- 
ing a general-purpose measurement service. While these are im- 
portant problems in their own right, our focus is instead on the 
use of simple topological hints to solve certain application-level 
problems. 

In this paper, we propose a distributed binning scheme 
whereby nodes partition themselves into bins such that nodes 
that fall within a given bin are relatively close to one another 
in terms of network latency. Our scheme requires a set of well- 
known landmark machines spread across the Internet. An ap- 
plication node measures its distance, i.e. round-trip time, to this 
set of well known landmarks and independently selects a partic- 
ular bin based on these measurements. Our binning scheme is 
simple, requiring very little support from the infrastructure. The 
only infrastructure required is a small number (our results using 
Internet trace data indicates that 8-12 machines should suffice 
for the current scale of the Internet) of relatively stable landmark 
machines. Very little work is required of these landmark ma- 
chines - they need only echo “ping” messages - and landmarks 
could in fact be unsuspecting participants in the binning! 2 
Landmarks do not actively initiate measurements nor gather or 
disseminate measurement information. Binning is scalable be- 
cause nodes independently discover their bins without commu- 
nicating or coordinating with other application nodes. 

Given the above binning strategy, we turn to the problem of 
how one might effectively incorporate such a scheme in dis- 
tributed applications. We apply this binning strategy to two ap- 
plications: overlay network construction and server selection. 
Results obtained through simulation and from Internet measure- 
ment traces indicate that even the rather coarse-grained topo- 
logical information provided by our binning strategy can sig- 
nificantly improve the performance of systems such as overlay 
networks and CDNs. 

The remainder of this paper is organized as follows: Section 11 
describes and evaluates our binning scheme. In Sections 111 and 
IV we describe and evaluate the application of our binning strat- 
egy to overlay network construction and server selection respec- 
tively. Finally, we discuss related work in Section V and con- 
clude in Section VI. 

2For example, one might imagine using the DNS root name servers as the set 
of landmarks and using the DNS response times as latency measurements. 

II. DISTRIBUTED BINNING 

The goal of our distributed binning scheme is to have a set 
of nodes independently partition themselves into disjoint “bins” 
such that nodes within a single bin are relatively closer to one 
another than to nodes not in their bin. 

Our scheme assumes the existence of a well known set of 
machines that act as landmarks on the Internet. Application 
nodes might discover the IP addresses of these machines us- 
ing the DNS (for example, landmark machines could be named 
lml.hin.net, lm2.hin.net, . rather than hard-coding landmark 
IP addresses into the application). 

We achieve a form of “distributed binning” of nodes based on 
their relative distances, i.e. latencies from this set of landmarks. 
A node measures its round-trip-time to each of these landmarks 
and orders the landmarks in order of increasing RTT. ’ Thus, 
based on its delay measurements to the different landmarks, ev- 
ery node has an associated ordering of landmarks. This ordering 
represents the “bin” the node belongs to. The rationale behind 
this scheme is that topologically close nodes are likely to have 
the same ordering and hence will belong to the same bin. 

We can however do better than just using the ordering to de- 
fine a bin. A node’s RTT measurements to each landmark offers 
two kinds of information: the first is the relative distance of the 
different landmarks from the given node and the second is the 
absolute value of these distances. The ordering described above 
only makes uses of the relative distances of the landmarks from 
a node. The absolute values of the RTT measurements are indi- 
cated as follows: we divide the range of possible latency values 
into a number of levels. For example, we might divide the range 
of possible latency values into 3 levels; level 0 for latencies in 
the range [O,lOO]ms, level 1 for latencies between [ 100,2OO]ms 
and level 2 for latencies greater than 2OOms. We then augment 
the landmark ordering of a node with a level vector; one level 
number corresponding to each landmark in the ordering. To il- 
lustrate, consider node A in Figure 1. Its distance to landmarks 
11, 12 and 1s are 232ms, 51ms and 117ms respectively. Hence 
its ordering of landmarks is /a/a1i. Using the 3 levels defined 
above, node A’s level vector corresponding to its ordering of 
landmarks is “0 1 2”. Thus, node A’s bin is “12lsli : 012”. 

Note that with the above binning scheme (and unlike schemes 
in [ 161, [ 17]), a node only needs to discover the distance be- 
tween itself and the landmarks and can measure these distances 
itself. Nodes need not know the inter-landmarks distances or the 
distance of other nodes from the landmarks. Also, binning is ro- 
bust to the failure of one or more landmark nodes. In the case 
of landmark failures, new nodes are binned using the surviving 
landmarks while previously binned nodes need only drop the 
failed landmark(s) from their bin identifier. Of course, perfor- 
mance degrades with fewer landmarks (the effect of the number 
of landmarks on binning is quantified later). 

The purpose of this binning scheme is to be useful to applica- 
tions. We explore this in Sections 111 and IV. However, we first 
address two questions. First, is our binning proposal scalable? 
From the point of view of the nodes being binned, our scheme is 
clearly scalable since nodes need only have knowledge of (and 

3More preclwly, d L = {lo,ll, ..I,-1) 15 the \et of m landmark\, then 
a node A create\ an ordermg L, on L, \uch that i appear\ before J m L, d 
rtt(a, 1%) < rtt(a, 13) or rtt(a, 1%) = rtt(a, IJ) and I, < 1,. 
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perform measurements to) a small set of landmarks. The only 
remaining issue is the load such measurement place on the land- 
marks; a quick back-of-the-envelope calculation indicates that 
this load is quite manageable for systems with a million nodes 
or more. For example, assume we have a million nodes and 
need 10 pings to obtain a good sample of the RTT to a land- 
mark. If nodes refresh their bin information once per hour4 that 
would impose a load of approximately 2700 pings per second 
on each landmark.? To further improve scalability, one might 
have multiple close-by nodes act as a single logical landmark. 
For example, the Computer Science department at U.C.Berkeley 
might install 10 machines that all act as a single landmark, say 
lml.hin.net. Since these machines are geographically and topo- 
logically co-located, application nodes can use any one of them 
as Landmark#l (and DNS round-robin might be used to load 
balance amongst the 10 machines). 

The second question we address is; does binning do a reason- 
able job of placing nearby nodes into the same bin? To do so, 
we calculate the following: 
. average inter-bin latency: the average latency from a given 
node to all nodes not in its bin 
. average intra-bin latency: the average latency from a given 
node to all nodes in its bin 

For every bin containing two or more nodes, we compute the 
ratio of the inter-bin latency to the intra-bin latency for nodes 
within that bin. We call this the node’s gain ratio. The metric 
we use to evaluate binning is the average over all nodes (that 
belong to bins of size greater than one node) of the gain ratio. 
Intuitively, what the gain ratio represents is that on the average 
if a node were to communicate with a random node from its own 
bin instead of a random node not in its bin, then the communica- 
tion latency would be reduced by a factor equal to its gain ratio. 
A higher gain ratio indicates a bigger reduction in latency and is 
hence desirable. Of course, binning (and hence its performance) 
by itself is not particularly interesting; the utility really comes 
from its application to actual Internet systems. Our evaluation of 

4A refruh rate ofonce/hour won’t enable node\ to react mmxdlately to event\ 
\uch a\ hnk fadure\; however, we deem thl\ acceptable \mcc stale bmnmg m 
formatIon wdl only result m somewhat mcrea\ed delayy\. 

5Such load\ are ea\dy handled by modern mldrange PC\. We experlmented 
with an XOOMHr Athlon ba\ed machme and found that It could ea\dy recave 
2,700 pmg\ per second with no lo\\. Moreover, a\ a reference pomt, a DNS trace 
from October 1999 \how\ that the root name \erverJroot wrver~.net wa\ han 
dhng (with \ome headroom) a IO mmute average of 1,600 request\ per second. 
Smce ICMP ~5 praumably lower co\t than \ervmg DNS, the load on landmark\ 
would not be a \Igmficant problem. 

binning is thus primarily a sanity check to confirm that binning 
does achieve its goal of clustering nearby nodes. 

We tested our binning algorithm on both simulated topologies 
and Internet measurement data. The test topologies we use are 
as follows: 
1. TS-1OK and TS-1 K: Transit-Stub topologies [ 191 with 
10,000 and 1,000 nodes respectively. TS topologies model net- 
works using a 2-level hierarchy of routing domains with transit 
domains that interconnect lower level stub domains. To these 
TS topologies, we assign link latencies of 20ms for intra-transit 
domain links, 5ms for stub-transit links and 2ms for intra-stub 
domain links (we also experimented with a delay distribution of 
100, 10 and lms instead of 20, 5 and 2ms respectively with no 
real change in our results). 
2. PLRGl and PLRG2: Recent studies 1201, 1211 have indi- 
cated that the Internet’s degree distribution follows a power-law. 
Motivated by these observations, degree-based generators have 
been proposed [ 22 1 which appear to better model the measured 
Internet topology. We make use of the same power-law random 
graph generator as used by [ 211, [ 221. PLRGl and PLRG2 are 
Power-Law Random Graphs with 1,166 and 1,779 nodes respec- 
tively. To each link in the topology, we assign a random delay 
between 5 and 100ms. ’ 
3. NLANR: The Active Measurement Project (AMP) at the Na- 
tional Laboratory for Applied Network Research (NLANR) uses 
a distributed network of over 100 active monitors to system- 
atically perform scheduled measurements between each other. 
Amongst other things, monitors measure the round trip times 
(RTT) between the different pairs of monitors. We use an 
NLANR data set with the round-trip-times between 103 such 
monitors. Our data set is from measurements taken in April 
2001. The NLANR sites are primarily located at universities 
in North America. The details of the NLANR measurement 
methodology and sites is described in [ 23 1. 

Recent work has focused on placement strategies for instru- 
mentation boxes [ 241, [ 181. In our work, we make minimal as- 
sumptions about the placement of our Landmark machines. For 
each of the above topologies, we place the required number of 
landmarks at random with the only condition that the landmarks 
be separated from each other by a certain number of hops. In our 
simulations, we use a separation distance of four hops. More so- 

6These delay assignments are probably quite misleading, since the true In- 
ternet latencies are not random; at the very least, they usually obey the triangle 
inequality. However, we do not yet know how to realistically model the Iatencies 
on a PLRG. 
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phisticated placement schemes, as described in [ 241 would only 
serve to improve our results. 

The key parameters affecting performance are 
. type and scale of topology 
. number of nodes being binned 
. number of levels 
. number of landmarks 

For all results presented in this section, all nodes in the data 
set (other than landmark nodes) are binned. 

In Figure 2, we fix the number of landmarks at 12 and plot 
the effect of increasing numbers of levels on the average gain 
ratio. For only the NLANR data plot, the number of landmarks 
was fixed at 4.7 With a single level, all latencies belong to the 
same level and hence only the landmark ordering defines the 
bin. For higher levels, we use a demarcation latency value Ddem 
to divide the range of latency values into the desired number 
of levels. We experimented with different demarcation values 
and found that for most reasonably selected values, our results 
remain largely unchanged. In all the simulations presented here, 
we use the average latency of the underlying topology, denoted 
by Dip, to demarcate the different levels. At two levels, we 
divide latencies into two levels as being less than D,, (level 0) or 
greater than Dip. We divide latencies into three levels as being 
less than (0.75 x Drp), or between (0.75 x Dip) and (1.25 x Drp) 
or greater than (1.25 x Dip). 

In Figure 2, an average gain ratio of 4.06 for TS-1OK with 3 
levels indicates that for a given node, a node within its own bin 
is on an average, four times closer than one not in its bin. While 
increasing the number of levels improves the gain ratio, we see 
that the improvement appears to rapidly saturate, indicating that 
in practice, just 2-3 levels should suffice. 

Figure 3 plots the average gain ratio for an increasing number 
of landmarks. The number of levels was fixed at one. For the 
reason mentioned above, the data points for the NLANR plot 
actually correspond to 2,3,4 and 5 landmarks (not 4,8,12 and 16; 
we plotted it on the same graph due to space limitations). As 
expected, increasing the number of landmarks results in more 
fine-grained binning, thereby improving the gain ratio. 

By comparing the results for TS- 1 OK and TS- 1 K, we see that 
the gain ratio is clearly affected by the size of the underlying 
topology. Our simulations showed that for a given topology, the 
gain ratio varies little with the number of nodes being binned, 
i.e. for a given topology, the density of nodes being binned does 
not affect the gain ratio. 

We also measured the effect of the number of landmarks on 
the number of bins for the different topologies and found that 
with the exception of TS-lOK, the number of bins saturates 
around 8 landmarks explaining why we see little improvement 
in the gain ratio beyond that point. 

The above results tell us what kind of gain ratios our binning 
scheme provides and how it is affected by the number of levels 
and landmarks. But, we would like to know how well our bin- 
ning scheme works relative to other binning techniques. I.e. are 
the above gain ratios good? We use the following algorithms to 

7Because the NLANR data has only 103 nodes, we avoid using a larger num- 
ber of landmarks because this would cause the nodes to be spread across a large 
number of bins, resulting in very few nodes per bin. 

provide us with reasonable upper and lower bounds on the gain 
ratios one might expect from any binning technique: 
. Random binning: Using the same number of bins as generated 
by our landmark-based binning scheme, each node selects a bin 
at random. Random binning thus makes no attempt to achieve 
locality and acts as a lower bound for the gain ratio. 
. Nearest-neighbor clustering: Our binning problem is very 
similar to the clustering problem which has been extensively 
studied in the theory community. In clustering the input com- 
prises a set of data points, each having a set of attributes and 
a similarity measure among them. The goal is to find clusters 
such that data points in one cluster are more similar to one an- 
other, and data points in separate clusters are less similar to one 
another. While optimal clustering is known to be NP-hard, a 
widely used clustering algorithm known to achieve good results 
for a variety of applications is Nearest Neighbor Clustering. In 
Nearest Neighbor clustering, each node is initially assigned to a 
cluster by itself. At each iteration, the two closest clusters are 
merged into a single cluster. The algorithm terminates when the 
required number of clusters are obtained. When applied to our 
problem, we repeatedly merge the two clusters with the min- 
imum inter-cluster latency, where the inter-cluster latency be- 
tween two clusters is the average latency between nodes from 
one cluster to nodes in the other. Nearest neighbor clustering re- 
quires global knowledge of the latencies between all the nodes 
and is clearly not practical for actual deployment on the Internet, 
but serves as a useful potential lower bound to any distributed 
binning scheme. 

Figure 4 plots the average gain ratio for the different 
topologies using landmark-based binning, random binning and 
nearest-neighbor clustering. Not surprisingly, random binning 
yields a gain ratio of approximately 1.0 for all the test topolo- 
gies. In all cases, the performance of landmark-based binning 
comes close to that of nearest-neighbor clustering and greatly 
outperforms random binning. 

In conclusion, the binning scheme we’ve proposed does a rea- 
sonable job of placing nearby nodes into the same bin. We 
now address the more fundamental and important question of 
whether the binning scheme can be of use to applications. 

III. TOPOLOGICALLY-AWARECONSTRUCTIONOF 
OVERLAYNETWORKS 

In this section, we apply our binning scheme to the construc- 
tion of overlay networks. We focus on two types of overlay 
networks. 

The first are stvuctuved overlays wherein nodes are intercon- 
nected (at the application-level) in some well-defined manner. 
A number of designs for such structured overlays have been 
proposed recently 141, 131, 1251, 1261. In our work, we fo- 
cus on one such system, called a Content-Addressable Network 
(CAN). Our scheme for topologically sensitive CAN construc- 
tion should however be applicable to similar systems such as 
Chord 131, PASTRY 1261 and Tapestry 12.51. 

The second type of overlay networks we consider are CM- 

stvuctuved overlays. End-system multicast [ 91, [ 27 1 and Scatter- 
cast [ 28 1 both build such unstructured meshes over which mul- 
ticast trees are constructed. We study the use of our binning 
scheme in a generic example of an unstructured overlay con- 
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struction. 
The metric we use to evaluate our overlay construction algo- 

rithms is the ratio of the average inter-node latency on the over- 
lay network to the average inter-node latency on the underlying 
IP-level network. We call this the latency stretch; lower values 
of stretch are thus desirable. 
A. Topologically-sensitive CAN construction 

A Content-Addressable Network is an application-level net- 
work whose constituent nodes can be thought of as forming a 
virtual d-dimensional Cartesian coordinate space. This coordi- 
nate space is completely logical and bears no relation to any 
physical coordinate system. At any point in time, the entire co- 
ordinate space is dynamically partitioned among all the nodes in 
the system such that every node “owns” its individual, distinct 
zone within the overall space. For example, Figure 5 shows 
a 2-dimensional [0, I] x [0, I] coordinate space partitioned be- 
tween 5 CAN nodes. * Nodes in the CAN self-organize into 
an overlay network that represents this virtual coordinate space. 
A node learns and maintains as its set of neighbors the IP ad- 
dresses of those nodes that hold coordinate zones adjoining its 
own zone. This set of immediate neighbors serves as a coordi- 
nate routing table that enables routing between arbitrary points 
in the coordinate space. Intuitively, routing on the CAN works 
by following the straight line path through the Cartesian space 
from source to destination coordinates. Figure 6 shows a sample 
routing path. For a d dimensional space partitioned amongst n 
nodes, the average routing path length is thus O(d(n’id)) and 
individual nodes maintain O(d) neighbors. 

The CAN construction mechanisms described in [ 41 allocate 
nodes to zones at random.’ Thus, a node’s neighbors on the 
CAN need not be topologically nearby on the underlying IP 
network. This can lead to inefficient routing because every 
application-level hop on the CAN could potentially be between 
two geographically (and topologically) distant nodes. 

In this section, we apply our binning strategy to construct 
CAN topologies that are congruent with the underlying IP topol- 
ogy. Let us assume for the moment that only the ordering of 
landmarks is used for binning (the following ideas can be triv- 
ially extended to include level vectors). With m landmarks, m! 

8The dwmptmn of how node\ create and mamtam thl\ structure 15 not re 
qmred to follow the dl\cu\\lon m thl\ paper. CAN operattlon 15 dexrlbed m 
detad m 141. 

gWlth the exceptlon of SectIon 3.6 m 141 where the Idea of bmnmg 15 brIefly 
Introduced a\ work m progre\\. 

Fig. 6. Exmple 2 d F~LKY 

such orderings are possible. Accordingly we partition the coor- 
dinate space into m! equal sized portions, each corresponding 
to a single ordering. Our current scheme to partition the space 
into m! portions works as follows: assuming a fixed cyclical or- 
dering of the dimensions (e.g. xyzxyzx...), we first divide the 
space, along the first dimension, into m portions, each portion 
is then sub-divided along the second dimension into m - 1 por- 
tions each of which is further divided into m - 2 portions and so 
on. Previously, a new node joined the CAN at a random point 
in the entire coordinate space. Now, at join time, a CAN node 
must first bin itself, i.e. based on its delay measurements to the 
set of landmarks, each node determines its associated bin. The 
new node then joins the CAN at a random point in that portion 
of the coordinate space associated with its landmark ordering. 

A consequence of the above construction scheme is that the 
coordinate space is no longer uniformly populated. Because 
some bins are more highly populated than others their corre- 
sponding portions of the coordinate space are also more densely 
occupied than others leading to an uneven distribution of the 
size of zone spaces amongst the nodes. Thus some nodes hold 
much larger coordinate zones that others. We defer this problem 
of achieving While we believe the use of background load bal- 
ancing techniques (described in [ 41) where an overloaded node 
hands off a portion of its space to a more lightly loaded one 
might be used to alleviate this problem, we do not explore this 
question further in this paper and defer it to future work. 

A subtle side-effect of the uneven partitioning of the space is 
that the average number of hops on the path between two points 
in the CAN space decreases. This is because a single node might 
own a a disproportionately large zone. Such a node thus has the 
ability to cross a large portion of the coordinate space in a single 
hop leading to shorter paths than would be the case if the space 
were uniformly partitioned. This reduced path length in turn 
leads to lower average CAN path latencies because (CAN path 
latency) = (#hops) x (latency of each hop). In order to not take 
advantage of this reduced CAN latency caused by an uneven 
partitioning of the space, we calculate the average CAN path 
latency using binning-based construction as follows: for a CAN 
with binning-based construction, we divide the path latency by 
the number of hops on the pathm to get the per-hop latency. 
We then multiply this per-hop latency by the average number 
of hops on the randomly constructed CAN (for which the space 
is evenly partitioned). This gives us the path latency for a CAN 
with binning based construction without taking advantage of the 
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Fig. 7. 5 retch for ~1 2-dimen.sioncd CAN: topology TS-1K; #/eve/s=1 
Construction 1 Latency Stretch 1 

TABLE I 
Stretch on ~1 2-d CAN using NLANR; #levels= 1 

uneven space distribution. ‘a Finally, we divide this by the path 
latency on the underlying IP-level network to obtain the latency 
stretch. 

Figure 7 plots the CAN latency stretch (defined above) for in- 
creasing CAN sizes, i.e. for increasing numbers of CAN nodes. 
We use topology TS- 1 K and scale the CAN size by adding CAN 
nodes to the stub (leaf) nodes in the underlying topology. The 
delay of the link from the end-host node to the stub node is 
set to lms. Thus, in scaling the CAN size from 512 to 16K 
nodes, we’re scaling the density of the graph without scaling 
the backbone (transit) domain. Figure 7 compares the latency 
stretch for randomly constructed CANS (where nodes join the 
CAN at a random point in the space, as described in 141) to 
the stretch using the binning-based CAN construction scheme 
outline above. We see that binning-based construction greatly 
lowers the stretch. Also, as expected, with more landmarks, the 
binning is more accurate and the stretch decreases further.” 

Figure 8 repeats the above test for topology PLRG2. As be- 
fore, the CAN size is scaled by scaling the density of CAN nodes 
attached to underlying topology nodes. Again, we are not sure to 
what extent the random assignment of link delays affects our re- 
sults for PLRGs. Table 1 lists the stretch for a 100 node CAN us- 
ing the NLANR data set. Because the NLANR data set has only 

loWe wl\h to \tre\\ that thl\ adju\tment actually make\ our re\ult\ look wor\e. 
“Whde the absolute value of the \&etch appear\ high, thl\ ~5 prunardy be 

cauu\e we are u\mg a CAN with only two dmxn\lon\. Increa\mg the dlmen\lon 
ahty of the CAN \pace greatly reduce\ the \&etch for all con\tructlon xhema. 
In 141, we aI50 make u\e of a number of heurl\tlc techmque to further lower 
the latency. The\e techmque however, are CAN \pecdic and not relevant to 
thl\ paper. We thu\ do not make u\e of them m thl\ paper 50 that we can more 
clearly expose the performance gun\ cauu\ed by bmnmg alone. 

Fig. 8. Stretch fir ~12~dimensional CAN: topology PLRG2; #levels= 1 
103 nodes, we cannot experiment with increasing CAN sizes as 
we did for TS and PLRG. 

B. Topologically-aware construction of unstvuctuved overlays 

The previous discussion applied to the class of “structured” 
overlays (such as CAN, Chord, Pastry, Tapestry). However, 
many deployed overlays (such as Gnutella, FreeNet) are much 
less structured. We now ask whether our topological hints could 
be of use in the construction of these unstructured overlays. To 
study this question we chose to not focus on any one particu- 
lar existing overlay problem and instead consider the following 
more general one: 

Given a set of n nodes on the Internet, have each node picks 
any Ic neiglzhou nodes,fmn this set, so that the average uouting 
latency on the resultant overlay is low (assuming slzoutest path 
uouting). 

Even under the assumption of global knowledge of the IP- 
level latencies between every possible pair of nodes (i.e. the n2 
distance matrix), the problem of constructing an optimal over- 
lay is known to be NP-hard 1291, 1281. Because we do not 
have an optimal construction algorithm, we experimented with 
a number of different heuristic algorithms and found one that 
appears to consistently perform well. Our heuristic algorithm 
works as follows: a node picks its Ic neighbors by picking the 
Ic/2 nodes in the system closest to itself (we call these connec- 
tions shout links) and then picks another k/2 nodes at random 
(we call these long links). Our intuition in devising the above 
algorithm was that the k/2 connections to closeby nodes will 
result in well-connected pockets of nearby nodes, while the ran- 
dom links serve to keep the graph connected and to interconnect 
these different pockets of nodes. Shortest path routing on the 
resultant overlay might then involve a series of short hops from 
the source node to a close-by node which has a long link to a 
node in the vicinity of the destination node and from there again 
taking a series of short hops to the destination node. We call this 
algorithm Shout-Long. 

Short-Long does not scale because a node would need global 
knowledge of all other nodes in the system in order to pick the 
Ic/2 closest to itself. We now ask how we can use our binning 
technique to make this Short-Long construction more scalable, 
but still retain its excellent performance properties. We do so 
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servers holding a given data object should a client attempt a re- 
trieval ? 

While many parameters might be used to select a good server, 
the most frequently mentioned parameters are server load and 
distance (i.e. network latency) from the client. In this paper, we 
focus only on the distance parameter and define a good server to 
be one that is close to the client. In this section, we describe a 
scheme for server selection based on distributed binning. 

Given the client and server bins, the server selection process 
works as follows: 
. If there exist one or more servers within the same bin as the 
client, then the client is redirected to a random server from its 
own bin. 
. If no server exists within the same bin as the client, then an ex- 
isting server is selected at random from the set of servers whose 
bin is most similar to the client’s bin. We define the degree of 
similarity between two bins to be the number of positions in 
their landmark orderings on which they match. 

In practice, the above server selection might be implemented 
by having the client include its bin information in a DNS 
query. DNS name servers could maintain the bin information for 
servers holding their content (for example, CNN’s name server 
might maintain the bin information for Web servers holding 
CNN content). Name servers might then use the above scheme 
to select a server for the requesting client. 

We compare the performance of our binning-based server se- 
lection to 3 schemes: 
. Random: A client selects one of all available servers at ran- 
dom. 
. Selection using the Hotz metric: Hotz 1301, 1311, like our 
binning scheme, uses RTT measurements from a node to a 
set of well known landmarks to estimate inter-node distances. 
The Hotz metric is computed as follows: Let dai represent 
the distance from a node A to landmark 1. Then for any 
two nodes A and B and Landmark I, the distance between 
A and B is bounded below by Idai - dbi 1 and above by 
Idai + dbil assuming triangle inequality. Extending this to m 
Landmarks, the distance between nodes A and B is bounded 
below by MAX(Id,’ - dblI , . . , Id,” - dbml) and above by 
MIN(Id,’ + dbl 1 , . . , Id,” + dbml). Using Hotz’s scheme, 
the distance between A and B is then the average of the lower 
and upper bounds as computed above. Applying Hotz’s metric 
to server selection, a client selects the server to which its esti- 
mated distance is minimum. ” 
. Selection based on Cartesian distance: Here, we simply re- 
gard each landmark as defining an axis in a Cartesian space. 
We thus treat a node’s vector of distances to m landmarks as its 
coordinates in m-dimensional Cartesian space and compute the 
distance between two nodes A and B as the Cartesian distance 
between their coordinates. For server selection, a client selects 
the server to which its estimated distance is minimum. 

Note that one advantage in general (not necessarily for server 
selection) of using bins as a metric rather than the Hotz or Carte- 
sian distance is that the latter metrics require more information. 

131n [30], Hotr define\ the metric we dwmbe but doe\ not apply hl\ work to 
the wrver wlectlon problem. Thl\ apphcattlon of the Hotr metric ~5 our mterpre 
tatlon of how It mght be uwd for wrver wlectlon. 

Fig. 9. Unstructured Overh~s; TS-1OK; #/eve/s=l; #hndmwks= 12 

by using our binning scheme to to approximate picking the Ic/2 
closest nodes. Now, a node picks k/2 neighbors at random from 
its own bin and, as before, picks the remaining k/2 at random. 
We call this binning-based approximation algorithm BinShout- 
Long. If a node’s bin is not large enough for it to pick Ic/2 
neighbors, it picks the required number of neighbors from bins 
that are most similar to its own bin where the degree of simi- 
larity beteen two bins is the number of positions in their land- 
mark orderings on which they match. Figure 9 plots the av- 
erage latency stretch ‘* for increasing system sizes for topol- 
ogy TS-1OK. We compare Short-Long, BinShort-Long and ran- 
domly constructed overlays where each node picks Ic neighbors 
at random. Note the difference in scaling behavior between Ran- 
dom and Short-Long. We also see that BinShort-Long follows 
the scaling behavior of Short-Long. Thus our binning-based 
algorithm tracks the scaling behavior of the global-knowledge 
heuristic algorithm. Although the scaling behavior of Short- 
Long and BinShort-Long is similar, there appears to be a consis- 
tent performance gap between the two. To better understand this 
performance gap, we experimented with the following variant of 
BinShort-Long: rather than pick k/2 nodes at random from its 
bin, a node measures its RTT to a sample set of nodes in its own 
bin and picks the k/2 closest of the sampled nodes. Figure 9 
shows once such case (labelled “BinShort-Long WI sampling”). 
We see that with sampling, the performance gap between Short- 
Long and BinShort-Long decreases indicating that for a given 
node, the nodes in its own bin are indeed a good approximation 
of the nodes closest to it in the entire system. 

Our aim in going through the discussion in this section is not 
to claim that either Short-Long or BinShort-Long is the ideal 
algorithm for constructing unstructured overlays. Rather, our 
point was to demonstrate that if someone were to develop a 
good overlay construction algorithm that required global relative 
proximity information, then binning (and probably any other 
similar, scalable, proximity inference scheme) offers a scalable 
and accurate way of approximating this global information. 

IV. TOPOLOGICALLY-AWARESERVERSELECTION 

The replication of content over the Internet gives rise to the 
problem of server selection, i.e. from which of the multiple 

12Calculated as the ratio of the path latency using shortest path routing on the 
overlay to the path latency on the underlying network topology. 
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Topology Hotz Crtsn Bin Rand 
TS-1OK 3.50 2.35 2.40 4.94 
TS-1K 2.31 1.35 1.58 5.92 
PLRG 1 1.6 1.98 1.72 2.51 
PLRG2 1.54 2.01 1.81 2.49 
NLANR 1.32 1.51 1.39 2.27 

TABLE11 
Averrrge Stretch 

For example, with the latter metrics, for a node to locate close- 
by nodes (the Short-Long algorithm of Section 111 required this), 
it must learn of all available nodes in order to compare its dis- 
tance to each one in turn. With binning on the other hand, a 
node need only learn about those nodes in its bin and can then 
pick one of them. Thus, binning serves as an implicit first-order 
screening process which makes binning-based schemes some- 
what easier to apply scalably. 

For server selection, we define the latency stretch from a 
client node as the ratio of its latency to the server selected by a 
selection scheme to its latency to the optimal server (i.e. the ac- 
tual closest server). We then compute the average latency stretch 
as the ratio of the average latency to the selected server by the 
average latency to the closest server. We evaluate our server se- 
lection scheme using the test topologies described in Section 11. 

Table 11 compares the different server selection schemes over 
a range of different topologies. All the tests used 12 landmarks 
and 3 levels. The number of servers was set to 1000 servers 
for TS-lOK, 100 for TS-1 K, PLRGl and PLRG2 and 10 for 
NLANR. We see that Cartesian-based selection performs the 
best for Transit-Stub topologies but not as well on PLRGs while 
Hotz-distance based selection shows exactly the opposite behav- 
ior. Binning-based selection works well across all the topolo- 
gies. But again, the small performance differences between the 
different schemes is not particularly interesting. What is inter- 
esting however, is that the above results show that all the above 
simple topological hints work quite well. Our binning scheme is 
one such hint that has the added advantage of being easy to use 
in a scalable manner. 

Figure 10 shows the effect of increasing numbers of land- 
marks on the performance of binning-based selection. We used 
1,000 servers for TS-1Ok and 100 servers in all other cases. As 
expected, with increasing landmarks, performance improves but 
quite quickly offers diminishing returns. We suspect that the 
slight performance improvement for PLRGs is because most 
nodes are within a few (2-4) hops away from each other, and 
so even a randomly selected server is unlikely, in general, to be 
very far from the client. 

Plotting only the average latency stretch hides the individual 
node performance. In the remaining graphs we plot the distri- 
bution of stretch over all nodes. Figure 11 plots the cumula- 
tive distribution of the latency stretch for TS-1OK - transit-stub 
topology with 10,000 nodes - using 12 landmarks and 3 levels. 
Of the 10,000 total nodes, 1,000 nodes are selected at random 
as servers; the remaining act as clients. As can be seen, all three 
schemes perform significantly better than random server selec- 
tion. Cartesian distance and binning-based selection yield bet- 
ter results than the use of Hotz’s metric. The absolute value of 

the latency stretch (on the X-axis) appears high, ranging up-to a 
factor of twenty. These high values are largely due to our hierar- 
chical link delay distribution (from Section II: 2ms inside Stub 
domains, 20ms inside Transit stubs and 5ms on Stub-Transit 
links). For example, consider a client whose closest server is 
within its own Stub domain. The closest server is then about 
2ms away from the client. If the client incorrectly picks a server 
from across the Transit domain, then its distance to the selected 
server will be at least 34ms (2 + 5 + 20 + 5 + 2 as its trav- 
els from the source stub domain, across the transit domain and 
through the destination stub) yielding a stretch factor of approx- 
imately 17 even though a routing value of 34ms is quite good. 
To account for such inflated stretch values caused by having a 
server right next to a client, we recompute the stretch values in 
Figure 11 with the following adjustment: In calculating the la- 
tency stretch, we add a constant of 10.0 to both the numerator 
and denominator latencies. In other words, 

Figure 12 repeats the results from Figure 11 with this adjust- 
ment. While the relative performance of the different schemes 
remains largely unchanged, we see that the absolute value of the 
stretch ranges falls dramatically showing that high stretch ratios 
are indeed for short latencies. 

Figure 13 plots the cumulative distribution of stretch for 
the NLANR dataset (without the above adjustment since our 
NLANR trace did not have very short latencies to cause the 
above inflation problem). Of the 103 nodes in the dataset, we 
picked 10 servers at random, 12 landmarks at random, and the 
remaining nodes act as client nodes. The plot indicates that all 
three selection schemes perform significantly better than ran- 
dom selection. 50-60% of the nodes correctly select the closest 
server while around 90% of the nodes pick a server that is less 
than a factor of two away from the actual closest server. 

Note that the Cartesian distance based selection has a longer 
tail than the other two selection schemes. Also, unlike our ear- 
lier simulation results, the performance of Hotz-distance based 
selection is competitive with the other two schemes. A conclu- 
sion one might draw from this plot is that we really do not need 
to work very hard to achieve good server selection. Hence in 
designing such topology inference systems one might argue that 
the simplicity, scalability and practicality of the system should 
be as important goals as prediction accuracy. 

V RELATED WORK 

The IDMaps [ 16 1, GNP [ 17 1 and WNMS [ 18 1 projects all de- 
scribe architectures for a global distance estimation service. In 
constrast, our primary focus is on the applications and not on 
the infrastructure. We explore the problem of designing applica- 
tions to be topologically aware while making minimal assump- 
tions about any measurement infrastructure. As such, we view 
the above work as complementary to our own because any ad- 
ditional aid from the infrastructure, for example, in the form of 
more accurate topological information, can only improve our re- 
sults. Compared to IDMaps, GNP and WNMS, binning requires 
less support from the infrastructure. The Geo-Ping algorithm in 
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1321 uses latency measurements to a set of well known land- 
marks to determine the geoguuplzic locality of Internet hosts. To 
determine geographic closeness between pairs of hosts, Geo- 
Ping uses a distance metric similar to the Cartesian metric de- 
scribed in Section IV. The authors in [ 14 1 describe a centralized 
clustering engine that uses BGP routing table dumps. For the 
reasons described in Section 1 we opted for a decentralized so- 
lution based only on end-to-end latency measurements. 

In the context of application-level multicast, the authors 
in [ 281, [ 1.51, [ 271 propose heuristics for nodes in a multicast 
overlay to gradually improve the overlay structure to better map 
onto topology. Both schemes basically have nodes periodically 
probe other nodes to evaluate the usefulness of switching their 
neighbors in the overlay. In comparison, our binning scheme 
for topology awareness operates on short timescales and is, we 
believe, more lightweight. 

Our initial work on CANS [ 41 explores a number of heuristics 
to lower the latency of CAN routing. These schemes however 
try to improve the selection of paths on an existing overlay. Our 
work in this paper, by contrast, tries to improve the structure of 
the overlay itself. 

The authors in [ 331 propose a server selection technique 

Fig. 13. CDF of Ic&nq w&h for NLANR d&r 
where clients periodically perform measurements to all avail- 
able mirrors. Binning-based server selection instead requires a 
one-time measurement (with possible periodic refreshes) by the 
client to a small, fixed set of landmarks. In 1241, the accuracy 
of distance estimation in IDMaps is evaluated in the context of 
server selection. While the significant differences in the simula- 
tion environment make it is hard to draw any direct comparison, 
our server selection results appear at least comparable. The au- 
thors in [ 341 measure the the performance of certain commercial 
server selection schemes. Their results show that neither of the 
measured schemes achieve optimal (or even close to optimal) 
server selection but do improve significantly on random server 
selection. In view of the above, we find our server selection 
results very encouraging. 

VI. CONCLUSION 

In this paper, we describe a simple, scalable, binning scheme 
that can be used to infer network proximity information. We 
apply this scheme to the problem of topologically-aware over- 
lay construction and server selection. Our results indicate that 
even rather coarse-grained topological information can signif- 
icantly improve application performance. The behavior of all 
the schemes we tested is dependent on the nature of the under- 
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lying network topology. Interestingly, our results using actual 
Internet traces better match simulations using PLRGs than the 
hierarchical TS topologies possibly providing application-level 
corroboration to previous work showing that the network-level 
topology of the Internet is well modeled by a PLRG [ 211, [ 201. 
While our results indicate that a small number of landmarks 
yield significant improvements which however, levels off quite 
quickly. Similar observations have been made by the authors 
in [ 24 1, [ 17 1. An open problem would be to understand just how 
much further improvement in performance might be possible us- 
ing sophisticated topology information. 
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