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Abstract— In [1], Gupta and Kumar determined the capac-
ity of wirelessnetworks under certain assumptions,amongthem
point-to-point coding, which excludesfor example multi-access
and broadcastcodes. In this paper, we consider essentiallythe
samephysicalmodelof awir elessetwork under a differ enttraffic
pattern, namelythe relaytraffic pattern but we allow for arbitrar -
ily complexnetwork coding. In our model,thereis only oneactive
source/destinationpair, while all other nodesassistthis transmis-
sion. We show codeconstructionsleading to achievable rates and
derive upper bounds from the max-flow min-cut theorem. It is
shown that lower and upper bounds meet asymptotically as the
number of nodesin the network goesto infinity , thus proving that
the capacity of the wir elessnetwork with n nodesunder the re-
lay traffic pattern behaveslik elog n bits per second.This demon-
strates also that network coding is essential: under the point-to-
point coding assumptionconsidered in [1], the achievable rate is
constant,independentof the number of nodes.

Mor eover, the result of this paper hasimplications and exten-
sionsto fading channelsand to sensornetworks.

|. INTRODUCTION

NE of the key questionsn wirelesssystemss the capac-

ity of thenetwork, andthis underdifferenttraffic scenar
ios, anddifferentconstraintgbandwidth,averagepower, peak
power). In thecaseof networkswith basestationsthis question
is analyzedon a cell by cell basis,by consideringhe multiple
accesghannelfrom the mobile usersto the basestation(up-
link), andthe broadcasthannelfrom the basestationto the
users(downlink). This areaof researcthasbeenvery active
over the last decadesandis relatively well understood.The
caseof ad-hocwirelessnetworksis morerecent,andthusless
well understood.The additionaldifficulty stemsfrom the fact
thatany nodecanactbothasaterminal(sender/receerof data)
andasarelayfor othertransmissionglike, for example,abase
stationin cell phonenetworks). Hence,anad-hocnetwork has
substantiallymoredegreesof freedomthana cell network: ary
kind of cooperatiorbetweerthe usersis permissible.Not sur
prisingly, theseadditionalfeaturesmale the determinatiorof
capacitymuchmoredifficult.

The capacityof multi-terminalsystemss a subjectstudied
in multi-userinformationtheory anareaof informationtheory
known for its difficulty, openproblemsand sometimesoun-
terintuitive results. As a casein point, the separatiorprinciple
whichis a cornerstoneesultfor point-to-pointtransmissiorof
asourceo adestinationdoesnotholdin generafor multi-user
systemgz2, p. 448].
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In this contet, the questionof the capacityof a multi-user
mobile systemlike an ad hoc network is certainlya challeng-
ing question. In their landmarkpaper Guptaand Kumar[1]
gave a formula for the achievable global transmissiorrate of
anadhocnetwork (in bit-meterspersecond)andundercertain
assumptionsshovedthatonecouldnotachiere abetterperfor
mance. The key resultis that, givenn nodesin the unit disk
andauniformtraffic pattern,oneobtainsanaggreatecapacity
of O(y/n) bit-metergpersecondasomevhatdisappointingout
notall unexpectedresult.

A pessimistseesthat the rate per usergoesto zeroasthe
numberof usersgrows, and an optimist would point out that
thereareothermultiuserscenariosvherethetotal rateis much
less(e.g. multi-accesswherethe sumrateis O(log n)).

The analysisof Guptaand Kumar usesa simple point-to-
point codingmodel. This meansthatat ary giventime, are-
ceiver only decodesnessagefom onesenderconsideringsi-
multaneougransmissionpurelyasnoise,andsimilarly, atarny
giventime, asendetransmitsnformationonly to onerecever.
In thatrespectjt doesnot answerthe capacityquestionin an
information theoreticsense. In otherwords, underthe same
physicalconstraintsbut with abettercodingschemepnecould
achieve higherrates. Neverthelessthe resultpresentedn [1]
certainlypointsoutabasichehaior of currentadhocnetworks.

In a recentpaper Grossglauseand Tse [3] modified the
modelin [1] to include mobility explicitly. Allowing for un-
boundedielayandusingonly one-hoprelaying(but takingad-
vantageof the mobility), they shov a O(n) throughputfor a
mobileadhocnetwork.

In the presentpaper we studythe capacityof anadhocnet-
work with a very particulartraffic pattern,namelya singleac-
tive link. We call this modeltherelay network sinceall nodes
(exceptthesendeiandrecever nodes)ctasrelayfor thecom-
munication.Thisis schematicallyenderedn Figurel. Likein
[1], our network is locatedinsidea disk of unit area,sketched
by the dashectircle in thefigure. Theinteractionis alsoiden-
tical to [1]: thereceved signalat somenodeis the sumof the
fadedsignalsfrom the other nodesplus additive white Gaus-
siannoise. In contrastto [1], two specialnodesare selected
atrandom:oneis to be the sourcenode,the otherthe destina-
tion node. Thosearethe two nodessurroundeddy the dotted
circles. Also in contrastto [1], we do not imposea point-to-
point codingmodel,asdescribedabore. Rather we allow for
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Fig. 1. A wirelessnetwork undertherelaytraffic pattern.

arbitrarycooperatiorbetweerthenodesjncludingfor example
multiple-accesandbroadcastin the presenpaperwe referto
thisas“network coding’, asopposedo point-to-pointcoding.

This case,though limited, is amenableto preciseanaly-
sis, andallows to answera basicquestionof adhocnetworks,
namelywhatis the precisecontritution of relaysto thecapacity
for sucha traffic pattern. Interestingly it is possibleto derive
upperandlower boundsfor the capacityin this case,andthe
boundsmeetasn, the numberof nodesin the network, goes
to infinity, shawving that the capacityis of O(logn) bits per
second.The upperboundfollows from the max-flov min-cut
theoremasreportedin [2, Theorem14.10.1],which allows for
arbitrarily comple network coding. The lower boundfollows
from a consideratiomf (almost)Juncodedransmissiorf apar
ticular sourceacrosghe Gaussiamelay network. In this sense,
it canbe seenasan extensionto [4]. Note thata naive (and
wrong) useof the throughputresultin [1] would give O(y/n)
bits persecondanda morecarefulapplicationof the point-to-
pointcodingmodelof [1] yieldsO(1) only.

Theoutlineof thepaperis asfollows: In thenext sectionwe
recapitulatea few resultsaboutmulti-userinformationtheory
thatwill in partbeusedin thesequel Sectionlll formally intro-
ducesthe Gaussianelay network, pointing out whatis known
sofarandwhataninterferencenodelasin [1] would sayabout
its capacity SectionlV studiesthe capacityof the Gaussian
relay network in thelimit of alarge numberof relays,demon-
stratingthe O (log n) behaior. Finally, SectionV discussethe
implicationof theresultsandpointsto openproblems.

Il. INFORMATION THEORY AND NETWORKS

For anergodicpoint-to-pointcommunicatiorproblem,infor-
mationtheory providesa setof tools to determinethe perfor
manceof the bestpossiblecodingsystem.The key ingredient
of thesetoolsis thatthey disregardboth delayandcompleity,
i.e. the codemay be infinitely long andinfinitely comple if
necessary Underthis perspectie, informationtheorypermits
to determinehebestfidelity thatonecanachieze whena given

1The tools have alsobeenmodifiedto apply to the caseof finite delayand
compleity, but with lesssuccesso date.

sourcehasto betransmittedacrossagivennoisychannel Here,
asources specifiedvy its statisticeandby adistortionmeasure.
Thefidelity is measuredvith respecto the distortionmeasure.
For the channel,the optimum performancecan be character
ized by a singlenumber- its capacity Giventhis numberone
candeterminethe bestachieablefidelity for any sourcewith
respecto ary distortionmeasureno furtherknowledgeof the
precisechannelstructureis required. This is the power of the
separatiortheoren5, Theorem21].

Assessinghe performanceof a network is a trickier issue.
Capacitycan be generalizedo the notion of capacityregion.
For a given statisticaldescriptionof the network, a setof con-
straints(power etc.),anda list of desiredcommunicationsthe
capacityregion is the closureof all rate tuplesthat can be
achieredsimultaneouslyA ratetuplespecifiegheratefor each
of the desiredcommunications.It is generallyquite difficult
to determineandto describesucha capacityregion. In there-
mainderof this section,we give a shortportrait of the flavor
of the availableresults. The goal is to illustrate that capacity
resultsfor networks arequite limited andofteninvolve certain
additionalassumptionsn the side.

The best-studiedtaseis multiple-accessn terminalscom-
municateto one“basestation” To quotejust oneresult,con-
sider the casewherethe signalsof the terminalsare simply
addedogethemwith white Gaussiamoiseof unit varianceand
only this sumsignalis obsenedby the“basestation” Suppose
thatall terminalshave the samepower P andmusttransmitat
thesamerate R. Thelargestsuchrateis R = log,(1 + nP)/n
[2, p. 379].

Thebroadcastasehasalsobeenstudiedn detail: One“base
station”is communicatingnformationto n terminals. There-
sultsarelessgenerahere.Forthebroadcasthannelthecapac-
ity regionis only known whenthe channeis “degraded. For-
tunately the Gaussiarbroadcasthannelis always degraded,
henceits capacityis known [2, p. 380].

Anothersituationthathasbeenaddresseds the relay chan-
nel. Supposethat one terminal sendsinformationto another
terminal, andin doing so may usethe help of a third termi-
nal. Capacityis known for the so-called‘physically degraded”
relay channel. Under this model, the signal receved by the
destinationnodeis a degradedversionof the signal receved
by the relay, plusthe signaltransmittedoy therelay This as-
sumptionis someavhatartificial andnot alwayssatisfiedby real
systemsijn particular it is a poor modelfor the wirelesssitua-
tion. For example,the channelmodelconsideredn this paper
is not physicallydegraded Moreover, capacityis known for re-
lay channelswith certaintypesof noiselesseedbackhowever,
to our knowledge,it is unknown for examplefor the Gaussian
wirelesscase(i.e. involving noisy feedbaclkbetweerall termi-
nals)[2, p. 430—432].

Thereis yet a more fundamentalimitation to the general-
ization of capacityto networks. In the (ergodic) point-to-point
casecapacityanswersall questionsthatis, for any sourceand
ary distortionmeasurd€by the separatiortheoren{5, Theorem
21]). In the generalnetwork case thereis no suchtheorem:lt
is nottrue thatthe bestcommunicatiorschemas achieved by
optimally compressinghe sourcesand transmittingthe com-
pressediersionacrosghe network, usingtheratescorrespond-
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Fig.2. TheGaussiarrelaynetwork with two relays,i.e. n = 4. Thecircled
crossdenotesnultiplicationwith anappropriatdadingcoeficient, andthecir-
cledplusadditionof white Gaussiamoise. The emptyboxesarethetwo relay
decoders/encoders.

ing to apointontheboundaryof thecapacityregion. Examples
of thislimitation canbefounde.g.in [2, p. 448]andin [4, Sec.
5.3].

By this shortdiscussionywe hopeto have corveyedthe mes-
sagethatthe capacityof awirelessnetwork is quiteachalleng-
ing questionin general.

I1l. THE GAUSSIAN RELAY NETWORK
A. TheNetworkModel

In this paper we studythe wirelessGaussiamelay channel.
Theunderlyingphysicalnetwork could be calledthe “wireless
additive white Gaussiametwork”; it coincideswith the model
studiedn [1]. In particulartherearen nodedocateduniformly
in a disk of unit area. During one time slot, eachnode can
only either transmitor receve; it cannotdo both simultane-
ously The receved signal at nodek is the linear superposi-
tion of the fadedtransmittedsignalsfrom all othernodesand
additive white Gaussiamoise.This canbewritten asfollows:
v, = foj + Wi, 1)

b J

whered,; is theEuclideardistancebetweemodesk andj, r is
apositive realnumberandW;, is additive white Gaussiamoise
of varianceN. (For simplicity, we assumehatall noisesare
of the samevariance.)Noticein particularthatevery nodecan
“hear” every othernode. For the caseof two relays(n = 4),
thisis illustratedin Figure?2.

Up to here,our modelcoincideswith themodelin [1]. The
remainingdefiningelementf our network differ from [1]. At
randomonenodeis selectedo bethesourceandanothemode
is selectedo be the destination.We denotethe sourcenodeas
nodel andthe destinationnodeasnoden. The sourcenode
cantransmitat power EX? < P. Then — 2 nodesthat act
purelyasrelayscantransmitatatotal sumpowernotexceeding

2‘;21 EX? < (n—2)Q. Hencewe allow for acertainpower
allocationbetweertherelaynodes However, we constrairthis
power allocationasfollows: no singlerelay may geta power
that grows unboundedlywith n (the numberof nodesin the
network).

To simplify notationandsincewe will usethemparticularly
often, we will denotethe fading coeficientsfrom the source
nodeto nodek by o, = 1/d7,, for k = 2,...,n. Similarly, we
denotethefadingcoeficientfrom any nodek to thedestination
nodeby ¢, = 1/d},,,fork=2,...,n — 1.

For the caseof only onerelay node,this modelrepresents
non-dgradedelaychanneivith noisyfeedback To ourknowl-
edge thecapacityof this channels unknovn to date.

B. PreviousResults

Thechannemodeldescribedn Sectionlll-A is anextension
of thesingle-relaychannektudiedin [6]. As mentioneckarlier
capacityhasbeenfoundfor the so-calleddegradedrelay chan-
nel,andfor acertaincaseof noiseles$eedback Ourmodel(for
thecasen = 3) doesnotfall into this class.To our knowledge,
its capacityis unknowvn to date.

Anotherrelatedapproachs the onetakenby GuptaandKu-
marin [1]. They considerthe physicalnetwork that we de-
scribedin the Sectionlll-A, i.e. connectionsetweennodes
aremodeledby Equation(1). Thekey differencebetweerthe
considerationn [1] andoursliesin the traffic pattern In [1],
all thenodesaresplitinto source/destinatiopairsuniformly at
random. Eachsourcethencorveys informationexclusively to
its assignediestination.

For this situation, [1] strives to determinethe maximum
throughput,i.e. the maximumnumberof bit-metersper sec-
ond that canbe transmittedacrossthe network. A solutionis
found underthe additionalassumptiorthatall communication
is point-to-point. This meansthat during ary giventime slot,
one nodetransmitsto exactly one other node, and the latter
considersall otherincomingsignalspurelyasnoise,henceex-
cluding ary form of network coding (broadcastmulti-access
etc.) or decoding(successie cancellatiorof interferenceetc.).
Underthis auxiliary assumptionit is found thatthe maximum
throughputs of the orderof /n bit-metersper secondwhere
n is thenumberof nodesn thenetwork. The“throughput”can
be usedto answera numberof interestingquestions.

First of all, it implies that for a randomly selected
source/destinatiopair, the transmissiorrateis 1/4/n bits per
second. This is preciselyhow the throughputis computedin
[1].

Then,supposehatthetraffic patternis suchthatevery node
wantsto speakto its nearesmneighboronly. In that case,the
communicatiomistances reducedo 1/4/n. Hence athrough-
putof \/n bit-metergpersecondsuggests constanhumberof
bits per secondor eachsource/destinatiopair. Thisis indeed
the caseascanbe verified easily for exampleby adaptingthe
proofin [1].

Similarly, considemow therelaytraffic pattern:thereis only
onesource/destinatiopair while the restof the network is at
theirservice.Canthethroughputesultbeusedo determinghe
maximumrate at which this source/destinatiopair can com-
municate? Supposedhat sourceand destinationare one meter



apart. A naive applicationof the throughputresultwould sug-
gestthattherateof transmissiorior thatsource/channgdair is

+/n bitspersecondmakingthethroughputgain,/n bit-meters
persecond However, this naive conclusioris incorrect.

In fact,amorecarefulapplicationof theargumentdrom the
lower boundin [1] to therelay situationyields a constantate,
independenof n.

Clearly, it would be interestingto obtaina resultas power-
ful asthatof [1], but without the restrictionto point-to-point
coding,ratherallowing for arbitrarily complex network codes,
includingfor examplesuperpositiorrodingandsuccessie can-
cellationdecoding. Oneinterestingapproacthin this direction
comesagainfrom Guptaand Kumar In [7], they studythe
relay caseas describedin Sectionlll-A, with the difference
thatthey do not allow for power allocationbetweernthe relay
nodes.Theirapproachs to considetthesetof all possiblefeed-
forwardgraphsj.e. thesetof all possibleforwardingstructures
from the sourceto the destination.For eachsuchstructurean
achievablerate canbe determined.The remainingproblemis
to optimizeoverall graphs.However, thelatter(combinatorial)
problemhasno efficient solutionto date. Moreover, while this
leadsto achievablerates,it hasnot beenestablishedn [7] that
this approactyieldscapacityeventually

C. OutlineOf Our Result

The goal of this paperis to determinethe capacityfor the
network modeldescribedn Sectionlll-A. More explicitly, this
is the maximumrate at which the sourcenodecan communi-
catereliably to the destinatiomnodeusingarbitrarily comple
codingand decoding For example,the relaysmay exchange
informationwith eachotherin orderto coordinatedransmission
andto reduceinterferencepr they may usemulti-accessand
broadcastodingtechniquego increasehe overall efficiency.

In this paperwe determinecapacityfor theasymptotiaccase,
thatis, asthe numberof relay nodestendsto infinity. To get
a capacityexpressiorbasedon the agumentsgresentedn this
paperwe needto addthe following two constraintdo our net-
work model:

1) Aroundthesourcenodethereis a“deadzone”of nonzero
radius;within this zone,theremay not be anothemode.
Similarly, thereis alsoadeadzonearoundthedestination
node.

2) Thesourcenodemayonly sendhalf of thetime.

For this slightly alterednetwork model, we canindeedde-
terminethe asymptoticcapacity i.e. we provide anupperand
alower boundon the ratesachiezableon thatchannelandwe
demonstratéhatthey coincideasn — oo.

Theupperoundfollowsfrom thecut-setboundasit appears
in the textbook of Cover and Thomas[2, Theorem14.10.1].
This boundis sometimesalso called “max-flow min-cut; a
shortform of sayingthatthe maximumachievablerateis up-
per boundedby the minimum “cut.” A “cut” is obtainedby
separatinghe network into two parts,andevaluatinga certain
mutualinformationwith respecto this cut. The terminology
“max-flow min-cut” actuallycomesfrom [8].

The lower boundfollows from a someavhatlessstandardar
gument.We first explain our algumentfor the caseof asimple

(ergodic) point-to-pointchannel. The channelis definedby a

conditionalprobability densityfunction py| x, where X is the

channelinputandY its output. Moreover, theremaybea con-

strainton the channelinput signal X, for examplea limitation

on the power. To find a lower boundon the capacityof that

channelpick ary source definedby a sourceprobability den-

sity function pg anda distortionmeasurad. Then,suggest

joint source/channetodingstratgy. This stratgy hasto sat-

isfy all constraintson the channelinput signal. The next step
is to selectary decodingscheme.Clearly, to getgoodresults,
the decodershouldminimize the overall distortion (underthe

initially choserdistortionmeasuref). Onceall theseelements
arefixed,it is asimplematterto determingheresultingaverage
distortionA. Then,we have thefollowing statement:

Theoeml: Thecapacityof anergodicchannekpecifiedoy
a conditional probability density function py|x anda set of
constraintson the channelinput signalis atleastC' > R(A),
whereR(-) denotegherate-distortiorfunctionof somesource
ps undersomedistortionmeasurel, andA is the averagedis-
tortion (with respecto d) incurredby the transmissiorof the
sourceps acrossthe channelpy x using somejoint source-
channelcoding stratgyy that respectsthe constraintson the
channelnput.

Proof: By contradiction:Suppose&’’ < R(A). But then,
by the separatiortheoremiit is not possibleto reconstructhe
sourceat fidelity A. However, from our joint source-channel
codeconstructionwe know thatthis is indeedpossible hence
C > R(A). |
Clearly, sucha lower boundis particularly interestingwhen
thereis a correspondingupper bound, hencethe capacityis
C = R(A). By consideringarbitrarily complex codingandde-
codingschemesye canalwaysachiese this casehowever, for
verycomplex codingschemeghereis noadwantagdrom using
ourargument.Theadwantageof our argumentappearsn cases
wheresimplejoint source-channelodingschemeschiese op-
timal (or nearlyoptimal) performance.

For example,we cangive a simplelower boundon the ca-
pacity of the standardadditive white Gaussiamoise channel
[2, p. 239]. Pick the sourceto be zero-mearGaussiarwith
mean-squarerror distortion. For the sale of the agument,
let the sourcevariancebe equalto the power constrainton
the channelP. Supposehatthe encodingis simply uncoded
transmissionand the decodingis a scalingby P/(P + N).
The achieved distortionfor this schemeis foundto be D' =
Pa? /(P + o?). Plugginginto the rate-distortionfunction of
the Gaussiarsourceof varianceP [2, Theoreml3.3.2],

llog, £, ifO<D<P
— 2 2 D> =~ =~ ]
R(D) = { 0, otherwise, @)
we find asalower boundon the capacityof ourchannel
C > R(D)= %logz(l + Plo?). 3)

With hindsight,this is indeedthe capacityof that channel;in
otherwords, for this specialcase,the lower boundingtech-
nigue suggestedby Theoreml givesthe bestlower boundon
capacityby the aid of a very simple coding technique. As a



matterof fact,it is well-known thatsucha simplejoint source-
channélcodeachievesoptimumperformancen the Gaussian-
over-Gaussiarxample.This hasbeenreportede.g.in [9].

Are thereotherexampleswheresucha simplejoint source-
channekodeachieresoptimumperformanceandhenceR(A)
is equalto capacity?This questionhasbeenaddressedndan-
sweredn [4]. As it turnsout, thereis aninfinite supplyof such
examples.

Thekey ingredienthatmalesour argumentwork is the sep-
arationtheorem.n generahetwork situationsthereis no such
statementhowever, we will explain below thatit holdsfor the
relay network underconsideratiorin this paper

IV. CAPACITY OF THE GAUSSIAN RELAY NETWORK

In thissectionwe presentnupperandalowerboundonthe
capacityof the consideredGaussiarrelay network model (as
describedabovein Sectionlll-A) including the two additional
constraintghatwerediscussedbove, namely(i), thatthereare
“deadzones"aroundhesourcenodeandaroundhedestination
node,and(ii) thatthesourcenodemayonly transmithalf of the
time.

A. UpperBound

As mentionedabove, our upperboundis derived from the
cut-setheoremasit appearén CoverandThomagq2, Theorem
14.10.1]. For our network, one suchboundis the “broadcast
cut; i.e. we separatehe sourcenodefrom the restof the net-
work. Thisis illustratedin Figure3.

Node2
(Relay)

Noden
(Destination
Node)

Fig. 3. The“broadcastcut” separateshe sourcenodefrom the restof the
network. The value of the cut-setboundthatis usedin this paperdepends
exclusivelyon the dottedconnectionsary otherconnectioris assumedo bea
perfectchannel.

The cut-settheoremsaysthat the rate at which we canreli-
ably transmitfrom the sourcenodeto therestof therelay net-
work cannotexceedthe maximummutualinformationacross
this cut, definedas

def

Coe & maxI(X1;Ya,...,Vp|Xo,...,Xs). (4

In particular to apply Theoreml4.10.1from [2], we have cho-
senS = {1} andhenceS® = {2,...,n} in the notationof
thetheorem.This maximumcanbe upperboundedby the ca-
pacity of a multiple-antenna@hannelwith onesendingantenna
andn — 1 receving antennas.This problemhasbeensolved
in [10] andhasbecomea standardesultin informationtheory
With hindsight,it is quiteintuitive thatthis is anupperbound:
We have simplyidealizedthelinks betweerthen — 1 nodeson
thereceving sideof thecutasperfectchannelswhile in reality
they arenoisy channels.Clearly, this stepcannotdecreasea-
pacity But for the systemwith theidealizedchannelswe can
indeeddeterminecapacity preciselyby usingthe resultsfrom
[10]. It canbeexpresseds

(5)

Cpc =

1 a|?P
510g2 <1+—” ]|\|7 ) ,
wherea denotedhe vectorof lengthn — 1 of all theq;’s, i.e.
a = (as,...,a,). Consequently|a|| denotegshe magnitude
of thatvector

Hence,if the sourcewereallowedto transmitin every time
slot, this agumentwould leadto an upperboundof Cgc. We
will arguelateronthatthis boundmustbe expectedo beloose
in general.

However, underthe auxiliary constrainthatthe sourcenode
may be transmittingonly half of the time, the upperboundon
capacitypecomeg’ < %CBC, which establishetghefollowing
theorem.

Theoem2—uppetound: For ary particularrealizationof
the randomgeometryof the network, the capacityof the con-
sideredrelay network is upperboundedoy

2
C < Cuper @ ™). ®

An upperboundontheexpectedtapacityoverall possiblee-
alizationsof therandomgeometryof the network is thenfound
by taking the expectationof C'ypper Over . Whenthe nodes
arelocateduniformly at random(asis the casein our network
model), ||a||? grows essentiallylinearly in n. This argument
couldbe madeprecisehawever, underour additionalassump-
tion thatthereis a deadzonearoundthe sourcenode this point
becomesimpler: all the a},’s areboundedabove. Therefore,
||a||?> cannotgrow morethanlinearlyin n. As anintermediate
andnotverysurprisingconclusionthistellsusthatin ary case,
capacitybehaesat bestlike log n. Notice thatthis is a direct
consequencef thetraffic pattern In otherwords,in scenarios
wherethe goal is to maximizethe sumrate (or total through-
put) in the network, it is not a goodideato operateit in pure
relay mode: Guptaand Kumarhave showvn in [1] thata sum
rate of v/n is achivableif the traffic patternis comprisedof
n/2 uniformly chosercommunicatingairs.

1
Zlog2 1+

B. LowerBound

In this sectionwe usethelowerboundingtechniquehatwas
describedhbove in Theoreml. To do so,anadditionaltrick is
needed.Supposehatthe relaysoperateasfollows: If in time
slott, they receve asignal,thenthey transmitin time slot¢ + 1
that exact samesignal, scaledto meettheir power constraint.



Supposehis systemis our new channel.Clearly, this channel
cannothave a capacitythatis larger thanthe capacityof the
Gaussiarrelay network. At the sametime, this new channel
is just a simple ergodic point-to-pointchannelandhence the
separatiotheoremdoesapply. This meanghatwe canindeed
usethelower boundingtechniquethatwasdescribedabore in
Theoreml.

Thefirst stepis thusto pick a suitablesource. Not surpris-
ingly, for the problemat hand,we selectthe Gaussiarsource
with squared-errodistortionmeasure.

Thesecondstepis theencodingule. We considesimply un-
codedtransmissionasfollows: In time slot ¢, the sourcenode
broadcastshe sourceoutput X (¢) to all therelayssimultane-
ouslyandwithout coding. Consequentlyin timeslott + 1, the
relaysscaletheir noisy versionsof X, (¢) to their power con-
straint P, andforwardthis to thedestinatiomode.In time slot
t + 2, the gamestartsover with the next sourceoutput.

Noticethatthisstrategy satisfiegheconstrainthatthesource
nodemaytransmitonly half of thetime.

Finally, for thedecodingthereceverformstheestimate

X1(t) = mYa(t) +7Ya(t+1). (7)
Thecoeficientsy; and~y,; arechoserto minimizetheresulting
mean-squarerrorwhichwewill denoteasD;.

To computeD,, we have to determin€Y,, (¢) andY,, (¢t + 1).
At timet, only thesourcenodeis transmittingandhence

Yot) = anX1(t) + Wa(t). (8)
To determin€Y,, (t + 1) recallthatthesignalrecevedby relay
attimet is Yy (t) = ap X1 (t)+Wy(t). Thisis scaledo meetthe
power constraintP;, of relay k. Hence,the signaltransmitted
by relayk is

P

Xp(t+1) = aipﬁ(akxl(twm(t))

(9)

for k = 2,...,n — 1. Thesignalreceved at the destination
nodeis

n—1
Yalt+1) = ) &Xp(t+1)+Wa(t+1). (10)
k=2

To simplify notation,we introducethe symbol

Bk zékak/(a%P+N),

andto make notationmorecompactwe alsointroducethe two
vectorsof significantfadingcoeficients:a = (as,...,a, 1)
is the vectorof fadingcoeficientsfrom the sourcenodeto the
(n — 2) relays,and = (B, ..., Bn—1) is thevectorof fading
coeficientsfrom the(n —2) relaysto thedestination With this,
themean-squarerrorcanbe expresseds

(11)

PN

D, = .
P+a2P+N

(12)

(6,8)?
1+811

It remaingo decideonafavorablepowerallocation.We choose
the(generallysuboptimalpllocationthatmakesg, = Aay, for
k=2,...,n — 1 andsomeconstantd. Thatis,

20‘% 2
A*—=(aiP + N),

P,

(13)

where A is chosento match the sum power constraint

"y P =(n—2)Q.

Note that at this point, D; is completelydeterminedoy the
involved powers P, Q and N togetherwith the geometryay,
anddy, for all k.

The last stepis to verify that noneof the P, increasesin-
boundedlywith n. Thisis ensuredy therequiremenfor “dead
zones”aroundthe sourcenode and the destinationnode and
by the factthatthe network is insidea disk of unit area: both
ay, anddy, arestrictly largerthanzeroandstrictly smallerthan
someconstant.

In summarythisleadsto thefollowing theorem.

Theoem3—Ilowerbound: For ary particularrealizationof
the randomgeometryof the network, the capacityof the con-
sideredrelay network is atleast

de 1 P
c > Clower :f 110g2 D_la

(14)
whereD; is definedaborein Equation(12).

Proof: For theGaussiarsourceacrosgwo usesof there-
lay network, adistortionof D is feasible.But sincethesepara-
tiontheoremappliesto this situation thecapacityof two usesof
therelay network mustbeatleastR (D, ), whereR(-) denotes
therate-distortiorfunctionof the Gaussiarsourcewith respect
to mean-squarerrordistortion.Hence the capacityof onesin-
gle useof therelay network mustbe at leastR(D;)/2. Plug-
ginginto therate-distortiorfunctionfor theGaussiarsourcg2,
Theoreml3.3.2],yieldsthe claimedlower bound. |

C. AsymptoticCapacity
To obtaina capacityresult,it remaingo be shavn thatupper
andlower boundcoincide. For a finite numbern of nodesin
thenetwork, thisis not true. However, it turnsout thatasymp-
totically (asn — o0), they do coincide. More precisely the
following theoremcanbe stated.
Theoem4—asymptoticapacity: The capacity C of the
consideredelay network is betweenCioyer < C < Cuppers
where
lim (Cupper _Clower) = 07

n—oo

(15)

for ary particularealizationof therandomgeometnyof thenet-
work. Hence,asymptotically the capacityof the considered
relaynetwork is

2
ilog2 (1 + W (16)
Remark:Thecornvergencesstablisheéh Theoremd depends
crucially on the assumptiorof deadzonesaroundthe sender
and recever nodes: the geometryof the network can be ar
bitrary, but it hasto respectthe deadzonerequirement.This
limitation of our resultis discussedh detailin SectionV-A.



This theoremgivesthe asymptoticcapacityfor a fixed net-
work geometryandit directlyimpliesasimilar statemenabout
the expectedcapacityover all possibleincarnationof theran-
domnetwork, simply by takingexpectation®ver .. We explic-
itly discusghisissuebelow.

Proof: To prove this statementye have to show thatthe
following differencegoesto zero:

2

Cupper — Clower = 310g2 (Ha”# %) . (17)

Equivalently, we will shav that the expressionin parentheses
goesto one. In fact, this expressiorncanalsobe interpretedas
follows: noticethat the upperboundon capacitydirectly im-
pliesalower boundon the distortionachievablefor any source
with respecto ary distortionmeasureln particular we deter
mine this for the casewherea Gaussiarsourceis transmitted
acrosstwo usesof the Gaussiarrelay network. The distortion
measures the mean-squaredrror. Hence thelower boundon
theaveragedistortionis

PN

D(chweT) = W;

Dlower (18)
whereD(-) denoteghedistortion-ratgfunctionof the Gaussian
sourcq?, p. 346].

Our joint source-channetoding schemealso transmitsa
Gaussiarsourceacrosstwo usesof the relay network, andit
achievesa distortionof D;.

Hence the expressiorin parenthesem (17)is preciselythe
ratio Dy / Djoer, @ndthe goal of the proofis to shaw thatthis
ratio tendsto oneasymptotically

To thisend,theratio canbewritten out furtherasfollows:

D,
Dlower

|le|[>P + N Dy

N P
(&l + o) P + N
&,0)2 :
P+ a2 P+ N

19)
Noticethatpurelyfor notationakorveniencewe havereplaced
[|la||? by||&||?+a?. We chooseéhepowerallocationthatmakes

Br

for k = 2,...,n — 1. Underthis power allocation,we can
simplify

Aak; (20)

(@,8) = Allall” (21)

and
IBIF = A%lal® (22)

This permitsto eliminates from Expressior(19) to obtain

D; (Jl&|)> + a2)P + N
D Al > - ()
lower WP + anP —+ N

For our further alguments,we preferto rewrite this by mul-
tiplying both the numeratorand the denominatoty the term

1 + A?||a||? to obtain

D,
Dlower

(1 + A%la[”) ((la]” + op) P + N)
(Alla[[?)*P + (1 + A2[|a]]*) (a7, P + N)
(24)

The constantA hasto be determinedfrom the total relay
power (n — 2)Q. Using the power allocationasin Equation
(13), A hasto satisfythecondition

n—1

> P

k=2
n—1

A2y

k=2

(n-2)Q

EI ]

(67

(a2P + N) (25)

=
Ell V)

To simplify the notationandtheinterpretatiorof theresult,we
definethefollowing function:

(2P +N). (26)

Notice that b(n) is a nondecreasingunction of n: all terms
in the sumare nonngative. Using b(n), we canexpressthe
constantd as

(n-2Q

A b(n)

(27)

This is pluggedinto Equation(24). Multiplying both the nu-
meratorand the denominatoiby b(n), this permitsto express
Dl /Dlower as
D,
Dlower

(b(n) + (n — 2)Ql|&])-
(n —2)Qllal[*P+
((la[]* + o7)P + N)
+(b(n) + (n = 2)Ql|a|]?) (7P + N)

(28)
This rather cumbersomeexpressioncan be rewritten in the
shape

Dy
Dlower

(n = 2)|Jal[*PQ + -
(n—DIIalIPQ+

(29)

Thekey stepof ourproofisto arguethat(n—2)||&||* dominates
all othertermsthatgrow with n, bothin the numeratorandin
the denominatar Then, the ratio D; /Dj,wer indeedtendsto
oneasn growsto infinity.

In the numeratoythe only competitoris b(n)||@||?>. In the
denominatorthe competitorsareb(n) and||a||?.

It is true under much more generalconditionsthat (n —
2)||&@||* dominatesthesethree expressions. However, in the
caseat hand,we canuseagainour additionalassumptiongo
simplify theargument.

The assumptiorof a deadzonearoundthe sourcenodeim-
pliesthat«a;, is upperboundedby a constantor all k. More-
over, the factthatthe network is locatedin a disk of unit area
impliesthaté;, is lower boundedby a constantstrictly greater
thanzero. Thesetwo ingredientsmply thatevery termin the



sumb(n) asdefinedin Equation(26) is upperboundedby a
constantHence b(n) cannotgrow fasterthanlinearlyin n.

Moreover, sinceall termsqy, arestrictly largerthanzero, it
followsthat||&||? is astrictly increasingunctionof n.

Thesetwo insightsaresufficient to prove that (n — 2)||a|[*
indeeddominateshoth numeratorand denominatgrascanbe
verifiedeasily

To make the agumentprecise,the limit canthenbe com-
putedfor example by successie applicationsof the rule of
Bernoulli-del’Hopital. |

For theproofof Theoremy, it wasnotnecessarto determine
l|la||? precisely However, to determinecapacityit is still nec-
essaryto know how ||a||? behaesasa functionof n. We have
discussedhis right afterthe upperbound(Theorem?). There,
we arguedthat under certain conditions, it essentiallygrows
linearly in n. One network structurefor which this is true is
thecasewhentherearedeadzonesaroundthe sourcenodeand
aroundthe destinationnode. This canbe seenby noting that
eachqy, is upperboundeddy aconstant.

For the caseof arandomgeometryit remainsto determine
the expectedasymptoticcapacityC' over all possiblenetwork

realizations,
|| P
J\] )

whereE, [-] denotegheexpectationwith respecto therandom
variablea. Note that the expectedasymptoticcapacitydoes
not dependon the full geometryof the network; rather it is

sufficiently describedy the statisticalbehaior of thedistance
from the sourcenodeto the relays. For the stochastianodel
of [1], i.e. for the casewherethe nodelocationsare selected
uniformly, it canagainbe arguedthat ||a||?> grows essentially
linearly. While a preciseanalysisof this caseis beyond the

scopeof the presenipaper numericalillustrationsof this point

will besuppliedbelow.

Notice however that it is possibleto constructscenarios
where||a||?> grows morethanlinearly by increasingthe relay
densityvery closeto the sourcenodeasn increasesOur anal-
ysis doesnot apply to sucha scenario:in that case,the sug-
gestedstrateyy to prove achievability (Theorem3) would give
unboundegbowerto afew relays,while mary relayswould not
getary power atall, asfollows directly from Equation(13): as
therelaynodek approachethesourcejts correspondingalue
of ay, grows without bound,andso doesits power P,,. We do
not considerthis a valid (nor aninteresting)power allocation.
Clearly, a differentpower allocationstratgly may remedythis
problem;but thisis beyondtheframeawork of the presenpaper

— 1
C = E, [Z log, (1 + (30)

D. NumericalResults

Anotherissueof interestis the behaior of the corvergence
of upperandlowerboundsn Theoremd for arandomgeometry
asthenumberof nodegendgo infinity. In thispaperwedonot
presenta theoreticalanalysisof this question;rather we shav
theresultof anumericalsimulation.

For the simulation, we generatethe network successiely.
First, thelocationsof sourceanddestinatiomodesarechosen,
uniformly at random. Then,in eachstep,the simulationadds

onenodeto the network, uniformly atrandom but respectinga
deadzoneof a certainradiusaroundthe sourceanddestination
nodes.In eachstep,the simulationre-evaluateshe difference
betweertheratebounds.Hence theresultof the simulationis
a relationshipbetweenthe numberof relay nodesandthe dif-
ferencebetweerthe presentedipperandlower bounds,

CuppeT - Clower %CBC - 310g2 Dil7 (31)
whereD; is computedusingthe power allocationasspecified
by Equation(13).

Figure4 shaws simulationresultsfor oneparticularrealiza-
tion of arelaynetwork. Forthefigure,theparameterbavebeen
choserasfollows: thepower of thesourcenodeis P = 10, the
averagerelay power is Q = 10 also, andthe noise power is
N = 1. We usea deadzoneof radius0.01 R, whereR is the
radiusof thenetwork, thatis, R = 1//m meters.For ary given
numberof relaysat the randomlyselectedocations thefigure
shaws the discrepang betweenupperand lower bound, nor
malizedby the upperbound,i.e. the figure shavs the number
of nodesversugsthe quantity

Cupper - Clower

Cupper (32)
Recallthatsomevherein this gaplies the true capacityof that
particularrelay network. Clearly, a more completestudy of
the corvergencebehaior would involve the consideratiorof
the average behaior over multiple realizationsof the network
geometry However, sucha studyis beyond the framawork of
this paper;the goal of this sectionis merelyto illustrate the
behaior.

| |
4000 6000
Number of Nodes

I
8000

I
0 2000

10000

Fig.4. Thenormalizeddifferencebetweerthe boundsfor onerealizationof
anadhocnetwork.

The reasonwhy the convergenceof the two boundsis not
unimodallies to someextentin therandomnessf the parame-
tersay, anddy. In particular the upperbounddepend®only on
ay, while thelower bounddepend®n bothay, andd,. Clearly,
if anew relayis addedwith ahighvalueof o, (i.e. closeto the
sourcenode),it considerablyncreaseshe upperbound.How-
ever, this doesnot imply thatthe lower boundincreaseslso:



dependingon the correspondingralue of d, this will in fact
notbethecase.

Hence thefactthatthe corvergenceof theboundss notuni-
modalis in partalsodueto our codingschemewhich reacts
differentlyto thenodelocationghantheupperbound.Yetthere
arecasewvherethecorvergencds unimodal,e.g.whenay = 1
andd;, = 1 for all k.

Recallalsothatour codingschemedoesnot make optimum
useof therelays,exceptin the asymptoticcase. However, the
margin that may (or may not) be gainedby a better coding
schemas very smallatlargen.

V. DISCcUSSION AND EXTENSIONS
A. Discussion

Thegoalof this paperwasto derive the asymptoticcapacity
of anadditive white Gaussianwirelessnetwork undera relay
traffic pattern. This capacitywas found undertwo additional
assumptions.

Thefirst assumptioris thatthereis a deadzonearoundthe
sourcenodeandanothedeadzonearoundthedestinatiomode.
If this assumptioris violated,the proof of Theorem4 may still
work in somecaseshowever, it invalidatesthe power alloca-
tion. If one of the relay nodesgetsvery closeto the source
node,its correspondingalue oy, tendsto infinity andso does
thevalueof P,. Whenthereis indeeda relay nodearbitrar
ily closeto the sourcenode,a differentanalysiswould have to
be performed. For example,undercertainconditions,another
cut throughthe network (ratherthanthe oneshown in Figure
3) may leadto a tighter upperbound. We could still usethe
consideredoint source-channalodingstrateyy, but the power
allocationwould haveto bealtered.lt is notclearwhetherthere
is anothemower allocationunderwhich the stratgy performs
optimally. For apracticalsystemtheassumptioof deadzones
doesnotseemvery limiting.

The secondassumptionis that the sourcenode may only
transmithalf of thetime. Clearly, thisassumptiois muchmore
restrictve, andit seemsunnecessary Let ustry to give some
insight into why it is not easyto obtain a resultwithout this
assumption:The “broadcastbound” asksto maximizemutual
informationacrossthe broadcastut asillustratedin Figure3.
Clearly, this maximumis achievedwhenall relayslistento the
source. Now supposehatin every time step,all relaysonly
listento the source.This will give a large valuefor the upper
bound,while in truth very little informationis carriedthrough
to the destinatiomode. Clearly, the boundshouldbe expected
to beloose: someof the relayshave to passthe messag®n-
wardsto the destinatiomnode. The assumptiorthatthe source
nodemay only transmithalf of thetime is oneway to remedy
theweaknes®f the considerecatut-setbound.

Thereare several otherways that may lead out of this im-
passe First, the max-flov min-cuttheoremcould be usedin a
more powerful versionto take into accountthe factthatwhen
all relaysarelisteningto thesourcethennoneof themactually
forwardsmessageto the destination. However, it seemshat
the codingschemeusedto prove thelower bound(Theorem3)
would haveto beadaptedtoo, sincethesourcenodenow sends
anew messagén everytime step.In thatcase thereis alarge

interferencebetweernwhatthe sourcenodetransmitsandwhat
therelaystransmit,andit is not clearhow to handlethis case.
Anothersolutioncould be to study a differentkind of nodes:
relaysthatcantransmitandreceve simultaneouslyOur results
canalsobealteredto applyto certainscenario®f thistype.
Finally, let us arguethatthe codingschemeassimpleasit
is, is genuinenetwork coding: In thefirst step(the broadcast-
ing from the sourcenodeto the relays),a “code” is usedthat
permitsevery relayto decodeat its particularlevel of fidelity.
Thisis clearlyrelatedto thefactthatwhenoneGaussiarsource
is sentacrossa Gaussiarbroadcasthannelto multiple desti-
nations,thenuncodedtransmissions an optimal stratgyy and
actuallyoutperformsary approactbasen capacity-achieing
codes.Extensionsf this amazingbehaior werepresentedn
[4]. In the secondstep(the multi-accessindrom the relaysto
thedestination)cooperatietransmissioris usedto boosttrans-
mit power. It isthecombinatiorof thesecodingstepghatyields
an achievable rate that behaeslike logn. We have already
mentionedhatif onthe contrary only point-to-pointcodingis
usedthentheachiezablerateremainsconstantindependenof
n. Hence for the Gaussiarrelay network aswe have consid-
eredit here,network codingsignificantlychangeghe asymp-
totic behaior. This conclusionis certainly of interestin the
interpretatiorof theresultof [1]: it suggestshe possibilitythat
theasymptotidbehaior of capacitydoeschange whennetwork
codingratherthanonly point-to-pointcodingis allowed.

B. ConstantRelaySumPower

In this section,we pointto anextensionof our resultsto an-
othercaseof interest:supposeahatthen — 2 relaynodeshave
to sharea constanipower ). Otherwise we imposethe same
conditionslike in Sectionlll. It is clearthatthe upperbound
(Theorem?) is not affectedby this changeit still tendsto in-
finity likelog, n. It seemstfirst thatthis upperboundshould
be muchtoo loose; more precisely it seemghat the capacity
shouldremainfinite eventhoughthe numberof relaystendsto
infinity sincethe overall poweris finite.

Somavhat surprisingly however, a similar capacity result
holds. More precisely the differenceCypper — Ciower tends
to aconstanthatis strictly largerthanzero(but independentf
n). Hence,evenin this case the capacitybehaesasymptoti-
cally likelog, n. A moredetailedanalysisof this casewill be
presentecht a later stage.Thereasorfor this somavhatcoun-
terintuitive behaior lies in theamountof spatialdiversity pro-
videdby our channeimodel.

C. LimitedNetworkKnowledg

Anotherinterestingfeatureof the lower boundpresentedn
Theorem3 of this paperis thatit doesnot requirefull knowl-
edgeof the network. In particular the relay nodek doesnot
needto know the exactlocationsof the otherrelaynodesall it
needsn orderto determindts appropriatgpowerlevel P, isthe
constant4 asin Equation(27). More interestingly the source
nodeactuallyneednotknow anything aboutthenetwork geom-
etry atall; it simply transmitsatits powerlevel.

Theseissuesreof specialinterestin the presencef fading
An analysisof this casewill bepresentectalaterstage.



D. SensomlNetworks

Theresultpresentedn this paperalsoimpliesa resultabout
a certainsensometwork situation. Supposehat the underly-
ing phenomenoto bemeasureds a Gaussiamandomvariable
X, andsupposdhatwirelesssensorsare scatterecaroundthe
physicalobjectssuchthateachof the sensorsneasurea faded
andnoisy versionof X, wherethe noiseis Gaussian.Thatis,
themeasuremerdf sensoik is

Yk = akX + Wk; (33)

whereW,, is a Gaussiarrandomvariable. If a centralstation
thatrecevesthe signalsfrom the sensorsvantsto reconstruct
X with respecto themean-squareerrorcriterion,whatcoding
stratgy shouldthe sensoremploy? For this case,our result
implies that as the numberof sensordncreasedo infinity, it
is optimalfor the sensorgo simply transmittheir measurement
withoutary codingatall, usingtheschemealescribedn Section
IV-B. Clearly, this resultcanbe extendedo similar scenarios.
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