
Abstract--This paper develops simple cost models for provisioning
content distribution networks that use the simple and highly
scalable bandwidth skimming protocol for streaming. New insight
is obtained into (1) how cost-effective proxy servers are in
multicast streaming systems, (2) the most effective streaming
protocol, and (3) the optimal proxy content, as a function of the
system configuration and workload. A key result is that proxy
servers are only cost effective if (a) the origin server does not have
a multicast capability, or (b) the file request rate is low, and thus
multicast is not highly effective, or (c) the cost of a proxy server
stream is a very small fraction (i.e., approximately 1/P) of the cost
of an origin server stream, where P is the number of proxy servers
and the cost of either type of stream includes both the server and
network resource costs. For cases where proxy servers are cost
effective, results in the paper provide the optimal proxy content
and the most effective streaming protocol, as a function of a wide
range of system configuration and workload parameters. In
contrast to previous work, full file caching outperforms prefix
caching over a significant region of this system design space, due
to more efficient multicast streaming protocols as well as a more
complete exploration of the practical system configuration space.

I. INTRODUCTION

A content distribution network (CDN) for data that is
distributed via a wide area communication network generally
consists of the origin server that contains the content and a set
of “proxy” servers that each store a subset of the content closer
to key client populations. Provisioning the CDN involves
determining the network interface bandwidth, number of disks,
and processing capacities that should be purchased or leased at
the servers, as well as deciding which content should be stored
at each proxy.

For conventional content, including stored media files that
are delivered using simple unicast streams, each delivery from
content stored at a proxy saves essentially an equal amount of
work by the origin server, as well as the cost of transmitting the
data from the origin to the proxy. Thus, in an abstract sense, a
proxy should store the media that will be accessed most
frequently, and should be provisioned with sufficient storage
and bandwidth to off-load the origin server (and remote
network) to the desired degree.

Provisioning a CDN for stored media content is
significantly more complex if the system delivers the content
using one of the recently proposed scalable streaming

•This work was partially supported by the National Science
Foundation under Grants CCR-9975044, CCR-9972372, and ANI-
0117810 and by the Natural Sciences and Engineering Research
Council of Canada under Grant OGP-0000264. Jussara Almeida is
partially supported by CNPq/Brazil and by a Lawrence H. Landweber
NCR Graduate Fellowship in Distributed Systems.

protocols (e.g., [3,6,9,11,13]), for at least two reasons. First,
these protocols use (IP or application-level) multicast to
deliver the content. Thus, for a given frequently accessed file,
the origin server will perform less work per client request than
a proxy must perform (because on average more clients will
share each origin stream). Second, the protocols deliver the
earlier portions of the stream more frequently (and to fewer
clients on average per multicast) than the later portions of the
stream. Thus, it may be more cost effective to store a prefix
rather than a suffix of a given media file at the proxy.
Together, these considerations imply that the subset of the
content that should be stored at a given proxy depends not
only on the content access rates, but also on the corresponding
protocol-specific delivery rate for each portion of the file as
well as the actual relative cost of a proxy (multicast) stream
compared to an origin server (multicast) stream. Simple
quantitative examples that illustrate these points are provided
in Section III.A.

Previous work [4,5] has developed a relatively simple
model for estimating delivery cost, and the proxy content that
minimizes delivery cost, for variations in the scalable
streaming protocol and for specified values of the content
access rates and proxy bandwidth and storage capacity. Eager
et al. developed the model for the case that the “partitioned
dynamic skyscraper” (PDS) protocol is used by both the origin
and the proxy servers. The PDS protocol only allows a pre-
specified fraction of the file, or the full file, to be stored at the
proxy. Ramesh et al. [14] modified the model server bandwidth
calculations for several variations on the “patching” protocol
[3,11] including “selective catching” [9], and applied the cost
model to determine the optimal fraction of the file that should
be stored at the proxy when the proxy has no bandwidth or
storage constraints. Wang et al. [15] use a similar cost model
but with the server bandwidth costs modified for the case that
the origin uses unicast delivery to the proxy, the proxy caches
an arbitrary fraction of the file, and the proxy uses one of
several other variations on the patching protocol to deliver the
content to the client. They develop a simpler solution method
and apply the model for the case of high client arrival rate,
limited proxy disk storage, but unlimited proxy disk bandwidth.
Each of these previous studies has assumed that client
bandwidth is at least two times the streaming rate. A key
conclusion of each of these previous studies is that if client
request rate is high and/or proxy storage is limited, storing file
prefixes rather than (fewer) full files significantly reduces
delivery cost.

This paper revises the cost model to provision CDNs that
use more efficient scalable protocols, and obtains new insight
into the cost-effectiveness of proxy servers, the most effective

Jussara M. Almeidaa Derek L. Eagerb Michael Ferrisa Mary K. Vernona

Provisioning Content Distribution Networks for Streaming Media••••

aComputer Sciences Department bDepartment of Computer Science
University of Wisconsin Madison, USA University of Saskatchewan, Canada

{jussara,ferris,vernon}@cs.wisc.edu eager@cs.usask.ca

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1746 IEEE INFOCOM 2002

protocol, and the optimal proxy content, over a significantly
wider region of the system design space than studied in
previous work.

The CDN cost model is developed for the following
protocols:

1. BWSkim(b): The origin server as well as the proxy
servers use the simple scalable bandwidth skimming
protocol [6], with client bandwidth equal to b.1

2. BWSkim/U(b): The origin server uses simple unicast
streams to the proxy servers, but the proxy servers use
bandwidth skimming to the clients.

3. BWSkim[/U]+Batch(b): For each of the above systems, if
the proxy stores a prefix, clients use extra bandwidth, or
reduce their bandwidth used for listening to proxy streams,
in order to batch together to share a new origin stream for
the suffix.

We compare these protocols with respect to content delivery
cost, and determine the optimal proxy content as a function of
parameters that define a large system design space, including:
(1) number of proxies varying from 1 – 100, (2) unlimited as
well as realistically constrained proxy storage capacity and disk
bandwidth, and (3) client arrival rate at each proxy varying
from 1 – 10,000 requests, on average, per average playback
duration. The optimal content is defined as the content that
minimizes delivery cost, or a simpler rule of thumb that
achieves near-minimum cost.

The key results are summarized in Section VI. One key
result is that storing content at proxy servers is only cost
effective if (a) the origin server does not have a multicast
capability, or (b) the file request rate is low, and thus multicast
is not highly effective, or (c) the cost of a proxy server stream
is a very small fraction (i.e., approximately 1/P) of the cost of
an origin server stream, where P is the number of proxy servers
and the cost of either type of stream includes both the server
and network bandwidth costs. Furthermore, over a large
fraction of the system design space where proxy servers are
cost effective, the optimal proxy content consists primarily of
full files rather than file prefixes. Although seemingly in
conflict, this result is shown to be consistent with previous
results. The results also show that the regions of the design
space where prefix caching significantly reduces delivery cost
coincide with the regions where listening to an extra origin
stream is cost-effective. In all other regions, the simpler
BWSkim[/U] policies are cost-effective.

The remainder of this paper is organized as follows.
Section II provides background information on the bandwidth
skimming protocol and the delivery cost model. Section III
defines the new CDN protocols more precisely and provides
the cost model formulas for each protocol. Section IV and V
provide results for unconstrained and constrained proxy
storage and disk bandwidth, respectively. Section VI
concludes the paper.

1 The bandwidth skimming protocol is significantly more efficient
than patching or PDS at high client arrival rates, and significantly
more efficient than selective catching at low arrival rates, as will be
shown in Section II.C.

II. BACKGROUND

A. CDN Configuration

The CDNs evaluated in this paper, illustrated in Figure 1,
consist of an origin server (or simply the origin) and P proxy
servers. A client requests the content from a nearby proxy.
Depending on the delivery protocol (defined in Sections III.C –
III.E), if the requested data is not stored at the proxy, the origin
either streams the data to the proxy which then delivers it to the
client(s), or the origin delivers the stream directly to the clients.
In the former, the proxy sends a request to the origin and
delivers the response stream to the client. In the latter, the
proxy might forward a request to the origin and then inform the
client which origin multicast streams to listen to.

We assume that the proxy server uses the scalable
(multicast) bandwidth skimming protocol to deliver the content
to its clients. In most protocols, we assume that the origin
server also employs the bandwidth skimming delivery protocol
(using either IP multicast, which may become more widely
available as new protocols supporting single-source multicast
[10] are implemented, or using application-level multicast).
We also consider the case that the origin can not multicast to
the proxies, and thus the origin uses simple unicast streaming.

B. Bandwidth Skimming Protocol

The reader is referred to previous work [6,8] for a
complete description of the bandwidth skimming protocol.
The basic idea is that each client request initiates a new
multicast stream. In one variant of the protocol, the client
listens to the new stream as well as the closest (target) stream
that is still active. When the new stream has delivered all of
the data that the client missed in the target stream, the new
stream is terminated, and all clients listening to the target
stream (are now “merged” and) start listening to the next
closest target stream that is still active. If a target stream
terminates before the later stream is ready to terminate, the
clients listening to the later stream simply start listening to the
next closest target stream. Unlike previous scalable streaming
protocols, if client bandwidth is less than twice the streaming
rate, clients can listen to an increasing fraction of the target
stream (and a corresponding decreasing fraction of their main
stream) in order to merge with the target clients [6]. Thus,
bandwidth skimming can be used to deliver high quality videos
that require a significant fraction of the bandwidth to the client.
Because clients are merged hierarchically, the server
bandwidth required to provide immediate service to each client
request grows only logarithmically (with a small constant
factor) in the client request rate.

CLIENTS

Figure 1: Content Distribution Network (CDN)

PROXY

SERVER

CLIENTS

PROXY

SERVER

ORIGIN SERVER

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1747 IEEE INFOCOM 2002

C. Required Server Bandwidth

Results in [7] show that the following formula is a good
estimate of required server bandwidth2, measured in units of
the streaming rate, when b=2, bandwidth skimming is used to
deliver the file, client arrivals are Poisson (as measured in [1]),
each client requests the entire media file, and the entire file is
stored at the server:

B(N) = η ln (1 + N/η), (1)

where η=1.62 for b=2, and N is the file request rate. We have
also verified that the above formula with η=5.53 (i.e., equation
(6) in [7] with n=1.2), is an accurate estimate for bandwidth
skimming if b=1.2 (i.e., results are within 12%).

Figure 2 plots the required server bandwidth for bandwidth
skimming with two values of b, and for the patching protocol
(which requires b=2) under the same assumptions [7]. These
results show that bandwidth skimming is significantly more
efficient than patching when client request rate is high.

An estimate of the required server bandwidth for the above
assumptions but for deterministic inter-arrival times, obtained
from a bound provided in [7], is given for b=2 by:

B(N) = 1.5log2 (1 + N).3 (2)

D. Previous CDN Cost Model

The CDN delivery cost, applied in [4, 14, 15], for a file
that has a fraction f and client rate N/P at each proxy, is:

C(f, N,P,b) = Borigin(f, N,P,b) + P×β ×Bproxy(f, N,P,b) (3)

where Borigin and Bproxy depend on f, N, P, b, and the delivery
protocol in use, and β ≤ 1 is the average cost per proxy stream
relative to an origin server stream. Stream cost is based on
estimates of the average resources used by the streams from the
respective server. Origin stream cost will depend on whether
the origin delivers content only to the proxy or directly to the
clients. Note that multiplying both sides of equation (3) by the
estimated origin stream cost yields the actual estimated CDN
delivery cost. Equation (3) can also be modified in the obvious
way for the case that each proxy has a different client rate and
stores a different fraction of the file [5].

An optimization problem can be formulated in which the
objective is to minimize, over the fraction of each file that is

2 The “required server bandwidth” for a file is defined as the average
server bandwidth used by the specified protocol to serve each client
immediately.
3 Using simulation, we have validated that this expression is a good
estimate of required server bandwidth for the bandwidth skimming
policy under the stated assumptions.

stored at each proxy, the sum of the delivery cost for each file
(given by equation (3)), subject to bounds on the total proxy
bandwidth available to deliver all files and on the proxy
storage capacity. Solving the optimization problem, as in
[4,5,15], yields both the minimum delivery cost and the proxy
content that minimizes cost. Previous work used this approach
for the CDN protocols reviewed in Section I.

III. NEW CDN PROTOCOLS & COST MODELS

Section III.A provides examples that illustrate the need for
a simple delivery cost model, such as the model in Section
II.D, to provision scalable streaming media CDNs. Section
III.B discusses the assumptions that will be made in Sections
III.C-E, which define the BWSkim(b), BWSkim/U(b), and
BWSkim[/U]+Batch(b) protocols, and derive formulas for
Borigin and Bproxy for the delivery cost model for each protocol.

A. Motivating Examples

To understand the need for a delivery cost model to
provision a CDN when scalable streaming protocols are used,
consider a CDN with ten proxy servers (i.e., P=10) and request
rate per proxy (N/P) equal to 100 for a given media file. If the
file is not stored at any of the proxies, the request rate to the
origin is equal to 1000. Figure 2 shows that the required origin
server bandwidth is approximately twelve (concurrent) streams
for client request rate 1000 and client receive bandwidth b=2.
On the other hand, if each proxy stores the entire file, Figure 2
shows that the required bandwidth at each proxy server (with
request rate 100) is approximately seven streams. Whether ten
proxy servers each transmitting seven streams is more cost
effective than one origin server transmitting twelve streams
depends on the average cost ratio of the origin server stream
and the proxy server stream, which in turn depends on both the
server and network resource costs.

Note that similar tradeoffs occur for other scalable
streaming protocols. For example, periodic broadcast protocols
(e.g., [12,13,15]) require a fixed server bandwidth (e.g., on the

Table 1: Client Workload and Cost Model Parameters

Symbol Definition

λ Average client request arrival rate for a file

T Media file duration (in minutes)

N Client arrival rate, in arrivals per T (N=λT)

b Client bandwidth

f Fraction of the file stored at the proxy

Bproxy

Server bandwidth required to deliver the
content stored at the proxy, measured in units
of the file streaming rate

Borigin

Server bandwidth required to deliver content
from the origin, measured in units of the file
streaming rate

β Ratio of cost of one proxy server stream to
cost of one origin server stream

P Number of proxy servers

C Total delivery cost for the file

0

10

20

30

40

50

1 10 100 1000 10000
C lien t R eq u est R ate

R
eq

ui
re

d
Se

rv
er

B
an

dw
id

th

P atching

B andw idth
Skim m ing(b=1 .2)

B andw idth
Skim m ing(b=2)

Figure 2: Server Bandwidth for Scalable Protocols

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1748 IEEE INFOCOM 2002

order of 10 streams) for the origin or for each proxy that stores
the file, independent of the client arrival rate.

The capability to store file prefixes at the proxy creates
further complexity in provisioning the proxy storage. Consider
a CDN with a single proxy with client rate equal to 1000 for a
given file. As before, twelve origin streams are required to
deliver the file if it is not stored at the proxy. If instead the
proxy stores the first 10% of the file, the client request rate for
the prefix, normalized to the length of the prefix, is 100. Thus,
from Figure 2, the proxy transmits approximately seven
concurrent streams to deliver the prefix to all clients. If the
origin server transmits through the proxy, or informs the proxy
of its streams for merging, the total required bandwidth is still
twelve, so the origin transmits five streams to deliver the file
suffix. Thus, a small amount of proxy storage (e.g., 10% of the
file) offloads a large fraction of the origin server bandwidth
(i.e., seven out of twelve of the origin server streams). Similar
examples can be given for other scalable delivery protocols,
since each delivers a prefix more frequently than later portions
of a popular file. These factors are part of the basis for the
previous conclusions [4,5,14,15] that prefix caching at the
proxies minimizes delivery cost. However, modern disks have
a relatively large amount of storage, so realistic client request
rates and proxy bandwidth constraints for the assumed proxy
storage capacity, together with using the more efficient
bandwidth skimming protocols may lead to new conclusions.

Which data should be stored at the proxies depends in
complex ways on the client workload, the number of proxies,
the storage capacity and bandwidth of the proxies, and the
relative costs of proxy and origin server streams. Simple
models that capture main features of the system behavior are
needed to obtain initial insights into the most effective delivery
protocols as well as the proxy storage strategies that minimize
delivery cost as a function of those parameters. Such models,
which can be refined to include more details of the system
behavior, are discussed next.

B. Model Assumptions

In this paper, we use the model of delivery cost, as a
function of client arrival rate and fraction stored at the proxy,
given in equation (3). The workload and cost model parameters
are shown in Table 1. We assume that the proxy client
workloads are statistically homogeneous (which implies that all
proxies store the same fraction f of each file). Equation (3) also
assumes that the average cost of an origin stream as compared
with a proxy stream is expressed as a constant, β, which will be

varied in the experiments in Sections IV and V to determine its
impact on the optimal proxy cache content.

In Sections C-E below, we define, and derive formulas for
the CDN server bandwidths, for three ways of employing the
bandwidth skimming protocol: BWSkim, BWSkim/U, and
BWSkim[/U]+Batch. The derived bandwidths were validated
against simulation over a wide range of client arrival rates (i.e.,
N/P = 1−10,000), file fraction stored at the proxies (f = 0.01–
0.99), and for 1−10 proxy servers. The formulas are within
15% of the simulation values for all of these parameter ranges.

In deriving the bandwidths, it is assumed that client
arrivals are Poisson (as measured in [1]) and that each client
retrieves the entire requested file. For the systems in Sections C
and E, it is further assumed that the origin can stream the
content directly to the client, by using, for example, the
mechanism mentioned in Section II.A.

The bandwidth calculations are easily modified for various
types of heterogeneities of the client workloads (as was done
in [5]) or for various models of interactive client requests.

C. BWSkim(b) Protocols

In the BWSkim(b) protocol, the proxies can store an
arbitrary fraction of a given file. Both the proxy and the origin
use the simple closest target bandwidth skimming protocol (for
client bandwidth b) to deliver their streams, as illustrated in
Figure 3a for a file with fraction f stored at the proxy. A new
client stream from the proxy is merged hierarchically with
other streams from the same proxy. If the full stream or a suffix
is delivered by the origin, origin streams are also merged. The
origin may stream the media data directly to the clients rather
than through the proxies, which only impacts the value of β.

With a small increase in implementation complexity (i.e.,
messages from the origin to the proxies informing them of each
new origin stream for any file that has a prefix stored at the
proxies), a proxy can direct the clients of the oldest of the
active prefix streams for a file to listen to and begin merging
with a closest active target origin stream. To simplify the
calculation of required origin server bandwidth for the
BWSkim protocol, we assume that the proxy implementation
does not have this optimization. However, we have verified
that the calculated origin server bandwidth is very close to the
bandwidth for the optimized protocol (typically within 10%)
over the parameter space of our validation experiments. Part of
the explanation is that at moderate to high client arrival rate,
new clients continually merge with the oldest proxy stream,
which delays the time when it can start a successful merge with
the closest target origin stream. At lower arrival rates, there is

a) BWSkim(2) b) BWSkim/U(2) c) BWSkim+Batch(3)

0

0.2

0.4

0.6

0.8

1

0
0.1

5
0.3 0.4

5
0.6 0.7

5
0.9

Time

P
os

iti
on

in
M

ed
ia

F
ile

Proxy B client
stream

f

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Time

Po
si

ti
on

in
M

ed
ia

Fi
le

f

0

0.2

0.4

0.6

0.8

1

0
0.1

5
0.3 0.4

5
0.6 0.7

5
0.9

Time

Po
si

tio
n

in
M

ed
ia

Fi
le

Proxy B
client stream

f

Prefix merges

Suffix
merges

Figure 3: CDN Delivery Protocols (Streams Requested by Proxy A Clients)

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1749 IEEE INFOCOM 2002

less overall opportunity for merging, and hence, variations in
the merging protocol do not have a large impact.

The BWSkim proxy uses bandwidth skimming to deliver a
file of length fT which has normalized client request rate equal
to λ/P × fT=fN/P. Letting Nproxy=N/P,

Bproxy (f, N,P,b) = η ln (1 + f Nproxy/η), (4)

where η depends on b, as given in Section II.C.
To derive Borigin, we first estimate the average arrival rate

of (suffix) requests at the origin. The request rate from each
proxy is equal to the rate at which proxy streams reach the end
of the prefix without being merged into some earlier stream,
which can be derived as:

.
/

/

)(

),,,(

),,,(),,,(
lim

0

ηλ
λη

δ
δλ

δ

+
==

−+
=

→

PfT

P

fTd

bPNfdB

T

bPNfBbPNfB

P

proxy

proxyproxy

T

origin

Given the normalized request rate to the origin server suffix,
we can compute the required origin server bandwidth using
either equation (1) or (2). Comparison against simulation
revealed that the Poisson arrival assumption is accurate over
the parameter space of our validations. Thus, noting that the
normalized suffix request rate, Norigin = λorigin×(1−f)T,

Borigin(f,N,P,b) = η ln(1+Norigin/η), (5)
where:

η
η

+
−=
PfN

Nf
N origin /

)1(. (6)

D. BWSkim/U(b) Protocols

In the BWSkim/U protocol, the origin uses simple unicast
streams to deliver content that is not stored at the proxies. In
this case, the origin streams the content to the proxy and the
proxy multicasts it to the clients, so that clients listening to
streams from the proxy can be directed to merge using the
bandwidth skimming protocol. Note that each unicast stream
will terminate when the clients listening to the multicast from
the proxy merge with a target stream. Thus, the system
operates as in Figure 3b, which is similar to Figure 3a except
that each origin suffix stream (unicast to the proxy) can only
merge with other suffix streams requested by the same proxy.

The proxy bandwidth needed to deliver the content stored
at the proxy is computed as in the BWSkim protocol, using
equation (4). The origin bandwidth needed to deliver the rest of
the content requested by one of the proxy client populations
can be computed by setting P=1 in equations (5) and (6). The
total origin bandwidth is then P times this bandwidth:

Borigin(f,N,P,b) = P η ln[1 + (1−f) N / (f N+η)]. (7)

We let the cost of the origin server stream include the cost
of streaming through the proxy server (which requires network
bandwidth but not disk I/O bandwidth at the proxy). Thus, for
two CDNs that differ only in whether the BWSkim or the
BWSkim/U protocol is used, the value of β will be smaller in
the latter case. In Section V we quantify the network i/o

bandwidth needed per proxy for origin server content in
BWSkim/U CDNs.

E. BWSkim[/U]+Batch(b) Protocols

The BWSkim+Batch protocol operates the same as
BWSkim(2), with the same CDN server bandwidths as derived
in Section III.C, for each file that is fully stored or is not stored
at the proxy. For a file that has a prefix stored at the proxies,
BWSkim+Batch requires client bandwidth, b>2, and as
illustrated in Figure 3c, each client that requests the file uses
one unit of bandwidth to listen to the first origin suffix stream
that starts after the client request. The proxy delivers the prefix
to the clients using BWSkim(b-1). During the first fT of the
suffix stream, no merging of suffix streams is performed
(because client bandwidth is often entirely used for listening to
the one suffix stream and the prefix stream(s)). If the suffix is
longer than fT, the remainder of the suffix streams are merged
by the origin using BWSkim(2).

The required proxy server bandwidth is computed using
equation (4) but using η for b−1. The batching of clients in
each origin suffix stream decreases the rate of suffix requests
compared to the BWSkim protocol, yielding an average time
between two suffix requests equal to fT+1/N. Note that this
interval is approximately deterministic (unless f, T or N is
small). Hence, the arrival rate at the origin server is given by

NfT
f

origin 1
1

)(
+

=λ . (8)

If f ≥ 0.25, there is no merging at the origin server, and

f ≥ 0.25: Borigin(f, N,P,b) = λorigin×(1-f)T. (9)

This is because merging only starts after 2fT (the prefix of
length fT and fT of the suffix) and the minimum inter-arrival
time at the origin is fT. Thus, if f=0.25, merging could start at
T/2, but the closest target stream must be at or beyond position
3T/4, so merging cannot occur before the target stream ends.

If f < 0.25, merging occurs in the last 1–2f of the file.
Since no merging of suffix streams occurs before this last
segment, the “requests” for this last segment arrive
approximately deterministically at rate given by equation (8).
In total, the origin bandwidth needed to deliver that last portion
of the file can be derived using an approach similar to the
derivation of equation (2) in [7], as follows:

,)21(
/1

1
)(Tf

NfT
fNorigin −

+
=∗

,12)((log)(*
2 −+= fNfk origin

2
2

2
)(

2

3
)(

)(, −
+

+=
∗

− fk

origin
seglastorigin

N
fkfB .

Thus,

f<0.25: Borigin(f,N,P,b) = λorigin×fT+Borigin,last-seg(f). (10)

The origin bandwidth calculations above can be modified
for the BWSkim/U+Batch(b) protocol, as described in Section
III.D for the BWSkim(b) protocol.

For the BWSkim+Batch protocol, we consider systems
with client bandwidth (b) equal to 3 and 2.2, which implies

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1750 IEEE INFOCOM 2002

client bandwidth of 2 or 1.2, respectively, for merging proxy
streams. The client bandwidth for receiving the extra origin
suffix stream when the proxy stores a prefix might be provided
by a system closer to the client than the proxy, which would
buffer the data and send it to the client when needed, in the
case that the “last mile” bandwidth to the client is limited. In
fact, in the BWSkim or BWSkim+Batch protocols, the “client”
might be a system very near the real client that implements all
of the necessary buffering and then feeds a simple single
stream to the actual client. In any case, the implementation of
BWSkim+Batch is more complex than the BWSkim
implementation, so it is preferable to use BWSkim unless the
cost savings for BWSkim+Batch are significant. One
interesting question to be explored is how BWSkim+Batch(b),
with b=3 and b=2.2, compare to ordinary BWSkim(2), and in
turn how much the cost increases for BWSkim(1.2), which may
be important for streaming high quality content.

IV. RESULTS FOR UNCONSTRAINED PROXY SERVERS

In this section the models are used to provision CDNs with
a delivery protocol and storage policy in the case that the proxy
can be configured with enough bandwidth and storage for the
fraction of each file that minimizes the file delivery cost. For
each policy and given values of N/P, P, β, and b, we
numerically solve for the fraction f of the file stored at the
proxy that minimizes the delivery cost given in equation (3),
using the CDN server bandwidth costs derived in Section III.

Figure 4 provides the percent increase in cost for
BWSkim(2) as compared with BWSkim+Batch(3) for N/P
varying from 1 – 10,000, β varying from 0 – 0.8, and P equal
to 1, 10, and 100. Note that the results for P = 1 also provide
the cost increase for BWSkim/U(2) vs. BWSkim+Batch/U(3).
The results show that the simple BWSkim(2) protocol has
delivery cost within 5% of the BWSkim+Batch(3) protocol
over nearly the entire design space.

Figure 5 shows, for the wide design space explored, that
the optimal value of f for the BWSkim(2) protocol is 1 or 0,
depending primarily on P and on β, and to a lesser degree on
N/P. Note that the results in Figures 5b,c show that a file is
only stored at the proxies if it is much less expensive to deliver
if from the proxy (i.e., small β), in which case the assumption
the proxies have sufficient disk resources for the content may
be reasonable.

The optimal all-or-nothing storage results for CDNs that
use BWSkim(2) contrast sharply with results in previous work
on unconstrained proxy storage strategies [4,14] for CDNs that
use the scalable PDS protocol, selective catching protocol, or
variations on the patching protocol. For these less efficient
streaming protocols, prefix caching and batching for origin
suffix streams greatly reduce delivery cost. In the BWSkim(2)
system, batching clients for origin streams is not more effective
than the very efficient bandwidth skimming merges that occur
in the streams delivered by the proxies or the origin.

According to Figures 4-6 and additional results omitted
due to space constraints:

• For a multicast origin, large P, low N/P, and intermediate
values of β (i.e., P >10, N/P≈1, and β = 0.1 as in Figure 4c),
BWSkim+Batch(3) outperforms BWSkim(2), and the
optimal proxy content is a file prefix, as shown in Figure 6b.

• In all other cases, delivery cost is nearly minimized by using
the simple BWSkim protocol and a simple all-or-nothing
storage strategy.

• A bandwidth skimming CDN stores a given file (or prefix) at
the proxies only if (1) β = 0, (2) β ≤ 0.1 and P ≤ 10, (3) β ≤
0.3, P > 10 and N/P is small, or (4) the origin uses unicast
(or P = 1).

Figure 7 shows the delivery cost as a function of the number of
proxies that store the file, illustrating again that when the origin
server uses multicast, storing the content at multiple proxies is
only cost effective if N/P is small or β is a very small fraction
(i.e., approximately 1/P). For small P, N/P, and/or β, the
limited opportunity for sharing of origin streams or the low
relative cost of proxy streams leads to storing content at the
proxies. For P > 1, as either β or N/P increases, it is more cost-
effective to share the file delivery from the origin among all
clients, and storing content at the proxies is not cost effective.4

Thus, the experiments in Section V for proxies with storage

4 Note however, that even if the content is not stored at the proxy, a
very small prefix might be stored to reduce start-up latency or for
smoothing VBR streams.

ββββ

Figure 5: Optimal Proxy Content for BWSkim(2)
(unconstrained proxy servers, one file)

ββββ

0

0.
3

0.
8

1
10

10
0

10
00

10
00

0

0
0.2
0.4

0.6

0.8

1

N/P

0 0.10.3 0.5 0.8

1
10

10
0

10
00

10
00

0

0
0.2
0.4
0.6
0.8

1

F
ra

ct
io

n
St

or
ed

N/P

ββββ

0

0.
3

0.
8

1
10

10
0

10
00

10
00

0

0
0.2
0.4
0.6

0.8

1

N/P

a) P=1 b) P=10 c) P=100

0
0.1 0.3

0.5
0.8

1
10

10
0

10
00

10
00

0

0
10
20
30
40

50
C

os
t

In
cr

ea
se

(%
)

N/P

0

0.
3

0.
8

1
10

10
0

10
00

10
00

0

0
10

20

30

40

50

N/P

0

0.
3

0.
8

1
10

10
0

10
00

10
00

0

0
10
20

30

40

50

N/P

P=1 P=10

Figure 4: Cost Increase of BWSkim[/U](2) versus
BWSkim[/U]+Batch(3)

(unconstrained proxy servers, one file)

a) Unicast Origin b) Multicast Origin

ββββ ββββ ββββ

P=100

Figure 6: Optimal Proxy Content for BWSkim+Batch(3)
(unconstrained proxy servers, one file)

a) P=10 b) P=100

0
0.1

0.3
0.5

0.8

1
10

10
0

10
00

10
00

0

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
St

or
ed

N/P

0 0.1 0.3 0.5 0.8

1

10
0

10
00

0

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
St

or
ed

N/P ββββββββ

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1751 IEEE INFOCOM 2002

and bandwidth constraints will consider only β ≤ 0.1 if the
origin server is multicast enabled.

BWSkim+Batch is less cost effective if b=2.2 than if b=3
and thus for unconstrained proxy server storage and bandwidth,
BWSkim(2) is preferred over BWSkim+Batch(2.2).

Figure 8 shows the cost ratio for BWSkim(2) to
BWSkim(1.2). Both systems cache the same content at nearly
every point in the design space, and thus the differences in cost
are due to the decrease in merging efficiency as b decreases. As
N/P increases for any given values of P and β, the cost ratio
appears to converge to 0.3, which implies that delivery cost
increases by at most about a factor of three if client bandwidth
is limited to 1.2 streams (i.e., for higher quality content).

V. CACHE CONTENT FOR CONSTRAINED PROXIES

In this section, the cost models are used to provision
CDNs with a delivery protocol and proxy storage policy,
assuming proxy storage and bandwidth is bounded. The goal is
to obtain insight, for a given system and set of files for which
storing the data at the proxy is cost-effective (e.g., origin server
uses unicast streaming or β ≤ 0.1, as identified in Section IV,
Figures 5 - 6), into which (fractions of) files should be stored at
the proxy and which delivery protocol has higher performance.

We consider a set of n origin server media files of equal
duration T that have total client request rate M (arrivals per
time T) and a skewed Zipf-like distribution5 of access
frequency. The proxy storage, Ps, is expressed as a fraction of
the total amount of data at the origin. The proxy bandwidth, Pb,
is expressed as the ratio of the available bandwidth to the total
bandwidth that would be needed if the proxy fully stored all
files, calculated by summing the required server bandwidth for
delivering each file6 (equation (1)) over all files.

A CDN that uses a given delivery protocol is provisioned
for a given set of system and workload configuration
parameters (defined in Tables 1 and 2), by solving the
constrained optimization outlined in Section II.D. This
optimization involves minimizing the sum of the delivery cost
for each file over all possible fractions of each file that might
be stored at the proxies. To make the model tractable, we
optimize over discrete values of f, ranging from 0 to 1 in steps
of 0.01. The optimization problem is solved with constraints
on proxy storage (Ps) and bandwidth (Pb), typically in under 1
minute, using the CPLEX solver within GAMS [2].

Simple storage strategies that achieve nearly the minimum
delivery cost are of greater interest than complex strategies that
achieve the true minimum. Thus, if the solution to the
optimization model is a set of files and/or prefixes that must be
enumerated rather than specified by simple ranges of file
access rank and prefix size, we further constrain the model to
obtain a simpler solution that has nearly the same delivery cost
as the optimal solution, as discussed in Section V.A.

To obtain realistic relative values of Pb and Ps, for given
values of M/P, T, and n, we compute Pb and Ps for an integral
number of current generation Ultrastar 72zX disk and the
MPEG-2 streaming rate of 4 Mb/s. A single such disk can
store 44 hours of MPEG-2 content, and has i/o bandwidth
(ideally) for 42 concurrent streams. Shorter duration files will
need a smaller number of disks for a given value of Ps; thus,
for a given M/P, n, and Ps, the value of Pb will be smaller for
smaller file duration T. Similarly, a larger number of files (n)
implies a larger number of disks for given values of T and Ps;
thus, for a given M/P, T, and Ps, the value of Pb will be larger
for larger n. Thus, the impact of varying n or T is to change the
relative size of Ps and Pb, as would occur when changing the
disk technology. By choosing n as either 128 or 1024, T as
either 30 or 120 minutes, varying the number of disks so that Ps

varies from 0.08 to 0.68, and varying M/P from 10 to 10,000, a
wide range of absolute and relative values of Ps and Pb are
included in the experiments below.

Sections V.A and V.B provide the results for the CDNs in
which the origin server uses unicast or multicast, respectively,
to deliver content. Based on the results for unconstrained
proxy servers in Section IV, Section V.B only considers small
values of β (i.e., β ≤ 0.3). In most cases the optimal proxy
content uses all of the proxy storage capacity or all of the
proxy bandwidth, or both; these results are marked with the
keywords “cap”, “bw”, or “both”, respectively, in the figures.

5 The access frequency for file i is equal to C/i, where C is a constant
that ensures that the sum of the file access frequencies is equal to 1.
6 Note that the average request rate at a given proxy server for a given
file is given by the product of M/P and the file access frequency.

Figure 8: Cost Ratio of BWSkim(2) to BWSkim(1.2)
(unconstrained proxy servers, one file)

ββββ

ββββ

0
0.

1

0.
3

0.
5

0.
8

1
10

10
0

10
00

10
00

0
0

0.2

0.4

0.6

0.8

1

N/P

a) P=1 b) P=10 c) P=100

0

0.
1

0.
3

0.
5

0.
8

1
10

10
0

10
00

10
00

0

0

0.2

0.4

0.6

0.8

1

C
os

t
R

at
io

N/Pββββ ββββ

0

0.
3

0.
8

1

10
0

10
00

0

0

0.2

0.4

0.6

0.8

1

N/P

Symbol Definition
n Number of media files, each of duration T
M Total client arrival rate, in arrivals per T (all files)
Ps Proxy storage capacity as a fraction of n×file size

Pb
Ratio of available proxy bandwidth to bandwidth
needed if the proxy fully stores all n files

Table 2 : Additional Parameters for Constrained Proxies

0

1

2

3

4

5

6

7

8

0 25 50 75 100
P

D
el

iv
er

y
C

os
t

0

1

2

3

4

0 25 50 75 100
P

D
el

iv
er

y
C

os
t

beta=0.1
beta=5/P
beta=1/P

Figure 7: Delivery Cost vs P for Optimal Multicast Protocol
(unconstrained proxy servers, one file)

a) N=10 b) N=100

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1752 IEEE INFOCOM 2002

A. Origin Server uses Unicast Streams

When the origin uses unicast streaming, the proxy content
that minimizes delivery cost, i.e., the content that maximally
off-loads the origin, is the same for all P and β.

Over the wide range of system configuration parameters
defined above, results illustrated in Figures 9-12 and further
results omitted to conserve space show the following:

• The optimal proxy server content for BWSkim/U(b) consists
primarily of full files, but for many configurations the
optimal content is a chaotic set of files and prefixes, as
illustrated in Figure 9a for a configuration with Ps = 0.34 and
Pb = 0.32. In all such cases, the optimal solution when the
proxy servers are constrained to store any contiguous (with
respect to their access frequency rank) set of full files, as
illustrated in Figure 9b, yielded delivery cost within 0.05%
of the minimum. These near-optimal solutions are presented
in the remainder of this section.

• The delivery cost savings for BWSkim+Batch/U(3)
compared to BWSkim/U(2) are very small (i.e., no greater
than 8%). Figure 10 shows that BWSkim+Batch/U(3) stores
primarily file prefixes at the proxies (which increases the
opportunities for batching clients for origin streams), but the
benefit of batching is again not substantial enough to
outperform the efficient bandwidth skimming merges in the
simpler BWSkim policy.

• CDNs that use BWSkim+Batch/U(2.2) do not cache many
prefixes and do not improve on BWSkim/U(2).

• The trends in Figures 11a−c, e–f were observed for all of the
CDN configurations studied. In particular, for BWSkim/U(2)
and values of Pb greater than 1, the proxy fully stores as
many of the most popular files as its storage permits. For
smaller Pb, the proxy (fully) stores fewer and less popular
files. Figure 10, and Figure 11d compared with 11a and 11b,
further illustrate that for a given value of Ps the optimal
proxy content appears to depend heavily on the value of Pb.

• Figure 9c shows the optimal content (not constrained to be a
contiguous set of full files) for the same BWSkim/U(2)
system configuration as in Figure 9a, except that the proxy
bandwidth (Pb) is arbitrarily increased by a factor of three. In
this hypothetical configuration, the optimal proxy content
contains only prefixes, which agrees with results in [15] for a
similar CDN configuration that uses the patching protocol.
However, this configuration is not feasible for expected disk
technology trends. Furthermore, for feasible configurations
with the same Ps and Pb as in Figure 9c (e.g., Figure 11a),
prefix storage is not optimal.

• Figure 12 shows that, as in the case of unconstrained proxy
storage and bandwidth, if client bandwidth is limited (as may
be the case when streaming high quality videos), using
BWSkim/U(1.2) increases the delivery cost by up to a factor
of three. The trends in the optimal proxy content for
BWSkim(1.2), as a function of Pb and Ps, are similar to the
BWSkim(2) CDN.

In BWSkim/U CDNs, the origin uses unicast streaming to
the proxies, which then multicast the content to their clients.
Over all of the system configurations examined in this work in
which the proxy is not severely under-provisioned (in terms of
storage capacity and disk bandwidth) for the client load, the
network i/o bandwidth needed per proxy for origin content,
which is included in the relative cost of the origin streams, is
less than the per-proxy disk i/o bandwidth.

0
0.2
0.4
0.6
0.8

1

2 25 48 71 94 11
7

File

F
ra

ct
io

n
St

or
ed

0
0.2
0.4
0.6
0.8

1

2 25 48 71 94 11
7

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

2 25 48 71 94 11
7

File
F

ra
ct

io
n

St
or

ed

a) Pb=1.39
M/P=100 (cap)

b) Pb=0.32
M/P=1000 (bw)

c) Pb=0.13
M/P=10000 (bw)

Figure 10 : Optimal Proxy Content for
BWSkim+Batch/U(3) (Ps=34%, n=128, T=2h)

0

0.2

0.4

0.6

0.8

1

1 22 43 64 85 10
6

12
7

File

F
ra

ct
io

n
St

or
ed

0
0.2
0.4
0.6
0.8

1

1 22 43 64 85 10
6

12
7

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1 22 43 64 85 10
6

12
7

File

F
ra

ct
io

n
St

or
ed

a) True Optimal
Pb=0.32 (bw)

b) Near Optimal
Pb=0.32 (bw)

c) Pb=1
(unrealistic Pb)

Figure 9: Example Proxy Content for BWSkim/U(2)
(Ps=34% , M/P=1000, n=128, T=2h)

0.
17

0.
34

0.
68

10

10
0

10
00

10
00

0

0
0.2
0.4
0.6
0.8

1

C
os

t
R

at
io

Ps M/P

0.
08

5

0.
34

10
10

0
10

00

10
00

0

0

0.2

0.4

0.6

0.8

1

C
os

t
R

at
io

Ps M/P

a) n=128, T=2h b) n=1024, T=2h

Figure 12 : Ratio of delivery cost for
BWSkim/U(2) to cost of BWSkim/U(1.2)

0

0.2

0.4

0.6

0.8

1

1 25 49 73 97 12
1

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1 27 53 79 10
5

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1 26 51 76 10
1

12
6

File

F
ra

ct
io

n
St

or
ed

a) Pb≥≥≥≥1, Ps=34%
(cap), T=2h

M/P=100, n=128
M/P=1000, n=1024

c) Pb=0.13, Ps =34%
(bw), T=2h

M/P=10000, n=128

b) Pb=0.32, Ps=34%
(bw), T=2h

M/P=1000, n=128
M/P=10000, n=1024

0

0.2

0.4

0.6

0.8

1

1 24 47 70 93 11
6

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1 26 51 76 10
1

12
6

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1

16
3

32
5

48
7

64
9

81
1

97
3

File

F
ra

ct
io

n
St

or
ed

d) Pb=0.35, Ps=34%
(bw), T=30min

M/P=1000, n=1024

e) Pb=0.63, Ps=68%
(bw), T=2h

M/P=1000, n=128

f) Pb=0.26, Ps=68%
(bw), T=2h

M/P=10000, n=128

Figure 11: Near-Optimal Proxy Content for BWSkim/U(2)

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1753 IEEE INFOCOM 2002

B. Origin Server Uses Multicast Streams

The results above show that the near-optimal BWSkim/U
protocol and proxy content for CDNs with unicast streaming
from the origin does not include prefixes for any realistic
configurations considered. A key question for CDNs in which
the origin delivers streams using multicast is whether (and in
which regions of the design space) prefix caching and batching
clients from different regions together for suffix streams,
reduces the cost significantly. The results in Figures 13–17,
and further results omitted due to space constraints show that:

• BWSkim+Batch(3) significantly reduces delivery cost (e.g.,
by more than 20%) primarily when β ≤ 1/P, P > 10, M/P ≥
100, and Pb > 0.1, as shown in Figure 13. If M/P is small,
multicast is not highly effective and the optimal proxy
content for both policies is similar (i.e., long prefixes or full
file caching of the most popular files, as illustrated in Figures

14a and 15a). For very large M/P, Pb is small (as shown at
the top of Figure 13), and both policies store less popular
and fewer files.

• Figures 14 and 15 show how the optimal proxy content for
BWSkim+Batch(3) and BWSkim(2) varies, respectively,
over design regions in which each is the best policy. These
figures illustrate the variations in the content as Pb, β, or P
increases. If more disks are added to the proxies, BWSkim
proxies store more files (e.g., Figures 15d,e) while
BWSkim+Batch proxies store longer prefixes (e.g., Figures
14e,f or 14b,c). Less popular content is stored at the proxies
as β increases (Figures 15a,b), P increases (Figures 14a,d or
15a,c), or Pb decreases (Figures 14a,b or 15f,e).

• As illustrated in Figure 16, BWSkim+Batch(2.2) reduces
delivery cost over BWSkim(2) for the same configurations
as BWSkim+Batch(3). Furthermore, perhaps surprisingly,
the reduction in cost for BWSkim+Batch(b) compared to

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1

C
os

t
R

at
io

M/P P

10

10
0

10
00

10
00

0

1
10

10
0

0

0.2
0.4

0.6

0.8

1

M/P P

10

10
0

10
00

10
00

0

1
10

10
0

0
0.2
0.4
0.6
0.8

1

M/P P

10

10
0

10
00

10
00

0

1
10

10
0

0
0.

5
1

C
os

t
R

at
io

M/P P

0.13

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1

M/P
P

≥≥≥≥1 0.32≥≥≥≥1Pb= ≥≥≥≥1
0.33≥≥≥≥1≥≥≥≥1 0.63

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1

M/P P

≥≥≥≥1 ≥≥≥≥1 0.25

Ps=68%, n=128

(a) ββββ = 0.1 (T = 2h)

Ps=34%, n=128Ps=34%, n=1024

Figure 13: Cost ratio of BWSkim+Batch(3) to BWSkim(2)

Ps=34%, n=1024 Ps=34%, n=128 Ps=68%, n=128

(b) ββββ = 0 (T = 2h)

c) Pb =0.66, Ps=68%
P=10, (bw)

M/P=10000, n=1024

f) Pb =0.63, Ps=68%
P=100, (bw)

M/P=1000, n=128

0

0.2

0.4

0.6

0.8

1

1 18 35 52 69 86 10
3

12
0

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1 19 37 55 73 91 10
9

12
7

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1
14

2
28

3
42

4
56

5
70

6
84

7
98

8

File

F
ra

ct
io

n
St

or
ed

a) Pb ≥≥≥≥1, Ps=34%
P=10, (cap)

M/P=100, n=128

b) Pb =0.32, Ps=34%
P=10, (bw)

M/P=1000, n=128

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 10
1

12
1

File

F
ra

ct
io

n
St

or
ed

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 10
1

12
1

File

F
ra

ct
io

n
St

or
ed

d) Pb ≥≥≥≥1, Ps=34%
P=100, (cap)

M/P=100, n=128

e) Pb =0.32, Ps=34%
P=100, (bw)

M/P=1000, n=128

Figure 14: Optimal Content for BWSkim+Batch(3)
(β=0,T=2h)

0
0.2
0.4
0.6
0.8

1

1 20 39 58 77 96 11
5

File

F
ra

ct
io

n
St

or
ed

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1

C
os

t
R

at
io

M/P P

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1

C
os

t
R

at
io

M/P P

a) ββββ=0 b) ββββ=0.1
Figure 16: Ratio of the delivery cost for

BWSkim +Batch(2.2) to BWSkim(2)
(Ps=34%, n=128, T=2h)

10
10

0

10
00

10
00

0

1
10

10
0

0

0.5

1

C
os

t
R

at
io

M/P P

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1
C

os
t

R
at

io

M/P P

a) ββββ=0 b) ββββ=0.1
Figure 17: Cost Ratio for Best

Policy when b≥≥≥≥2 to BWSkim(1.2)
(Ps=34%, n=1024, T=2h)

Figure 18: Cost Ratio
for Origin Multicast to

Origin Unicast
(β=0, n=128, T=2h)

10

10
0

10
00

10
00

0

1
10

10
0

0

0.5

1

C
os

t
R

at
io

M/P P

0
0.2
0.4
0.6
0.8

1

1 22 43 64 85 10
6

12
7

File

F
ra

ct
io

n
St

or
ed

0
0.2
0.4
0.6
0.8

1

1 25 49 73 97 12
1

File

F
ra

ct
io

n
St

or
ed

Figure 15: Optimal Cache Content for BWSkim(2)

0
0.2
0.4
0.6
0.8

1

1 25 49 73 97 12
1

File

F
ra

ct
io

n
St

or
ed

0
0.2
0.4
0.6
0.8

1

1 26 51 76 10
1

12
6

File

F
ra

ct
io

n
St

or
ed

0
0.2
0.4
0.6
0.8

1

1 27 53 79 10
5

File

F
ra

ct
io

n
St

or
ed

a) P=10, ββββ=0.1 b) P=10, ββββ=0.3 c) P=100, ββββ=0.1

Pb ≥≥≥≥1, Ps=34%, (cap), M/P=100, n=128, T=2h

e) Pb =0.64, Ps=68%
(both), n=128

0
0.2
0.4
0.6
0.8

1

1
19

4
38

7
58

0
77

3
96

6

File

F
ra

ct
io

n
St

or
ed

d) Pb=0.32, Ps=34%
(both), n=128

f) Pb ≥≥≥≥1, Ps=34%
(cap), n=1024

P=10, ββββ=0.1, M/P=1000, T=2h

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1754 IEEE INFOCOM 2002

BWSkim(2) is nearly as large for b=2.2 as for b=3, in spite
of the reduced merging of prefix streams when b=2.2. In
nearly all configurations, the optimal proxy content for
BWSkim+Batch(b) is the same for b=2.2 and b=3.

• Figure 17 illustrates that, compared to the best policy for
b≥2, using BWSkim(1.2) (e.g., for higher quality content)
increases the delivery cost significantly (up to a factor of
nine) for P > 10 and M/P > 100 or M/P > 1000.

Finally, we compute how much cost savings are achieved
when the origin server uses multicast, as compared to unicast.
Results in Figure 18 are representative of savings achieved in
other regions of the design space in which the proxy is
provisioned to handle a reasonable fraction of the origin load.
The results show that, except when the proxy client request rate
for all origin content (M/P) is small or P=1, the cost benefit of
origin multicast is significant, with savings up to 98% for the
configurations examined.

VI. CONCLUSIONS

This paper developed simple cost models for provisioning
CDNs that use highly scalable streaming protocols. The main
findings, over a large CDN configuration space, are:

• Storing content at the proxy servers is only cost effective if
(a) the origin is not multicast enabled, or (b) the file request
rate is low (thus multicast is not highly effective), or (c) the
cost of a proxy stream is a very small fraction of the cost of
an origin stream (i.e., β ≤1/P).

• For the configurations where proxies are cost effective,
BWSkim+Batch[/U](3) outperforms BWSkim[/U](2) (i.e.,
by more than 20%) only if the origin server uses multicast
and (a) β = 0.1, proxy disk resources are unlimited, P > 10,
and file request rate, N/P ≈ 1, or (b) β ≤ 1/P, proxy disk
space and bandwidth are limited (in spite of the low relative
cost of a proxy stream), P > 10, Pb > 0.1, and total client
request rate per proxy (M/P) is greater than 100.

• The (near) optimal proxy content for the BWSkim(b) policy
includes essentially no prefix storage, whereas the optimal
cache content for BWSkim+Batch(b) includes primarily file
prefixes when it significantly outperforms the simpler
BWSkim policy.

• BWSkim+Batch(2.2) reduces cost compared to BWSkim(2)
for the same CDN configurations as BWSkim+Batch(3), by
nearly the same amount and with the same optimal content.

• BWSkim(1.2) increases delivery cost compared to the best
policy with b≥2, by a up to a factor of three if proxy disk
resources are sufficient, or up to a factor of nine when proxy
disk storage and bandwidth are limited.

• The impact of varying the system configuration parameters
on the optimal proxy content is as follows:

1. If β = 0 and the arrival rate (M/P) is small, the optimal
proxy content contains as many of the most popular full
files as can be stored.

2. As M/P increases, for constrained proxy disk resources,
the proxies store less popular data.

3. If the origin-proxy path is multicast-enabled, as either β or
P increases, it becomes more cost-effective to stream more

popular files from the origin. If the origin-proxy path is not
multicast-enabled, neither β nor P has impact on the
optimal cache content.

• If the proxies are not severely under-provisioned, unicast of
origin data through the proxy can be performed with proxy
network bandwidth less than twice the proxy disk bandwidth.

• Multicast instead of unicast delivery by the origin greatly
reduces delivery cost unless M/P is small or P=1.

The models developed in this paper use a very simple
approximation for the relative cost of proxy and origin server
streams. Future research includes developing models for
provisioning scalable streaming CDNs that include more
precise network bandwidth costs.

REFERENCES

[1] J. M. Almeida, J. Krueger, D. L. Eager, M. K. Vernon, “Analysis of
Educational Media Server Workloads”, Proc. NOSSDAV 2001, Port
Jefferson, NY, June 2001.

[2] A. Brooke, D. Kendrick and A. Meeraus. GAMS: A User’s Guide. The
Scientific Press, South San Francisco, CA, 1988.

[3] S. Carter and D. Long, “Improving Video-on-demand Server Efficiency
Through Stream Tapping”, Proc. Int’l. Conf. on Computer
Communications and Networks, 1997.

[4] D. L. Eager, M. C. Ferris and M. K. Vernon, “Optimized Regional
Caching for On-Demand Data Delivery”, Proc. 1999 Multimedia
Computing and Networking, San Jose, CA, Jan. 1999.

[5] D. L. Eager, M. C. Ferris and M. K. Vernon, “Optimized Caching in
Systems with Heterogeneous Client Populations”, Performance
Evaluation, Special Issue on Internet Performance Modeling, Sep.
2000, pp. 163-185.

[6] D. L. Eager, M. K. Vernon and J. Zahorjan, “Bandwidth Skimming: A
Technique for Cost-Effective Video-on-Demand", Proc. 2000
Multimedia Computing and Networking, San Jose, CA, Jan. 2000.

[7] D. L. Eager, M. K. Vernon and J. Zahorjan, “Minimizing Bandwidth
Requirements for On-Demand Data Delivery”, IEEE Trans. On
Knowledge and Data Engineering, Special Section of invited papers
from MIS’99, Vol. 13, No. 5, Sep./Oct. 2001, pp. 742-757.

[8] D. L. Eager, M. K. Vernon and J. Zahorjan, “Optimal and Efficient
Merging Schedules for Video-on-Demand Servers”, Proc. ACM
Multimedia’99, Orlando, FL, Nov. 1999.

[9] L. Gao, J. Kurose and D. Towsley, “Catching and Selective Catching:
Efficient Latency Reduction Techniques for Delivering Continuous
Multimedia Streams”, Proc. ACM Multimedia’99, Orlando, FL, Nov.
1999.

[10] H. W. Holbrook and D. R. Cheriton, “IP Multicast Channels: Express
Support for Large-Scale Single-Source Applications", Proc. ACM
SIGCOMM '99 Conf., Cambridge, MA, Aug./Sept. 1999.

[11] K. Hua, Y. Cai and S. Sheu, “Patching: A Multicast Technique for True
Video-on-demand Services”, Proc. ACM Multimedia’98, Bristol, U.K.,
Sep. 1998.

[12] K. Hua and S. Sheu, “Skyscraper Broadcasting: A New Broadcasting
Scheme for Metropolitan Video on Demand Systems”, Proc. ACM
SIGCOMM’97 Conf., Cannes, France, Sep. 1997.

[13] J-F. Pâris, S. W. Carter and D. D. E. Long, “A Hybrid Broadcasting
Protocol for Video on Demand”, Proc. 1999 Multimedia Computing and
Networking, San Jose, CA, Jan. 1999.

[14] S. Ramesh, I. Rhee and K. Guo, “Multicast with Cache (Mcache): An
Adaptive Zero-Delay Video-on-Demand Service”, Proc. IEEE
INFOCOM’01, Anchorage, AL, April 2001.

[15] B. Wang, S. Sen, M. Adler and D. Towsley, “Proxy-based Distribution
of Streaming Video over Unicast/Multicast Connections”, TR 01-05,
Dept. of Computer Science, Univ. of Massachusetts.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1755 IEEE INFOCOM 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

