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A Framework for Optimal Battery Management
for Wireless Nodes

Saswati SarkaMember, IEEEand Maria Adamou

Abstract—The focus of this paper is to extend the lifetime of a using all cells simultaneously for each packet [3]. In addition,
battery powered node in wireless context. The lifetime of a battery [3] states that it is possible to implement many different dis-
power requirements. We present a framework for computing s 1 find an optimal battery management policy that maximizes

the optimal discharge strategy which maximizes the lifetime of . o .
a node by exploiting the battery characteristics and adapting the delivered energy by exploiting the recovery capability of the

to the varying power requirements for wireless operations. The battery and'ad.apting to_ the vqrying power requi.remen'ts of wire-
complexity of the optimal computation is linear in the number of less transmissions. Chiasseghal.actually mentions this as an

system states. However, since the number of states can be largejnteresting open problem in the wireless context [3].
the optimal strategy can only be computed offline and executed  The contribution of the paper can be summarized as follows.
via a table lookup. We present a simple discharge strategy which \ye develop a methodology for obtaining the optimal policy
can be executed online without any table lookup and attains near . jischarging the cells of a battery using stochastic dynamic
maximum lifetime. . .
programming. The cells are optimally scheduled to serve the
Index Terms—Battery, scheduling, wireless. packets and the recovery process is fully exploited. In general,
the formalization of such systems can be very complex and in-
volves the solution of a large number of linear equations. The
overall complexity isSO(M*), where M is the size of the state
W IRELESS networks consist of small portable devicegpace of the system and this size is usually very large for real
such as PDAs, mobile phones, headsets, etc., which haygtems. Using the special properties of our system we develop
limited processing power and battery energy. Message tragstinear complexity @( )] algorithm for computing the op-
mission consumes significant energy and the transmission @fyal. By applying this algorithm, the optimal policy can be
ergy requirements vary with time depending on the chann&dmputed offline and executed using table lookup. Furthermore,
conditions. Thus, one of the most important challenges in thg knowledge of the optimal can be used to evaluate the per-
design of wireless networks is to provide power managemg8tmance of online scheduling policies. We propose a simple
techniques which are low cost and computationally simple. Th@line scheduling policy which can be used without any table
research performed in this area primarily aims to reduce thgykup. We show analytically and by simulation that our simple
energy consumption at the hardware level [9] and at differepglicy performs close to the optimal and considerably improves
layers of the network stack [8]. An alternate approach is to igver the RR policy proposed in [3]. The improvement is around
crease the lifetime of the battery of a mobile node by using epgos in general and in some cases even higher.
ergy efficient battery management techniques. The rest of the paper is organized as follows. In Section I,
A battery consists of several electrochemical cells from whighle describe the battery model and the discharge procedure. In
power needs to be drained when the node transmits a packgiction IIl, we present the general framework for computing
When a cell is allowed to rest in between discharge periods, Ilﬂ'% 0ptima| battery management po||cy In Section IV, we give
able to recover part of its charge, thanks to the diffusion mechgyr linear complexity computation technique. In Section V, we
nism [3], thus, the total energy delivered is increased. A battgsyesent the simple online suboptimal policy and describe how it
discharge policy decides which cells should serve the packet af2gh be evaluated using the general framework. We also evaluate
which cells are allowed to rest. Analytical and simulation result@; performance by numerical Computation and simulation, for
presented by Chiasseriei al.[3] show that the discharge poli- different values of battery capacity and traffic models. Finally,

cies have significantimpacton the battery lifetime. For examplgur conclusion and future work are discussed in Section VI.
Round Robin (which we abbreviate as RR) scheduling scheme

can significantly improve the battery lifetime as compared with

I. INTRODUCTION

Il. SYSTEM ASSUMPTIONS ANDOBJECTIVES
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for the transmission. This in turn depends on the transmission
conditions, the distance of the destination and finally the number
of bits in the packet. The exact dependence has been studied
extensively in [2], and [5]. In general, when the transmission
conditions are poor, or the next hop node is farther away, or
the packet has a larger number of bits, the packet needs to be
transmitted at higher power and as such it has a larger size. We
assume that the size of a packeg,ig > 0, with probabilitya,,.
If ¢ = 0, then there is no packet to be transmitted in the slot. We
assume thaiég < 1.

When a cell; in state ;, ¢;) deliversq units of charge, it
moves to the statewl — ¢, ¢; — ¢). A cell 7 is fully discharged
(or “inactive”) when its charge becomes zerg & 0, note that
¢; = 0 implies thatn; = 0). A battery expires when all its
cells are completely discharged. A cell that is in staig ¢;),
S max(1,¢; + N — C) < n; < min(¢;, N), ¢; < C,inaslotand
K is not serving a packet, may recover one charge unit and move
to the stater; + 1, ¢;) with probabilityp,.(n;, ¢;), where

AW ARNAR
NIZANZERN

T

//'/__‘_,_—_’:,—"’ pr(ni, ;) =
0 g e=9(N=ni)=d(ei) max(1,¢;+ N —C)<n; <min(c¢;, N)
1 2 3 4
—>n c; < C

] ] . ) otherwise.
Fig.1. Thefigure represents the stochastic model of a battery celNvith4,

C = 6. The horizontal axis represents the remaining charged the vertical 1)
axis the remaining capacity The cell has 25 states. We show the transitions . . i i
among states wite < 3 only. The self transitions have been omitted. ThdN this equationy is a constant that depends on the discharge

transition probabilities have been depicted for the states wvith3. process of the cell and(j) is a staircase function which de-
creases as the remaining capacity of the cell increases. For ex-
under a constant current discharge. When a packet needs tatple, ifC' = 200, ¢(j) = 15.6 for 0 < j < 5, ¢(j) = 0.8 for
transmitted by the device, a certain number of charge units need j < 100, ¢(j) = 0.0025 for 100 < j < 195. Note that a
to be discharged from the battery, from one or more of its cellsell 7 cannot recover any chanrgenif = ¢;. Also, (1) indicates
When a cell is not being drained it can recover one charge utiitit the recovery capability of a cell decreases exponentially as
with a certain probability, due to the diffusion process [6]. As more charge units are drained from the cell and the remaining
result, the actual energy delivered by a cell, during its lifetimeharge and the capacity decrease.
is betweenV andC charge units. It deliver®& charge units if ~ The battery discharge policy decides which cells should be
it does not recover any charge, while it delivéraunits under drained to serve an incoming packet. We consider only work-
maximum possible recovery. The problem we investigate is h@wnserving discharge policies, which always serve an incoming
to efficiently assign the packets to the cells. The objective is packet, as long as there is an active cell in the system. A packet
optimize the charge recovery process and, thus, maximize ttam be served by one or several cells. Chiassetiral. [3]
total energy delivered by all the cells. This in turn maximizeshowed that the lifetime of the battery significantly improves
the battery lifetime. if each packet is served by only one cell, while the other cells
We assume that a cell is modeled by a stochastic process wihover. Thus, we assume that for each packet transmission the
a two-dimensional state space as shown in Fig. 1. For each sta#eessary current is drained from just one cell. The discharge
of the cell, denoted by «;, ¢;), we definen; to be the re- policy considerably affects the total number of packets that can
maining charge and; the remaining capacity left in the cell.be transmitted during the node’s lifetime. Consider a battery
In other wordsg; is the difference between the maximum thewith only two cells and a packet of size 1 arriving in every
oretical capacityC’ and the total charge units discharged so fdime slot. A possible discharge policy is to assign all the packets
from the cell. Initially, each cell is fully charged witN charge to one cell until it is completely discharged and then use the
units and the remaining capacity equ@lsThus, the initial state second cell. In this case, only a total oN2packets will be
of a cell is (V, C). The state space considers only those stat@ansmitted before the battery expires since the cells do not re-
for which the remaining chargedoes not exceed the remainingcover any charge, while the maximum limit i€20n the other
capacityc. This is motivated by the fact that the maximum enhand, a policy which uses the cell that has the larger remaining
ergy delivered by a cell is upper bounded by its remaining caeharge allows both cells to recover charges and, thus, the total
pacity. We also observe that the sum(df — n;) and the total energy delivered will be close t&2 Intuitively, an efficient bat-
amount of charge recovered equals the total amount of chatgey management policy should take into account the recovery
spent, i.e.(' — ¢;. Thus,N — n; < C — ¢;. Each cell now has probability of each cell, which depends on its remaining charge
(N +1)(C — N +1) states. and capacity, as (1) shows, so as to fully exploit the recovery
We consider slotted time. A packet is the portion of a messagechanism of the battery. Our objective is to provide an optimal
which the device wishes to transmit in one slot. The “size” gdolicy that efficiently selects a cell for an incoming packet so as
a packet is the number of charge units required to transmit tttemaximize the total energy delivered by the battery before all
packet and the required charge depends on the power requitezicells are completely discharged.
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Ill. FRAMEWORK FOROPTIMAL BATTERY MANAGEMENT Also, p,,(u) = 0, for any other statg. The transition proba-
_ . . bilities can be explained as follows. Since aells selected for
We will present a framework for computing the optimal bafdischargingnuy = Nz — I, Cuy = cux — | if @ packet of sizé
tery management policy using the theory of Markov decisiogtrives (with probabilitys;). Any other celli does not lose any
processes (MDP) [4] More SpeCIflcally, we will use the theorbémaining Charge or Capacity, (thq§ — ciz) and may or may
of “stochastic shortest path” problem, presented in [4]. We giv®t recover. In the first caseiy = nix + 1, W.p. pr(1iz, Ciz)]
an overview of the related theory and computational techniqugsd in the latter casei, = nix W.p. 1 — p,(nia, ciz)]’ (2a).
in technical report [10]. In this paper, we show that the optimg|owever, if no packet arrives [w.po], then cellu can also re-
battery management problem falls within the purview of the st@over and the recovery event is similar to that of the others [(2b)

chastic shortest path problem. and (2c)].
We assume that the cell selection is independent of the size
A. Mathematical Formulation of System Evolution of the packet. If the state definition is expanded to include the

i Possible packet sizes, then the same framework provides the
) . ptimal strategy which considers the cell sizes in the decision
duced in Section Il here. We represent the state of the systgfBess (under the assumption that the sizes can have a finite
attimek as a Z-tuplexy, = (nik, Cik, -k, crk), WNere nymper of different values). The linear complexity optimal al-
nak = 0, min(cur, N), cup = 0,...,C are the remaining 44rithm presented in the next section generalizes to this case as
charge and capacity for cell at timek. Then, the system has a,e|| The size of the state space will increase by a factgrof
totzil of M _pc_)§5|ble states, whedd = ((N + 1)(C — N/2_ + wherep is the total number of possible packet sizes. We also as-
1))”. The initial state isco = (N, C, ..., N,C). Ateach time g, me that if a cell discharges completely while serving a packet,
k the system chooses a cell amongst those activé/f C  he rest of the packet is not served by any other cell. This as-
{1,-.., L}),toserve apacket of sige, wherePr(q, = i) = a;  gumption affects the service of only the last packet served by
forall slotsk and nonnegative integerandy, , g», . .. are MUt~ gach cell, i.e.L packets in all, which constitutes a negligible
ally independent. A battery management policy is a rule whighy, -tion of the total number of packets served in practical sce-

in every sloti chooses the cell for serving a packet as a functiq{L rios. We do not expect the optimal energy to change notice-
of the system state;. For notational convenience, we assuUmgpy if this assumption is relaxed

that a cell is selected even when there is no packet to send (i.e-y,o energy delivered by the battery at tifnés equal to the

g = 0). However, no cell is discharged in this case. The neXtinimum of the packet size and the remaining charge of the

statex;.1, of the system depends on the size of the pagket sopeqyjeq cell. Thus, the average energy delivered in state
the chosen cell;, and the recovery process for all the cells. Thﬁnder cell selectiom, q(x, ) is given by

amount of charge recovered by celin slotk is a,.,.. Note that
a1 can either be zero or one,;, = 0 if cell r serves a packetin " "
slotk, otherwiseq,.;, is one or zero depenc_ii_ng on whet_h_er or not gz, u) = Z ia; + n, (1 — Z a7:> . (3)

the cell recovers a charge unit. The transition probalgility(«) Pt Pt

from stater to statey under cell selectiom depends on the re-

covery probabilityp,.(n;, ¢;) defined in (1) for every cell and The objective is to choose the cell at each slot such that the
the probability distribution for the size of the pacKet,}. We expected cumulative energy is maximized. The choice of the
introduce some notations for describing the transition probabilell depends on the state of the system. [&fr) denote the
ities pyy(u). Letz = (R, C1zy. .+, Nuz, Cuz, - - - s MLz, CLz ),  OPtimal expected energy if the system starts from staféhe

Y = (N1y, Cly, - - -, Nuy, Cuy, - - -, DLy, CLy) DE States in the state objective is to compute the optimal cell selection rufewhich
space. Let;, € {ni.,n.» + 1} ande;y = ¢, @ # u. Let  attains the energy*(z) for eachz. We first illustrate the state
Agy(u) = {i 1 i # u,niy = nip + 1} and B,y (u) = {3 : evolution with an example. In case of a two cell battery, we can
i # u,n;y = ni}. Thus,A,, (u) is the set of cells which re- represent the state of the systemuas= (n1, c1,n2,c2). As-
cover charge an®,,(u) is the set of cells which do not re-sume that a packet of sizg > 0 arrives and the first cell is
cover charge. For example, consider a three-cell system aibsen to serve this packet,(= 1). Thus, the state.; will

v = (1,2,2,3,4,5),y = (2,2,2,3,4,5), andu = 2. Then, be given by the following relationzj+1 = ((n1 — qx)™, (c1 —

Axy = {1} andey = {3} qk)+7n2 + a2k702)). If up, = 2, the next state igpy; =

(n1+aig, c1,(n2—qp)t, (ca—qr)T), wherea™ = max(a, 0).

((aillica,, (u)Pr (Miz, Ciz) The energy obtained equalsin(n1, ¢,.) andmin(ns, i), re-
Wien,,(u) (1 = pr (1iz, ¢iz)) spectively.

if Ny =Nz —1, Cuy = Cuz =1,
0 <!l <nyz,Nuy >0,cuy >0

) B. Justification for Using Stochastic Shortest Path Problem
or if nyy =0, cuy = Cuz —Nuz, Nua <1 (2a)

_ ) a0 (1 = pr (Muas Cux)) Wic A, (u)Pr (i, Cix) We will now justify that the optimal battery management
Pay ()= Wien,, () (1 = pr (i, Ciz)) problem falls within the purview of the stochastic shortest path
St Nz =Ny s Cuz = Cuy (2b) problem. The first observation is thtite total number of pos-
aoPr (Muzs Cuz) Wic A, , (w)Pr (Miz, Cix) sible system stated/ is finite. Next, given the current state
Wien,, ) (1 = pr (Niz, Ciz)) and the cell selection, the future state is independent of the past
if Ty =N + 1, Cuze = Cuys states and cell selection$his follows from the system evolu-

\ Nuz < N. (2c) tion and the fact that the packet sizes are independent from slot
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to slot. The system terminates when the battery expires and this IV. LINEAR COMPLEXITY ALGORITHM FOR
happens when all the cells are fully discharged. Recall that a COMPUTING THE OPTIMAL STRATEGY
cell is fully discharged if the remaining charge is zero. Thus

at h —of hiis at ' In this section, we design a simplified computation scheme
any statey, ci, ..., nr, cp) wheren; = 0 for eachi is ater- i ontains the optimal strategy in linear complexity( (1))

mination state. LeT’ denote the set of termination states. NOI‘(‘:Section IV-A). Subsequently, in Section IV-B we will discuss
that once the battery reaches a state T, it remains there some salient features of the computational framework.

and cannot deliver any more energy. We argue tthatsystem

reaches!” with probability 1 under any discharge policyhis A Design of the Linear Complexity Computation Technique
is because of the following reasons: 1) we consider only workW b that when th tem is in stathere | |
conserving policies here and a work conserving policy alwa}/_s ¢ observe that when [he System IS In Siathere is only a

serves a packet as long as the battery has not expired; 2) a (':@I'Ited number of stateg that the system can move to from s_ta_te
can deliver at mos’ units of charged; cannot increase in sub- under any cell selection. Note that the system may remain in

sequent slots as per the system evolution) and, thus, the bat{%gxsame statewith some probability. Les, (x) denote the set

can deliver at most.C' units of charge; and 3) there is a nonzer ex_t states the _system can move to from statexceptz, i
probability of packet arrival in every slot¢ < 1) and each el is selected, L.edu(x) = {y : y # u, pxy(u) > 0}. Note
packet consumes at least one unit of charge. Thus, the batjﬁ?f’”(“) can be compu:[ed asin (2a)~(2c). S'mg(@ =0
management problem satisfies all the characteristics of the all () Uz, Bellman’s equation (4) can be rewritten as

chastic shortest path problem [4], [10]. () [_( )+ o (1) (2)
r) = max |(q(x,u Pzz (U T

ueU(x

C. Formalization of the Optimal Solution “

Since the battery management problem belongs to the broad + Z pmy(u)J*(y)]
class of stochastic shortest path problems, the optimal energy y€S.(z)
and cell selection can be obtained by solving Bellman’s equa- =aoll= | (1= pr (s, c1z)) J* ()
tion given in [4].

Proposition 1: The optimal expected energy for a state + max [q(%u) + Z pmy(u)J*(y)]
J*(z) satisfies Bellman’s equation given below u€l(x) yes. (x)

sincep,.(u) = aOHlel(l — pr(niz, ciz))Vu. Thus

maxy, ey (z) Ju()

J*(x) = max [q(ﬂ?:U)Jera:y(U)J*(y)] (4)

ueU(x) J*(x) = 6
(@) 1 —aolly, (1 = py (Nia, C1a)) ©)
whereU(z) is the set of active cells in stateand §(z, u) is where
given in (3). A cell selection functiop*(z) is optimal if and Ju(@) =q(z,u) + > pay(u)T* (). (7
only if YES, ()
M Intuitively, J,,(z) is the energy delivered if cellis chosen when
e - - . the system is in state.
w(w) = arg el [Q(“L’“) + z;pmy(u)‘] (y)] ®) " We defineS(z) = Uneu (z)Su(z). According to (6) the op-
=

timal energy.J*(x) can be computed if we know*(y) for all

Standard techniques like value iteration and policy iteration my€ (%) Using specific properties of the battery management
be used to solve Bellman’s equation [4], [10]. However, thegEoblem and (6), we will present an algorithm which computes
general methods are not suitable for systems with a large stité*) Sequentially such that* (y) is already computed for all
space, such as in our case. For example, vihen20, N = 10, ¥ € S(x) before _computmg]*(a:). _ N .

L = 2, M = 14641. The value iteration method is an itera- V& now _descrlbe the sét,(x) using the transition probabil-
tive procedure which may need a large number of iterations f{£S 9iven in (2a)~(2c). Let = (n1z, cia, - ., nLa, L), then
converge potentially infinitg and each iteration has complexity? Statey = (21, c1y, .-, nLy,cry) isin S,(z) if and only
O(M). On the other hand, the policy iteration method involvel 1) ¥ # 2; 2) ciy = Cizs niy € {Niz,niz + 1}, i # v and

K iterations in the worst case, whefé is the total number 3) (Muy; Cuy) € {(nua = ¢; Cux = (I)»' (Muz + 1, cue) }; @and 4)

of possible policiesK is O(M L)) and each iteration requires”iv € {max(0, ¢iy + N = C), ..., min(ciy, N)}, ¢y < C for

the solution of a total o/ linear equations withM/ variables &l ¢- For example, in a two-cell systemyif= (1,2,1,2), then
O(M?)[12]. Thus, the overall complexity i8(M*L), whichis 5, (x)

Iarge in general, even for small valuesiéfC'. In thg next sec-  _ ((2,2,1,2),(2,2,2,2),(1,2,2,2),(0,1,1,2), (0,1,2,2)}.
tion, we show how to solve (4) [and thereby obtain the optimal

policy] in O(M) overall, exploiting the specific characteristics We denote as\,(z) the differencer; — n; between the re-
of the battery management system. maining capacity and the charge of a @ellvhen the system is

in statex. For example, for a two-cell systemy; (1,2,3,5) = 1
N _ ) andA»(1,2,3,5) = 2. The key point to observe is that for all
The optimum expected energy can be defined/agz) = max,

limr_. o E{32 7" G(xr, pr(zr))}, where the maximization is over all cellsi and stateg in S(x), eitherA;(y) = AL(x) orAi(y) =
policiesy, a policy;: chooses the cejt, () if the state ise in slot k. [4] A;(z)—1. SinceJ*(z) can be computed using (6) only.Jf(y)
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Procedure Optimal_Energy/() Example 1: We now illustrate the operation of our tech-
begin nigue. We consider a battery with two cells, nominal capacity
fm;ofli_:l lt ‘:ONC;;T do N = 2 and theoretical capacit¢y’ = 4. This example will
j=i4Ax show the sequence of computation and demonstrate that when
for Az =0to Ay do the algorithm computed™*(z), it already knows.J*(y) for
'flﬁfzf\f” then all statesy € S(z). The overall sequence of computation
else is (1,2,0,0), (1,2,1,1), (1,2,2,2), (1,2,0,1), (1,2,1,2), (2,3,0,0),
foi’als(t::()l;to last do (213!111)! (2!312!2)1 (21310!1)1 (213!112)! (1!31010)1 (11311:1)1
I=k+As; 1,3,2,2), (1,3,0,1), (1,3,1,2), (1,3,2,3), (1,3,0,2), (1,3,1,3),
el N R (24,00), 2411), 2422), 2401), 2412), (24.23),
! (””“’(”) = meoltE, (1mpr(mpeg) VRO T2 w5 110,2), (2,4,1,3), (2,4,2,4).
ig”e“ in (7 . on The optimal energy is first computed for the state
Fbd bl 2 Bl kD th z = (1,2,0,0) (A1(1,2,0,0) = 1, Ay(1,2,0,0) = 0).
e‘s;(i ikl =2 Here,U(xz) = {1}, as any work conserving policy uses cell 1
/* END OF BLOCK 1 */ to serve a packet. Now§; (z) = {(2,2,0,0),(0,1,0,0)} and
J*=J(N,C, N, C); J*(z) = Ji(z)/(1—ao(1-p,(1,2))). Now, J;(z) can be com-
end puted as the optimal energies for all state§'iz;) are known,

J*(2,2,0,0) =2, J*(0,1,0,0) = 0, according to Properties 2
Fig. 2. Computation of optimal energy and cell selection procedure forand 3. In the second iteratiod7 (1,2, 1,1) is computed. Now,
syster with two cells 0(x) = {1,2}. We haveS; () = {(2,2,1,1),(0,1,1,1)} and
Sa(x) = {(2,2,1,1),(1,2,0,0),(2,2,0,0)}. Note thatJ* (y)
is known for ally in Sy(z), S2(x) from the previous iteration
and Properties 2 and 3 of the functiofi(x). Similarly,
& optimal energies for the rest of the states are computed.
or example, when we compute the energies for the state

(1,3,1,3), we have

is known for ally in S(z), our approach is to initially compute
the .J*(x) for the states: which have lower values of thege
functions and subsequently move to the states with higher val
of these functions. e
We also use the following additional properties of the optimé'ﬂ -
energy functiong/*(z) at different stages of the computation. Sy () :{(2_3_2 3), (2,3,1,3), (1,3,2,3)
Property 1: From symmetry T T AT e AT

J* (nhCl:-"777‘1?707?7-~-7nj7cj7~-~>nchL) (0./2./1,3)7 (0,223)}
=J* (nhch...7nj7cj./...,ni./ci7...7nL7cL).

For exampleJ*(1,2,3,4) = J*(3,4, 1,2). This symmetry re-
duces the number of states for which we need to compute the

optimal energies by a factor of roughly. Sa(z) :{(2’ 3,2,3), (2,3,1,3), (1,3,2,3),

Property 2: Also, J*(¢1,c¢1,...,c,cL) = Z,L.Lzlci. For

example,.J*(3,3,4,4) = 7. This follows from the obser- (1,3,0,2), (2>37072)}~
vation that a battery in statei.{,cy,...,nr,cr) can deliver
at least> > | n; units and at mosy.~, ¢; units. Note that
Ai(e1,e1,...,cp,cr) = 0 for all cellsi. Thus, we know
the optimal energies for the states with zero values ofAhe
functions without any computing and we use these knovmat
values to compute the optimal energies of other states.

Property 3: We also know that*(z) = 0, for any termina-
tion stater € 7'. Also

The optimal energies for all the above states are known from the
previous iterations (refer to the sequence of computations given
above) and by using the symmetry property 1/6{z).
Proof of correctness of the techniqu&Ve need to show
the technique given in Fig. 2 computes the optimal energies
for each state = (n1, c1, n2, c2). Note that the algorithm com-
putes the energies for statesvith A;(z) > As(xz) > 0 and
Ay (z) = Ay(z) > 0if ng < my. The first question is whether
J* (n1,c1,...,0,¢i,...,np,cL) the optimal energies of all other states can be computed using
these values. This follows from Properties 1 to 3/6{«) and
the fact thatA;(z) > 0 for all cells:. The argument is as fol-
This again follows since a cell with zero remaining chargews. The algorithm does not compufé (z) if (a) A;(z) <
cannot serve any further packet. Ag(z) or if (b) Ai(xz) = Ag(z) andn; < ng Orng = ¢

We present our computation technique in Fig. 2. For sinandns, = ¢,. Consider case () first. Let= (no, ¢, n1,¢1).
plicity, we describe the technique for the two-cell case only, i.Note thatA, (z) > As(z). Thus, the algorithm computds (z)
L = 2. This is for ease of presentation and the generalizatiand we know that/*(z) = J*(z) from symmetry. Now con-
for the multiple cell case is straight forward. In technical repodider case (b). Lety; < ns. Again, the algorithm computes
[10], we also numerically compute the maximum energies for.& (z) and, thus,/*(z) is obtained from symmetry. Finally, if
larger number of cells using this basic approach. x = (e1,c1,c2,¢2) J*(2) = ¢1 + co from condition 2 and need

In Fig. 2, the terms/, (3, j, k, 1) and.Jx(4, 7, k, [) are the in- not be computed separately.
dividual terms in the maximization in the right-hand side of (6) Next, we need to show that the energies computed by the al-
and can be computed using (7). gorithm are the optimal energids$ («) which satisfy Bellman’s

=J* (nl,cl,...,0,0,...,nL,cL).
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equation (4). Note that the computation.bf(x) in Fig. 2 fol- and, thus¢s — no < 1 asAq(z) < Aq(z) (The last inequality
lows (6). Thus, we only need to show th&t(y) forally € S(z) holds as the state is being considered currently.) It follows
is computed beford*(x). We show this by induction. The basethatn, + 1 = ¢ sinceA;(y) > 0 for all statesy. Thus,y =
case is (1,2,0,0) and the result holds for (1,2,0,0) as argued dn, c1, c2, c2) and, hencel*(y) is known. Now, lety; +1 < ¢;.
the previous example. We assume that all states consideredSiaceA;(y) = A;(z) — 1,7 = 1, 2.J*(y) is computed before
fore z satisfy this property. We show that the result holds in thé*(z), only if (a) Aa(y) < A1(y) or (b) 0 < As(y) = Aq4(y)
induction case for state by addressing several subcases sepndny < n;. If Ay(z) < Aq(z), then condition (a) holds as
arately. Note that\;(y) € {A;(z),Aj(z) — 1}, i = 1,2for A;(y) = Ayj(z) — 1,4 = 1, 2. Otherwise, (i.e., iy (z) =
anyy € S(z). Thus, the subcases we have to consider are: &) (z),) Az(y) = Ai(y) sinceA;(y) = A;(z) — 1,4 = 1,
Aq(y) = A1(z), Az(y) = Az(z) — 1, (b) Ai(y) = Ai(x), 2. Now,ny < ng sinceAy(z) = A;(z) andJ*(z) is being
i = 1,2 () A1(y) = Ai(z) — 1, Ax(y) = Ay(z), and computed. Since; + 1 < ¢; by assumptionA;(y) > 0 and,
(d) A1(y) = Ai(z) = 1, Ax(y) = Ax(z) — 1. Letx hence As(y) > 0. Thus, condition (b) is satisfied in this case.
(n1,c1,n9,c2). The result followss

For the first subcasg = (n; — d,¢c; — d,no + 1,¢2),d >
0. Note thatn, < ¢, as a cell cannot recover charge otheB. Discussion of Salient Features
wise from (1). From the computation sequence of the algo-Note that the algorithm “visits” every state at most once
rithm, before any staten(, ¢1, n2, ¢2) is considered, all states\yhen it encounters state in Block 1 in Fig. 2. The compu-
(ny —d,c1 —d, k,1) are considered if — k < ¢; —ny. Since  tation complexity of.J*(x) depends on the size &f(z). Note

the algorithm is trying to computé*(z) for statez, co — ny <
cp — ni. Assuch,co —no — 1 < ¢; — ng.

lows.

We consider the second subcase now. Let
(n1,c1,m2,c2). Here, y (n1,c1,m2 — dycg — d), or
y = (n1 — d,c1 — d,na,co) for somed > 0. (Note that
d # 0 asy # x for anyy € S(z)). For the first case/*(y) is
computed before, a&;(y) = Ai(z),7 = 1,2 andny —d < no.
Consider the second case. Againdf—ny < ¢1 —ny, J*(y) is
computed before a&;(y) = A;(x),i=1,2andn; —d < n;.
Letco — ng = ¢; — ny (Note thatey — ny < ¢; — ny Sincex is
being considered). li2 < n1 —d, y is considered before. Let
ny > nq — d. Note thatn, < nq sincecy — ns = ¢ — ny and
x is being considered. Consider= (nq, ca,n1 — d,c1 — d).
Note thatAQ(Z’) Cl1 — N1 = Cy — Ny = AQ(.Z?) and
Al(z) = Co — N2 cp —ny = Al(x) If no < nq, then
sinceA;(z) = Ai(z),i = 1,2, andny — d < ne J*(2) is
considered before. Alsof*(y) = J*(z) from the symmetry
property. Thus,J*(y) is known. Now, letny, = n;. Thus,
x = (ni,c1,n1,¢1),y = (m — d,er — dyny,cp), and
z = (n1,c1,n1 — d,c; — d). Clearly, z is considered before
x sinced > 0. Thus, J*(z) and, hence/J*(y) is known by
symmetry. The result follows.

We consider the third subcase now. ket (nq, ¢y, n2, c2).
Now, y = (7’Ll+1,01,n2—d, Cg—d), d>0.Leteco—n9 < c1—
n1 — 1. In this caseAs(y) < A1(y). Also, Aq(y) < Aq(z).
Thus,J*(y) is computed before. Now let —no = ¢; —ny —1.
Thus, As(y) = A1(y) < Aq(x). If Ar(y) = Asx(y) = 0,
n1 + 1 = ¢; andny = co. Thus,y = (c1,¢1,¢0 — d,ca — d)
and J*(y) is known. LetAs(y) = Ai(y) > 0. If ng — d <
n1 + 1 J*(y) is computed before. Otherwise, (i.e.nif — d >
ny + 1) J*(ng — d,co — d,n1 + 1, ¢1) is computed before and
J*(y) = J*(ny —d, ca —d,ny + 1, ¢1) from symmetry. Finally
letco—no = ¢1—nq [NOte thats—ns < ¢ —ny asthe algorithm
is trying to compute/*(z)] . It follows thatn, < n;. Consider
z = (ng—d,co—d,n1+1,c1). Thus,As(2) < A1(2) = Aq(x)
andny,—d < ny < my.Thus,J*(z) and, hence]*(y) is known
by symmetry. The result follows.

We consider the fourth subcase now. keet (n1, ¢1,n2, c2).
Now,y = (n1+1,¢1,n2+1,¢2). If ny+1 = ¢y thenc;—ny =1

that|S(z)| is at mostL(p + 2)2L~1 if packets can have dif-

n1. Thus, the state forent sizes. In practice, the number of céliss a small con-
(n1 —d,c1 —d,n2 + 1, c2) has been considered. The result fol

stant and normally less than six. Similarfy,~ 2, 3. Thus,

for all practical purposegS(z)| can be assumed to be a con-
stant. Thus, the complexity is linear in size of the state space
The storage required for this algorithm(g M ). However, it is
possible to reduce the storage substantially with certain obser-
vations (e.g., the two-cell case needs a stora@d\qiC’ — N +

1)(N + 1) only2 whereasM = ((N + 1)(C — N/2 + 1))?)

[10]. We would like to point out that this strategy can be com-
puted offline and, thus, a node can execute the optimal cell se-
lection only by a table lookup procedure. The lookup table will
need to store the optimal cell selection €M) states and the
lookup complexity will also beD(M). Now, M can be large

for real systems. Thus, we believe that the principal use of this
optimum strategy will be as a “benchmark” for comparing the
performance of online suboptimal strategies with the optimal
energies. For example, we propose a simple suboptimal policy
in Section V which can be used to choose the cell in an on-
line fashion and subsequently we use the computation presented
here to show that the suboptimal policy delivers near-optimum
energy.

Even though the computation complexity is linearifi M
itself can be large for moderately large valueS@dndN (M =
((N+1)(C—N/2+1))F). However, we could still compute the
optimal strategy in order of minutes fét = 200, N = 25, L =
2 using an Ultra-SPARC SUN machine. The standard value and
policy iteration technigues were consuming several hours (more
than ten hours) for the same numbers. We could also compute
the optimal strategy for moderate value<bandN for . = 4.

The computational framework and the technique presented
here make no assumption about the packet size distribution, ex-
cept independence of the packet sizes from slot to slot. Thus,
the computations can be used for a large number of different
traffic models. We present results for two different size distribu-
tions in Section V and we observe that the optimal energy ob-
tained can be quite different for different size distributions. Note

2Storage can be saved during computatioi‘if ) is not stored for all the
statese all through the computation. Rathér () is stored in primary storage
only until it is required for computing*(y) for somey.
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thatthe packet size depends on the transmission power whi Poisson Traffic, L=2, C=200

in turn depends on the transmission conditions and the tran ! ! ' !
mission conditions may have different distributions for differer ‘ Nl
scenarios in the wireless case. Thus, it is important to accor OPT,N=25 %
modate different traffic distributions in the optimal frameworko 08 MG, N=25 e o
Realistically, transmission conditions need not be independ€§ AN
|n dlﬂ:erent S|OtS. HOWGVGr, thIS teChanue Can be generallzed 2 ()6 B .\.\; \ ........................... P —
capture Markovian dependencies in packet sizes. This strateg ) :
can also be used for different recovery probabilities. e
Finally, the framework and the linear complexity computatior
technique presented here are not restricted to computation .2
the maximum energy. The same strategy can be used to obt : :
the energy attained by many other cell selection policies. V 0 i i

illustrate this in the next section. 0.5 1 1.5 2 2.5
Average packet size R

0.4

rfo

BB BB BB - R B

V. A SIMPLE SUBOPTIMAL POLICY MAXIMUM CHARGE (MC) Fig. 3. Performance rati& of optimal and MC forC' = 200 and N = 12,

We consider a simple scheduling policy which aims to effd as a function of the average packet sizeor Poisson traffic.
ciently choose the cell to be discharged, so as to approximate the
optimal. The choice of the cell depends on the remaining chai
of all cells. More specifically, the incoming packet is assigne
to the cell with the maximum remaining charge. It is possibl
to instantly monitor the level of charge in each cell using sme
battery packages [3]. We denote this policy as the MC polic2
We will show numerically that MC attains near maximum life-g
time by using the battery state information in choosingthece 4
in an intuitive manner and significantly improves upon the Iife§
time attained by RR proposed in [3]. It is worthwhile to note€ 4

Bursty Traffic, L=2, C=200, N=25

0.8

OPT, b=3 —+—+

that unlike MC, RR does not use battery state information & MC, b=3 -

choosing the cells. 02 F Ve a
We compute the total energy delivered by the MC strate( ‘

using the theory of stochastic dynamic programming oni 0 I 1

again. We first introduce the concept of stationary policie 01 02 03 04 05 06 07 08 09

A stationary policy is one in which the cell selection policy Probability of zero packet arrival

d_oes not change with time and the actugl selection.dependsF%nLL Performance ratio of optimal and MC fef = 200, N = 25 and
time only through the state value, e.g., if the state is the sa@iferent values of burst sizé) as a function of the probability of zero-packet
for two different slots, then the selection will also be the sansivals, for bursty traffic.
for these slots under a stationary policy. Note that the optimal
policy which satisfies (5) is stationary. Let stationary policy  The idea behind MC is that it provides an efficient way to
choose celli(z) in statez. From the stochastic shortest pathiischarge the cells, since it allows the “most discharged” cells
framework [4], the energy obtained by a stationary policy to recover. Intuitively, it should perform close to the optimal.
starting from state: is given by We corroborate this observation with the numerical results pre-
o sentedin Figs. 3and 4. Also, MC is easy to implement, as it does
_ not need any table lookup as opposed to the optimal strategy.
Tu(@) = (@, pz)) + lz:lp” (@) Ju(v) ® We now d)t/ascribe the npumertiJ:ZI and simulatir(J)n performa?])(/:e
- evaluation of MC. We consider the performance mettiwhich

whereq(z, u(x)) is givenin (3). is the ratio between the total number of charge units delivered
Next, arguing as in the derivation of (6) from Bellman’s equg-4) and the maximum number of charge units that can be deliv-
tion, we have ered by a battery ok, cells, L « C), i.e.,G = A/(L = C).

- We first describe the different traffic models we will use.

, + m J . ; ) . o
J i) 'UGSﬂZm(m)p (@) () 9 First, we consider a Poisson traffic model. Here, the probability

) — . ; . . N R
u(@) [P TR — (9)  that a packet of size arrives isa, = R%%/q!, where R

is the average packet size. We also consider a different traffic
This is similar to (6). Thus, we use a technique similar tmodel, where packets are normally of size 1 (with probability
Fig. 2 to compute/,, (z), for any stationary policy.. The only a; = ap), but occasionally have a larger siz€burst”) with
modification is to replace block 1 by (9). Observe that the M@robabilitya, = a(1 — p). Also, the probability of zero arrivals
policy is stationary and, thus, we can use this technique itbay = 1 — . This model corresponds to a realistic scenario
compute the expected enerdy;(x) obtained by the system, where transmissions are usually good except occasionally, due
starting from state:. to “fading.” When the channel is good, only one charge unit is
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Poisson Traftic, C=200, N=12 Bursty Traffic, C=200, N=12, b=3
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Average load per cell (R/L) Fig.6. Percentage differencd G avrc — Grr)/Grr)*100)0of MC and RR

for L =2 andL = 4,C = 200, N = 12, as a function of the probability of

Fig. 5. Percentage differenc{Gsrc — Grr)/Grr)*100)of MCand RR  zerg-packet arrivals for bursty traffic. The top figure shows the caselwits
for L = 2andL = 4, C' = 200 as a function of the average load per cellang the bottom figure with = 8.

(R/ L), for Poisson traffic. The top figure shows the case vith= 12 and the
bottom figure withNV = 25.
for b = 8 as compared witth = 3. The performance is also

required to transmit a packet. During fading, the energy requirarse compared with the Poisson traffic. For example, for av-
to transmit a packet will be larger and equabto erage packet size 0.75 the optimal givés= 0.95 for Poisson

In Fig. 3, we consider Poisson traffic. We compare the petraffic, G = 0.8, and 0.6 for bursty traffic, fob = 3 andb = 8,
formance ratioG for the optimal policy and the MC policy asrespectively. This can be explained by the fact that the proba-
a function of the average packet siRefor the case of. = 2  bility of large packets is higher for bursty traffic as compared
cells. We choose the parameter value§'as 200 andN = 25, with Poisson and it increases with
based on the parameter choices in [3]. We also give the result¥Ve now compare the performance of MC with RR presented
for C = 200, N = 12. As we can see in Fig. 3, MC closelyin [3] using simulation. In Fig. 5, the results fdr = 2 and
follows the optimal. For very smalR, since the cells are al- L = 4 are given for Poisson traffic, while Figs. 6—7 present
lowed to rest for longer periods, both policies perform well. Fahe results for bursty traffic, fos = 3 andb = 8. In all cases,
R = 0.3 to 0.6, MC differs from the optimal by at most 10%.we chooseC' = 200, N = 12, or N = 25 and we plot the
In other ranges, they are very close and the curves cannotpeecentage differencé((Grrc — Grr)/Grr) +100) as a func-
distinguished. For largeR, the performance for both policiestion of the average load per celR( L) for Poisson traffic and
is significantly reduced. Especially aft& = 1, G is less than as a function ofiy for bursty traffic. When the load is low, the
0.5 for both policies. This is because when a cell recovers it ceall selection is not critical and several policies will perform
only gain one charge unit, butwhéh> 1 more than one charge well. On the other side, when the load is high then the battery
units are discharged for an average packet. lifetime will be low, irrespective of the cell scheduling. Thus,

In Fig. 4, we plotG as a function of the probability of zero-the critical region is for intermediate load, where the appro-
packet arrivalig for the optimal and MC, for “bursty” traffic, priate cell selection can make a difference in the attained energy.
wherep = 0.75,b = 3,8,C = 200, N = 25,andL = 2. MC significantly outperforms RR in this region, for both traffic
MC is performing close to the optimal in general. Note that thmodels. In case of Poisson traffic, the difference reaches high
performance of both MC and optimal are significantly worsealues forC = 200, N = 12, e.g., the difference is above 100%



SARKAR AND ADAMOU: A FRAMEWORK FOR OPTIMAL BATTERY MANAGEMENT FOR WIRELESS NODES 187

Bursty Traftic, C=200, N=25, b=3
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Probability of zero vacket arrival In case of bursty traffic, the results in Figs. 6—7 show that
Y P MC attains an improvement of up to 35% whén= 3 and
Bursty Tratfic, C=200, N=25, b=8 up to 165% wherb = 8. Whenb is large, the performance
80 j T ' T T ' ' of RR decreases rapidly while MC still performs well, even for
70 boL=2 — X_..4 heavyload. This can be explained by the fact that when a packet
L=4 --ox-- ‘ Vol of larger size arrives, the RR policy may assign the burst to a
3 60 1 : %] cellthat is close to being completely discharged, thus quickly
£ 50 : : - x : J draining off all of its energy. However, MC carefully assigns the
£ w0 b - large burst to the cell with larger charge and, thus, it discharges
& iy ‘ the cells in a more fair manner, allowing them a longer period
§ 30 [ */*; & to recover. In a sequel paper [1], we investigate several other
o 0 b f ‘ ‘ sophisticated suboptimal battery management policies and show
x,/ \'\ that MC out-performs all of them. We omit the descriptions here
10 - E ¥\ on account of space constraints.
(0 ¥ezz==zoit < S e - = i 1 4
oL 02 03 04 05 06 07 08 09 VI. CONCLUSION AND FUTURE RESEARCH

Probability of zero packet arrival ) ] ] ) ]

In this paper, we obtain an optimal battery discharge policy,
fFig-L7- zercgrgagefiféeren%(%g%%c _C;RR)/G?R)t-lOO)fO:hMC af;)d E_:_?t for maximizing the lifetime of the power-limited wireless ter-
or L =2andL =4,C = , N = 25, as a function of the probability . : : _
of zero-packet arrivals, for Bursty Traffic. The top figure shows the case wi{P{"”a'S-_ We use general results from_ StOCh(?,l_StIC dynaml(_: Pro
b = 3 and the bottom figure with = 8. gramming framework and also exploit specific characteristics

of the battery management problem to design the optimal solu-
TABLE | tion. Even though the computation complexity of the optimal is
NOTATION linear in the number of system states, the computation may be-

come prohibitive on account of the large size of the state space.

Symbol | Meaning : Next, we design a computationally simple discharge strategy
¢ theo}.remal capacity (MC) and show that the lifetime attained by this policy is close
N nominal capacity to that of the optimal
L number of cells - P .Ima ) . . .
i total mumber of states Transmission is the most energy consuming action ofa wire-
M= ((N+1)(C - N/2+1))t less device and transmission energy requirements (packet size
T remaining charge of cell u in our notation) are determined in the medium access control
Cu remaining capacity of cell u (MAC) and the physical layers. An interesting area of future re-
pr(ny,cy) | recovery prob. of cell u in state (n,, c¢,) search is to integrate the battery management scheme with these
J*(z) optimal energy of the system when in state x layers. Conceptually, the architecture will be as shown in Fig. 8.
I optimal cell selection The challenge is to design the message exchange sequence be-
aq prob. of arrival of a packet of size d tween the battery software and the MAC and physical layers
Pay(u) transition prob. from state  to state y and actually implement such a protocol in a wireless device.
= ‘slentd;f tceejrlnsiil;;zgnsgtes This is likely to give rise to many new systems issues as well
q(z,u) avg energy obtained in state x under an_d I.S beyond. the scope of the current paper.- Another_possr
cell selection bility is to decide the transmission power requirements in the

higher layers keeping in mind the battery discharge character-
istics, which is again a research area by itself. Finally, it would
for L = 4 and loadR/L = 0.6 (Fig. 5). The trends are similar also be interesting to take a fresh look at the routing and sched-
for N = 25 though the percentage difference is smaller than iding strategies in a network scenario in view of the battery dis-
the case ofV = 12. charge characteristics.
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