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A Framework for Optimal Battery Management
for Wireless Nodes
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Abstract—The focus of this paper is to extend the lifetime of a
battery powered node in wireless context. The lifetime of a battery
depends on both the manner of discharge and the transmission
power requirements. We present a framework for computing
the optimal discharge strategy which maximizes the lifetime of
a node by exploiting the battery characteristics and adapting
to the varying power requirements for wireless operations. The
complexity of the optimal computation is linear in the number of
system states. However, since the number of states can be large,
the optimal strategy can only be computed offline and executed
via a table lookup. We present a simple discharge strategy which
can be executed online without any table lookup and attains near
maximum lifetime.

Index Terms—Battery, scheduling, wireless.

I. INTRODUCTION

W IRELESS networks consist of small portable devices,
such as PDAs, mobile phones, headsets, etc., which have

limited processing power and battery energy. Message trans-
mission consumes significant energy and the transmission en-
ergy requirements vary with time depending on the channel
conditions. Thus, one of the most important challenges in the
design of wireless networks is to provide power management
techniques which are low cost and computationally simple. The
research performed in this area primarily aims to reduce the
energy consumption at the hardware level [9] and at different
layers of the network stack [8]. An alternate approach is to in-
crease the lifetime of the battery of a mobile node by using en-
ergy efficient battery management techniques.

A battery consists of several electrochemical cells from which
power needs to be drained when the node transmits a packet.
When a cell is allowed to rest in between discharge periods, it is
able to recover part of its charge, thanks to the diffusion mecha-
nism [3], thus, the total energy delivered is increased. A battery
discharge policy decides which cells should serve the packet and
which cells are allowed to rest. Analytical and simulation results
presented by Chiasseriniet al. [3] show that the discharge poli-
cies have significant impact on the battery lifetime. For example,
Round Robin (which we abbreviate as RR) scheduling scheme
can significantly improve the battery lifetime as compared with
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using all cells simultaneously for each packet [3]. In addition,
[3] states that it is possible to implement many different dis-
charge strategies, using smart battery packages [11]. Our goal
is to find an optimal battery management policy that maximizes
the delivered energy by exploiting the recovery capability of the
battery and adapting to the varying power requirements of wire-
less transmissions. Chiasseriniet al.actually mentions this as an
interesting open problem in the wireless context [3].

The contribution of the paper can be summarized as follows.
We develop a methodology for obtaining the optimal policy
for discharging the cells of a battery using stochastic dynamic
programming. The cells are optimally scheduled to serve the
packets and the recovery process is fully exploited. In general,
the formalization of such systems can be very complex and in-
volves the solution of a large number of linear equations. The
overall complexity is , where is the size of the state
space of the system and this size is usually very large for real
systems. Using the special properties of our system we develop
a linear complexity [ ] algorithm for computing the op-
timal. By applying this algorithm, the optimal policy can be
computed offline and executed using table lookup. Furthermore,
the knowledge of the optimal can be used to evaluate the per-
formance of online scheduling policies. We propose a simple
online scheduling policy which can be used without any table
lookup. We show analytically and by simulation that our simple
policy performs close to the optimal and considerably improves
over the RR policy proposed in [3]. The improvement is around
20% in general and in some cases even higher.

The rest of the paper is organized as follows. In Section II,
we describe the battery model and the discharge procedure. In
Section III, we present the general framework for computing
the optimal battery management policy. In Section IV, we give
our linear complexity computation technique. In Section V, we
present the simple online suboptimal policy and describe how it
can be evaluated using the general framework. We also evaluate
its performance by numerical computation and simulation, for
different values of battery capacity and traffic models. Finally,
our conclusion and future work are discussed in Section VI.

II. SYSTEM ASSUMPTIONS ANDOBJECTIVES

We are focusing on the lifetime of a single battery-powered
wireless device which we refer to as node. In this section, we
describe the battery model and the discharge procedure. Our
model is similar to that of [3]. A battery is defined as a group of

electrochemical cells electrically connected in a serial and/or
parallel arrangement. The “theoretical capacity” () of a cell is
the maximum energy it can deliver. A cell can deliverunits
only if all the available active material of the cell is used. The
“nominal capacity” of a cell ( ) is the total energy it can deliver
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Fig. 1. The figure represents the stochastic model of a battery cell withN = 4,
C = 6. The horizontal axis represents the remaining chargen and the vertical
axis the remaining capacityc. The cell has 25 states. We show the transitions
among states withc � 3 only. The self transitions have been omitted. The
transition probabilities have been depicted for the states withc = 3.

under a constant current discharge. When a packet needs to be
transmitted by the device, a certain number of charge units need
to be discharged from the battery, from one or more of its cells.
When a cell is not being drained it can recover one charge unit
with a certain probability, due to the diffusion process [6]. As a
result, the actual energy delivered by a cell, during its lifetime,
is between and charge units. It delivers charge units if
it does not recover any charge, while it deliversunits under
maximum possible recovery. The problem we investigate is how
to efficiently assign the packets to the cells. The objective is to
optimize the charge recovery process and, thus, maximize the
total energy delivered by all the cells. This in turn maximizes
the battery lifetime.

We assume that a cell is modeled by a stochastic process with
a two-dimensional state space as shown in Fig. 1. For each state
of the cell , denoted by ( ), we define to be the re-
maining charge and the remaining capacity left in the cell.
In other words, is the difference between the maximum the-
oretical capacity and the total charge units discharged so far
from the cell. Initially, each cell is fully charged with charge
units and the remaining capacity equals. Thus, the initial state
of a cell is ( ). The state space considers only those states
for which the remaining chargedoes not exceed the remaining
capacity . This is motivated by the fact that the maximum en-
ergy delivered by a cell is upper bounded by its remaining ca-
pacity. We also observe that the sum of and the total
amount of charge recovered equals the total amount of charge
spent, i.e., . Thus, . Each cell now has

states.
We consider slotted time. A packet is the portion of a message

which the device wishes to transmit in one slot. The “size” of
a packet is the number of charge units required to transmit the
packet and the required charge depends on the power required

for the transmission. This in turn depends on the transmission
conditions, the distance of the destination and finally the number
of bits in the packet. The exact dependence has been studied
extensively in [2], and [5]. In general, when the transmission
conditions are poor, or the next hop node is farther away, or
the packet has a larger number of bits, the packet needs to be
transmitted at higher power and as such it has a larger size. We
assume that the size of a packet is, , with probability .
If , then there is no packet to be transmitted in the slot. We
assume that .

When a cell in state ( ) delivers units of charge, it
moves to the state ( ). A cell is fully discharged
(or “inactive”) when its charge becomes zero ( , note that

implies that ). A battery expires when all its
cells are completely discharged. A cell that is in state ( ),

, , in a slot and
is not serving a packet, may recover one charge unit and move
to the state ( ) with probability , where

otherwise.
(1)

In this equation, is a constant that depends on the discharge
process of the cell and is a staircase function which de-
creases as the remaining capacity of the cell increases. For ex-
ample, if , for , for

, for . Note that a
cell cannot recover any chanrge if . Also, (1) indicates
that the recovery capability of a cell decreases exponentially as
more charge units are drained from the cell and the remaining
charge and the capacity decrease.

The battery discharge policy decides which cells should be
drained to serve an incoming packet. We consider only work-
conserving discharge policies, which always serve an incoming
packet, as long as there is an active cell in the system. A packet
can be served by one or several cells. Chiasseriniet al. [3]
showed that the lifetime of the battery significantly improves
if each packet is served by only one cell, while the other cells
recover. Thus, we assume that for each packet transmission the
necessary current is drained from just one cell. The discharge
policy considerably affects the total number of packets that can
be transmitted during the node’s lifetime. Consider a battery
with only two cells and a packet of size 1 arriving in every
time slot. A possible discharge policy is to assign all the packets
to one cell until it is completely discharged and then use the
second cell. In this case, only a total of 2packets will be
transmitted before the battery expires since the cells do not re-
cover any charge, while the maximum limit is 2. On the other
hand, a policy which uses the cell that has the larger remaining
charge allows both cells to recover charges and, thus, the total
energy delivered will be close to 2. Intuitively, an efficient bat-
tery management policy should take into account the recovery
probability of each cell, which depends on its remaining charge
and capacity, as (1) shows, so as to fully exploit the recovery
mechanism of the battery. Our objective is to provide an optimal
policy that efficiently selects a cell for an incoming packet so as
to maximize the total energy delivered by the battery before all
the cells are completely discharged.
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III. FRAMEWORK FOROPTIMAL BATTERY MANAGEMENT

We will present a framework for computing the optimal bat-
tery management policy using the theory of Markov decision
processes (MDP) [4]. More specifically, we will use the theory
of “stochastic shortest path” problem, presented in [4]. We give
an overview of the related theory and computational techniques
in technical report [10]. In this paper, we show that the optimal
battery management problem falls within the purview of the sto-
chastic shortest path problem.

A. Mathematical Formulation of System Evolution

We will use the system descriptions and assumptions intro-
duced in Section II here. We represent the state of the system
at time as a 2 -tuple , where

, are the remaining
charge and capacity for cell, at time . Then, the system has a
total of possible states, where

. The initial state is . At each time
the system chooses a cell amongst those active (

), to serve a packet of size, where
for all slots and nonnegative integersand are mutu-
ally independent. A battery management policy is a rule which
in every slot chooses the cell for serving a packet as a function
of the system state . For notational convenience, we assume
that a cell is selected even when there is no packet to send (i.e.,

). However, no cell is discharged in this case. The next
state of the system depends on the size of the packet,
the chosen cell and the recovery process for all the cells. The
amount of charge recovered by cellin slot is . Note that

can either be zero or one, if cell serves a packet in
slot , otherwise, is one or zero depending on whether or not
the cell recovers a charge unit. The transition probability
from state to state under cell selection depends on the re-
covery probability defined in (1) for every cell and
the probability distribution for the size of the packet . We
introduce some notations for describing the transition probabil-
ities . Let ,

be states in the state
space. Let and , . Let

and
. Thus, is the set of cells which re-

cover charge and is the set of cells which do not re-
cover charge. For example, consider a three-cell system and

, , and . Then,
and

if

or if (2a)

if (2b)

if
(2c)

Also, , for any other state. The transition proba-
bilities can be explained as follows. Since cellis selected for
discharging, , if a packet of size
arrives (with probability ). Any other cell does not lose any
remaining charge or capacity, (thus ) and may or may
not recover. In the first case, , [w.p. ]
and in the latter case [w.p. ] (2a).
However, if no packet arrives [w.p. ], then cell can also re-
cover and the recovery event is similar to that of the others [(2b)
and (2c)].

We assume that the cell selection is independent of the size
of the packet. If the state definition is expanded to include the
possible packet sizes, then the same framework provides the
optimal strategy which considers the cell sizes in the decision
process (under the assumption that the sizes can have a finite
number of different values). The linear complexity optimal al-
gorithm presented in the next section generalizes to this case as
well. The size of the state space will increase by a factor of
where is the total number of possible packet sizes. We also as-
sume that if a cell discharges completely while serving a packet,
the rest of the packet is not served by any other cell. This as-
sumption affects the service of only the last packet served by
each cell, i.e., packets in all, which constitutes a negligible
fraction of the total number of packets served in practical sce-
narios. We do not expect the optimal energy to change notice-
ably if this assumption is relaxed.

The energy delivered by the battery at timeis equal to the
minimum of the packet size and the remaining charge of the
scheduled cell. Thus, the average energy delivered in state
under cell selection , is given by

(3)

The objective is to choose the cell at each slot such that the
expected cumulative energy is maximized. The choice of the
cell depends on the state of the system. Let denote the
optimal expected energy if the system starts from state. The
objective is to compute the optimal cell selection rulewhich
attains the energy for each . We first illustrate the state
evolution with an example. In case of a two cell battery, we can
represent the state of the system as . As-
sume that a packet of size arrives and the first cell is
chosen to serve this packet ( ). Thus, the state will
be given by the following relation:

. If , the next state is
, where .

The energy obtained equals and , re-
spectively.

B. Justification for Using Stochastic Shortest Path Problem

We will now justify that the optimal battery management
problem falls within the purview of the stochastic shortest path
problem. The first observation is thatthe total number of pos-
sible system states is finite. Next, given the current state
and the cell selection, the future state is independent of the past
states and cell selections. This follows from the system evolu-
tion and the fact that the packet sizes are independent from slot
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to slot. The system terminates when the battery expires and this
happens when all the cells are fully discharged. Recall that a
cell is fully discharged if the remaining charge is zero. Thus,
any state ( ) where for each is a ter-
mination state. Let denote the set of termination states. Note
that once the battery reaches a state , it remains there
and cannot deliver any more energy. We argue thatthe system
reaches with probability 1 under any discharge policy. This
is because of the following reasons: 1) we consider only work
conserving policies here and a work conserving policy always
serves a packet as long as the battery has not expired; 2) a cell
can deliver at most units of charge ( cannot increase in sub-
sequent slots as per the system evolution) and, thus, the battery
can deliver at most units of charge; and 3) there is a nonzero
probability of packet arrival in every slot ( ) and each
packet consumes at least one unit of charge. Thus, the battery
management problem satisfies all the characteristics of the sto-
chastic shortest path problem [4], [10].

C. Formalization of the Optimal Solution

Since the battery management problem belongs to the broad
class of stochastic shortest path problems, the optimal energy
and cell selection can be obtained by solving Bellman’s equa-
tion given in [4].

Proposition 1: The optimal expected energy for a state,
satisfies Bellman’s equation given below1

(4)

where is the set of active cells in stateand is
given in (3). A cell selection function is optimal if and
only if

(5)

Standard techniques like value iteration and policy iteration may
be used to solve Bellman’s equation [4], [10]. However, these
general methods are not suitable for systems with a large state
space, such as in our case. For example, when , ,

, . The value iteration method is an itera-
tive procedure which may need a large number of iterations to
converge (potentially infinite) and each iteration has complexity

. On the other hand, the policy iteration method involves
iterations in the worst case, where is the total number

of possible policies ( is ) and each iteration requires
the solution of a total of linear equations with variables

[12]. Thus, the overall complexity is , which is
large in general, even for small values of . In the next sec-
tion, we show how to solve (4) [and thereby obtain the optimal
policy] in overall, exploiting the specific characteristics
of the battery management system.

1The optimum expected energy can be defined asJ (x) = max
lim E �q(x ; � (x )) , where the maximization is over all
policies�, a policy� chooses the cell� (x) if the state isx in slotk. [4]

IV. L INEAR COMPLEXITY ALGORITHM FOR

COMPUTING THE OPTIMAL STRATEGY

In this section, we design a simplified computation scheme
which obtains the optimal strategy in linear complexity ( )
(Section IV-A). Subsequently, in Section IV-B we will discuss
some salient features of the computational framework.

A. Design of the Linear Complexity Computation Technique

We observe that when the system is in statethere is only a
limited number of states that the system can move to from state

, under any cell selection. Note that the system may remain in
the same statewith some probability. Let denote the set
of next states the system can move to from state, except , if
cell is selected, i.e., . Note
that can be computed as in (2a)–(2c). Since
for all , Bellman’s equation (4) can be rewritten as

since . Thus

(6)

where

(7)

Intuitively, is the energy delivered if cell is chosen when
the system is in state.

We define . According to (6) the op-
timal energy can be computed if we know for all

. Using specific properties of the battery management
problem and (6), we will present an algorithm which computes

sequentially such that is already computed for all
before computing .

We now describe the set using the transition probabil-
ities given in (2a)–(2c). Let , then
a state is in if and only
if: 1) ; 2) , , and
3) ; and 4)

, for
all . For example, in a two-cell system, if , then

We denote as the difference between the re-
maining capacity and the charge of a cell, when the system is
in state . For example, for a two-cell system,
and . The key point to observe is that for all
cells and states in , either or

. Since can be computed using (6) only if
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Fig. 2. Computation of optimal energy and cell selection procedure for a
system with two cells.

is known for all in , our approach is to initially compute
the for the states which have lower values of these
functions and subsequently move to the states with higher values
of these functions.

We also use the following additional properties of the optimal
energy functions at different stages of the computation.

Property 1: From symmetry

For example, . This symmetry re-
duces the number of states for which we need to compute the
optimal energies by a factor of roughly.

Property 2: Also, . For
example, . This follows from the obser-
vation that a battery in state ( ) can deliver
at least units and at most units. Note that

for all cells . Thus, we know
the optimal energies for the states with zero values of the
functions without any computing and we use these known
values to compute the optimal energies of other states.

Property 3: We also know that , for any termina-
tion state . Also

This again follows since a cell with zero remaining charge
cannot serve any further packet.

We present our computation technique in Fig. 2. For sim-
plicity, we describe the technique for the two-cell case only, i.e.,

. This is for ease of presentation and the generalization
for the multiple cell case is straight forward. In technical report
[10], we also numerically compute the maximum energies for a
larger number of cells using this basic approach.

In Fig. 2, the terms and are the in-
dividual terms in the maximization in the right-hand side of (6)
and can be computed using (7).

Example 1: We now illustrate the operation of our tech-
nique. We consider a battery with two cells, nominal capacity

and theoretical capacity . This example will
show the sequence of computation and demonstrate that when
the algorithm computes , it already knows for
all states . The overall sequence of computation
is (1,2,0,0), (1,2,1,1), (1,2,2,2), (1,2,0,1), (1,2,1,2), (2,3,0,0),
(2,3,1,1), (2,3,2,2), (2,3,0,1), (2,3,1,2), (1,3,0,0), (1,3,1,1),
(1,3,2,2), (1,3,0,1), (1,3,1,2), (1,3,2,3), (1,3,0,2), (1,3,1,3),
(2,4,0,0), (2,4,1,1), (2,4,2,2), (2,4,0,1), (2,4,1,2), (2,4,2,3),
(2,4,0,2), (2,4,1,3), (2,4,2,4).

The optimal energy is first computed for the state
( ).

Here, , as any work conserving policy uses cell 1
to serve a packet. Now, and

. Now, can be com-
puted as the optimal energies for all states in are known,

, , according to Properties 2
and 3. In the second iteration, is computed. Now,

. We have and
. Note that

is known for all in , from the previous iteration
and Properties 2 and 3 of the function . Similarly,
the optimal energies for the rest of the states are computed.
For example, when we compute the energies for the state

, we have

and

The optimal energies for all the above states are known from the
previous iterations (refer to the sequence of computations given
above) and by using the symmetry property 1 of .

Proof of correctness of the technique:We need to show
that the technique given in Fig. 2 computes the optimal energies
for each state . Note that the algorithm com-
putes the energies for stateswith and

if . The first question is whether
the optimal energies of all other states can be computed using
these values. This follows from Properties 1 to 3 of and
the fact that for all cells . The argument is as fol-
lows. The algorithm does not compute if (a)

or if (b) and or
and . Consider case (a) first. Let .
Note that . Thus, the algorithm computes
and we know that from symmetry. Now con-
sider case (b). Let . Again, the algorithm computes

and, thus, is obtained from symmetry. Finally, if
from condition 2 and need

not be computed separately.
Next, we need to show that the energies computed by the al-

gorithm are the optimal energies which satisfy Bellman’s
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equation (4). Note that the computation of in Fig. 2 fol-
lows (6). Thus, we only need to show that for all
is computed before . We show this by induction. The base
case is (1,2,0,0) and the result holds for (1,2,0,0) as argued in
the previous example. We assume that all states considered be-
fore satisfy this property. We show that the result holds in the
induction case for state by addressing several subcases sep-
arately. Note that , , 2 for
any . Thus, the subcases we have to consider are: (a)

, , (b) ,
, 2 (c) , , and

(d) , . Let
.

For the first subcase ,
. Note that as a cell cannot recover charge other-

wise from (1). From the computation sequence of the algo-
rithm, before any state ( ) is considered, all states
( ) are considered if . Since
the algorithm is trying to compute for state ,

. As such, . Thus, the state
( ) has been considered. The result fol-
lows.

We consider the second subcase now. Let
. Here, , or

for some . (Note that
as for any ). For the first case, is

computed before, as , , 2 and .
Consider the second case. Again if , is
computed before as , , 2 and .
Let (Note that since is
being considered). If , is considered before. Let

. Note that since and
is being considered. Consider .

Note that and
. If , then

since , , 2, and is
considered before. Also, from the symmetry
property. Thus, is known. Now, let . Thus,

, , and
. Clearly, is considered before

since . Thus, and, hence, is known by
symmetry. The result follows.

We consider the third subcase now. Let .
Now, , . Let

. In this case, . Also, .
Thus, is computed before. Now let .
Thus, . If ,

and . Thus,
and is known. Let . If

is computed before. Otherwise, (i.e., if
) is computed before and

from symmetry. Finally
let [note that as the algorithm
is trying to compute ] . It follows that . Consider

. Thus,
and . Thus, and, hence, is known
by symmetry. The result follows.

We consider the fourth subcase now. Let .
Now, . If then

and, thus, as (The last inequality
holds as the state is being considered currently.) It follows
that since for all states . Thus,

and, hence, is known. Now, let .
Since , , 2 is computed before

, only if (a) or (b)
and . If , then condition (a) holds as

, , 2. Otherwise, (i.e., if
,) since , ,

2. Now, since and is being
computed. Since by assumption, and,
hence, . Thus, condition (b) is satisfied in this case.
The result follows.

B. Discussion of Salient Features

Note that the algorithm “visits” every stateat most once
when it encounters state in Block 1 in Fig. 2. The compu-
tation complexity of depends on the size of . Note
that is at most if packets can have dif-
ferent sizes. In practice, the number of cellsis a small con-
stant and normally less than six. Similarly, , 3. Thus,
for all practical purposes, can be assumed to be a con-
stant. Thus, the complexity is linear in size of the state space.
The storage required for this algorithm is . However, it is
possible to reduce the storage substantially with certain obser-
vations (e.g., the two-cell case needs a storage of

only,2 whereas )
[10]. We would like to point out that this strategy can be com-
puted offline and, thus, a node can execute the optimal cell se-
lection only by a table lookup procedure. The lookup table will
need to store the optimal cell selection for states and the
lookup complexity will also be . Now, can be large
for real systems. Thus, we believe that the principal use of this
optimum strategy will be as a “benchmark” for comparing the
performance of online suboptimal strategies with the optimal
energies. For example, we propose a simple suboptimal policy
in Section V which can be used to choose the cell in an on-
line fashion and subsequently we use the computation presented
here to show that the suboptimal policy delivers near-optimum
energy.

Even though the computation complexity is linear in
itself can be large for moderately large values ofand (

). However, we could still compute the
optimal strategy in order of minutes for , ,

using an Ultra-SPARC SUN machine. The standard value and
policy iteration techniques were consuming several hours (more
than ten hours) for the same numbers. We could also compute
the optimal strategy for moderate values ofand for .

The computational framework and the technique presented
here make no assumption about the packet size distribution, ex-
cept independence of the packet sizes from slot to slot. Thus,
the computations can be used for a large number of different
traffic models. We present results for two different size distribu-
tions in Section V and we observe that the optimal energy ob-
tained can be quite different for different size distributions. Note

2Storage can be saved during computation ifJ (x) is not stored for all the
statesx all through the computation. RatherJ (x) is stored in primary storage
only until it is required for computingJ (y) for somey.
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that the packet size depends on the transmission power which
in turn depends on the transmission conditions and the trans-
mission conditions may have different distributions for different
scenarios in the wireless case. Thus, it is important to accom-
modate different traffic distributions in the optimal framework.
Realistically, transmission conditions need not be independent
in different slots. However, this technique can be generalized to
capture Markovian dependencies in packet sizes. This strategy
can also be used for different recovery probabilities.

Finally, the framework and the linear complexity computation
technique presented here are not restricted to computation of
the maximum energy. The same strategy can be used to obtain
the energy attained by many other cell selection policies. We
illustrate this in the next section.

V. A SIMPLE SUBOPTIMAL POLICY MAXIMUM CHARGE (MC)

We consider a simple scheduling policy which aims to effi-
ciently choose the cell to be discharged, so as to approximate the
optimal. The choice of the cell depends on the remaining charge
of all cells. More specifically, the incoming packet is assigned
to the cell with the maximum remaining charge. It is possible
to instantly monitor the level of charge in each cell using smart
battery packages [3]. We denote this policy as the MC policy.
We will show numerically that MC attains near maximum life-
time by using the battery state information in choosing the cells
in an intuitive manner and significantly improves upon the life-
time attained by RR proposed in [3]. It is worthwhile to note
that unlike MC, RR does not use battery state information in
choosing the cells.

We compute the total energy delivered by the MC strategy
using the theory of stochastic dynamic programming once
again. We first introduce the concept of stationary policies.
A stationary policy is one in which the cell selection policy
does not change with time and the actual selection depends on
time only through the state value, e.g., if the state is the same
for two different slots, then the selection will also be the same
for these slots under a stationary policy. Note that the optimal
policy which satisfies (5) is stationary. Let stationary policy
choose cell in state . From the stochastic shortest path
framework [4], the energy obtained by a stationary policy
starting from state is given by

(8)

where is given in (3).
Next, arguing as in the derivation of (6) from Bellman’s equa-

tion, we have

(9)

This is similar to (6). Thus, we use a technique similar to
Fig. 2 to compute , for any stationary policy . The only
modification is to replace block 1 by (9). Observe that the MC
policy is stationary and, thus, we can use this technique to
compute the expected energy obtained by the system,
starting from state .

Fig. 3. Performance ratioG of optimal and MC forC = 200 andN = 12,
25 as a function of the average packet sizeR, for Poisson traffic.

Fig. 4. Performance ratio of optimal and MC forC = 200, N = 25 and
different values of burst size (b) as a function of the probability of zero-packet
arrivals, for bursty traffic.

The idea behind MC is that it provides an efficient way to
discharge the cells, since it allows the “most discharged” cells
to recover. Intuitively, it should perform close to the optimal.
We corroborate this observation with the numerical results pre-
sented in Figs. 3 and 4. Also, MC is easy to implement, as it does
not need any table lookup as opposed to the optimal strategy.

We now describe the numerical and simulation performance
evaluation of MC. We consider the performance metricwhich
is the ratio between the total number of charge units delivered
( ) and the maximum number of charge units that can be deliv-
ered by a battery of cells, ( ), i.e., .

We first describe the different traffic models we will use.
First, we consider a Poisson traffic model. Here, the probability
that a packet of size arrives is , where
is the average packet size. We also consider a different traffic
model, where packets are normally of size 1 (with probability

), but occasionally have a larger size(“burst”) with
probability . Also, the probability of zero arrivals
is . This model corresponds to a realistic scenario
where transmissions are usually good except occasionally, due
to “fading.” When the channel is good, only one charge unit is
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Fig. 5. Percentage difference (((G �G )=G )�100) of MC and RR
for L = 2 andL = 4, C = 200 as a function of the average load per cell
(R=L), for Poisson traffic. The top figure shows the case withN = 12 and the
bottom figure withN = 25.

required to transmit a packet. During fading, the energy required
to transmit a packet will be larger and equal to.

In Fig. 3, we consider Poisson traffic. We compare the per-
formance ratio for the optimal policy and the MC policy as
a function of the average packet size, for the case of
cells. We choose the parameter values as and ,
based on the parameter choices in [3]. We also give the results
for , . As we can see in Fig. 3, MC closely
follows the optimal. For very small , since the cells are al-
lowed to rest for longer periods, both policies perform well. For

to 0.6, MC differs from the optimal by at most 10%.
In other ranges, they are very close and the curves cannot be
distinguished. For larger , the performance for both policies
is significantly reduced. Especially after , is less than
0.5 for both policies. This is because when a cell recovers it can
only gain one charge unit, but when more than one charge
units are discharged for an average packet.

In Fig. 4, we plot as a function of the probability of zero-
packet arrival for the optimal and MC, for “bursty” traffic,
where , , 8, , , and .
MC is performing close to the optimal in general. Note that the
performance of both MC and optimal are significantly worse

Fig. 6. Percentage difference (((G �G )=G )�100) of MC and RR
for L = 2 andL = 4, C = 200,N = 12, as a function of the probability of
zero-packet arrivals for bursty traffic. The top figure shows the case withb = 3
and the bottom figure withb = 8.

for as compared with . The performance is also
worse compared with the Poisson traffic. For example, for av-
erage packet size 0.75 the optimal gives for Poisson
traffic, , and 0.6 for bursty traffic, for and ,
respectively. This can be explained by the fact that the proba-
bility of large packets is higher for bursty traffic as compared
with Poisson and it increases with.

We now compare the performance of MC with RR presented
in [3] using simulation. In Fig. 5, the results for and

are given for Poisson traffic, while Figs. 6–7 present
the results for bursty traffic, for and . In all cases,
we choose , , or and we plot the
percentage difference ( ) as a func-
tion of the average load per cell ( ) for Poisson traffic and
as a function of for bursty traffic. When the load is low, the
cell selection is not critical and several policies will perform
well. On the other side, when the load is high then the battery
lifetime will be low, irrespective of the cell scheduling. Thus,
the critical region is for intermediate load, where the appro-
priate cell selection can make a difference in the attained energy.
MC significantly outperforms RR in this region, for both traffic
models. In case of Poisson traffic, the difference reaches high
values for , , e.g., the difference is above 100%
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Fig. 7. Percentage difference (((G �G )=G )�100) of MC and RR
for L = 2 andL = 4, C = 200, N = 25, as a function of the probability
of zero-packet arrivals, for Bursty Traffic. The top figure shows the case with
b = 3 and the bottom figure withb = 8.

TABLE I
NOTATION

for and load (Fig. 5). The trends are similar
for though the percentage difference is smaller than in
the case of .

Fig. 8. Stochastic model of a battery cell.

In case of bursty traffic, the results in Figs. 6–7 show that
MC attains an improvement of up to 35% when and
up to 165% when . When is large, the performance
of RR decreases rapidly while MC still performs well, even for
heavy load. This can be explained by the fact that when a packet
of larger size arrives, the RR policy may assign the burst to a
cell that is close to being completely discharged, thus quickly
draining off all of its energy. However, MC carefully assigns the
large burst to the cell with larger charge and, thus, it discharges
the cells in a more fair manner, allowing them a longer period
to recover. In a sequel paper [1], we investigate several other
sophisticated suboptimal battery management policies and show
that MC out-performs all of them. We omit the descriptions here
on account of space constraints.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we obtain an optimal battery discharge policy,
for maximizing the lifetime of the power-limited wireless ter-
minals. We use general results from stochastic dynamic pro-
gramming framework and also exploit specific characteristics
of the battery management problem to design the optimal solu-
tion. Even though the computation complexity of the optimal is
linear in the number of system states, the computation may be-
come prohibitive on account of the large size of the state space.
Next, we design a computationally simple discharge strategy
(MC) and show that the lifetime attained by this policy is close
to that of the optimal.

Transmission is the most energy consuming action of a wire-
less device and transmission energy requirements (packet size
in our notation) are determined in the medium access control
(MAC) and the physical layers. An interesting area of future re-
search is to integrate the battery management scheme with these
layers. Conceptually, the architecture will be as shown in Fig. 8.
The challenge is to design the message exchange sequence be-
tween the battery software and the MAC and physical layers
and actually implement such a protocol in a wireless device.
This is likely to give rise to many new systems issues as well
and is beyond the scope of the current paper. Another possi-
bility is to decide the transmission power requirements in the
higher layers keeping in mind the battery discharge character-
istics, which is again a research area by itself. Finally, it would
also be interesting to take a fresh look at the routing and sched-
uling strategies in a network scenario in view of the battery dis-
charge characteristics.
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