
IEEE INFOCOM 2002 1

Fast PDA Synchronization Using
Characteristic Polynomial Interpolation

Ari Trachtenberg, David Starobinski, and Sachin Agarwal

Abstract—Modern Personal Digital Assistant (PDA) architectures often
utilize a wholesale data transfer protocol known as “slow sync” for synchro-
nizing PDAs with Personal Computers (PCs). This approach is markedly
inefficient with respect to bandwidth usage and latency, since the PDA and
PC typically share many common records. We propose, analyze, and im-
plement a novel PDA synchronization scheme (CPIsync) predicated upon
recent information-theoretic research. The salient property of this scheme
is that its communication complexity depends on the number of differences
between the PDA and PC, and is essentially independent of the overall num-
ber of records. Moreover, our implementation shows that the computa-
tional complexity of CPIsync is practical, and that the overall latency is
typically much smaller than that of slow sync. Thus, CPIsync has potential
for significantly improving synchronization protocols for PDAs and, more
generally, for heterogeneous networks of many machines.

I. I NTRODUCTION

Much of the popularity of mobile computing devices and
PDAs can be attributed to their ability to deliver information to
users on a seamless basis. In particular, a key feature of this new
computing paradigm is the ability to access and modify data on
a mobile device and then tosynchronizeany updates back at the
office or through a network. This feature plays an essential role
in the vision of pervasive computing, in which any mobile de-
vice will ultimately be able to access and synchronize with any
networked data.

Current PDA synchronization architectures, though simple,
are often inefficient. With few exceptions, they generally utilize
a protocol known asslow sync[1], which employs a wholesale
transfer of all PDA data to a PC in order to determine differ-
ing records. This approach turns out to be particularly ineffi-
cient with respect to bandwidth usage and latency, since the ac-
tual number of differences is often much smaller than the total
number of records stored on the PDA. Indeed, the typical case
is where handheld devices and desktops regularly synchronize
with each other so that few changes are made between synchro-
nizations.

We propose to apply a near-optimal synchronization method-
ology based on recent research advances in fast set reconcilia-
tion [2, 3], in order to minimize the waste of network resources.
Broadly speaking, given a PDA and a PC with data setsA andB,
this new scheme can synchronize the hosts using one message
in each direction of length|A − B| + |B − A| (i.e. essentially
independent of the size of the data setsA andB). Thus, two
data sets could each have millions of entries, but if they differ
in only ten of them, then each set can be synchronized with the
other using one message whose size is about that of ten entries.

The key of the proposed synchronization algorithm is a trans-
lation of data into a certain type of polynomial known as the

The authors are with the Department of Electrical and Computer Engineering
at Boston University, Boston, MA. The work of Ari Trachtenberg is based, in
part, upon work supported by the National Science Foundation under NSF Grant
No. CCR-0133521.

Step 1. Evaluation of the characteristic

polynomial at sample points on the PDA

Step 2. Transmission of

the evaluations to the

PC

Step 3. Reconciliation using the

CPIsync Algorithm on the PC

Step 4. Transmission of

synchronization information

to the PDA

PC

PDA

Fig. 1. The overall scheme of the experiments done with the CPIsync algorithm.

characteristic polynomial. Simply put, each reconciling host
(i.e. the PDA and the PC) maintains its own characteristic poly-
nomial. When synchronizing, the PDA sends sampled values
of its characteristic polynomial to the PC; the number of sam-
ples must not be less than the number of differences between the
two hosts. The PC then discovers the values of the differing en-
tries byinterpolatinga corresponding rational function from the
received samples. The procedure completes with the PC send-
ing updates to the Palm, if needed. The worst-case computa-
tion complexity of the scheme is roughly cubic in the number
of differences. A schematic of our implementation, which we
call CPIsync for Characteristic Polynomial Interpolation-based
Synchronization, is presented in Figure 1.

We have implemented CPIsync on a Palm Pilot IIIxe, a popu-
lar and representative PDA. Our experimental results show that
CPIsync performs significantly better (sometimes, by order of
magnitudes) than slow sync in terms of latency and bandwidth
usage. On the other hand, as the number of differences between
hosts increase, the computational complexity of CPIsync be-
comes significant; thus, if two hosts differ significantly, whole-
sale data transfer becomes the faster method of synchroniza-
tion. We present a simple numerical method for determining
the threshold at which it becomes better to use wholesale data
transfer than CPIsync. Thus, if the goal is to minimize the
time needed to perform synchronization, then CPIsync should
be used when the number of differences is below the threshold.

IEEE INFOCOM 2002 2

Otherwise, slow sync should be used. Note that the value of the
threshold is typically quite large, making CPIsync the protocol
of choice for many synchronization applications.

Another complication of CPIsync is that it requires a gooda
priori bound on the number of differences between two synchro-
nizing sets. We describe two practical approaches for determin-
ing such a bound. In the first case, we propose a simple method
that performs well for the synchronization of a small number of
hosts (e.g. a PDA with two different PCs, one at work and one
at home). In the second case, we make use of a probabilistic
technique from [2] for testing the correctness of a guessed up-
per bound. If one guess turns out to be incorrect, then it can be
modified in a second attempted synchronization, and so forth.
The error of this probabilistic technique can be made arbitrarily
small. We also show that the communication and time used by
this scheme can be maintained within a small multiplicative con-
stant of the communication and time needed for the optimal case
where the number of differences between two hosts is known.

This paper is organized as follows. In the next section we
begin with a review of the synchronization techniques currently
used in the Palm OS computing platform and indicate their limi-
tations. Thereafter, in Section III we establish the foundations of
CPIsync, which are based on the theoretical results of [2]. Sec-
tion IV provides technical details of our specific implementation
of CPIsync on a Palm Pilot IIIxe. We also present experimental
results for the case where a tight bound on the number of differ-
ences is knowna priori. In Section V, we describe and evaluate
the performance of a probabilistic technique that is used when a
tight bound on the number of differences is not knowna priori.
We then discuss related work in Section VI and conclusions in
Section VII.

II. BACKGROUND: THE PALM SYNCHRONIZATION

PROTOCOL

In order to clearly and concretely explain the types of per-
formance issues addressed in this paper, we describe next how
data synchronization is implemented in the Palm OS architec-
ture, one of the leading and state-of-the-art mobile computing
platforms.

The Palm synchronization protocol, known as HotSync, relies
on metadata that is maintained on both the handheld device and
a desktop. The metadata consist of databases (Palm DBs) which
contain information on the data records. A Palm DB is sepa-
rately implemented for each application: there is one Palm DB
for “Date Book” data records, another for “To Do” data records,
and so forth. For each data record, the Palm DB maintains: a
unique record identifier, a pointer to the record’s memory loca-
tion, and status flags. The status flags remain clear only if the
data record has not been modified since the last synchronization
event. Otherwise the status flags indicate the new status of the
record (i.e. modified, deleted, etc.).

The Palm HotSync protocol operates in either one of the fol-
lowing two modes:fast syncor slow sync. If the PDA device
synchronizes with the same desktop as it did last, then the fast
sync mode is selected. In this case, the device uploads to the
desktop only those records whose Palm DB status flags have
been set. The desktop then uses its synchronization logic to rec-
oncile the device’s changes with its own. The synchronization

“Slow Sync”

“Fast Sync”

Database
metadata data

buy food

register

PIN 2002

...

 modified

 no change

 no change

 no change

Database
metadata data

buy food

register

PIN 2002

...

 modified

 no change

 no change

 no change

PCPDA

Fig. 2. The two modes of the Palm HotSync protocol. In the “slow sync” all the
data is transferred. In the “fast sync” only modified entries are transferred
between the two databases.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
0

1

2

3

4

5

6

7
x 10

5

Number of records stored on the device

A
m
ou
nt

 o
f b
yt
es

 tr
an
sf
er
re
d

slow sync
fast sync

Fig. 3. A comparison of the communication complexities of slow sync and fast
sync.

logic may differ from one application to another and is imple-
mented by so-calledconduits. The synchronization process con-
cludes by resetting all the status flags on both the device and the
desktop. A copy of the local database is also saved as a backup,
in case the next synchronization will be performed in slow sync
mode.

If the fast sync conditions are not met, then a slow sync is per-
formed. Thus, a slow sync is performed whenever the handheld
device synchronized last with a different desktop, as might hap-
pen if one alternates synchronization with one computer at home
and another at work. In such cases, the status flags do not reli-
ably convey the differences between the synchronizing systems
and, instead, the handheld device sendsall of its data records
to the desktop. Using its backup copy, the desktop determines
which data records have been added, changed or deleted and
completes the synchronization as in the fast sync case. An illus-
tration of the fast sync and slow sync operation modes is given
in Figure 2.

IEEE INFOCOM 2002 3

0 500 1000 1500 2000 2500 3000
0

25

50

75

100

125

150

Number of records stored on the device

S
y

n
ch

ro
n
iz

at
io

n
 t

im
e

(s
ec

o
n
d
s)

slow sync

fast sync

Fig. 4. A comparison of the time complexities of slow sync and fast sync.

It turns out that slow syncs are significantly less efficient than
fast syncs, especially with respect to latency and use of band-
width. In particular, the amount of communication and latency
of slow syncs increase with the number of records stored in the
device, independently of the number of differing records. Fig-
ures 3 and 4 illustrates this phenomenon on a Palm IIIxe PDA,
as measured by a demo version of the Frontline Test Equip-
ment software [4]. Specifically, these figures show the number
of bytes transferred and the amount of time expended during
similar slow sync and fast sync events. Our measurements are
repeated with an increasing number of records on the device,
but a fixed number of differences (i.e. ten); the records are all
of the same size. In Figure 4 we see that the time needed to
complete a slow sync grows roughly linearly with the number
of records stored in the device, whereas for fast sync it remains
almost constant. For the case of 3000 records, the duration of
slow syncs exceeds 2 minutes, about 15 times longer than fast
syncs. In fact, slow sync can require as long as 20 minutes for
large, but practical, database sizes.

Figures 3 and 4 clearly show that slow syncs do not scale
well with the amount of information stored on a device. Thus,
the Palm synchronization model generally works well only in
simple settings where users possess a single handheld device
that synchronizes most of the time with the same desktop. How-
ever, this model fails in the increasingly common scenario where
large amounts of data are synchronized among multiple PDAs,
laptops, and desktops.

A seemingly plausible solution to this problem is to use times-
tamps or version control to aid in discovering what data ele-
ments a given host is missing. Unfortunately, the use of times-
tamps for synchronization can also result in inefficient commu-
nication, as depicted in Figure 5. In addition, timestamp proto-
cols require each host to maintain information about each other
host in the network, which does not scale well to multiple hosts
and adapts poorly to a dynamic network in which hosts enter
and leave regularly.

In summary, the key challenge to efficient PDA synchroniza-

tion is a synchronization protocol whose communication com-
plexity depends only on the number of differences between syn-
chronizing systems, even when the conditions for a fast sync do
not hold. In the next section, we present a family of such proto-
cols based on characteristic polynomial interpolation.

III. C HARACTERISTIC POLYNOMIAL

INTERPOLATION-BASED SYNCHRONIZATION

We formalize the problem of synchronizing two hosts’ data
as follows: given a pair of hostsA andB, each with a set of
b-bit integers, how can each host determine the symmetric dif-
ference of the two sets (i.e. those integers held byA but not
B, or held byB but notA) using a minimal amount of com-
munication. Within this context, only the contents of the sets is
important, but not their actual organization. Note also that the
synchronized integers can generically encode all types of data.
In [2] this formalization is called theset reconciliationproblem.
Natural examples of set reconciliation include synchronization
of bibliographic data [5], resource availability [6, 7], data within
gossip protocols [8, 9], or memos and address books. On the
other hand, synchronization of edited text is not an example of
set reconciliation because the structure of data in a file encodes
information; for example, a file containing the string “a b c” is
not the same as a file containing the string “c b a”.

The set reconciliation problem is intimately linked to design
questions in coding theory and graph theory [10, 11] from which
several solutions exist. The following solution, which we have
implemented on a PDA as described in Section IV, requires a
nearly minimal communication complexity and operates with a
reasonable computational complexity.

A. Deterministic scheme with a known upper bound

The key to the set reconciliation algorithm of Minsky, Tracht-
enberg, and Zippel [2, 3] is a translation of data sets into poly-
nomials designed specifically for efficient reconciliation. To this
end, [2] makes use of a characteristic polynomialχS(Z) of a set
S = {x1, x2, . . . , xn}, defined to be:

χS(Z) = (Z − x1)(Z − x2)(Z − x3) · · · (Z − xn). (1)

If we define the sets of missing integers∆A = SA − SB

and symmetrically∆B = SB −SA, then the following equality
holds

f(z) =
χSA

(z)
χSB

(z)
=

χ∆A
(z)

χ∆B
(z)

Fig. 5. Inefficiency of timestamps. HostsB andC first synchronize so that each
has item3 (left figure). Thereafter hostsB andC independently synchro-
nize with hostA, noting the addition of items1, 2, 4, and5. When hosts
B andC then re-synchronize, modification records require transmission of
eight differences, marked in bold, whereas, in fact, there are none.

IEEE INFOCOM 2002 4

Protocol 1 Set reconciliation with a known upper boundm on
the number of differencesm. [3]
1. HostsA andB evaluateχSA

(z) andχSB
(z) respectively at

the samem sample pointszi, 1 ≤ i ≤ m.
2. HostB sends to hostA its evaluationsχSB

(zi), 1 ≤ i ≤ m.
3. The evaluation are combined at hostA to compute the value
of χSA

(zi)/χSB
(zi) = f(zi) at each of the sample pointszi.

The points(zi, f(zi)) are interpolated by solving a generalized
Vandermonde system of equations [2] to reconstruct the coeffi-
cients of the rational function

f(z) = χ∆A
(z)/χ∆B

(z).

4. The zeroes ofχ∆A
(z) andχ∆B

(z) are determined; they are
precisely the elements of∆A and∆B respectively.

because all common factors cancel out. Although the degrees
of χSA

(z) andχSB
(z) may be very large, the degrees of the

numerator and denominator of the (reduced) rational function
χ

∆A
(z)

χ
∆B

(z)
may be quite small. Thus, a relatively small number

of sample points(zi, f(zi)) completely determine the rational
function f(z). Moreover, the size off(z) may be kept small
and bounded by performing all arithmetic in an appropriately
sized finite field.

The approach in [2] may thus be reduced conceptually to three
fundamental steps, described in Protocol 1. This protocol as-
sumes that an upper boundm on the number of differencesm
between two hosts is knowna priori by both hosts. Section III-B
describes an efficient, probabilistic, solution for the case when a
tight boundm is not known.

A straightforward implementation of this algorithm requires
expected computational time cubic in the size of the boundm
and linear in the size of the setsSA andSB . However, in prac-
tice an efficient implementation can amortize much of the com-
putational complexity. For example, hostsA andB can easily
maintain their characteristic polynomial evaluations incremen-
tally as data is added or deleted from their sets.

Overall, the algorithm in [2] communicatesm computed sam-
ples from hostA toB in order to reconcile at mostm differences
between the two sets; to complete the reconciliation, hostB then
sends back them computed differences toA giving a total com-
munication of2m integers. The only part of the communication
complexity of Protocol 1 that depends on the set size is the rep-
resentation of an integer, whose size is logarithmically related
to the sizes of the sets being reconciled.

Thus, hostsA andB could each have millions of integers, but
if the symmetric difference of their sets was at most ten then at
most ten samples would have to be transmitted in each direction
to perform reconciliation, rather than the millions of integers
that would be transmitted in a trivial set transfer. Furthermore,
this protocol does not require interactivity, meaning, for exam-
ple, that hostA could make his computed sample points avail-
able on the web; anyone else can then determineA’s set simply
by downloading these computed values, without requiring any
computation fromA. Example 1 demonstrates the protocol on
two specific sets.

Example 1 A simple example of the interpolation-based syn-
chronization protocol.

Consider the setsSA = {1, 2, 4, 16, 21} andSB = {1, 2, 6, 21}
stored as5-bit integers at hostsA andB respectively. We treat
the members ofSA andSB as members of a sufficiently large fi-
nite field (i.e. F71 in this case) so as to constrain the size of char-
acteristic polynomial evaluations [2]. Assume an upper bound
of m = 4 on the size of the symmetric difference betweenSA

andSB .
The characteristic polynomials forA andB are:

χSA
(z) = (z − 1) · (z − 2) · (z − 4) · (z − 16) · (z − 21),

χSB
(z) = (z − 1) · (z − 2) · (z − 6) · (z − 21).

The following table shows evaluation points, the correspond-
ing characterstic polynomial values, and the ratio between the
these values. All calculations are done overF71.

z = −1 −2 −3 −4
χSA

(z) 69 12 60 61
χSB

(z) 1 7 60 45
χSA

(z)/χSB
(z) 69 22 1 55

HostB sends its evaluations to hostA, who can now interpo-
late the following rational function from the evaluated sample
points:

f(z) = χSA
(z)/χSB

(z) =
z2 + 51z + 64

z + 65

The zeros of the numerator and denominator are{4, 16} and{6}
respectively, which are exactly equal to∆A and∆B .

Protocol 1 provides an efficient solution to the set reconcilia-
tion problem when the number of differences between two hosts
(i.e. m) is known or tightly bounded. In many practical ap-
plications, however, a good bound is not knowna priori. The
following section describes a probabilistic technique for dealing
with such cases.

B. Probabilistic scheme with an unknown upper bound

An information theoretic analysis [11] shows that if neither a
distribution nor a non-trivial boundm is known on the differ-
ences between two host sets, then no deterministic scheme can
do better thanslow sync. However, with arbitrarily high proba-
bility, a probabilistic scheme can do much better. Specifically,
the scheme in [2] suggests guessing such a boundm and subse-
quently verifying if the guess was correct. If the guessed value
for m turns out to be wrong, then it can be improved iteratively
until a correct value is reached.

Thus, in this case, we may use the following scheme to syn-
chronize: First, hostsA andB guess an upper boundm and
perform Protocol 1 with this bound, resulting in hostA comput-
ing a rational functioñf(z). If the functionf̃(z) corresponds to
the differences between the two host sets, that is if

f̃(z) =
χSA

(z)
χSB

(z)
, (2)

IEEE INFOCOM 2002 5

Example 2An example of reconciliation when no boundm is
known on the number of differences between two sets.
Consider using and incorrect boundm = 1 in Example 1. In
this case, hostB receives the evaluationχSA

(−1) = 69 from
hostA, and compares it to its own evaluationχSB

(−1) = 1 to
interpolate the polynomial

f̃(z) =
z + 70

1
(3)

as a guess of the differences between the two hosts.
To check the validity of (3), hostB then requests evalua-

tions of A’s polynomial at two random points,r0 = 38 and
r1 = 51. HostA sends the corresponding valuesχSA

(r0) = 23
and χr1(51) = 53, which B divides by its own evaluations
χSB

(r0) = 38 andχSB
(r1) = 36 to get the two verification

pointsf(r0) = 66 andf(r1) = 35. Since the guessed function
f̃(z) in (3) does not agree at these two verification points, host
B knows that the initial bound must have been incorrect. Host
B may thus update its bound tom = 3 and repeat the process.

then computing the zeroes off(z) will determine precisely the
mutual difference between the two sets.

To check whether Equation (2) holds, hostB choosesk ran-
dom sample pointsri, and sends their evaluationsχSB

(ri) to
hostA, who uses these values to compute evaluations

f(ri) =
χSA

(ri)
χSB

(ri)
.

By comparingf̃(ri) andf(ri), hostA can assess whether Equa-
tion (2) has been satisfied. If the equation is not satisfied, then
the procedure can be repeated with a different boundm. Exam-
ple 2 demonstrates this procedure.

In general, the two hosts keep guessm until the resulting
polynomials agree in allk random sample points. A precise
probabilistic analysis in [2] shows that such an agreement cor-
responds to a probability of error

ε ≤ m

[|SA| + |SB | − 1
2b

]k

. (4)

Manipulating equation 4 and using the trivial upper boundm ≤
|SA| + |SB |, we see that one needs an agreement of

k ≥
⌈
logρ

(
ε

|SA| + |SB |
)⌉

(5)

samples (whereρ = |SA|+|SB |−1
2b) to get a probability of error

at mostε for the whole protocol. Thus, for example, reconciling
host sets of one million64-bit integers with error probability
ε = 10−20 would require agreement ofk = 2 random samples.

We show in Section V-A that this verification protocol re-
quires the transmission of at mostm + k samples and one ran-
dom number seed (for generating random sample points) to rec-
oncile two sets; the valuek is determined by the desired proba-
bility of error ε according to Equation 5. Thus, though the veri-
fication protocol will require more rounds of communication for
synchronization than the deterministic Protocol 1, it will not re-
quire transmission of significantly more bits of communication.

We next show that the computational overhead of this proba-
bilistic protocol is also not large.

IV. PDA I MPLEMENTATION

To demonstrate the practicality and effectiveness of our syn-
chronization approach, we have implemented the CPIsync al-
gorithm that was introduced in the previous sections on a real
handheld device, that is, a Palm Pilot IIIxe Personal Digital As-
sistant.

Our program emulates the operation of a memo pad and pro-
vides a convenient testbed for evaluating the new synchroniza-
tion protocol. Moreover, the successful implementation of this
protocol on the computationally and communicationally limited
Palm device suggests that the same can be done for more com-
plicated, heterogeneous networks of many machines.

In this section, we describe our implementation and provide
some experimental results for the specific case where the num-
ber of the differences,m, between the PDA and PC databases is
either known or tightly bounded bym a priori. We show in Sec-
tion IV-B how such a bound can be determined in many practical
situations. In general, however, the tightness of the bound can-
not be guaranteed, and it is much more efficient to employ the
probabilistic scheme introduced in Section III-B. We describe
an implementation of this more general scheme in Section V
and show that its performance is close to the performance of a
protocol that knowsm a priori.

A. Experimental environment

Platform: Our experiments were performed on a Palm Pilot
IIIxe with a 16-bit Motorola Dragonball processor and8MB of
RAM. The Palm was connected via a serial link to a Pentium III
class machine with 512 MB of RAM.
Model: Our specific implementation of CPIsync emulates a
memo pad application. As data is entered on the Palm, evalua-
tions of the characteristic polynomial (described in Section III)
are updated at designated sample points. Upon a request for
synchronization, the Palm sendsm of these evaluations to the
desktop, corresponding to the presumed maximum number of
differences between the data on the two machines. The desk-
top compares these evaluations to its own evaluations and deter-
mines the differences between the two machines, as described in
Protocol 1. We compare CPIsync to an emulation of slow sync,
which upon synchronization, sends all the Palm data to the desk-
top, and uses this information to determine the differences.

We do not address issues about which specific data to keep at
the end of the synchronization cycle, but several techniques from
the database literature may be adapted [12]. We also avoid is-
sues of hashing by restricting entries to 15-bit integers. We note
that, in practice, the hashing operation needs to be performed
only once per entry, at the time that the entry is added to the
data set; thus the complexity of hashing is not a bottleneck for
synchronization. By restricting entries to 15 bits, we also avoid
issues of multiple-precision arithmetic on the Palm, which can
be easily solved by using the Chinese Remainder Theorem [13]
to split arithmetic in large finite fields into arithmetic in several
single-precision finite fields.

Finite field arithmetic is performed with Victor Shoup’s Num-
ber Theory Library [14] and data is transferred in the Palm

IEEE INFOCOM 2002 6

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000

slow sy nc
CPIsync

CPIsync vs. slow sync - scalability

T
im

e
(s

e
c
o
n
d
s)

Set size (elements)

Fig. 6. A comparison of CPIsync and slow sync demonstrating the superiority
of CPIsync for growing sets of data with a fixed number of differences (i.e.
101) between them.

Database File format. This data is converted to data readable
by our Palm program using [15].

Metrics and Measurements: The two key metrics used
in comparing CPIsync to slow sync arecommunicationand
time. Communication represents the number of bytes sent by
each protocol over the link. For this metric, no experiments are
needed as we have shown analytically that CPIsync will upload
only m entries from the PDA, while slow sync will require the
transfer of all the Palm entries. On the down link from the PC
to the PDA, both protocols will transmit the same updates.

The time required for a synchronization to complete (i.e. the
latency) is probably the most important metric from a user’s
point of view. For slow sync, the dominant component of the
latency is the data transfer time, whereas for CPIsync the com-
putation time generally dominates. Our experiments compare
the latencies of CPIsync and slow sync in various scenarios. The
synchronization latency is measured from the time at which the
Palm begins to send its data to the PC until the time at which the
PC determines all the differences between the databases. The
results presented in the next section represent averages over10
identical experiments.

Results: Figure 6 depicts the superior scalability of
CPIsync over slow sync. In this figure, we have plotted the time
used by each synchronization scheme as a function of data set
size for a fixed number of differences between data sets.

It is clear from the resulting graphs that slow sync is markedly
non scalable: the time taken by slow sync increases linearly with
the size of the data sets. CPIsync, on the other hand, is almost in-
dependent of the data set sizes. Comparing Figure 4 to Figure 6
we observe that the qualitative behavior of CPIsync is similar to
that of fast sync. The remarkable property of CPIsync is that it
can be employed in any synchronization scenario, regardless of
context, whereas fast sync is employed only when the previous
synchronization took place between the same PC and the same
PDA.

In Figure 7, we compare the performance of CPIsync to slow
sync for data sets with fixed sizes but increasing number of dif-
ferences. As expected, CPIsync performs significantly better

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

CPIsync

slow sy nc

CPIsync vs. slow sync - time

Differences

T
im

e
(s

e
c
o
n
d
s)

Fig. 7. A comparison of CPIsync and slow sync for sets having10, 000 ele-
ments. The synchronization time is plotted as a function of the number of
differences between the two sets.

than slow sync when the two reconciling sets do not differ by
much. However, as the number of differences between the two
sets grows, the computational complexity of CPIsync becomes
significant. Thus, there exists a threshold where wholesale data
transfer (i.e. slow sync) becomes a faster method of synchro-
nization; this threshold is a function of the data set sizes as well
as the number of differences between the two data sets. For the
10, 000 records depicted in the figure, this threshold corresponds
to roughly1, 200 differences.

By preparing graphs like Figure 7 for various different set
sizes, we were able to produce a regression with a coefficient of
determination [16] almost 1 that analytically models the perfor-
mance of slow sync and CPIsync; the resulting threshold values
are listed in Table I. Based on our theoretical development, the
regression for slow sync is obtained by fitting the data to a lin-
ear function that depends only on the data set size, whereas for
CPIsync the regression is obtained by fitting the data to a cu-
bic polynomial that depends only on the number of differences.
With such analytical models, we can determine a threshold for
any given set size and number of differences between hosts, as
illustrated by Figure 8.

Note that in a Palm PDA application like an address book or
memo, changes between concurrent synchronizations typically
involve only a small number of records. For such applications,
CPIsync will usually be much faster than slow sync.

B. Determining an upper bound

The implementation of CPIsync described in the previous sec-
tions requires knowledge of a tight upper bound,m, on the num-
ber of differing entries. One simple method for obtaining such
a bound involves having both hostA and hostB count the num-
ber of modifications to their data sets since their last common
synchronization. The next time that hostA and hostB synchro-
nize, hostA sends to hostB a message containing its number of
modifications, denotedmA. HostB computes its correspond-
ing valuemB so as to form the upper boundm = mA + mB on
the total number of differences between both hosts. Clearly, this
boundm will be tight if the two hosts have performed mutually

IEEE INFOCOM 2002 7

Data set Size Differences
250 175
500 253
1000 431
2500 620
3000 727
5000 899
10000 1177

TABLE I

THRESHOLD VALUES AT WHICH CPISYNC REQUIRES THE SAME AMOUNT

OF TIME AS SLOW SYNC.

exclusive modifications. However, it may be completely off if
the hosts have performed exactly the same modifications to their
respective databases. This may happen if, prior to their own syn-
chronization, both hostsA andB synchronized with a third host
C, as in Figure 5. Another problem with this method is that
it requires maintaining separate information for each host with
which synchronization is performed; this may not be reasonable
for larger networks. Thus, the simple method just described will
be rather inefficient for some applications.

In the next section, we describe a probabilistic scheme that
can determine a much tighter value form. This application is of
fundamental importance because it allows CPIsync to achieve
performance equivalent to fast sync in a general setting.

V. PRACTICAL EVALUATION OF THE PROBABILISTIC

SCHEME

The probabilistic scheme introduced in Section III-B can be
implemented in various ways depending on the metric of inter-
est. In this section, we propose two implementations based on
the optimization of two different metrics.

A. Communication optimization

In one case, we may consider optimizing our implementation
of the probabilistic scheme with respect to the amount ofcom-
municationneeded for reconciliation. It turns out that we can
synchronize a PDA and a PC that differ inm entries by sending
at mostm + k characteristic polynomial evaluations, wherek is
a small constant (see Section III-B).

Such a scheme can be implemented as follows: First the PDA
sends to the PC evaluations of its own characteristic polynomial
at a small number of pre-determined sample points and atk ad-
ditional (different) random sample points. The former points
are used to interpolate a rational function, corresponding to a
guess of the differences between the two machines, and the lat-
ter points are used to verify the correctness of this guess. If
the verification succeeds, then the synchronization is complete.
On the other hand, if the verification fails, then the PC collects
all the sample points seen so far into a guess of the differences
between the two machines while at the same time requesting
k additional random evaluations from the PDA to confirm this
new guess. This procedure is iterated until verification succeeds,
at which point synchronization is complete. Sincem evalua-
tions will necessarily be enough to completely determine up to

0

200

400

600

800

1,000

1,200

0

2,000

4,000

6,000

8,000

10,000

0

100

200

Diffe
rences

Number

of records

C
PIsync

slo
w sy

nc

T
i
m
e

Fig. 8. A graph comparing slow sync and CPIsync for databases with vary-
ing numbers of records and with varying numbers of differences between
databases. The patterned line depicts the threshold curve at which slow sync
and CPIsync require the same amount of time to complete.

m differences, verification will necessarily succeed after at most
m + k transmissions.

B. Latency optimization

In a second case, we may consider optimizing our implemen-
tation for the purposes of minimizing thelatencyof our schemes
(i.e. the overall time needed for synchronization). We thus pro-
pose a general probabilistic scheme whose completion time is at
worst a constantα times larger than the time needed to synchro-
nize two hosts when the number of differences between them is
knowna priori. This probabilistic scheme retains one of the es-
sential properties of its deterministic counterpart: the synchro-
nization latency depends chiefly on the number of differences
between hosts. We prove thatα = 4 is an optimal bound for this
scheme and show how to achieve it.

Our approach to this optimization relies in part on the data
from Figure 7, reproduced in Figure 9. In the latter figure, we
fit our data to a polynomial regression that interpolates the la-
tency of CPIsync as a function of the number of differencesm
between two hosts. Since an exact value form is not known at
the start, the PDA and PC start with an initial guessm1 for an
upper bound onm. In Figure 9, this initial guess corresponds
to the valuem1 = 11, which corresponds to a verification time
of t1 = 3.65 seconds. If verification fails for this guess, then
we update our bound to the valuem2 that corresponds to a ver-
ification time that isδ times larger than form1 differences (i.e.
t2 = δt1). In the case of Figure 9, we have chosenδ = 2 giving
m2 = 151 andt2 ≈ 7.29 seconds. At each iteration we guess

IEEE INFOCOM 2002 8

0

20

0 200 400 600

T
im

e
 (

se
c
o
n
d
s)

m1 m4m2 m3

t 3

t 4

t 2

t 1

Differences

CPIsync completion time

Fig. 9. A model of the approach used to optimize the latency of synchronization
when no bound is known on the number of differences between data sets.

the boundmi that corresponds to a verification timeti = δti−1.
We continue until verification succeeds for some guessed bound
mn requiring verification timetn = δn−1t1.

Claim 1 The latency-optimizing probabilistic scheme takes at
most α(δ) = δ2/(δ − 1) times longer than a deterministic
scheme with ana priori knowledge of the actual number of dif-
ferences.

Proof: Denote byT ∗(m) the synchronization latency when
m is knowna priori, and byT (m) the synchronization latency
required by this probabilistic scheme. Furthermore, denote by
ti the time needed for thei-th verification round in whichmi

differences are guessed between the two hosts.
Suppose that a correct upper bound,mn ≥ m, is obtained first

at then-th iteration, forn > 1. The total synchronization time
required for the probabilistic scheme is then simply the sum of
a geometric progression

T (m) = t1 + . . . + tn = t1 + δt1 + . . . + δn−1t1 =
δn − 1
δ − 1

t1.

Note thatT ∗(m) ≥ tn−1 = δn−2t1, sincemn is assumed to be
thefirst correct upper boundm. We thus obtain

T (m)
T ∗(m)

≥ δn − 1
(δ − 1)δn−2

, for all n > 1. (6)

It is easy to check that the right hand side of (6) is maximized
whenn → ∞, meaning thatT/T ∗ ≥ δ2/(δ − 1).

By examining the derivative ofα(δ) with respect toδ, one finds
that this function attains a minimum value atδ = 2, leading
to an optimal ratio ofα(2) = 4. Thus, the best policy for this
scheme is to double the verification time at each iteration.

Figure 10 illustrates the performance of this probabilistic
scheme compared to that of the deterministic scheme. Note that
the probabilistic results remain within the guaranteed factor4 of
the corresponding deterministic results.

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400

Probabilistic

Deterministic (Lower bound)

Deterministic * 4 (Upper bound)

Differences

T
im

e
(s

e
c
o
n
d
s)

Probablistic scheme vs. deterministic scheme

Fig. 10. A comparison of the probabilistic scheme with no known boundm to
the deterministic scheme with a given value ofm.

VI. RELATED WORK

The general problem of data synchronization has been studied
from different perspectives in the literature.

From a database perspective, the concept of disconnected op-
eration, in which hosts can independently operate and subse-
quently synchronize, was established by the CODA file sys-
tem [17]. The general model proposed in [17] is similar to the
models used by several current mobile computing systems, in-
cluding some PDAs.

The management of replicated, distributed, databases requires
the development of sophisticated algorithms for guaranteeing
data consistency and for resolving conflicting updates. Sev-
eral architectures, such as BAYOU [18], ROAM [19], and
DENO [20] have been proposed to address these important prob-
lems. We consider CPIsync to be complementary to these archi-
tectures. The CPIsync methodology permits the efficient deter-
mination of the differences between databases, while the men-
tioned architectures can be used to resolve which data to keep or
to update once the differences are known.

The analysis of PDA synchronization protocols from the per-
spective of scalability of communications, as considered in this
paper, is a relatively new area of research. The most closely
related work we have found in the literature is the EDISON ar-
chitecture proposed in [21]. This architecture relies on a central-
ized, shared server with which all hosts synchronize. The server
maintains an incremental log of updates so that the hosts can al-
ways use fast sync instead of slow sync. Unlike CPIsync, this
architecture is not designed for the general case where a device
may synchronize with any other device on a peer-to-peer ba-
sis. In general, a distributed architecture based on peer-to-peer
synchronization provides much better network performance, in
terms of robustness and scalability, than a centralized architec-
ture [18–20].

From an information-theoretic perspective, synchronization
can also be modeled as a traditional error-correction prob-
lem. In this case, hostB can be thought to have a corrupted
copy of a database held by hostA. When the corruptions are
non-destructive, meaning that the corruptions only change data

IEEE INFOCOM 2002 9

rather than adding new data or deleting old data, the problem
of synchronizing the two databases is precisely the classical
problem of error-correction [22]. Many sources [23–27] have
addressed synchronization of such non-destructively corrupted
databases. A more recent work [28] makes a direct link to cod-
ing theory by using a well-known class of good codes known as
Reed-Solomon codes to affect such synchronizations.

However, the applications that we address in this work do not
conform to this simplified synchronization model. It is generally
not the case that database differences for mobile systems can
be modeled as non-destructive corruptions. Instead, we need to
allow for data to be added or deleted from anywhere within a
database, as happens practically. Several sources [29, 30] have
studied extended synchronization models in which the permitted
corruptions include insertions, deletions, and modifications of
database entries. Recently, Cormode, Paterson, S.ahinhalp, and
Vishkin [31] provided a probabilistic solution for such synchro-
nization when a bound on the number of differences is known.
However, all these algorithms assume a fundamental ordering
of the host data. Thus, they synchronize not only the database
contents, but also the order of the entries within each database.
For example, a synchronization of the sets{1,3,5} with {3,5,1}
would result in{1,3,5,1} because order is considered significant.

In fact, many applications [5, 7–9, 32, 33] do not require both
the synchronization of order and the synchronization of content,
and the proposed synchronization technique takes advantage of
this fact. For example, when synchronizing two address books,
only the contact information for each entry needs to be commu-
nicated and not the location of the entry in the address book.

VII. C ONCLUSION

In this paper, we have shown that the current performance of
PDA synchronization schemes can be tremendously improved
through the use of sophisticated computational methods [2, 3].
We have described, analyzed, and implemented a novel algo-
rithm, termed CPIsync, for fast and efficient PDA synchroniza-
tion. Our implementation demonstrated that it is possible to syn-
chronize remote systems in a scalable manner, from the perspec-
tive of communication bandwidth and latency.

Specifically, we have shown that two hosts can deterministi-
cally reconcile their data in a real environment with a communi-
cation complexity depending only on the number of differences
between the them, provided that they have good bound on this
number of differences. We demonstrated the use of a probabilis-
tic scheme for the cases where such a bound is not available.
The accuracy of this probabilistic method can be made as good
as desired, and its communication complexity is within an ad-
ditive constant of the deterministic scheme that is supplied with
the exact number of differences between both host sets.

Using analytical modeling, we also showed that the latency
of this probabilistic scheme can be designed to be within a fac-
tor of 4 of the latency for the deterministic scheme. Thus, even
without a knowing the number of differences between them, two
hosts can reconcile with both a communication and latency that
depends only on this number of differences. We presented ex-
perimental evidence of this phenomenon, demonstrating that,
in most reasonable scenarios, CPIsync is substantially faster
than the current reconciliation scheme implemented on the Palm

PDA.
The CPIsync algorithm described in the paper is suitable not

only for the specific application to PDAs, but also to any general
class of problems where the difference in the data sets being
reconciled is relatively small compared to the overall size of the
data sets themselves. We believe that this scalable architecture
will be essential in maintaining consistency in large networks.

ACKNOWLEDGMENTS

The authors are grateful to Yaron Minsky for stimulating dis-
cussions and Felicia Trachtenberg for statistical advice.

REFERENCES

[1] “Palm developer on-line documentation,”
http://palmos/dev/tech/docs.

[2] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly
optimal communication complexity,” Tech. Rep. TR1999-1778, TR2000-
1796,TR2000-1813, Cornell University, 2000.

[3] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly
optimal communication complexity,” inInternational Symposium on In-
formation Theory, June 2001, p. 232.

[4] “Frontline test equipment,” http://www.fte.com.
[5] R.A. Golding, Weak-Consistency Group Communication and Member-

ship, Ph.D. thesis, UC Santa Cruz, December 1992, Published as technical
report UCSC-CRL-92-52.

[6] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in
distributed networks,” in18th Annual ACM-SIGACT/SIGOPS Symposium
on Principles of Distributed Computing, Atlanta, GA, May 1999.

[7] R. van Renesse, “Captain cook: A scalable navigation service,” In prepa-
ration.

[8] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure de-
tection service,” inMiddleware ’98: IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Nigel
Davies, Kerry Raymond, and Jochen Seitz, Eds. 1998, pp. 55–70, Springer
Verlag.

[9] K. Guo, M. Hayden, R. van Renesse, W. Vogels, and K. P. Birman,
“GSGC: An efficient gossip-style garbage collection scheme for scalable
reliable multicast,” Tech. Rep., Cornell University, December 1997.

[10] M. Karpovsky, L. Levitin, and A. Trachtenberg, “Data verification and
reconciliation with generalized error-control codes,”39th Annual Allerton
Conference on Communication, Control, and Computing, July 2001.

[11] M. Karpovsky, L. Levitin, and A. Trachtenberg, “Data verification and
reconciliation with generalized error-control codes,”IEEE Trans. on Info.
Theory, 2001, submitted.

[12] A. Silberschatz, H.F. Korth, and S. Sudarshan,Database System Concepts,
McGraw-Hill, third edition, 1999.

[13] T.H. Cormen, C.E. Leiserson, and R.L. Rivest,Introduction to Algorithms,
MIT Press, 1990.

[14] V. Shoup, “NTL: A library for doing number theory,” http://shoup.net/ntl/.
[15] “Pilot PRC-Tools,” http://sourceforge.net/projects/prc-tools/.
[16] S. Weisberg,Applied Linear Regression, John Wiley and Sons, Inc., 1985.
[17] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda

file system,”ACM Transactions on Computer Systems, vol. 10, no. 1, pp.
3–25, 1992.

[18] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing update conflicts in bayou, a weakly con-
nected replicated storage system,” inProceedings of the 15th Symposium
on Operating Systems Principles, Copper Mountain Resort, Colorado, De-
cember 1995, ACM, number 22, pp. 172–183.

[19] D. Ratner, G. J. Popek P. Reiher, and R. Guy, “Peer replication with selec-
tive control,” inMDA ’99, First International Conference on Mobile Data
Access, Hong Kong, December 1999.

[20] U. Cetintemel, P. J. Keleher, and M. Franklin, “Support for speculative
update propagation and mobility in deno,” inThe 22nd International Con-
ference on Distributed Computing Systems, 2001.

[21] M. Denny and C. Wells, “EDISON: Enhanced data interchange services
over networks,” May 2000, class project, UC Berkeley.

[22] F.J. MacWilliams and N.J.A. Sloane,The Theory of Error-Correcting
Codes, North-Holland Publishing Company, New York, 1977.

[23] J.J. Metzner and E.J. Kapturowski, “A general decoding technique appli-
cable to replicated file disagreement location and concatenated code de-
coding,” IEEE Transactions on Information Theory, vol. 36, pp. 911–917,
July 1990.

IEEE INFOCOM 2002 10

[24] D. Barbaŕa, H. Garcia-Molina, and B. Feijoo, “Exploiting symmetries
for low-cost comparison of file copies,”Proceedings of the International
Conference on Distributed Computing Systems, pp. 471–479, 1988.

[25] D. Barbaŕa and R.J. Lipton, “A class of randomized strategies for low-cost
comparison of file copies,”IEEE Transactions on Parallel Distributed
Systems, pp. 160–170, April 1991.

[26] W. Fuchs, K.L. Wu, and J.A. Abraham, “Low-cost comparison and di-
agnosis of large remotely located files,”Proceedings of the Symposium
on Reliability in Distributed Software and Database Systems, pp. 67–73,
1996.

[27] J.J. Metzner, “A parity structure for large remotely located replicated data
files,” IEEE Transactions on Computers, vol. C-32, no. 8, pp. 727–730,
August 1983.

[28] K.A.S. Abdel-Ghaffar and A.E. Abbadi, “An optimal strategy for compar-
ing file copies,” IEEE Transactions on Parallel and Distributed Systems,
vol. 5, no. 1, pp. 87–93, January 1994.

[29] T. Schwarz, R.W. Bowdidge, and W.A. Burkhard, “Low cost comparisons
of file copies,”Proceedings of the International Conference on Distributed
Computing Systems, pp. 196–202, 1990.

[30] Alon Orlitsky, “Interactive communication: Balanced distributions, cor-
related files, and average-case complexity.,” inProceedings of the 32nd
Annual Symposium on Foundations of Computer Science, 1991, pp. 228–
238.

[31] G. Cormode, M. Paterson, S.C. S.ahinhalp, and U. Vishkin, “Commu-
nication complexity of document exchange,”ACM-SIAM Symposium on
Discrete Algorithms, January 2000.

[32] R. Adams, “RFC1036: Standard for interchange of USENET messages,”
December 1987.

[33] M. Hayden and K. Birman, “Probabilistic broadcast,” Tech. Rep., Cornell
University, 1996.

