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Fast PDA Synchronization Using
Characteristic Polynomial Interpolation

Ari Trachtenberg, David Starobinski, and Sachin Agarwal

Abstract—Modern Personal Digital Assistant (PDA) architectures often
utilize a wholesale data transfer protocol known as “slow sync” for synchro- PDA
nizing PDAs with Personal Computers (PCs). This approach is markedly

inefficient with respect to bandwidth usage and latency, since the PDA and ° °
PC typically share many common records. We propose, analyze, and im- e e
plement a novel PDA synchronization scheme (CPlsync) predicated upon

recent information-theoretic research. The salient property of this scheme
is that its communication complexity depends on the number of differences
between the PDA and PC, and is essentially independent of the overall num-
ber of records. Moreover, our implementation shows that the computa-
tional complexity of CPIsync is practical, and that the overall latency is
typically much smaller than that of slow sync. Thus, CPIsync has potential
for significantly improving synchronization protocols for PDAs and, more
generally, for heterogeneous networks of many machines.

Step 1. Evaluation of the characteristic
polynomial at sample points on the PDA

Step 2. Transmission of Step 4. Transmission of
the evaluations to the synchronization information
PC to the PDA

Step 3. Reconciliation using the
|. INTRODUCTION CPIsync Algorithm on the PC
Much of the popularity of mobile computing devices and
PDAs can be attributed to their ability to deliver information to
users on a seamless basis. In particular, a key feature of this new
computing paradigm is the ability to access and modify data on

a mobile device and then gynchronizeany updates back at the

office or through a network. This feature plays an essential role

in the vision of pervasive computing, in which any mobile de-
vice will ultimately be able to access and synchronize with ar’fy‘P'
networked data.

Current PDA synchronization architectures, though simple,
are often inefficient. With few exceptions, they generally utiliz€haracteristic polynomial Simply put, each reconciling host
a protoc0| known aslow Synq:]_]’ which emp|0ys a wholesale (|e the PDA and the PC) maintains its own characteristic p0|y-
transfer of all PDA data to a PC in order to determine diffefomial. When synchronizing, the PDA sends sampled values
ing records. This approach turns out to be particularly inefff its characteristic polynomial to the PC; the number of sam-
cient with respect to bandwidth usage and latency, since the BigS must not be less than the number of differences between the
tual number of differences is often much smaller than the tot#{o hosts. The PC then discovers the values of the differing en-
number of records stored on the PDA. Indeed, the typical cd5€s byinterpolatinga corresponding rational function from the
is where handheld devices and desktops regularly synchroriigeeived samples. The procedure completes with the PC send-
with each other so that few changes are made between synchig-updates to the Palm, if needed. The worst-case computa-
nizations. tion complexity of the scheme is roughly cubic in the number

We propose to apply a near-optimal synchronization methd?f-differences. A schematic of our implementation, which we
ology based on recent research advances in fast set reconcfifdl CPIsync for Characteristic Polynomial Interpolation-based
tion [2, 3], in order to minimize the waste of network resourceSynchronization, is presented in Figure 1.
Broadly speaking, given a PDA and a PC with data gdedsd B, We have implemented CPIsync on a Palm Pilot llixe, a popu-
this new scheme can synchronize the hosts using one messagand representative PDA. Our experimental results show that
in each direction of lengthA — B| + |B — A| (i.e. essentially CPIsync performs significantly better (sometimes, by order of
independent of the size of the data sdtand B). Thus, two magnitudes) than slow sync in terms of latency and bandwidth
data sets could each have millions of entries, but if they diffasage. On the other hand, as the number of differences between
in only ten of them, then each set can be synchronized with thests increase, the computational complexity of CPIsync be-
other using one message whose size is about that of ten entriggmes significant; thus, if two hosts differ significantly, whole-

The key of the proposed synchronization algorithm is a transale data transfer becomes the faster method of synchroniza-
lation of data into a certain type of polynomial known as thgon. We present a simple numerical method for determining

the threshold at which it becomes better to use wholesale data
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,ﬂme needed to perform synchronization, then CPIsync should
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No. CCR-0133521. be used when the number of differences is below the threshold.

1. The overall scheme of the experiments done with the CPIsync algorithm.
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Otherwise, slow sync should be used. Note that the value of the
threshold is typically quite large, making CPIsync the protocol

of choice for many synchronization applications. “Slow Sync”
Another complication of CPIsync is that it requires a g@od metadgg’“basgata
priori bound on the number of differences between two synchro- modified buy food| ———»
nizing sets. We describe two practical approaches for deternjip= e zﬁzgz e —__:
ing such a bound. In the first case, we propose a simple meth@D A| no change ... — > PC
that performs well for the synchronization of a small number of,
hosts (e.g. a PDA with two different PCs, one at work and on ° Database B
at home). In the second case, we make use of a probabilisie— | me2dae - data >
technique from [2] for testing the correctness of a guessed up- no change register
per bound. If one guess turns out to be incorrect, then it can be no chanee T 2002
modified in a second attempted synchronization, and so forth.

The error of this probabilistic technique can be made arbitrarily “Fast Sync”

small. We also show that the communication and time used by

this scheme can be mamtamed V\_”thm asmall multlpllca.tlve COEiZ:]. 2. The two modes of the Palm HotSync protocol. In the “slow sync” all the

stant of the communication and time needed for the optimal casegata is transferred. In the “fast sync” only modified entries are transferred

where the number of differences between two hosts is known. between the two databases.
This paper is organized as follows. In the next section we

begin with a review of the synchronization techniques current _ x 105‘

used in the Palm OS computing platform and indicate their lirr

tations. Thereafter, in Section Il we establish the foundations | | e

CPlsync, which are based on the theoretical results of [2]. S

tion IV provides technical details of our specific implementatio

of CPIsync on a Palm Pilot llixe. We also present experimenié

results for the case where a tight bound on the number of diff £

ences is knowm priori. In Section V, we describe and evaluatt g ar

the performance of a probabilistic technique that is used whe 3

tight bound on the number of differences is not knaavoriori. 5 3[

We then discuss related work in Section VI and conclusions 3

Section VII. g2
Il. BACKGROUND: THE PALM SYNCHRONIZATION 1
ProTOCOL
In order to clearly and concretely explain the types of pe % 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
formance issues addressed in this paper, we describe next | Number of records stored on the device

data synchronization is implemented in the Palm OS archit
ture, one of the leading and state-of-the-art mobile computin
platforms.

The Palm synchronization protocol, known as HotSync, relies
on metadata that is maintained on both the handheld device &glc may differ from one application to another and is imple-
a desktop. The metadata consist of databases (Palm DBs) whiwnted by so-calledonduits The synchronization process con-
contain information on the data records. A Palm DB is sepaludes by resetting all the status flags on both the device and the
rately implemented for each application: there is one Palm Diesktop. A copy of the local database is also saved as a backup,
for “Date Book” data records, another for “To Do” data recordé case the next synchronization will be performed in slow sync
and so forth. For each data record, the Palm DB maintainsmade.
unique record identifier, a pointer to the record’s memory loca- If the fast sync conditions are not met, then a slow sync is per-
tion, and status flags. The status flags remain clear only if eemed. Thus, a slow sync is performed whenever the handheld
data record has not been modified since the last synchronizati@vice synchronized last with a different desktop, as might hap-
event. Otherwise the status flags indicate the new status of s if one alternates synchronization with one computer at home
record (.e. modified, deleted, etc.). and another at work. In such cases, the status flags do not reli-

The Palm HotSync protocol operates in either one of the fably convey the differences between the synchronizing systems
lowing two modes:fast syncor slow sync If the PDA device and, instead, the handheld device sealli®of its data records
synchronizes with the same desktop as it did last, then the flsthe desktop. Using its backup copy, the desktop determines
sync mode is selected. In this case, the device uploads to Wigch data records have been added, changed or deleted and
desktop only those records whose Palm DB status flags haeenpletes the synchronization as in the fast sync case. Anillus-
been set. The desktop then uses its synchronization logic to reation of the fast sync and slow sync operation modes is given
oncile the device’s changes with its own. The synchronizatiam Figure 2.

g. 3. A comparison of the communication complexities of slow sync and fast
sync.
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150 ; ; ; ‘ ‘ ‘ tion is a synchronization protocol whose communication com-

“ Slow sync plexity depends only on the number of differences between syn-
| chronizing systems, even when the conditions for a fast sync do
100

[ 50
W

not hold. In the next section, we present a family of such proto-
cols based on characteristic polynomial interpolation.

IIl. CHARACTERISTIC POLYNOMIAL
INTERPOLATION-BASED SYNCHRONIZATION

N
w
T

We formalize the problem of synchronizing two hosts’ data
as follows: given a pair of hostd and B, each with a set of
b-bit integers, how can each host determine the symmetric dif-
ference of the two sets.€. those integers held byl but not
B, or held by B but not A) using a minimal amount of com-
munication. Within this context, only the contents of the sets is

Synchronization time (seconds)
i
(=}

[’}
W

o— — important, but not their actual organization. Note also that the
% 500 1000 1500 2000 2500 3000 synchronized integers can generically encode all types of data.
Number of records stored on the device In [2] this formalization is called theet reconciliatiorproblem.

Natural examples of set reconciliation include synchronization
of bibliographic data [5], resource availability [6, 7], data within
gossip protocols [8, 9], or memos and address books. On the

N - other hand, synchronization of edited text is not an example of
It turns out that slow syncs are significantly less efficient th

fast allv with £ 10 lat d b t reconciliation because the structure of data in a file encodes
a%t;yrlms, ets_pelmat)r/] W respt)ecf 0 latency ?n usz ;)t afFormation; for example, a file containing the string “a b c” is
width. In particular, the amount of communication and la ?ncﬁ'ot the same as a file containing the string “c b a”.

of slow syncs increase with the number of records stored in t

device, independently of the number of differing records. I:i%;:rhe set reconciliation problem is intimately linked to design
S

Fig. 4. A comparison of the time complexities of slow sync and fast sync.

ures 3 and 4 illustrates this phenomenon on a Palm llixe PD uestions in coding theory and graph theory [10, 11] from which

as measured by a demo version of the Erontline Test Equi veral solutions exist. The following solution, which we have
y q ||91plemented on a PDA as described in Section IV, requires a

ment software [4]. Specifically, these figures show the numb - N . .
of bytes transferred and the amount of time expended duriﬁéarly minimal communication complexity and operates with a

similar slow sync and fast sync events. Our measurements Eae?%sonable computational complexity.
repeated with an increasing number of records on the devige,
but a fixed number of differencesd. ten); the records are all

of the same size. In Figure 4 we see that the time needed td he key to the set reconciliation algorithm of Minsky, Tracht-

complete a slow sync grows roughly linearly with the numbé&nberg, and Zippel [2, 3] is a translation of data sets into poly-
of records stored in the device, whereas for fast sync it remaltmials designed specifically for efficient reconciliation. To this

almost constant. For the case of 3000 records, the duratior€8f, [2] makes use of a characteristic polynomia( Z) of a set

Deterministic scheme with a known upper bound

slow syncs exceeds 2 minutes, about 15 times longer than fast {21, z2, ..., 2y}, defined to be:
syncs. In fact, slow sync can require as long as 20 minutes for
large, but practical, database sizes. Xs(Z) =(Z —a1)(Z —x2)(Z —w3) - (Z — ). (1)

Figures 3 and 4 clearly show that slow syncs do not scale

well with the amount of information stored on a device. Thusél,nléI Zvemcrj'r?gtl: i(:.;;n;zset_s gf less*sm'?hler;lt?r?eek}?llotvi r‘lg Ae_uillgit
the Palm synchronization model generally works well only i oldsy B=rB 7oA g equality

simple settings where users possess a single handheld device

X X
that synchronizes most of the time with the same desktop. How- f(z) = sal2) _ Xa,(2)

ever, this model fails in the increasingly common scenario where Xsp(2)  Xap(2)
large amounts of data are synchronized among multiple PDAs,
laptops, and desktops. Host A Host A
A seemingly plausible solution to this problem is to use times- 3 )

tamps or version control to aid in discovering what data ele- {1,2,3,4,5} / {1,234,5)
ments a given host is missing. Unfortunately, the use of times- , ., Host C Host B i
tamps for synchronization can also result in inefficient commu- [ () () ()

. . . . . apr . 0 0 0 0
nication, as depicted in Figure 5. In addition, timestamp proto- %) o {ﬁs} {ﬁs}

cols require each host to maintain information about each other
host in the network, which does not scale well to multiple host®. 5. Inefficiency of imestamps. HosBsand( first synchronize so that each

and adapts poorly to a dynamic network in which hosts enter has item3 (left figure). Thereafter host8 andC independently synchro-
nize with hostA, noting the addition of items, 2,4, and5. When hosts
and leave regularly.

B andC then re-synchronize, modification records require transmission of
In summary, the key challenge to efficient PDA synchroniza- eight differences, marked in bold, whereas, in fact, there are none.
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Protocol 1 Set reconciliation with a known upper boundon Example 1 A simple example of the interpolation-based syn-

the number of differences. [3] chronization protocol.
1. HostsA and B evaluatexg, (z) andXg,, (z) respectively at Consider the setS4 = {1,2,4, 16,21} andSg = {1,2,6,21}
the sameén sample pointg;, 1 < i < . stored a$-bit integers at hostd and B respectively. We treat

2. HostB sends to host its evaluations(s, (z;), 1 <i <m. the members of 4 andSgs as members of a sufficiently large fi-
3. The evaluation are combined at hdisto compute the value nite field {.e. IF+; in this case) so as to constrain the size of char-
of Xg,(z:)/Xsy(2:) = f(z:) at each of the sample points. acteristic polynomial evaluations [2]. Assume an upper bound
The points(z;, f(z;)) are interpolated by solving a generalize@f 7 = 4 on the size of the symmetric difference betwesgn
Vandermonde system of equations [2] to reconstruct the coeffird S .

cients of the rational function The characteristic polynomials fet and B are:

f(2) = Xa,(2)/Xap (2)- Xg4(2) =(z=1)-(2=-2)-(2=4) - (2 = 16) - (z — 21),

4. The zeroes of a , (2) andXa , () are determined; they are Xsp(2) = (2 =1)- (2 =2) - (= 6) - (= 21).

precisely the elements df 4 andA g respectively. The following table shows evaluation points, the correspond-
ing characterstic polynomial values, and the ratio between the
these values. All calculations are done o¥ey.

because all common factors cancel out. Although the degrees

of Xg,(z) andXg, (z) may be very large, the degrees of the z= i O e e B
numerator and denominator of the (reduced) rational function XS4 EZ; 69 | 12 1 60 | 61
Xa, ) . . Xsp (2 1| 7|60 |45
Xpo@ may be quite small. Thus, a relatively small number X5 (2)/Xsp(2) | 60 | 22| 1 | 55

of sample pointgz;, f(z;)) completely determine the rational _ _ _
function f(z). Moreover, the size of (z) may be kept small HostB send_s its e\_/aluatlons t_o ha4t who can now interpo-
and bounded by performing all arithmetic in an appropriatel?te the following rational function from the evaluated sample

sized finite field. points:
The approach in [2] may thus be reduced conceptually to three 22 451z 4 64
fundamental steps, described in Protocol 1. This protocol as- f(2) = Xg,(2)/Xs,(2) = =%
z

sumes that an upper boumd on the number of differences
between two hosts is knoveanpriori by both hosts. Section llI-B The zeros of the numerator and denominatofdré6} and{6}
describes an efficient, probabilistic, solution for the case whepggpectively, which are exactly equaldg, andA .
tight boundm is not known.
A straightforward implementation of this algorithm requires
expected computational time cubic in the size of the bowihd  Protocol 1 provides an efficient solution to the set reconcilia-
and linear in the size of the se$s andSp. However, in prac- tion problem when the number of differences between two hosts
tice an efficient implementation can amortize much of the corfi-e. m) is known or tightly bounded. In many practical ap-
putational complexity. For example, hostsand B can easily plications, however, a good bound is not knowpriori. The
maintain their characteristic polynomial evaluations incremefollowing section describes a probabilistic technique for dealing
tally as data is added or deleted from their sets. with such cases.
Overall, the algorithm in [2] communicat@s computed sam-
ples from host to B in order to reconcile at most differences B. Probabilistic scheme with an unknown upper bound

between the two sets; to complete the reconciliation, Bdsen  ap information theoretic analysis [11] shows that if neither a
sends back thie: computed differences td giving a total COm-  gistribution nor a non-trivial bound is known on the differ-
munication of27m integers. The only part of the communication,ces hetween two host sets, then no deterministic scheme can
complexity of Protocol 1 that depends on the set size is the repy petter thaslow sync However, with arbitrarily high proba-
resentation of an integer, whose size is logarithmically relatgglir, a probabilistic scheme can do much better. Specifically,
to the sizes of the sets being reconciled. the scheme in [2] suggests guessing such a bauadd subse-

Thus, hostsA andB could each have millions of integers, buguently verifying if the guess was correct. If the guessed value
if the symmetric difference of their sets was at most ten thenfaf 7 turns out to be wrong, then it can be improved iteratively
most ten samples would have to be transmitted in each directigtil a correct value is reached.

to perform reconciliation, rather than the millions of integers Thys, in this case, we may use the following scheme to syn-
that would be transmitted in a trivial set transfer. FUrthermOl’@hronize: First, hostsl and B guess an upper bournd and

this protocol does not require interactivity, meaning, for exar?erform Protocol 1 with this bound, resulting in hestomput-

ple, that hostA could make his computed sample points availng a rational functiory (z). If the functionf(z) corresponds to

able on the web; anyone else can then determiseset simply  the differences between the two host sets, that is if
by downloading these computed values, without requiring any

computation fromA. Example 1 demonstrates the protocol on = X5, (2)

two specific sets. f(z) = You(2) 2)
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Example 2 An example of reconciliation when no boundis We next show that the computational overhead of this proba-

known on the number of differences between two sets. bilistic protocol is also not large.

Consider using and incorrect bound = 1 in Example 1. In

this case, hosB receives the evaluationg , (—1) = 69 from IV. PDA IMPLEMENTATION

hostA, and compares it to its own evaluatiaR, (—1) = 1t0 7o demonstrate the practicality and effectiveness of our syn-

interpolate the polynomial chronization approach, we have implemented the CPIsync al-
~ 2170 gorithm that was introduced in the previous sections on a real
flz)= ] (3) handheld device, that is, a Palm Pilot llixe Personal Digital As-

sistant.
as a guess of the differences between the two hosts. Our program emulates the operation of a memo pad and pro-

To check the validity of (3), hosB then requests evalua-vides a convenient testbed for evaluating the new synchroniza-
tions of A’'s polynomial at two random points;; = 38 and tion protocol. Moreover, the successful implementation of this
r1 = 51. HostA sends the corresponding values, () = 23  protocol on the computationally and communicationally limited
and X, (51) = 53, which B divides by its own evaluations Palm device suggests that the same can be done for more com-
Xsy(ro) = 38 andXxg,(r1) = 36 to get the two verification plicated, heterogeneous networks of many machines.
points f(ro) = 66 and f(r1) = 35. Since the guessed function In this section, we describe our implementation and provide
f(2) in (3) does not agree at these two verification points, hagme experimental results for the specific case where the num-
B knows that the initial bound must have been incorrect. Hdsér of the differencesn, between the PDA and PC databases is
B may thus update its bound @ = 3 and repeat the process. either known or tightly bounded by a priori. We show in Sec-
tion IV-B how such a bound can be determined in many practical
situations. In general, however, the tightness of the bound can-
then computing the zeroes §fz) will determine precisely the not be guaranteed, and it is much more efficient to employ the
mutual difference between the two sets. probabilistic scheme introduced in Section 11I-B. We describe

To check whether Equation (2) holds, hdstthooses: ran-  an implementation of this more general scheme in Section V
dom sample points;, and sends their evaluations,, (r;) t0  and show that its performance is close to the performance of a

hostA, who uses these values to compute evaluations protocol that knowsn a priori.
fri) = M A. Experimental environment
XSgp (Tl)

Platform:  Our experiments were performed on a Palm Pilot

By comparingf(r;) andf(r;), hostA can assess whether Equallixe with a 16-bit Motorola Dragonball processor asIB of
tion (2) has been satisfied. If the equation is not satisfied, theAM. The Palm was connected via a serial link to a Pentium Il|
the procedure can be repeated with a different baan&xam- class machine with 512 MB of RAM.
ple 2 demonstrates this procedure. Model:  Our specific implementation of CPIsync emulates a

In general, the two hosts keep guegauntil the resulting memo pad application. As data is entered on the Palm, evalua-
polynomials agree in alk random sample points. A precisetions of the characteristic polynomial (described in Section IIl)
probabilistic analysis in [2] shows that such an agreement care updated at designated sample points. Upon a request for

responds to a probability of error synchronization, the Palm sens of these evaluations to the
L desktop, corresponding to the presumed maximum number of
. m{|5A| +1S8] — 1] . (4) differences between the data on the two machines. The desk-
- 2b top compares these evaluations to its own evaluations and deter-

mines the differences between the two machines, as described in
Protocol 1. We compare CPIsync to an emulation of slow sync,
which upon synchronization, sends all the Palm data to the desk-
€ top, and uses this information to determine the differences.
k2 [logp (m)-‘ (5) We do not address issues about which specific data to keep at
the end of the synchronization cycle, but several techniques from
samples (where = %) to get a probability of error the database literature may be adapted [12]. We also avoid is-
at moste for the whole protocol. Thus, for example, reconcilingues of hashing by restricting entries to 15-bit integers. We note
host sets of one milliors4-bit integers with error probability that, in practice, the hashing operation needs to be performed
e = 1072% would require agreement &f= 2 random samples. only once per entry, at the time that the entry is added to the
We show in Section V-A that this verification protocol redata set; thus the complexity of hashing is not a bottleneck for
quires the transmission of at most+ k& samples and one ran-synchronization. By restricting entries to 15 bits, we also avoid
dom number seed (for generating random sample points) to rssues of multiple-precision arithmetic on the Palm, which can
oncile two sets; the valukis determined by the desired probabe easily solved by using the Chinese Remainder Theorem [13]
bility of error e according to Equation 5. Thus, though the verito split arithmetic in large finite fields into arithmetic in several
fication protocol will require more rounds of communication fosingle-precision finite fields.
synchronization than the deterministic Protocol 1, it will not re- Finite field arithmetic is performed with Victor Shoup’s Num-
quire transmission of significantly more bits of communicatiomner Theory Library [14] and data is transferred in the Palm

Manipulating equation 4 and using the trivial upper boune<
|Sal + S|, we see that one needs an agreement of
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Fig. 6. A comparison of CPIsync and slow sync demonstrating the superioritig. 7. A comparison of CPIsync and slow sync for sets hadidg)00 ele-
of CPIsync for growing sets of data with a fixed number of differences ( ments. The synchronization time is plotted as a function of the number of
101) between them. differences between the two sets.

Database File format. This data is converted to data readathi@n slow sync when the two reconciling sets do not differ by
by our Palm program using [15]. much. However, as the number of differences between the two

Metrics and Measurements: The two key metrics used Sets grows, the computational complexity of CPIsync becomes
in comparing CPIsync to slow sync asemmunicationand significant. Thus, there exists a threshold where wholesale data
time Communication represents the number of bytes sent ¥gnsfer (.. slow sync) becomes a faster method of synchro-
each protocol over the link. For this metric, no experiments gpization; this threshold is a function of the data set sizes as well
needed as we have shown analytically that CPIsync will uplo@8 the number of differences between the two data sets. For the
only 7 entries from the PDA, while slow sync will require thel0, 000 records depicted in the figure, this threshold corresponds
transfer of all the Palm entries. On the down link from the Pt roughly1, 200 differences.
to the PDA, both protocols will transmit the same updates. By preparing graphs like Figure 7 for various different set

The time required for a synchronization to compléte. ¢he sizes, we were able to produce a regression with a coefficient of
latency) is probably the most important metric from a user@gtermination [16] almost 1 that analytically models the perfor-
point of view. For slow sync, the dominant component of th@ance of slow sync and CPIsync; the resulting threshold values
latency is the data transfer time, whereas for CPIsync the coffe listed in Table I. Based on our theoretical development, the
putation time generally dominates. Our experiments Compéggression for slow sync is obtained by fitting the data to a lin-
the latencies of CPIsync and slow sync in various scenarios. T8 function that depends only on the data set size, whereas for
synchronization latency is measured from the time at which tké’ISync the regression is obtained by fitting the data to a cu-
Palm begins to send its data to the PC until the time at which tRi Polynomial that depends only on the number of differences.
PC determines all the differences between the databases. Y& such analytical models, we can determine a threshold for
results presented in the next section represent averagesveRny given set size and number of differences between hosts, as
identical experiments. illustrated by Figure 8.

Results: Figure 6 depicts the superior scalability of Note that in a Palm PDA application like an qddr_ess boo.k or
CPIsync over slow sync. In this figure, we have plotted the tinff8€MoO, changes between concurrent synchromzatlon; typlcally
used by each synchronization scheme as a function of datai@¥@lve only a small number of records. For such applications,
size for a fixed number of differences between data sets. ~ CPIsync will usually be much faster than slow sync.

Itis clear from the resulting graphs that slow sync is marked]
non scalable: the time taken by slow sync increases linearly
the size of the data sets. CPIsync, on the other hand, is almost inFhe implementation of CPIsync described in the previous sec-
dependent of the data set sizes. Comparing Figure 4 to Figumgofis requires knowledge of a tight upper boufidg ,on the num-
we observe that the qualitative behavior of CPIsync is similar ber of differing entries. One simple method for obtaining such
that of fast sync. The remarkable property of CPIsync is thatathound involves having both hadtand hostB count the num-
can be employed in any synchronization scenario, regardlessef of modifications to their data sets since their last common
context, whereas fast sync is employed only when the previayhchronization. The next time that hostind hostB synchro-
synchronization took place between the same PC and the saze, hostd sends to hosB a message containing its number of
PDA. modifications, denote@d 4. Host B computes its correspond-

In Figure 7, we compare the performance of CPIsync to sldang valuem g so as to form the upper boumd = m 4 + Mg On
sync for data sets with fixed sizes but increasing number of difie total number of differences between both hosts. Clearly, this
ferences. As expected, CPIsync performs significantly bettssundm will be tight if the two hosts have performed mutually

h Determining an upper bound
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Data set Size Differences

250 175

500 253

1000 431

2500 620

3000 727 200
5000 899
10000 1177

TABLE |

THRESHOLD VALUES AT WHICH CPISYNC REQUIRES THE SAME AMOUNT
OF TIME AS SLOW SYNC

100

& ~N

exclusive modifications. However, it may be completely off if 10,000

the hosts have performed exactly the same modifications to their

respective databases. This may happen if, prior to their own syn- ~ 8:000

chronization, both hostd and B synchronized with a third host

C, as in Figure 5. Another problem with this method is that % KX 1,000
g p 0,‘:‘ sy ‘,‘““

it requires maintaining separate information for each host with Number —,
which synchronization is performed: this may not be reasonable % "¢¢or4s
for larger networks. Thus, the simple method just described will
be rather inefficient for some applications. 200

In the next section, we describe a probabilistic scheme that
can determine a much tighter value far This application is of Fig g A graph comparing slow sync and CPIsync for databases with vary-
fundamental importance because it allows CPIsync to achieveing numbers of records and with varying numbers of differences between
performance equivalent to fast sync in a general setting. databases. The pgtterned line depicts the t'hreshold curve at which slow sync

and CPIsync require the same amount of time to complete.
V. PRACTICAL EVALUATION OF THE PROBABILISTIC

SCHEME m differences, verification will necessarily succeed after at most

The probabilistic scheme introduced in Section 11I-B can be + k transmissions.
implemented in various ways depending on the metric of inter-
est. In this section, we propose two implementations basedBnLatency optimization

the optimization of two different metrics. In a second case, we may consider optimizing our implemen-

tation for the purposes of minimizing thetencyof our schemes
(i.e. the overall time needed for synchronization). We thus pro-
In one case, we may consider optimizing our implementatiguose a general probabilistic scheme whose completion time is at
of the probabilistic scheme with respect to the amourtdash- worst a constant times larger than the time needed to synchro-
municationneeded for reconciliation. It turns out that we canize two hosts when the number of differences between them is
synchronize a PDA and a PC that diffeninentries by sending knowna priori. This probabilistic scheme retains one of the es-
at mostm + k characteristic polynomial evaluations, whéris  sential properties of its deterministic counterpart: the synchro-
a small constant (see Section IlI-B). nization latency depends chiefly on the number of differences
Such a scheme can be implemented as follows: First the PDatween hosts. We prove that= 4 is an optimal bound for this
sends to the PC evaluations of its own characteristic polynomggheme and show how to achieve it.
at a small number of pre-determined sample points ahdcbalt Our approach to this optimization relies in part on the data
ditional (different) random sample points. The former poinfsom Figure 7, reproduced in Figure 9. In the latter figure, we
are used to interpolate a rational function, corresponding tditaour data to a polynomial regression that interpolates the la-
guess of the differences between the two machines, and thetiatcy of CPIsync as a function of the number of differeneces
ter points are used to verify the correctness of this guess. bHtween two hosts. Since an exact valuerfois not known at
the verification succeeds, then the synchronization is compldtee start, the PDA and PC start with an initial gu@ssfor an
On the other hand, if the verification fails, then the PC collectgoper bound onn. In Figure 9, this initial guess corresponds
all the sample points seen so far into a guess of the differenteshe valuem; = 11, which corresponds to a verification time
between the two machines while at the same time requestofg; = 3.65 seconds. If verification fails for this guess, then
k additional random evaluations from the PDA to confirm thiawe update our bound to the val@e, that corresponds to a ver-
new guess. This procedure is iterated until verification succeeifisation time that isj times larger than fofz; differencesice.
at which point synchronization is complete. Sineeevalua- t, = dt;). In the case of Figure 9, we have chosesr 2 giving
tions will necessarily be enough to completely determine up®@; = 151 andty ~ 7.29 seconds. At each iteration we guess

A. Communication optimization
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Fig. 9. A model of the approach used to optimize the latency of synchronizatibig. 10. A comparison of the probabilistic scheme with no known bownd
when no bound is known on the number of differences between data sets. the deterministic scheme with a given valuenof

the boundm; that corresponds to a verification time= 6t; ;. VI. RELATED WORK
We continue until verification succeeds for some guessed bound o .
7, requiring verification time,, = 6"~ 1¢,. The general problem of data synchronization has been studied

from different perspectives in the literature.
From a database perspective, the concept of disconnected op-
Claim 1 The latency-optimizing probabilistic scheme takes @kation, in which hosts can independently operate and subse-
mosta(d) = §2/(d — 1) times longer than a deterministic quently synchronize, was established by the CODA file sys-
scheme with am priori knowledge of the actual number of difyg, [17]. The general model proposed in [17] is similar to the
ferences. models used by several current mobile computing systems, in-
o cluding some PDAs.

Proof: Denote byT™(m) the synchronization latency when  1pq management of replicated, distributed, databases requires
m is knowna priori, and byT'(m) the synchronization latency yhe gevelopment of sophisticated algorithms for guaranteeing
requwepl by this probabilistic sch_e_me.. Furthern_wre, FJenote Bé(ta consistency and for resolving conflicting updates. Sev-
t; the time needed for theth verification round in whichm; o4 architectures, such as BAYOU [18], ROAM [19], and
differences are guessed between the two hosts. DENO [20] have been proposed to address these important prob-

Suppose that a correct upper boumd, > m; is obtained first |ems. We consider CPIsync to be complementary to these archi-
at then-th iteration, forn > 1. The total synchronization time tgctures. The CPIsync methodology permits the efficient deter-
required for the probabilistic scheme is then simply the sum gfination of the differences between databases, while the men-
a geometric progression tioned architectures can be used to resolve which data to keep or

to update once the differences are known.
t;. The analysis of PDA synchronization protocols from the per-
spective of scalability of communications, as considered in this
paper, is a relatively new area of research. The most closely
related work we have found in the literature is the EDISON ar-
chitecture proposed in [21]. This architecture relies on a central-
T n ized, shared server with which all hosts synchronize. The server

(m) -1 oS :

" > — foralln > 1. (6) maintains an incremental log of updates so that the hosts can al-
Tr(m) — (0-1) ways use fast sync instead of slow sync. Unlike CPIsync, this
eadchitecture is not designed for the general case where a device
may synchronize with any other device on a peer-to-peer ba-
sis. In general, a distributed architecture based on peer-to-peer
By examining the derivative af(J) with respect t@), one finds synchronization provides much better network performance, in
that this function attains a minimum value @t= 2, leading terms of robustness and scalability, than a centralized architec-
to an optimal ratio ofx(2) = 4. Thus, the best policy for this ture [18-20].
scheme is to double the verification time at each iteration. From an information-theoretic perspective, synchronization

Figure 10 illustrates the performance of this probabilistican also be modeled as a traditional error-correction prob-
scheme compared to that of the deterministic scheme. Note tleat. In this case, hosB can be thought to have a corrupted
the probabilistic results remain within the guaranteed fattufr copy of a database held by ha4t When the corruptions are
the corresponding deterministic results. non-destructivemeaning that the corruptions only change data

o —1
5 —

T(m)=t;+... 4ty =t +6t; +...+6" 1t =

Note thatT™(m) > t,_1 = 6" 2y, sincem,, is assumed to be
thefirst correct upper boungh. We thus obtain

It is easy to check that the right hand side of (6) is maximiz
whenn — oo, meaning that’/T* > 6%/(6 — 1).
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rather than adding new data or deleting old data, the probl&DA.

of synchronizing the two databases is precisely the classicalThe CPIsync algorithm described in the paper is suitable not
problem of error-correction [22]. Many sources [23-27] havenly for the specific application to PDAs, but also to any general
addressed synchronization of such non-destructively corruptsdss of problems where the difference in the data sets being
databases. A more recent work [28] makes a direct link to cagconciled is relatively small compared to the overall size of the
ing theory by using a well-known class of good codes known data sets themselves. We believe that this scalable architecture

Reed-Solomon codes to affect such synchronizations. will be essential in maintaining consistency in large networks.
However, the applications that we address in this work do not
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