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Abstract— In [1], Gupta and Kumar determined the capac-
ity of wir elessnetworks under certain assumptions,among them
point-to-point coding, which excludesfor example multi-access
and broadcastcodes. In this paper, we consider essentiallythe
samephysicalmodelof a wir elessnetwork under a differ ent traffic
pattern, namely the relay traffic pattern, but weallow for arbitrar -
ily complexnetwork coding. In our model,there is only oneactive
source/destinationpair, while all other nodesassistthis transmis-
sion. We show codeconstructionsleading to achievable rates and
derive upper bounds fr om the max-flow min-cut theorem. It is
shown that lower and upper bounds meet asymptotically as the
number of nodesin the network goesto infinity , thus proving that
the capacity of the wir elessnetwork with � nodesunder the re-
lay traffic pattern behaveslik e

����� � bits per second.This demon-
strates also that network coding is essential: under the point-to-
point coding assumptionconsidered in [1], the achievable rate is
constant,independentof the number of nodes.

Mor eover, the result of this paper has implications and exten-
sionsto fading channelsand to sensornetworks.

I . INTRODUCTION

ONE of thekey questionsin wirelesssystemsis thecapac-
ity of thenetwork, andthis underdifferenttraffic scenar-

ios, anddifferentconstraints(bandwidth,averagepower, peak
power). In thecaseof networkswith basestations,thisquestion
is analyzedon a cell by cell basis,by consideringthemultiple
accesschannelfrom the mobile usersto the basestation(up-
link), and the broadcastchannelfrom the basestationto the
users(downlink). This areaof researchhasbeenvery active
over the last decades,and is relatively well understood.The
caseof ad-hocwirelessnetworks is morerecent,andthusless
well understood.Theadditionaldifficulty stemsfrom the fact
thatany nodecanactbothasaterminal(sender/receiverof data)
andasa relayfor othertransmissions(like, for example,a base
stationin cell phonenetworks). Hence,anad-hocnetwork has
substantiallymoredegreesof freedomthana cell network: any
kind of cooperationbetweentheusersis permissible.Not sur-
prisingly, theseadditionalfeaturesmake the determinationof
capacitymuchmoredifficult.

The capacityof multi-terminalsystemsis a subjectstudied
in multi-userinformationtheory, anareaof informationtheory
known for its difficulty, openproblemsandsometimescoun-
terintuitive results.As a casein point, theseparationprinciple
which is a cornerstoneresultfor point-to-pointtransmissionof
asourceto adestination,doesnotholdin generalfor multi-user
systems[2, p. 448].

In this context, the questionof the capacityof a multi-user
mobilesystemlike an ad hoc network is certainlya challeng-
ing question. In their landmarkpaper, Guptaand Kumar [1]
gave a formula for the achievableglobal transmissionrateof
anadhocnetwork (in bit-meterspersecond),andundercertain
assumptions,showedthatonecouldnotachieveabetterperfor-
mance. The key result is that, given � nodesin the unit disk
andauniformtraffic pattern,oneobtainsanaggregatecapacity
of �	��
 �
� bit-meterspersecond,asomewhatdisappointingbut
notall unexpectedresult.

A pessimistseesthat the rate per usergoesto zero as the
numberof usersgrows, andan optimist would point out that
thereareothermultiuserscenarioswherethetotal rateis much
less(e.g.multi-access,wherethesumrateis �	���������
� ).

The analysisof Guptaand Kumar usesa simple point-to-
point codingmodel. This meansthat at any given time, a re-
ceiveronly decodesmessagesfrom onesender, consideringsi-
multaneoustransmissionspurelyasnoise,andsimilarly, at any
giventime,asendertransmitsinformationonly to onereceiver.
In that respect,it doesnot answerthe capacityquestionin an
information theoreticsense. In other words, underthe same
physicalconstraints,but with abettercodingscheme,onecould
achieve higherrates. Nevertheless,the resultpresentedin [1]
certainlypointsoutabasicbehavior of currentadhocnetworks.

In a recentpaper, Grossglauserand Tse [3] modified the
model in [1] to includemobility explicitly. Allowing for un-
boundeddelayandusingonly one-hoprelaying(but takingad-
vantageof the mobility), they show a �	���
� throughputfor a
mobileadhocnetwork.

In thepresentpaper, we studythecapacityof anadhocnet-
work with a very particulartraffic pattern,namelya singleac-
tive link. We call this modeltherelaynetwork, sinceall nodes
(exceptthesenderandreceivernodes)actasrelayfor thecom-
munication.This is schematicallyrenderedin Figure1. Like in
[1], our network is locatedinsidea disk of unit area,sketched
by thedashedcircle in thefigure. Theinteractionis alsoiden-
tical to [1]: thereceivedsignalat somenodeis thesumof the
fadedsignalsfrom the othernodesplus additive white Gaus-
siannoise. In contrastto [1], two specialnodesareselected
at random:oneis to be thesourcenode,theotherthedestina-
tion node. Thosearethe two nodessurroundedby the dotted
circles. Also in contrastto [1], we do not imposea point-to-
point codingmodel,asdescribedabove. Rather, we allow for
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Fig. 1. A wirelessnetwork undertherelaytraffic pattern.

arbitrarycooperationbetweenthenodes,includingfor example
multiple-accessandbroadcast.In thepresentpaper, wereferto
thisas“network coding,” asopposedto point-to-pointcoding.

This case, though limited, is amenableto preciseanaly-
sis, andallows to answera basicquestionof adhocnetworks,
namelywhatis theprecisecontributionof relaysto thecapacity
for sucha traffic pattern. Interestingly, it is possibleto derive
upperandlower boundsfor the capacityin this case,andthe
boundsmeetas � , the numberof nodesin the network, goes
to infinity, showing that the capacityis of �	���������
� bits per
second.The upperboundfollows from the max-flow min-cut
theoremasreportedin [2, Theorem14.10.1],which allows for
arbitrarily complex network coding. The lower boundfollows
from aconsiderationof (almost)uncodedtransmissionof apar-
ticular sourceacrosstheGaussianrelaynetwork. In this sense,
it canbe seenasan extensionto [4]. Note that a naive (and
wrong)useof the throughputresult in [1] would give �	� 
 �
�
bits persecond,anda morecarefulapplicationof thepoint-to-
pointcodingmodelof [1] yields �	����� only.

Theoutlineof thepaperis asfollows: In thenext section,we
recapitulatea few resultsaboutmulti-userinformationtheory
thatwill in partbeusedin thesequel.SectionIII formally intro-
ducestheGaussianrelaynetwork, pointingout what is known
sofarandwhataninterferencemodelasin [1] wouldsayabout
its capacity. SectionIV studiesthe capacityof the Gaussian
relaynetwork in the limit of a largenumberof relays,demon-
stratingthe �	���������
� behavior. Finally, SectionV discussesthe
implicationof theresultsandpointsto openproblems.

I I . INFORMATION THEORY AND NETWORKS

For anergodicpoint-to-pointcommunicationproblem,infor-
mationtheoryprovidesa setof tools to determinethe perfor-
manceof thebestpossiblecodingsystem.Thekey ingredient
of thesetoolsis that they disregardbothdelayandcomplexity,
i.e. the codemay be infinitely long andinfinitely complex if
necessary.1 Underthis perspective, informationtheorypermits
to determinethebestfidelity thatonecanachievewhenagiven�

The toolshave alsobeenmodifiedto apply to the caseof finite delayand
complexity, but with lesssuccessto date.

sourcehasto betransmittedacrossagivennoisychannel.Here,
asourceis specifiedby its statisticsandby adistortionmeasure.
Thefidelity is measuredwith respectto thedistortionmeasure.
For the channel,the optimum performancecan be character-
izedby a singlenumber- its capacity. Giventhis number, one
candeterminethe bestachievablefidelity for any sourcewith
respectto any distortionmeasure;no furtherknowledgeof the
precisechannelstructureis required.This is the power of the
separationtheorem[5, Theorem21].

Assessingthe performanceof a network is a trickier issue.
Capacitycanbe generalizedto the notion of capacityregion.
For a givenstatisticaldescriptionof thenetwork, a setof con-
straints(power etc.),anda list of desiredcommunications,the
capacityregion is the closureof all rate tuples that can be
achievedsimultaneously. A ratetuplespecifiestheratefor each
of the desiredcommunications.It is generallyquite difficult
to determineandto describesucha capacityregion. In there-
mainderof this section,we give a shortportrait of the flavor
of the availableresults. The goal is to illustratethat capacity
resultsfor networksarequite limited andofteninvolve certain
additionalassumptionson theside.

The best-studiedcaseis multiple-access:� terminalscom-
municateto one“basestation.” To quotejust oneresult,con-
sider the casewhere the signalsof the terminalsare simply
addedtogetherwith whiteGaussiannoiseof unit variance,and
only thissumsignalis observedby the“basestation.” Suppose
thatall terminalshave thesamepower � andmusttransmitat
thesamerate � . Thelargestsuchrateis � �!�����#"��$��%&�'�(�*)��
[2, p. 379].

Thebroadcastcasehasalsobeenstudiedin detail:One“base
station” is communicatinginformationto � terminals.There-
sultsarelessgeneralhere.For thebroadcastchannel,thecapac-
ity region is only known whenthechannelis “degraded.” For-
tunately, the Gaussianbroadcastchannelis always degraded,
henceits capacityis known [2, p. 380].

Anothersituationthathasbeenaddressedis the relaychan-
nel. Supposethat one terminal sendsinformation to another
terminal, and in doing so may usethe help of a third termi-
nal. Capacityis known for theso-called“physicallydegraded”
relay channel. Under this model, the signal received by the
destinationnodeis a degradedversionof the signal received
by the relay, plus thesignaltransmittedby the relay. This as-
sumptionis somewhatartificial andnotalwayssatisfiedby real
systems;in particular, it is a poormodelfor thewirelesssitua-
tion. For example,thechannelmodelconsideredin this paper
is notphysicallydegraded.Moreover, capacityis known for re-
lay channelswith certaintypesof noiselessfeedback;however,
to our knowledge,it is unknown for examplefor theGaussian
wirelesscase(i.e. involving noisyfeedbackbetweenall termi-
nals)[2, p. 430—432].

Thereis yet a more fundamentallimitation to the general-
izationof capacityto networks. In the(ergodic)point-to-point
case,capacityanswersall questions,thatis, for any sourceand
any distortionmeasure(by theseparationtheorem[5, Theorem
21]). In thegeneralnetwork case,thereis no suchtheorem:It
is not true that thebestcommunicationschemeis achievedby
optimally compressingthe sourcesand transmittingthe com-
pressedversionacrossthenetwork, usingtheratescorrespond-
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Fig. 2. TheGaussianrelaynetwork with two relays,i.e. ;=< / . Thecircled
crossdenotesmultiplicationwith anappropriatefadingcoefficient,andthecir-
cledplusadditionof white Gaussiannoise.Theemptyboxesarethetwo relay
decoders/encoders.

ing to apointontheboundaryof thecapacityregion. Examples
of this limitation canbefounde.g.in [2, p. 448]andin [4, Sec.
5.3].

By thisshortdiscussion,wehopeto haveconveyedthemes-
sagethatthecapacityof awirelessnetwork is quiteachalleng-
ing questionin general.

I I I . THE GAUSSIAN RELAY NETWORK

A. TheNetworkModel

In this paper, we studythewirelessGaussianrelaychannel.
Theunderlyingphysicalnetwork couldbecalledthe“wireless
additive white Gaussiannetwork”; it coincideswith themodel
studiedin [1]. In particular, thereare � nodeslocateduniformly
in a disk of unit area. During one time slot, eachnodecan
only either transmitor receive; it cannotdo both simultane-
ously. The received signal at node > is the linear superposi-
tion of the fadedtransmittedsignalsfrom all othernodesand
additivewhiteGaussiannoise.Thiscanbewrittenasfollows:?A@ � BDC �EGF@ CIH C %KJ @#L (1)

where
E @ C

is theEuclideandistancebetweennodes> andM , N is
apositiverealnumberand J @ is additivewhiteGaussiannoise
of varianceO . (For simplicity, we assumethat all noisesare
of thesamevariance.)Noticein particularthatevery nodecan
“hear” every othernode. For the caseof two relays( �P�RQ ),
this is illustratedin Figure2.

Up to here,our modelcoincideswith themodelin [1]. The
remainingdefiningelementsof ournetwork differ from [1]. At
random,onenodeis selectedto bethesource,andanothernode
is selectedto bethedestination.We denotethesourcenodeas
node � andthe destinationnodeasnode � . The sourcenode
cantransmitat power S H "TVU � . The �XWZY nodesthat act
purelyasrelayscantransmitatatotalsumpowernotexceeding

[!\#] T@_^ " S H "@ U ���`WaY��$b . Hence,weallow for a certainpower
allocationbetweentherelaynodes.However, weconstrainthis
power allocationasfollows: no singlerelay may get a power
that grows unboundedlywith � (the numberof nodesin the
network).

To simplify notationandsincewe will usethemparticularly
often, we will denotethe fadingcoefficients from the source
nodeto node> by c @ �-��) E F T @ , for >d�ZY Lfegefe7L � . Similarly, we
denotethefadingcoefficientfrom any node> to thedestination
nodeby h @ �-�D) E F @ \ , for >d�iY Lfefege7L �`Wj� .

For thecaseof only onerelaynode,this modelrepresentsa
non-degradedrelaychannelwith noisyfeedback.Toourknowl-
edge,thecapacityof thischannelis unknown to date.

B. PreviousResults

Thechannelmodeldescribedin SectionIII-A is anextension
of thesingle-relaychannelstudiedin [6]. As mentionedearlier,
capacityhasbeenfoundfor theso-calleddegradedrelaychan-
nel,andfor acertaincaseof noiselessfeedback.Ourmodel(for
thecase�k�Zl ) doesnot fall into thisclass.To ourknowledge,
its capacityis unknown to date.

Anotherrelatedapproachis theonetakenby GuptaandKu-
mar in [1]. They considerthe physicalnetwork that we de-
scribedin the SectionIII-A, i.e. connectionsbetweennodes
aremodeledby Equation(1). Thekey differencebetweenthe
considerationin [1] andourslies in the traffic pattern: In [1],
all thenodesaresplit into source/destinationpairsuniformly at
random.Eachsourcethenconveys informationexclusively to
its assigneddestination.

For this situation, [1] strives to determinethe maximum
throughput,i.e. the maximumnumberof bit-metersper sec-
ond that canbe transmittedacrossthe network. A solutionis
foundundertheadditionalassumptionthatall communication
is point-to-point. This meansthat during any given time slot,
one nodetransmitsto exactly one other node,and the latter
considersall otherincomingsignalspurelyasnoise,henceex-
cluding any form of network coding (broadcast,multi-access
etc.) or decoding(successive cancellationof interferenceetc.).
Underthis auxiliary assumption,it is foundthat themaximum
throughputis of theorderof 
 � bit-meterspersecond,where� is thenumberof nodesin thenetwork. The“throughput”can
beusedto answera numberof interestingquestions.

First of all, it implies that for a randomly selected
source/destinationpair, the transmissionrateis ��)�
 � bits per
second.This is preciselyhow the throughputis computedin
[1].

Then,supposethatthetraffic patternis suchthateverynode
wantsto speakto its nearestneighboronly. In that case,the
communicationdistanceis reducedto ��)�
 � . Hence,athrough-
putof 
 � bit-meterspersecondsuggestsa constantnumberof
bits persecondfor eachsource/destinationpair. This is indeed
thecase,ascanbeverifiedeasily, for exampleby adaptingthe
proof in [1].

Similarly, considernow therelaytraffic pattern:thereis only
onesource/destinationpair while the restof the network is at
theirservice.Canthethroughputresultbeusedtodeterminethe
maximumrateat which this source/destinationpair cancom-
municate?Supposethat sourceanddestinationareonemeter
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apart.A naive applicationof the throughputresultwould sug-
gestthatm therateof transmissionfor thatsource/channelpair is
 � bitspersecond,makingthethroughputagain
 � bit-meters
persecond.However, thisnaiveconclusionis incorrect.

In fact,a morecarefulapplicationof theargumentsfrom the
lower boundin [1] to therelaysituationyieldsa constantrate,
independentof � .

Clearly, it would be interestingto obtaina resultaspower-
ful as that of [1], but without the restrictionto point-to-point
coding,ratherallowing for arbitrarily complex network codes,
includingfor examplesuperpositioncodingandsuccessivecan-
cellationdecoding.Oneinterestingapproachin this direction
comesagainfrom Guptaand Kumar. In [7], they study the
relay caseas describedin SectionIII-A, with the difference
that they do not allow for power allocationbetweenthe relay
nodes.Theirapproachis to considerthesetof all possiblefeed-
forwardgraphs,i.e. thesetof all possibleforwardingstructures
from thesourceto thedestination.For eachsuchstructure,an
achievableratecanbe determined.The remainingproblemis
to optimizeoverall graphs.However, thelatter(combinatorial)
problemhasno efficient solutionto date.Moreover, while this
leadsto achievablerates,it hasnot beenestablishedin [7] that
thisapproachyieldscapacityeventually.

C. OutlineOf Our Result

The goal of this paperis to determinethe capacityfor the
network modeldescribedin SectionIII-A. Moreexplicitly, this
is the maximumrateat which the sourcenodecancommuni-
catereliably to the destinationnodeusingarbitrarily complex
codingand decoding. For example,the relaysmay exchange
informationwith eachotherin orderto coordinatetransmission
and to reduceinterference,or they may usemulti-accessand
broadcastcodingtechniquesto increasetheoverallefficiency.

In thispaper, wedeterminecapacityfor theasymptoticcase,
that is, asthe numberof relay nodestendsto infinity. To get
a capacityexpressionbasedon theargumentspresentedin this
paper, we needto addthefollowing two constraintsto our net-
work model:

1) Aroundthesourcenodethereis a“deadzone”of nonzero
radius;within this zone,theremaynot beanothernode.
Similarly, thereis alsoadeadzonearoundthedestination
node.

2) Thesourcenodemayonly sendhalf of thetime.
For this slightly alterednetwork model,we can indeedde-

terminetheasymptoticcapacity, i.e. we provide anupperand
a lower boundon theratesachievableon thatchannel,andwe
demonstratethatthey coincideas �onqp .

Theupperboundfollowsfrom thecut-setboundasit appears
in the textbook of Cover and Thomas[2, Theorem14.10.1].
This bound is sometimesalso called “max-flow min-cut,” a
shortform of sayingthat the maximumachievablerateis up-
per boundedby the minimum “cut.” A “cut” is obtainedby
separatingthenetwork into two parts,andevaluatinga certain
mutual informationwith respectto this cut. The terminology
“max-flow min-cut” actuallycomesfrom [8].

Thelower boundfollows from a somewhatlessstandardar-
gument.We first explainour argumentfor thecaseof a simple

(ergodic)point-to-pointchannel.The channelis definedby a
conditionalprobabilitydensityfunction rAs�t u , where H is the
channelinput and

?
its output.Moreover, theremaybea con-

strainton thechannelinput signal H , for examplea limitation
on the power. To find a lower boundon the capacityof that
channel,pick any source,definedby a sourceprobabilityden-
sity function rwv anda distortionmeasure

E
. Then,suggesta

joint source/channelcodingstrategy. This strategy hasto sat-
isfy all constraintson the channelinput signal. The next step
is to selectany decodingscheme.Clearly, to getgoodresults,
the decodershouldminimize the overall distortion(underthe
initially chosendistortionmeasure

E
). Onceall theseelements

arefixed,it is asimplematterto determinetheresultingaverage
distortion x . Then,wehave thefollowing statement:

Theorem1: Thecapacityof anergodicchannelspecifiedby
a conditionalprobability density function rAs�t u and a set of
constraintson the channelinput signalis at least y{z|�	�}x=� ,
where�	�$~ � denotestherate-distortionfunctionof somesourcerAv undersomedistortionmeasure

E
, and x is theaveragedis-

tortion (with respectto
E
) incurredby the transmissionof the

sourcer v acrossthe channelrws�t u using somejoint source-
channelcoding strategy that respectsthe constraintson the
channelinput.

Proof: By contradiction:Supposey����	��x	� . But then,
by theseparationtheorem,it is not possibleto reconstructthe
sourceat fidelity x . However, from our joint source-channel
codeconstruction,we know that this is indeedpossible,hencey�zV�	��x	� .
Clearly, sucha lower bound is particularly interestingwhen
there is a correspondingupperbound,hencethe capacityisy��i�	��x	� . By consideringarbitrarilycomplex codingandde-
codingschemes,we canalwaysachieve thiscase;however, for
verycomplex codingschemes,thereis noadvantagefromusing
ourargument.Theadvantageof ourargumentappearsin cases
wheresimplejoint source-channelcodingschemesachieveop-
timal (or nearlyoptimal)performance.

For example,we cangive a simplelower boundon the ca-
pacity of the standardadditive white Gaussiannoisechannel
[2, p. 239]. Pick the sourceto be zero-meanGaussianwith
mean-squareerror distortion. For the sake of the argument,
let the sourcevariancebe equal to the power constrainton
the channel� . Supposethat the encodingis simply uncoded
transmission,and the decodingis a scalingby ��)�����%-Ok� .
The achieved distortion for this schemeis found to be �������� " )�����%P� " � . Plugginginto the rate-distortionfunction of
theGaussiansourceof variance� [2, Theorem13.3.2],�	������� � T" �����G"��� L if � U � U � L� L otherwise,

(2)

wefind asa lowerboundon thecapacityof ourchannely z �	��� � ��� �Y ����� " ����%K��)D� " � e (3)

With hindsight,this is indeedthe capacityof that channel;in
other words, for this specialcase,the lower boundingtech-
niquesuggestedby Theorem1 givesthe bestlower boundon
capacityby the aid of a very simplecoding technique. As a
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matterof fact,it is well-known thatsucha simplejoint source-
channel� codeachievesoptimumperformancein theGaussian-
over-Gaussianexample.Thishasbeenreportede.g.in [9].

Are thereotherexampleswheresucha simplejoint source-
channelcodeachievesoptimumperformance,andhence�	��x	�
is equalto capacity?Thisquestionhasbeenaddressedandan-
sweredin [4]. As it turnsout, thereis aninfinite supplyof such
examples.

Thekey ingredientthatmakesourargumentwork is thesep-
arationtheorem.In generalnetwork situations,thereis nosuch
statement;however, we will explain below that it holdsfor the
relaynetwork underconsiderationin thispaper.

IV. CAPACITY OF THE GAUSSIAN RELAY NETWORK

In thissection,wepresentanupperandalowerboundonthe
capacityof the consideredGaussianrelay network model (as
describedabove in SectionIII-A) including the two additional
constraintsthatwerediscussedabove,namely(i), thatthereare
“deadzones”aroundthesourcenodeandaroundthedestination
node,and(ii) thatthesourcenodemayonly transmithalf of the
time.

A. UpperBound

As mentionedabove, our upperboundis derived from the
cut-settheoremasit appearsin CoverandThomas[2, Theorem
14.10.1]. For our network, onesuchboundis the “broadcast
cut,” i.e. we separatethesourcenodefrom therestof thenet-
work. This is illustratedin Figure3.

(Source
Node)

Node �Node �
(Destination

Node)

Node Y
(Relay)

(Relay)
Node >

Fig. 3. The “broadcastcut” separatesthe sourcenodefrom the restof the
network. The value of the cut-setboundthat is usedin this paperdepends
exclusivelyon thedottedconnections;any otherconnectionis assumedto bea
perfectchannel.

Thecut-settheoremsaysthat the rateat which we canreli-
ably transmitfrom thesourcenodeto therestof therelaynet-
work cannotexceedthe maximummutual informationacross
thiscut,definedasy���� �_�$�� �d�D ¢¡I� H T�£ ? " LgefegefL¤? \'¥ H " LfegefefL H \ � e (4)

In particular, to applyTheorem14.10.1from [2], wehavecho-
sen ¦R�¨§���© andhence ¦�ª«�¨§�Y Lgefege7L �¬© in the notationof
the theorem.This maximumcanbeupperboundedby theca-
pacityof a multiple-antennachannelwith onesendingantenna
and �­W � receiving antennas.This problemhasbeensolved
in [10] andhasbecomea standardresultin informationtheory.
With hindsight,it is quite intuitive that this is anupperbound:
Wehavesimply idealizedthelinks betweenthe ��WX� nodeson
thereceiving sideof thecutasperfectchannels,while in reality
they arenoisychannels.Clearly, this stepcannotdecreaseca-
pacity. But for thesystemwith the idealizedchannels,we can
indeeddeterminecapacity, preciselyby usingthe resultsfrom
[10]. It canbeexpressedasy���� � �Y ����� "(® ��% ¥�¥ c ¥�¥ " �O ¯ L (5)

where c denotesthevectorof length �«WZ� of all the c�° ’s, i.e.cV�±��c " LgefegefL c \ � . Consequently, ¥�¥ c ¥�¥ denotesthemagnitude
of thatvector.

Hence,if thesourcewereallowedto transmitin every time
slot, this argumentwould leadto anupperboundof y��²� . We
will arguelateron thatthisboundmustbeexpectedto beloose
in general.

However, undertheauxiliaryconstraintthatthesourcenode
maybetransmittingonly half of the time, theupperboundon
capacitybecomesy U T" y �²� , whichestablishesthefollowing
theorem.

Theorem2—upperbound: For any particularrealizationof
the randomgeometryof the network, the capacityof thecon-
sideredrelaynetwork is upperboundedbyy U y�³7´µ´ � F �_���� �Q �����G" ® ��% ¥�¥ c ¥�¥ " �O ¯ e (6)

An upperboundontheexpectedcapacityoverall possiblere-
alizationsof therandomgeometryof thenetwork is thenfound
by taking the expectationof y ³f´µ´ � F over c . Whenthe nodes
arelocateduniformly at random(asis thecasein our network
model), ¥�¥ c ¥�¥ " grows essentiallylinearly in � . This argument
couldbemadeprecise;however, underour additionalassump-
tion thatthereis a deadzonearoundthesourcenode,thispoint
becomessimpler: all the c @ ’s areboundedabove. Therefore,¥�¥ c ¥�¥ " cannotgrow morethanlinearly in � . As anintermediate
andnotverysurprisingconclusion,this tellsusthatin any case,
capacitybehavesat bestlike ������� . Notice that this is a direct
consequenceof the traffic pattern. In otherwords,in scenarios
wherethe goal is to maximizethe sumrate(or total through-
put) in the network, it is not a goodideato operateit in pure
relay mode: GuptaandKumarhave shown in [1] that a sum
rateof 
 � is achievableif the traffic patternis comprisedof�²)¶Y uniformly chosencommunicatingpairs.

B. LowerBound

In thissection,weusethelowerboundingtechniquethatwas
describedabove in Theorem1. To do so,anadditionaltrick is
needed.Supposethat the relaysoperateasfollows: If in time
slot · , they receiveasignal,thenthey transmitin timeslot ·¸%&�
that exact samesignal,scaledto meettheir power constraint.
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Supposethis systemis our new channel.Clearly, this channel
cannothave a capacitythat is larger than the capacityof the
Gaussianrelay network. At the sametime, this new channel
is just a simpleergodicpoint-to-pointchannel,andhence,the
separationtheoremdoesapply. This meansthatwe canindeed
usethe lower boundingtechniquethatwasdescribedabove in
Theorem1.

Thefirst stepis thusto pick a suitablesource.Not surpris-
ingly, for the problemat hand,we selectthe Gaussiansource
with squared-errordistortionmeasure.

Thesecondstepis theencodingrule. Weconsidersimplyun-
codedtransmission,asfollows: In time slot · , thesourcenode
broadcaststhesourceoutput H T ��·$� to all therelayssimultane-
ouslyandwithoutcoding.Consequently, in timeslot ·'%i� , the
relaysscaletheir noisy versionsof H T ��·$� to their power con-
straint � @ andforwardthis to thedestinationnode.In timeslot·'%¹Y , thegamestartsoverwith thenext sourceoutput.

Noticethatthisstrategysatisfiestheconstraintthatthesource
nodemaytransmitonly half of thetime.

Finally, for thedecoding,thereceiver formstheestimateºH T ��·$��� » T ? \ ��·$�
%X» " ? \ ��·
%Z��� e (7)

Thecoefficients » T and » " arechosento minimizetheresulting
mean-squareerrorwhichwewill denoteas � T .

To compute� T , we have to determine
? \ ��·$� and

? \ ��·²%P��� .
At time · , only thesourcenodeis transmitting,andhence? \ ��·$�¼� c \ H T ��·$�²%¹J \ ��·$� e (8)

To determine
? \ ��·�%k��� recallthatthesignalreceivedby relay >

attime · is ? @ ��·$���ic @ H T ��·$�_%(J @ ��·$� . Thisis scaledtomeetthe
power constraint� @ of relay > . Hence,the signaltransmitted
by relay > isH @ ��·'%Z����� ½ � @c " @ �!%&O ��c @ H T ��·$�²%¹J @ ��·$�$� (9)

for >!�{Y LgefefefL �XW � . The signal received at the destination
nodeis ? \ ��·
%Z����� \#] TB@_^ " h @ H @ ��·
%Z���'%KJ \ ��·
%!��� e (10)

To simplify notation,we introducethesymbol¾ @ �Zh @�¿ � @ )���c " @ �!%&OÀ� L (11)

andto make notationmorecompact,wealsointroducethetwo
vectorsof significantfadingcoefficients: ÁcK�R��c " LfefegefL c \#] T �
is thevectorof fadingcoefficientsfrom thesourcenodeto the���`W&Y�� relays,and

¾ �Â� ¾ " Lgefege7L ¾ \#] T � is thevectorof fading
coefficientsfrom the ���0WÃY�� relaysto thedestination.With this,
themean-squareerrorcanbeexpressedas� T � ��OÄ$ÅÆ�Ç ÈGÉ�ÊT$Ë tÌt È tÌt Ê �!%¹c "\ �V%¹O e (12)

It remainstodecideonafavorablepowerallocation.Wechoose
the(generallysuboptimal)allocationthatmakes

¾ @ �iÍ�c @ , for>	�iY LgefefefL �ÎWK� andsomeconstantÍ . Thatis,� @ � Í "¸c "@h "@ ��c " @ �Z%¹Ok� L (13)

where Í is chosen to match the sum power constraint[ \#] T@_^ " � @ �����ÎWXY��$b .
Note that at this point, � T is completelydeterminedby the

involved powers � , b and O togetherwith the geometryc @
and h @ , for all > .

The last stepis to verify that noneof the � @ increasesun-
boundedlywith � . This is ensuredby therequirementfor “dead
zones”aroundthe sourcenodeand the destinationnodeand
by the fact that the network is insidea disk of unit area:bothc @ and h @ arestrictly largerthanzeroandstrictly smallerthan
someconstant.

In summary, this leadsto thefollowing theorem.
Theorem3—lowerbound: For any particularrealizationof

the randomgeometryof the network, the capacityof thecon-
sideredrelaynetwork is at leasty z y�Ï�Ð¤Ñ � F �_���� �Q ����� " �� T L (14)

where� T is definedabove in Equation(12).
Proof: For theGaussiansourceacrosstwo usesof there-

lay network,adistortionof � T is feasible.But sincethesepara-
tion theoremappliesto thissituation,thecapacityof two usesof
therelaynetwork mustbeat least �	��� T � , where �	��~Ì� denotes
therate-distortionfunctionof theGaussiansourcewith respect
to mean-squareerrordistortion.Hence,thecapacityof onesin-
gle useof the relaynetwork mustbeat least �	��� T �*)¶Y . Plug-
ginginto therate-distortionfunctionfor theGaussiansource[2,
Theorem13.3.2],yieldstheclaimedlowerbound.

C. AsymptoticCapacity

To obtainacapacityresult,it remainsto beshown thatupper
andlower boundcoincide. For a finite number � of nodesin
thenetwork, this is not true. However, it turnsout thatasymp-
totically (as ��nÒp ), they do coincide. More precisely, the
following theoremcanbestated.

Theorem4—asymptoticcapacity: The capacity y of the
consideredrelay network is betweeny�Ï�Ð¤Ñ � F U y U y ³7´µ´ � F ,where ��Ó��\�ÔÖÕ ��y ³f´µ´ � F WXy�Ï�Ð$Ñ � F ��� � L (15)

for any particularrealizationof therandomgeometryof thenet-
work. Hence,asymptotically, the capacityof the considered
relaynetwork is �Q �����G" ® ��% ¥�¥ c ¥�¥ " �O ¯ e (16)

Remark:Theconvergenceestablishedin Theorem4 depends
crucially on the assumptionof deadzonesaroundthe sender
and receiver nodes: the geometryof the network can be ar-
bitrary, but it hasto respectthe deadzonerequirement.This
limitation of our resultis discussedin detail in SectionV-A.
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This theoremgivesthe asymptoticcapacityfor a fixednet-
work geometry× , andit directlyimpliesasimilarstatementabout
theexpectedcapacityover all possibleincarnationsof theran-
domnetwork,simplyby takingexpectationsover c . Weexplic-
itly discussthis issuebelow.

Proof: To prove this statement,we have to show that the
following differencegoesto zero:y ³f´µ´ � F WXy�Ï�Ð$Ñ � F � �Q ����� " ® ¥�¥ c ¥�¥ " �!%¹OO � T� ¯ e (17)

Equivalently, we will show that the expressionin parentheses
goesto one. In fact, this expressioncanalsobeinterpreted,as
follows: noticethat the upperboundon capacitydirectly im-
pliesa lower boundon thedistortionachievablefor any source
with respectto any distortionmeasure.In particular, we deter-
mine this for the casewherea Gaussiansourceis transmitted
acrosstwo usesof theGaussianrelaynetwork. Thedistortion
measureis themean-squarederror. Hence,thelower boundon
theaveragedistortionis� Ï�Ð¤Ñ � F � �k��Y�y�³f´µ´ � F ��� ��O¥�¥ c ¥�¥ " �V%¹O L (18)

where�o��~Ì� denotesthedistortion-ratefunctionof theGaussian
source[2, p. 346].

Our joint source-channelcoding schemealso transmitsa
Gaussiansourceacrosstwo usesof the relay network, and it
achievesa distortionof � T .

Hence,theexpressionin parenthesesin (17) is preciselythe
ratio � T )¶�=Ï�Ð$Ñ � F , andthegoalof theproof is to show that this
ratio tendsto oneasymptotically.

To thisend,theratiocanbewrittenout furtherasfollows:� T�=Ï�Ð$Ñ � F � ¥�¥ c ¥�¥ " �V%¹OO � T�� � ¥�¥ Ác ¥�¥ " %¹c "\ �$�!%¹OÄ�ÅÆ�Ç ÈGÉ ÊT$Ë tÌt È tÌt Ê �!%&c "\ �Z%&O e (19)

Noticethatpurelyfor notationalconvenience,wehavereplaced¥�¥ c ¥�¥ " by ¥�¥ Ác ¥�¥ " %Øc "\ . Wechoosethepowerallocationthatmakes¾ @ � Í�c @�L (20)

for >-�¨Y Lfefege7L �¹W�� . Under this power allocation,we can
simplify Ù c L ¾²Ú � Í ¥�¥ Ác ¥�¥ " (21)

and ¥�¥ ¾ ¥�¥ " � Í " ¥�¥ Ác ¥�¥ " e (22)

Thispermitsto eliminate
¾

from Expression(19) to obtain� T�=Ï�Ð¤Ñ � F � � ¥�¥ Ác ¥�¥ " %¹c "\ �$�!%¹OÛ�Ü tÌt ÅÆ tÌt Ê¤Ý�ÊT$Ë Ü Ê tÌt ÅÆ tÌt Ê �V%¹c "\ �V%¹O e (23)

For our further arguments,we prefer to rewrite this by mul-
tiplying both the numeratorandthe denominatorby the term

��%&Í " ¥�¥ Ác ¥�¥ " to obtain� T�ÃÏ�Ð$Ñ � F � ����%¹Í " ¥�¥ Ác ¥�¥ " �ßÞ*� ¥�¥ Ác ¥�¥ " %&c "\ ���Z%¹Okà��Í ¥�¥ Ác ¥�¥ " � " �!%Z�$��%&Í " ¥�¥ Ác ¥�¥ " �7��c "\ �V%¹Ok� e
(24)

The constantÍ hasto be determinedfrom the total relay
power ���XWiY��¤b . Using the power allocationas in Equation
(13), Í hasto satisfythecondition���ÎWaY��$b � \�] TB@_^ " � @� Í " \#] TB@_^ " c " @h "@ ��c " @ �!%&Ok� (25)

To simplify thenotationandtheinterpretationof theresult,we
definethefollowing function:á ���
�â�_���� \#] TB@_^ " c " @h "@ ��c " @ �!%&OÀ� e (26)

Notice that
á ���
� is a nondecreasingfunction of � : all terms

in the sumarenonnegative. Using
á ���
� , we can expressthe

constantÍ as Í " � ���ãWXY��¤bá ���
� e (27)

This is pluggedinto Equation(24). Multiplying both the nu-
meratorandthe denominatorby

á ���
� , this permitsto express� T )D� Ï�Ð¤Ñ � F as� T�=Ï�Ð¤Ñ � F � � á ���
�²%Z���ãW&Y��¤b ¥�¥ Ác ¥�¥ " �7~���ÎWaY��$b ¥�¥ Ác ¥�¥ ä �Ö%~��¤� ¥�¥ Ác ¥�¥ " %&c "\ ���!%¹Ok�%=� á ���
�'%i���ÎWXY��¤b ¥�¥ Ác ¥�¥ " �f��c "\ �Z%&Ok� e (28)

This rather cumbersomeexpressioncan be rewritten in the
shape � T�=Ï�Ð$Ñ � F � ���`WXY�� ¥�¥ Ác ¥�¥ ä �(b!%!~g~f~���`WXY�� ¥�¥ Ác ¥�¥ ä �(b!%!~g~f~ (29)

Thekey stepof ourproofis toarguethat ����W�Y�� ¥�¥ Ác ¥�¥ ä dominates
all othertermsthatgrow with � , both in thenumeratorandin
the denominator. Then, the ratio � T )D�=Ï�Ð¤Ñ � F indeedtendsto
oneas � growsto infinity.

In the numerator, the only competitoris
á ���
� ¥�¥ Ác ¥�¥ " . In the

denominator, thecompetitorsare
á ���
� and ¥�¥ Ác ¥�¥ " .

It is true under much more generalconditionsthat ���ZWY�� ¥�¥ Ác ¥�¥ ä dominatesthesethreeexpressions. However, in the
caseat hand,we canuseagainour additionalassumptionsto
simplify theargument.

Theassumptionof a deadzonearoundthesourcenodeim-
plies that c @ is upperboundedby a constantfor all > . More-
over, the fact that thenetwork is locatedin a disk of unit area
implies that h @ is lower boundedby a constantstrictly greater
thanzero. Thesetwo ingredientsimply thatevery term in the
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sum
á ���
� asdefinedin Equation(26) is upperboundedby a

constant.å Hence,
á ���
� cannotgrow fasterthanlinearly in � .

Moreover, sinceall terms c @ arestrictly larger thanzero,it
follows that ¥�¥ Ác ¥�¥ " is astrictly increasingfunctionof � .

Thesetwo insightsaresufficient to prove that ���oWKY�� ¥�¥ Ác ¥�¥ ä
indeeddominatesboth numeratoranddenominator, ascanbe
verifiedeasily.

To make the argumentprecise,the limit can thenbe com-
puted for exampleby successive applicationsof the rule of
Bernoulli-del’Hopital.

For theproofof Theorem4, it wasnotnecessarytodetermine¥�¥ c ¥�¥ " precisely. However, to determinecapacity, it is still nec-
essaryto know how ¥�¥ c ¥�¥ " behavesasa functionof � . We have
discussedthis right aftertheupperbound(Theorem2). There,
we arguedthat undercertainconditions,it essentiallygrows
linearly in � . Onenetwork structurefor which this is true is
thecasewhentherearedeadzonesaroundthesourcenodeand
aroundthe destinationnode. This canbe seenby noting that
eachc @ is upperboundedby aconstant.

For thecaseof a randomgeometry, it remainsto determine
the expectedasymptoticcapacity y over all possiblenetwork
realizations,y � S Æaæ �Q ����� " ® ��% ¥�¥ c ¥�¥ " �O ¯¢ç L (30)

whereS Æ
è ~ é denotestheexpectationwith respectto therandom
variable c . Note that the expectedasymptoticcapacitydoes
not dependon the full geometryof the network; rather, it is
sufficiently describedby thestatisticalbehavior of thedistance
from the sourcenodeto the relays. For the stochasticmodel
of [1], i.e. for the casewherethe nodelocationsareselected
uniformly, it canagainbe arguedthat ¥�¥ c ¥�¥ " grows essentially
linearly. While a preciseanalysisof this caseis beyond the
scopeof thepresentpaper, numericalillustrationsof this point
will besuppliedbelow.

Notice however that it is possibleto constructscenarios
where ¥�¥ c ¥�¥ " grows morethanlinearly by increasingthe relay
densityverycloseto thesourcenodeas � increases.Our anal-
ysis doesnot apply to sucha scenario:in that case,the sug-
gestedstrategy to prove achievability (Theorem3) would give
unboundedpowerto afew relays,while many relayswouldnot
getany poweratall, asfollowsdirectly from Equation(13): as
therelaynode> approachesthesource,its correspondingvalue
of c @ grows without bound,andsodoesits power � @ . We do
not considerthis a valid (nor an interesting)power allocation.
Clearly, a differentpower allocationstrategy may remedythis
problem;but this is beyondtheframework of thepresentpaper.

D. NumericalResults

Anotherissueof interestis thebehavior of theconvergence
of upperandlowerboundsin Theorem4 for arandomgeometry
asthenumberof nodestendsto infinity. In thispaper, wedonot
presenta theoreticalanalysisof this question;rather, we show
theresultof a numericalsimulation.

For the simulation, we generatethe network successively.
First, thelocationsof sourceanddestinationnodesarechosen,
uniformly at random. Then,in eachstep,the simulationadds

onenodeto thenetwork, uniformly at random,but respectinga
deadzoneof a certainradiusaroundthesourceanddestination
nodes.In eachstep,thesimulationre-evaluatesthedifference
betweentheratebounds.Hence,theresultof thesimulationis
a relationshipbetweenthenumberof relay nodesandthe dif-
ferencebetweenthepresentedupperandlowerbounds,y ³f´µ´ � F WXy�Ï�Ð$Ñ � F � �Y y����­W �Q ������" �� T L (31)

where � T is computedusingthepower allocationasspecified
by Equation(13).

Figure4 shows simulationresultsfor oneparticularrealiza-
tion of arelaynetwork. For thefigure,theparametershavebeen
chosenasfollows: thepowerof thesourcenodeis �����g� , the
averagerelay power is b¨�ê��� also,and the noisepower isOë�ì� . We usea deadzoneof radius � e ����� , where � is the
radiusof thenetwork, thatis, � �-�D)�
 í meters.For any given
numberof relaysat therandomlyselectedlocations,thefigure
shows the discrepancy betweenupperand lower bound,nor-
malizedby theupperbound,i.e. thefigureshows thenumber
of nodesversusthequantityy�³f´*´ � F Way Ï�Ð¤Ñ � Fy ³f´µ´ � F e

(32)

Recallthatsomewherein this gaplies thetruecapacityof that
particularrelay network. Clearly, a more completestudy of
the convergencebehavior would involve the considerationof
theaverage behavior over multiple realizationsof thenetwork
geometry. However, sucha studyis beyondthe framework of
this paper; the goal of this sectionis merely to illustrate the
behavior.

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Nodes

(C
up

pe
r −

 C
lo

w
er

) 
/ C

up
pe

r

Fig. 4. Thenormalizeddifferencebetweentheboundsfor onerealizationof
anadhocnetwork.

The reasonwhy the convergenceof the two boundsis not
unimodallies to someextentin therandomnessof theparame-
ters c @ and h @ . In particular, theupperbounddependsonly onc @ while thelower bounddependson both c @ and h @ . Clearly,
if anew relayis addedwith ahighvalueof c @ (i.e. closeto the
sourcenode),it considerablyincreasestheupperbound.How-
ever, this doesnot imply that the lower boundincreasesalso:
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dependingon the correspondingvalueof h @ , this will in fact
notbetheî case.

Hence,thefactthattheconvergenceof theboundsis notuni-
modal is in part alsodueto our codingscheme,which reacts
differentlyto thenodelocationsthantheupperbound.Yetthere
arecaseswheretheconvergenceis unimodal,e.g.whenc @ �-�
and h @ ��� for all > .

Recallalsothatour codingschemedoesnot make optimum
useof therelays,exceptin theasymptoticcase.However, the
margin that may (or may not) be gainedby a bettercoding
schemeis verysmallat large � .

V. DISCUSSION AND EXTENSIONS

A. Discussion

Thegoalof this paperwasto derive theasymptoticcapacity
of an additive white Gaussianwirelessnetwork undera relay
traffic pattern. This capacitywas found undertwo additional
assumptions.

Thefirst assumptionis that thereis a deadzonearoundthe
sourcenodeandanotherdeadzonearoundthedestinationnode.
If thisassumptionis violated,theproofof Theorem4 maystill
work in somecases;however, it invalidatesthe power alloca-
tion. If one of the relay nodesgetsvery closeto the source
node,its correspondingvalue c @ tendsto infinity andso does
the valueof � @ . Whenthereis indeeda relay nodearbitrar-
ily closeto thesourcenode,a differentanalysiswould have to
beperformed.For example,undercertainconditions,another
cut throughthe network (ratherthanthe oneshown in Figure
3) may lead to a tighter upperbound. We could still usethe
consideredjoint source-channelcodingstrategy, but thepower
allocationwouldhaveto bealtered.It is notclearwhetherthere
is anotherpower allocationunderwhich thestrategy performs
optimally. For apracticalsystem,theassumptionof deadzones
doesnotseemvery limiting.

The secondassumptionis that the sourcenode may only
transmithalf of thetime. Clearly, thisassumptionis muchmore
restrictive,andit seems“unnecessary.” Let ustry to give some
insight into why it is not easyto obtaina resultwithout this
assumption:The “broadcastbound”asksto maximizemutual
informationacrossthebroadcastcut asillustratedin Figure3.
Clearly, this maximumis achievedwhenall relayslistento the
source. Now supposethat in every time step,all relaysonly
listen to the source.This will give a largevaluefor theupper
bound,while in truth very little informationis carriedthrough
to thedestinationnode.Clearly, theboundshouldbeexpected
to be loose: someof the relayshave to passthe messageon-
wardsto thedestinationnode.Theassumptionthat thesource
nodemayonly transmithalf of thetime is oneway to remedy
theweaknessof theconsideredcut-setbound.

Thereareseveral otherways that may leadout of this im-
passe.First, themax-flow min-cut theoremcouldbeusedin a
morepowerful versionto take into accountthe fact thatwhen
all relaysarelisteningto thesource,thennoneof themactually
forwardsmessagesto the destination.However, it seemsthat
thecodingschemeusedto prove thelower bound(Theorem3)
wouldhaveto beadapted,too,sincethesourcenodenow sends
a new messagein every time step.In thatcase,thereis a large

interferencebetweenwhat thesourcenodetransmitsandwhat
therelaystransmit,andit is not clearhow to handlethis case.
Anothersolutioncould be to studya differentkind of nodes:
relaysthatcantransmitandreceivesimultaneously. Ourresults
canalsobealteredto applyto certainscenariosof this type.

Finally, let us arguethat the codingscheme,assimpleasit
is, is genuinenetwork coding: In the first step(thebroadcast-
ing from the sourcenodeto the relays),a “code” is usedthat
permitsevery relay to decodeat its particularlevel of fidelity.
This is clearlyrelatedto thefactthatwhenoneGaussiansource
is sentacrossa Gaussianbroadcastchannelto multiple desti-
nations,thenuncodedtransmissionis an optimal strategy and
actuallyoutperformsany approachbasedoncapacity-achieving
codes.Extensionsof this amazingbehavior werepresentedin
[4]. In thesecondstep(themulti-accessingfrom therelaysto
thedestination),cooperativetransmissionis usedtoboosttrans-
mit power. It is thecombinationof thesecodingstepsthatyields
an achievable rate that behaves like ������� . We have already
mentionedthat if on thecontrary, only point-to-pointcodingis
used,thentheachievablerateremainsconstant,independentof� . Hence,for the Gaussianrelay network aswe have consid-
eredit here,network codingsignificantlychangesthe asymp-
totic behavior. This conclusionis certainly of interestin the
interpretationof theresultof [1]: it suggeststhepossibilitythat
theasymptoticbehavior of capacitydoeschangewhennetwork
codingratherthanonly point-to-pointcodingis allowed.

B. ConstantRelaySumPower

In this section,we point to anextensionof our resultsto an-
othercaseof interest:supposethat the �«W&Y relaynodeshave
to sharea constantpower b . Otherwise,we imposethesame
conditionslike in SectionIII. It is clearthat the upperbound
(Theorem2) is not affectedby this change;it still tendsto in-
finity like �����G"'� . It seemsat first that this upperboundshould
be muchtoo loose;moreprecisely, it seemsthat the capacity
shouldremainfinite eventhoughthenumberof relaystendsto
infinity sincetheoverallpower is finite.

Somewhat surprisingly however, a similar capacityresult
holds. More precisely, the differencey ³f´µ´ � F Wiy�Ï�Ð$Ñ � F tends
to aconstantthatis strictly largerthanzero(but independentof� ). Hence,even in this case,the capacitybehavesasymptoti-
cally like ����� " � . A moredetailedanalysisof this casewill be
presentedat a laterstage.Thereasonfor this somewhatcoun-
terintuitivebehavior lies in theamountof spatialdiversitypro-
videdby ourchannelmodel.

C. LimitedNetworkKnowledge

Anotherinterestingfeatureof the lower boundpresentedin
Theorem3 of this paperis that it doesnot requirefull knowl-
edgeof the network. In particular, the relay node > doesnot
needto know theexactlocationsof theotherrelaynodes;all it
needsin orderto determineits appropriatepowerlevel � @ is the
constantÍ asin Equation(27). More interestingly, thesource
nodeactuallyneednotknow anythingaboutthenetwork geom-
etryatall; it simply transmitsat its power level.

Theseissuesareof specialinterestin thepresenceof fading.
An analysisof thiscasewill bepresentedata laterstage.
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D. SensorNetworks

Theresultpresentedin this paperalsoimpliesa resultabout
a certainsensornetwork situation. Supposethat the underly-
ing phenomenonto bemeasuredis aGaussianrandomvariableH , andsupposethat wirelesssensorsarescatteredaroundthe
physicalobjectssuchthateachof thesensorsmeasuresa faded
andnoisyversionof H , wherethenoiseis Gaussian.That is,
themeasurementof sensor> is? @ � c @ H %¹J @ L (33)

where J @ is a Gaussianrandomvariable. If a centralstation
that receivesthesignalsfrom the sensorswantsto reconstructH with respectto themean-squarederrorcriterion,whatcoding
strategy shouldthe sensorsemploy? For this case,our result
implies that as the numberof sensorsincreasesto infinity, it
is optimalfor thesensorsto simply transmittheirmeasurement
withoutany codingatall, usingtheschemedescribedin Section
IV-B. Clearly, this resultcanbeextendedto similarscenarios.
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