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Abstract— most direct indicator of network congestibnie view packet
We investigate the problem of inferring the packet loss chaac-  |oss rate together with RTT as being more fundamental than
teristics of Internet links using server-based measuremesn. Un- throughput since the latter is affected by factors such as th

like much of existing work on network tomography that is basel
on active probing, we make inferences based opassive observa- workload (e.g., bulk transfers versus short Web transfens)

tion of end-to-end client-server traffic. Our work on passie net- the transport protocol (e.g., the specific variant of TCR)-F
work tomography focuses onidentifying lossy links (i.e., the trou- thermore, it is possible to obtain a rough estimate of thhpud
ble spots in the network). We have developed three technigse knowing the packet loss rate and RTT, using an analyticalghod
for this purpose based on Random Sampling, Linear Optimiza- of TCp [17].

tion, and Bayesian Inference using Gibbs Sampling, respeutly. : . . .
We evaluate the accuracy of these techniques using both sifau Here is an overview of the rest of this paper. In Section Il,

tions and Internet packet traces. We find that these techniqes can We discuss related work. In Section IlI, we present the keyfin
identify most of the lossy links in the network with a manageble ings from our analysis of end-to-end packet loss rate based o
false positive rate. For instance, simulation results indiate that traces gathered at thaicrosoft.com site. We find that end-to-
the Gibbs sampling technique has over 80% coverage with afé&  enq packet loss rate correlates poorly with the serveli¢nic

positive rate under 5%. Furthermore, this technique provides a . . o
confidence indicator on its inference. We also perform infeence hop count, is stable for up to tens of minutes, and exhibits a

based on Internet traces gathered at the busynicrosoft.com Web !imited degr.ee of spatial I_ocali_ty. These finding_s suggkat t
site. However, validating these inferences is a challengirproblem. it would be interesting to identify the few lossy links, whet
We present a method for indirect validation that suggests tatthe ~ shared or non-shared, that dominate the end-to-end lass rat
false positive rate is manageable. This sets the stage for our main foctassive Network To-

Subject keywords: Network tomography; Network Mea- Mography, which we present in Section IV. The goal here is
surement; Bayesian Inference to identify the lossy links in the interior of the network leals

Method keywords: Network measurements; Simulations®n passive observation at a server of existing traffic between
Mathematical programming/optimization; Statistics the server and its clients. This is in contrast to much of the
previous work on network tomography (e.g., [5]) that hagbee
based on active probing, and hence cannot directly be applie
I. INTRODUCTION to our problem. We develop three techniques for passive net-

The Internet has grown rapidly in terms of size and heterW-Ork tomography. Random Sam_pllng, Llnear Optimization,
- . nd Bayesian Inference using Gibbs Sampling. These tech-
geneity in recent years. The set of hosts, links, and netsvor ;
that comprise the Internet is diverse. This presents istieig fiques depend only on knowing the number of lost and suc-
P . . ' P cessful packets sent to each client, which is much lessrirder
challenges from the viewpoint of an Internet server, such a

Web site, whose goal is to provide the best possible semwiite t Eﬁg;hain[gqe exactloss sequence needed by previous teefsniq

clients. A significant factor that the server must contenthwi =, g otio, V, we evaluate our techniques for passive tomog-
Is the d|35|m|lar and changeable network performance eXperrélphy using extensive simulations and find that we are able to
enced by clients. identify more than 80% of the lossy links with a false positiv
fate under 5%. In Section VI, we also apply these techniquest
the traffic traces gathered at thiécrosoft.com site. Validation

is challenging in this setting since we do not know the trigslo

mance of the Internet hyassively monitoring existing network
traffic between a server and its clients. Our goal is to go bdyo

characterizing end-to-end network performance by devepp rate of Internet links. We present a method for indirectdenli

techniques to infer the Iossmess.of mt_erlor links in thewoek. tion, which suggests that the false positive rate is martdgea
There are a number of ways in which the server could be”'FinaIIy we present our conclusions in Section VII.

efit from such inference. Information on bottlenecks or othe
hot spots within the network could be used to direct clients
to replica servers so that they avoid the hot spot. Such-infor _
mation could also be used by a Web site operator to have thed here have been numerous studies of Internet performance.
hotspot problem resolved in cooperation with the concern¥§e can broadly classify these studies as eititive or pas-
ISP(s). The focus of this paper, however, is on the inferengde. Active studies involve measuring Internet performance by
of link lossiness, not on its applications. injecting traffic (in the form of pings, traceroutes, TCP €on
There are, of course, other performance metrics that mayHRtions, etc.) into the network. In contrast, passiveisg)d
important, depending on the application of interest. LayenSUCh as ours, analyze existing traffic obtained from sengs;, |
may be most critical in the case of game servers while throug?ficket sniffers, etc.
put may be the most important metric for software dovv_nl_oaohWe have also done some characterization of the round-tnip (RTT) met-
servers. In our study, we on packet loss rate because it is lagout we do not present those results in this paper.

Il. RELATED WORK



Several studies have examined the temporal stability of Ipairs. A problem, however, is that existing traffic may natco
ternet performance metrics through active measuremeh®. [tain enough such packet-pairsto enable inference. Funtbrey,
reports that observing (no) packet loss along a path is a gabdir evaluation is based on very small topologies contaitai
predictor that we will continue to observe (no) packetldes@ dozen (simulated) nodes, and it is not clear how well theinte
the path. However, the magnitude of the packet loss rateois aique would scale to large topologies.
less predictable. [23] examines the stationarity of patbet
rate and available bandwidth. It reports that the correfaitn [1l. ANALYSIS OF END-TO-END LOSSRATE

the loss process arises mainly from back-to-back loss @p&0  \We analyzed the end-to-end loss rate information derived
and not from “nearby” losses. Throughput has a close cogpliftom traffic traces gathered at tindicrosoft.com site. Due to
with the loss process, and can often be modeled as a stationgface limitations, we only present a sketch of our experiaien
1D process for a period of hours. methodology and our key findings here. The technical report
Several studies have also examined similar issues by studigrsion of this paper [18] includes a detailed descriptibour
ing traces gathered passively using a packet sniffer. Tth®esl experimental setup, methodology, and results.
in [2] used traces from the 1996 Olympic Games Web site to an-The traces were gathered by running topdump tool on
alyze the spatial and temporal stability of TCP throughpist. a machine connected to the replication port on a Cisco Cata-
ing traceroute data, they constructed a tree rooted at therselyst 6509 switch. The packet sniffer was thus able to listen o
and extending out to the client hosts. Clients were cludtergll communication between the servers connected to the same
based on how far apart they were in the tree. The authors sgritch and their clients located anywhere in the Internet.iny
port that clients within 2-4 tree-hops of each other tendaeeh ferred packet loss based on TCP retransmissions by therserve
similar probability distributions of TCP throughput. Thalgo the assumption being that the conservative TCP retrangmiss
report that throughput to a client host tends to remain etaliitrategy results in few spurious retransmissions. Thigraps
(i.e., within a factor of 2) over many tens of minutes. tion would clearly be violated, for instance, if the inciderof
Packet-level traces have also been used to characterize offacket reordering in the Internet were significant enoudteto
aspects of network traffic. In [1] Allman uses traces gattierguently overwhelm TCP’s threshold of 3 duplicate ACKs for
at the NASA Glenn Research Center Web server to study fast retransmissions. The findings regarding packet reimgle
sues such as TCP and HTTP option usage, RTT and packet $izthe Internet, however, are mixed [3], [12]. Another pdiain
distributions, etc. Mogul et al. [15] uses packet-levet&i®to cause of spurious retransmissions (and consequentlylirec
study the effectiveness of delta compression for HTTP. in our estimation of the packet loss rate) is the loss of ACKs.
Our study is similar to [2] in that it is based on packet traceéBhe cumulative nature of TCP ACKs would mitigate, although
gathered passively at a busy server. However, our analysisiot eliminate, this problem.
differentin many ways. We focus on packet loss rate ratterth We gathered multiple traces, each over 2 hours long and con-
TCP throughput for the reasons mentioned previously. Motaining over 100 million packets. One trace in particulatth
importantly, we go beyond simply characterizing the end-tave use for the analysis presented in Section VI was gathered o
end loss rate and use this information to identify the lossksl 20 Dec 2000. This trace was 2.12 hours long and contained 100
in the network. million packets to or from 134,475 clients.
This aspect of our work lies in the area étwork Tomog- The key findings of our analysis of end-to-end loss rate
raphy, which is concerned with the inference of the internare:

network characteristics based on end-to-end observatidres « The correlation between the end-to-end loss rate and the

observations can be made throuagtive probing (either uni-
cast or multicast probing) quassive monitoring. MINC [5],

server-to-client hop count is weak, regardless of whether
hop count is quantified at the granularity of routers, au-

tonomous systems (AS), or address prefix (AP) clusters.
The coefficient of correlation between the loss rate and the
three hop count metrics is 0.05, 0.03, and 0, respectively.

[4] and [20] base their inference on loss experienced by mul-
ticast probe packets while [7], [8] use closely-spaced astic
probe packets striped across multiple destinations. A comm
feature of the above techniques is that they are baseaton That hop count is a poor indicator of end-to-end loss rate
tive injection of probe packets into the network. Such active suggests that a few lossy links are likely to be responsible
probing imposes an overhead on the network and runs the risk for much of the packet loss.
of altering the link characteristics, especially when &ipbn « Loss rate tends to be stable over a period ranging from
a large scale (e.g., on the path from a busy server to all of its several minutes to tens of minutes, where stability refers t
clients). Also, these techniques depend on knowing thetexac the notion of “operational stationarity” described in [23]
loss sequence observed at each client, while our passifie tec « Clients that are topologically close to each other experi-
nigues only require the number of lost and successful packet ence more similar loss rates than clients picked at random,
sent to each client. but in general there is only a limited degree of spatial lo-
[21] and [14] present passive approaches to detectingghare cality in loss rate. The correlation is strongest at the gran
bottlenecks. The former requires senders to cooperatertsy ti ularity of /24 subnets and is much weaker at the level of
stamping the packets while the latter requires an obsenatr t AP clusters or ASes.
receives more than 20% of the output traffic of the bottleneck These findings suggest that it would be interesting to ifienti
(i.e., light background traffic). Tsang et al. [22] estimliss the few lossy links, whether shared or non-shared, that domi
rate for each link by passively observing closely spaceéigiac nate the end-to-end loss rate. This sets the stage for ol wor



server

on passive network tomography, where we develop techniques
to provide greater insight into some of these conjectures.

IV. PASSIVE NETWORK TOMOGRAPHY

In this section, we develop techniques to identify lossidin
in the network based on observations made at the server of end
to-end packet loss rates to different clients. As noted io- Se
tion I, much of the prior work on estimating the loss rate of

. . .. . Py P; P; Pa Ps
network links has been based on the active injection of probe ’ clients

packets into the network. In contrast, our goal here is t@basg. 1. A sample network topology as viewed from a server. lifleloss
the inference opassive observation of existing network traffic. rates are denoted By and the end-to-end loss rate at the clients are denoted by

pj. Note that although the topology depicted here is a treefemimiques do

We term th|spass ve network tomography. not assume that the topology is a tree.

Figure 1 depicts the scenario of interest: a server tratisigit
data to a distributed set of clients. By passively obserttireg
client-server traffic, we can determine the number of packahe average link loss rate. Although this is not perfects iai
transmitted by the server to each client. Based on the fekdbaeasonable simplification in the sense that some links sensi
from the clients (e.g., TCP ACKs, RTCP receiver reports), wently tend to have high loss rates whereas other links sensi
can also determine how many of those packets were lost in teetly tend to have low loss rates. Zhang et al. [23] reported
network. that the loss rate remains operationally stable on the toakes
To determine the network path from the server to each clieof, an hour. Our temporal locality analysis based on rfie
we use théraceroutetool [13]. For security reasons, our packetrosoft.com traces indicates a stability duration ranging from
sniffing machine was configured to be in “listen only” modeseveral minutes to tens of minutes (Section Il and [18]).itSo
so the traceroutes were run from a different machine locatisdreasonable to perform inference based on end-to-engpack
on a separataicrosoft.com network. While the first few hops loss information gathered over such time scales.
within the corporate network were different, the entireeext  Second, even when the loss rate of each link is constant,
nal path was identical to the path that packets from the seriemay not be possible to definitively identify the loss rafe o
nodes located in the data center would have taken. So theseh link. GivenM clients andN links, we haveM con-
traceroutes help us determine the wide-area Internet path f straints (corresponding to each sersalient path) defined
the server cluster to the clients. over N variables (corresponding to the loss rate of the indi-
While running traceroute does constitutetive measure- vidual links). For each clien€’;, there is a constraint of the
ment, this need not be done very frequently or in real timéorm 1 — ], (1 — I;) = p; whereT} is the set of links on
(Indeed previous studies have shown that end-to-end ktterthe path from the server to clie6y;, I; is the loss rate of link,
paths generally tend to be stable for significant lengthsmét andp; is the end-to-end loss rate between the server and client
For instance, [24] indicates that very often paths remaihlst C;. There is not a unique solution to this set of constraints if
for at least a day.) Moreover, it may be possible to deterthiee M < N, as is often the case.
server-to-client path “pseudo-passively” by invoking theord We address this issue in several ways. First, we collapse a
route option (IPv4) or extension header (IPv6) on a smakstiblinear section of a network path with no branches into a sing|
of the packet&It may also be possible to discover the topologyirtual link®. This is appropriate since it would be impossible
using (active) end-point delay measurements [6]. Henddian to determine the loss rates of the constituent physicasliofk
rest of our discussion, we assume that the network path fraunch a linear section using end-to-end measurements.
the server to each client is known. Second, although there may not be a unique assignment of
For ease of exposition, we refer to the network topology frofoss rate to network links, two of our techniques seek a parsi
the vantage point of the server as a “tree” (as depicted in Figionious explanation for the observed end-to-end loss.r8tes
ure 1) and couch our discussion in tree-specific terminologyiven a choice between an assignment of high loss rates tp man
However, our techniques do not assume that the topology isa  links and an assignment of high loss rates to a small number of

tree. We elaborate on this point in Section IV-B. links, they would prefer the latter. The idea is to find a com-
mon cause to the extent possible for the observed packesloss
A. Challenges (Otherwise, we could end up at the other extreme where all of

. . . . . the losses experienced by each client is ascribed to ithégst
Identifying lossy links is challenging for the followingae iy = This trivial “inference” is unlikely to be of much use.

SOns. F'FSt' network charact_en_sncs change over F'me‘h'w'tThis bias towards parsimony is implicit in the case of Random
out knovymg the temporal variation of the network link pgrfo Sampling and explicit in the case of Linear Optimization. On
mance, itis hardto correlate performance observed bV“?f“e .the other hand, our Gibbs Sampling technique uses a uniform
clients. To make the problem tractable, we focus on estngatlprior and so is unbiased (or, to be more precise, it losesés b

2The frequency of invocation could be set adaptively basethembserved as the Markov chain converges to the Steady State)'
frequency of route changes. However, in the extreme caseeveaeh packet
to a client can potentially be routed via a different pathmight be hard to  3In the rest of the paper, we use the term “link” to refer to lutigsical links
determine which path a lost packet took. and virtual links.



Finally, we set our goal to primarily be the identification of Note that our random sampling algorithm would work the
links that are likely to have a high loss rate (i.e., the “{dss same way even if the topology were not a tree. In fact, at any
links) rather than inferring a specific loss rate for eack.lWe stage in aniteration, we can pick an arbitrary link, deteerhe
believe that the identification of the lossiest links inlitseuld  bounds on its loss rate by examining all server-to-clienhpa
be very useful for applications such as network diagnosis athat traverse the link, and then randomly assign it a loss rat
server selection. Just like in a tree topology, we could start by picking linksse

We now describe the three different techniques we have dg-the server and then working our way towards the clients.
plored and developed for passive network tomography. WeThe random sampling algorithm has the advantage of being
present these in roughly increasing order of sophistinaticssimple. However, it is quite susceptible to estimation exin
However, as the experimental results in Section V indi@ten the client loss rate. Due to a statistical variation, a srgjlent
the simplest technique, yields good results. that is downstream of a true lossy link could experience a low

loss rate. This would cause the random sampling algorithm to
_ assign a low loss rate to the link even if all of the other down-
B. Random Sampling stream clients experience a high loss rate. The alternaitjoe

The set of constraints mentioned in Section IV-A define @thms for passive network tomography that we describevbelo
space of feasible solutions for the set of link loss rates ¢ are robust to such errors.
note a specific solutionds = | J,.; I; whereL is the set of all
links in the topology.) The basic idea of random samplin@is t
repeatedly sample the solution space at random and make infs Linear Optimization
ences based on the statistics of the sampled solutionss {§hi
akin to the Monte Carlo method.) The solution space is satinpl
as follows. We first assign a loss rate of zero to each linkef t _ :
tree (Figure 1). The loss rate of lirnkis bounded by the min- f_the form1 = ITer, (1.7. L) — D corresponding to each
imum (say!™") of the observed loss rate at the clients downc-hentcj‘ We can turn this into a linear constra@igj Li =
stream of the link. We pick the loss rafg, of the linki to be £ WhereL; = log(1/(1 —1;)) and P; = log(1/(1 — p;)).
a random number between 0 atféi”. We define the residual Note_that the transformed vgnabl% and P; are monotonic
loss rates of a client to be the loss rate that is not accodated functions ofl; andp;, respectively.

by the links whose loss rates have already been assigned. W&O be robust to errors or aberratio_ns in client_loss rate es-
update the residual loss rate of a cli€ftto 1 — I 1-p; timates, we allow the above constraints to be violated ¢a lit

iet) (1=L)  tle). We do so by introducing a slack variablg, in the con-
whereT is the subset of links along the path from the server &graint corresponding to cliert;, yielding a modified con-
the clientC; for which a loss rate has been assigned. Then w&aint: >, L; + S; = P;. In addition, we have the con-
repeat the procedure to compute the loss rate at the next lesteaintsL; > 0.
of the tree by considering the residual loss rate of eachtdlie  The objective function to minimize is' ", L; + > 1Sl
place of its original loss rate. At the end, we have one sampiis reflects the objectives of finding a parsimonious sohuti
solution forl,,. (hence the)_, L, term) and minimizing the extent to which the

We iterateR times to producé? random solutions fol,. We  original constraints are violated (hence @% |S;| term). The
draw conclusions based on the statistics of the individa&l | weight,w, allows us to control the relative importance of find-
loss ratesl;, across thét random solutions. For instance, if theing a parsimonious solution versus satisfying the origoual-
average loss rate assigned to a link across all sampleshisthigstraints well; we set to 1 by default. Note that thgS;| term
than a threshold, we conclude that the link is lossy. means that this is not strictly a linear program in its présen

Note that we compute a loss rate only for those clients form. However, it is trivial to transform it into one by defin-
whom the server has transmitted at least a threshold numley auxiliary variablesS; and adding constraints of the form
of packets. Only this subset of the clients and the topolagy iS; > S; andS; > —S;. The objective function to minimize is
duced by them is considered in the random sampling algoriththenw 3", L; + Zj S;.

The sampling procedure outlined above is biased because th&he linear optimization approach also has its drawbacks.
order in which links are picked matters. As we assign losssratFirst, like the random sampling approach, it depends on the
to an increasing number of links, the loss rate bound on the aient lossrates, p;, to be computed. However, the loss rate
maining links gets tighter. So links that are picked earhain may be meaningfully computed only when a sufficiently large
iteration are likely to be assigned a higher loss rate thasomumber of packets are sent to the client (we use a minimum
picked later. Thus in the above algorithm, links higher uthim threshold of 500 or 1000 packets in the experiments predente
tree (i.e., closer to the server) are picked early in the ggsc in Section VI). This limits the applicability of this techque.
and tend to get assigned a higher loss rate. (This bias, lowe®econd, while the objective function listed above intaityw
is consistent with the goal of parsimony, as discussed in Seonforms to our goals, there is no fundamental justificafown
tion IV-A.) On the other hand, the loss rate bound on a linis specific form. Indeed the solution obtained would, in-gen
higher up in the tree might be tighter to begin with because efal, be different if the objective function were modifiechig
there is a greater chance that one or more downstream clightsn motivates the statistically rigorous technique wecdies
will have experienced a low loss rate. next.

We formulate the network tomography problem as a linear
rogram (LP). As noted in Section IV-A, we have a constraint



D. Bayesian Inference using Gibbs Sampling 1 assumes a Bernoulli loss process, where the probabilisy of

We model passive network tomography as a Bayesian inf@@cket getting lost is independent of the fate of other piacke
ence problem. We begin by presenting some brief backgroundrhe prior distribution,P(i,,), would indicate prior knowl-
information; for details, please refer to [11]. edge about the lossiness of the links. For instance, the prio

1) Background: Let D denote the observed data afd could be defined differently for links that are known to beslps
denote the (unknown) model parameters. (In the context @glup links as compared to links that are known to be highly
network tomographyD represents the observations of packdgliable OC-192 pipes. However, in our study here, we ongy us
transmission and loss, amdrepresents the ensemble of los& uniform prior, i.e.P(l;,) = 1, since we do not have informa-
rates of links in the network.) The goal of Bayesian infeeendion, such as the type or nature of individual links, thatldou
is to determine th@osterior distribution ofd, P(¢|D), based Serve as the basis of a prior.
on the observed datd). The inference is based on knowing The object of network tomography is the posterior distribu-
a prior distribution P(#) and alikelihood P(D|§). Thejoint tion, P(I;|D). To this end, we use MCMC with Gibbs sam-
distribution isP(D, #) = P(D|#)P(#). We can then compute pling as follows. We start with an arbitrary initial assigent
the posterior distribution of as follows: of link loss rates];,. At each step, we pick one of the links,

say i, and compute the posterior distribution of loss rate for

P(6)P(D|6) that link alone conditioned on the observed datand the loss
Jy P(O)P(DI|6)do rates assigned to all other links (i.¢;} = Uj..; x)- Note that

In general, it is hard to compute(6)|D directly because of {li} U {li} = Ir. Thus we have
the complex integrations involved, especially wieis a vec- _ _
tor (as itis in our case). An altenative approachis to aomst 5y (4 P(DHL}U L) P(L} U {Li})
a Markov chain whose stationary distribution exactly egual R Ji, (DL} UL )P ({1} U {l:})dl;
the posterior distribution of interesP(6|D)). When such a
Markov chain is run for a sufficiently large number of steps sincepP(i,,) is a uniform distribution, andi;} U {I;} = i,
(termed théourn-in period), it “forgets” its initial state and con- e have
verges to its stationary distribution. It is then straightfard

P(8|D) =

to obtain samples from this stationary distribution to ¢ounct _ P(DJig)

an approximation of the posterior distribution. Hence tame P(lilD, AL} = W ()
Markov Chain Monte Carlo (MCMC) [10], [11] is given to this - '

class of techniques. Using equations 1 and 2, we numerically compute the pos-

The challenge then is to construct a Markov chain (i.e., deerior distributionP(1;|D, {I;}) and draw a sample from this
fine its transition probabilities) whose stationary dimttion distributior?. This then gives us the new vaILl(';,, for the loss
matchesP(#|D). Gibbs sampling [10] is a widely used tech- rate of linki. In this way, we cycle through all the links and
nique to accomplish this. The basic idea is that at eachitrangssign each a new loss rate. We then iterate this procedure se
tion of the Markov chain, only a single variable (i.e., onlyeo eral times. After the burn-in period (which in our experirteen
component of the vect®) is varied. Rather than explain Gibbdasts a few hundred iterations), we obtain samples from ¢he d
sampling in general, we now switch to modeling network tasired distributionP(I,,| D). We use these samples to determine
mography as a Bayesian inference problem and explain hesiich links are likely to be lossy.

Gibbs sampling works in this context. 3) Discussion: The Bayesian approach outlined above is
2) Application to Network Tomography: To model network pased on solid theoretical foundations. Another advantdge
tomography as a Bayesian inference problem, we défis@d this approach over the random sampling and the linear opti-

# as follows. The observed dat®, is defined as the numbermization approaches is that it On|y requiresmmber of pack_
of successful packet transmissions to each cliefténd the ets sent to and lost at each cliemof the loss rate. So it can be
number of failed (i.e., lost) transmission§ ). (Note thatitis applied even when the number of packets sent to a client is not

easy to compute; by subtractingf; from the total number of |arge enough for the packet loss rate to be meaningfully com-
packets transmitted to the client.) Thils= J;(s;, f;). The puted.

unknown parametet is defined as the set of links’ loss rates,
i.e.,0 =1, = J;c li (Section IV-B). The likelihood function

can then be written &s: V. SIMULATION RESULTS
B . In this section, we show results of our experimental evalua-
P(DIl) = H (1=p;)"p; (1) tion of the three passive network tomography techniques pre

jEclient . . .
JEehents sented on Section IV. We present simulation results hetex-In

Recall from Section IV-A thap; = 1 — [[;c,, (1 —1;) and  net results are presented in Section VI. The main advantage o
represents the loss rate observed at cligntNote that equation simylation is that the true link loss rates are known, sodti

4Note that we are only computing the likelihood of the speaifiservation Ing the inferences of the tomeraphy techmques IS easy.

we made. We argot interested in counting all possible ways in which clignt

could have had; successes anf} failures, so the equation does not include ®Since the probabilities involved may be very small and couédl cause
such a combinatorial term. We offer this clarification siactew readers have floating point underflow if computed directly, we do all oungputations in the
been confused at first blush. logarithmic domain.



The simulation experiments are performed on topologies of the loss rate samples for the link (drawn from 500 to 2000
different sizes using multiple link loss models. The topoldterations) exceed the loss rate threshold. Forlithé model,
gies considered are randomly constructed trees with the nuiime loss rate threshold was set to 3% (i.e., the midpointéertw
ber of nodes() ranging from 20 to 3000. (Note that the nodehe 1% and 5% range delimiters discussed above) while for the
countincludes both interior nodes (i.e., routers) anddedice., .M, model it was varied in the range of 5-20%.
clients).) The number of links in each topology is roughly We report the true number of lossy links, and the number
equal to the number of nodes (modulo the slight reduction @f correctly inferred lossy linkscbverage) and the number of
link count caused by the collapsing of linear chains, if amy incorrectly inferred lossy linksfglse positives), all being aver-
virtual links). The degree of each non-leaf node (i.e., thmn aged over the 6 runs of the experiment for each configuration.
ber of children) was picked at random between 1 and an upper
bound,d, which was varied from 5 to 50. A. Random Topologies
In addition, we also consider a real network topology con- We present simulation results for different settings oétre
structed from our traceroute data set. This topology spasige (), maximum node degred), and fraction of good links
123,166 clients drawn from the Dec 2000 trace gathered at {tf§. The results presented in this sub-section are based on the
microsoft.com site (the number of clients is somewhat smallef. M, loss model with the Bernoulli loss process.
than that reported in Section Ill because we ignore cliemts t
whom traceroute failed). 50
A fraction, f, of the links were classified as “good” and the ~ %>
rest as “bad”. We use two different models for assigning loss 35
rates to links in these two categories. In the first loss mode £ 30
(LM,), the loss rate for good links is picked uniformly at ran- % 2°
dom in the 0-1% range and that for bad links is picked in the 45
5-10% range. In the second modélN/;), the loss rate ranges 10 1
for good and bad links are 0-1% and 1-100%, respectively. f’) 1
Once each link has been assigned a loss rate, we use ol
of two alternative loss processes at each link: Bernoulti an
Gilbert. In the Bernoulli case, each packet traversing la ikn
dropped with a fixed probability determined by the loss rdte o

100-node random topologies (d=10)

Random
Gibbs

@+# true lossy links

the link. In the Gilbert case, the link fluctuates between adgo A A

Sta.te E.;lnd a bad state. In the good state, no packetg are dro%ﬂ?z. Varying f: 100-node random topologies with maximum degree = 10.
while in the bad state all packets are dropped. As in [16], we
chose the probability of remaining in the bad state to be 35%Figure 2 shows the simulation results for 100-node topolo-
based on Paxson’s observed measurements of the Interreet. dibs andi = 10, andf varying from 0.5 to 0.95. We note thatin
other state-transition probabilities are pICKEd so thatdher- generaL random Samp"ng has the best coverage. In most,case
age loss rate matches the loss rate assigned to the link., Thuig able to identify over 90-95% of the lossy links. However
the Gilbert loss process is likely to generate more bursiyde the high coverage comes at the cost of a very high false posi-
than the Bernoulli loss process. In both cases, the endido-gjve rate — ranging from 50-140%. Such a high false positive
loss rate is computed based on the transmission of 1000 pagie may be manageable when there are few lossy links in the
ets from the root (server) to each leaf (client). Unlessotie®  network (i.e. f is large) since we can afford to run more expen-
indicated, our simulation experiments use th¥/, loss model sijve tests (e.g., active probing) selectively on the smaihber
together with the Bernoulli loss process. of lossy links inferred. However, the large false positiager
We have chosen these somewhat simplistic loss models oj¢giinacceptable when there are a large number of lossy Inks i
simulating real congestion losses because it gives usegreate network. For instance, whefi = 0.5, random sampling
flexibility in terms of being able to explicitly control th@ss correctly identifies 46 of the 47 lossy links. In additionyho
rate of each link. Furthermore, to the extent that the lossof ever, it generates 24 false positives, which makes theenter
Internet paths is operationally stationary for significkenmigths  almost worthless since there are only about 100 links in alll.
of time [23], these models offer a reasonable approximation  One reason why random sampling generates a large number
We repeat our experiment 6 times for each simulation configf false positives is its susceptibility to statistical fiuations in
uration, where each repetition has a new topology and ldes réhe end-to-end loss rate experienced by clients (SectieB)IV
assignments. In each repetition of an experiment, a link-is iFor instance, instead of correctly identifying a lossy Ilrigh
ferredto be lossy as follows. For random sampling, we compuip in the tree, random sampling may incorrectly identifyrgéa
the mean loss rate of the link over 500 iterations (Section Iiumber of links close to individual clients as lossy.
B). We infer the link to be lossy if the mean exceeds a loss rateln contrast to random sampling, LP has relatively poor cov-
threshold. Likewise, for the linear optimization (LP) apach, erage (30-60%) but an excellent false positive rate (rave¢y
we compare the (unique) inferred link loss rate to the loss ré&b%). (In some cases, the false positive bar in Figure 2 is hard
threshold. In the case of Gibbs sampling, since we numéyicalo see because the number of false positives is close to af equ
compute the posteriaistribution, we apply a somewhat moreto zero.) As explained in Section IV-C, LP is less suscepti-
sophisticated test. We infer a link to be lossy if more tha#99ble to statistical fluctuations in the end-to-end loss ratese



3000-node random topologies

it allows some slack in the constraints. This reduces trsefal
positive rate. However, the slack in the constraints andabe
that the objective function assigns equal weights to tHelbas
variables {;) and the slack variablesS{) causes a reduction
in coverage. Basically, a true lossy link (especially onarne
the leaves) may not be inferred as such because the comstrai
was slackened sufficiently to obviate the need to assignta hig
loss rate to the link. In Section V-C, we examine the impact of
different weights in LP on the inference.

# links

Finally, we observe that Gibbs sampling has a very good d=10, f=0.95| d=10, f=0.8 |d=20, {=0.95| d=20 =0.8
coverage (over 80%) and also an excellent false positive rat B tue lossy Tnks v
(well under 5%). We believe that the excellent performarfce o D flse positve

this technique arises, in part, because the Bayesian agprogy s. 3000-node random topologies.
is based on observations of thamber of lost and successful

packets, and not on the (noisy) computation of packetriates. Gibbs sampling for a 1000-node
random topology (d =10, f = 0.5)

1000-node random topologies (d=10, f=0.95) 600

500 4 /

400 -

300 +

# links

200 -

# links

100 A
T T

0 T T T T
. 0 200 400 600 800 1000
# links considered

: —# correctly identified lossy links
Random LP Gibbs =4 true lossy links

# false positive

‘I:I# true lossy links B# correctly identified lossy links O# false positive‘

. . . . Fig. 6. The performance of Gibbs sampling when the infererre rank or-
Fig. 3.  1000-node random topologies with maximdyree = 10 and  gered based on a confidence estimate. (1000-node randotaggpmaximum

=095 degree = 10, andf = 0.5)
1000-node random topologies (d=10, f=0.5) plot 3 curves: the true number of lossy links in the set ofdink
600 considered up to that point, the number of correct inference
500 - and the number of false positives. We note that the confidence
rating assigned by Gibbs sampling works very well. There are
400 - " .
Y zero false positives for the top 33 rank ordered links. Maegp
£ 300 1 each of the first 401 true lossy links in the rank ordered dist i
200 14— correctly identified as lossy (i.e., none of these true |disdks
100 1 is “mi_ssed”). Thgse results suggest that the confidenaagmi
for Gibbs sampling can be used to rank the order of the inflerre
0 lossy links so that the top few inferences are (almost) péyfe
Random LP Gibbs accurate. This is likely to be useful in a practical settirtipve
‘I:I#Irue lossy links W # correctly identified lossy links O# false posmve‘ we may want to |dent|fy at |east a Sma" number Of |ossy |inks

Fig. 4. 1000-node random topologies with maximdeyree = 10 and With certainty so that corrective action can be taken.
f=05.

Figures 3 and 4 show the corresponding results for exp&- Alternative Loss Model
iments on 1000-node topologies. Figure 5 shows the resultsSo far, we have considerei}M; loss model with the
for 3000-node topologies. We observe that the trends rem&arnoulli loss process. In this section, we evaluate theceff
qualitatively the same even for these larger topologiesb&i tiveness of inference using alternatives for both (i.ee, ltM2
sampling continues to have good coverage with a false pesitloss model and the Gilbert loss process) in various combina-
rate less than 5%. tions.

Figure 6 shows how accurate the inference based on Gibbd. M, Bernoulli loss model: Figure 7 shows the results for
sampling is when the links inferred as lossy are rank order&800-node random topologies with= 10 and f = 0.95 using
based on our “confidence” in the inference. We quantify thbe L. M, Bernoulli loss model. We vary the loss rate threshold,
confidence as the fraction of Gibbs samples that exceeddhke Ith, used to decide whether a link is lossy. We observe that the
rate threshold set for lossy links. The 983 links in the tepotoverage is well over 80% for all three techniques. As the los
ogy are considered in the order of decreasing confidence. Yeeshold is increased, the false positive rate decreakéde w



. . . . 1000-node random topologies
the coverage remains high. This suggests that the infernce with LM2 Gilbert loss model

be more accurate if we are only interested in highly losgyslin

100
1000-node random topologies 88 ]
with LM2 Bernoulli link loss model 0 &8
4
£ 3
180 = 1
160 * 307
140 - £0 1
120 A 0

Random
Gibbs

LP
LP
LP

\I:I# true lossy links B# correctly identified lossy links O# false positive \

Fig. 9. A LM, Gilbert loss model for 1000-node random topologies with
1b=0.05 1b=0.1 1b=0.2 maximumdegree = 10 and f = 0.95. We vary the loss thresholh, and
only the links with loss rate higher thdh are considered lossy.

Random
Gibbs
Random
Gibbs
Random
Gibbs

\I:I# true lossy links B# correctly identified lossy links O # false positive\

Fig. 7. A LM> Bernoulli loss model for 1000-node random topologies with
maximumdegree = 10 and f = 0.95. We vary the loss thresholi, and  higher false positive rate. This is because wheis decreased,

only the links with loss rate higher thdt are considered lossy. . L .
Y 9 y a greater emphasis is placed on satisfying the constrdiats t

LM, and LM, Gilbert loss models: Figure 8 and Figure 9 N finding a parsimonious solution; as a resu_lt, we are more
show the performance of inference b/, and .M, Gilbert likely to attribute loss to several non-shared links tharnna s
loss models. The relative performance of different infegen 9'€ Shared link in order to satisfy the constraints moreagios
schemes remains the same. The Gibbs sampling technique 4RIEOVET it is interesting that the performance of LP is less
tinues to be the best performer: it has a coverage of aroutd 98€nSitive to the weights in thel/, loss model than in the M,
with the lowest false positive rate among all the schemeis THPSS model.

good performance is despite the underlying likelihood comp 1000-node random topologies
tation being based on a different (i.e., Bernoulli) loss elod with LM1 Gilbert loss model
(equation 1 in Section 1V-D.2). The insensitivity to the dos 80
model is in part because we are only evaluating the accuffacy o 70 |
identifying lossy links, not computing the actual link lasdes. 60 1
50
1000-node random topologies % 0 4
with LM1 Gilbert loss model P
30 A
180 20 1
160 + 10 1
140 - r 0
120 LP(0.5) LP(1) LP(2)
1004 \I:I#true lossy links B # correctly identified lossy links O # false positive\

80 -
60 Fig. 10. Effects of different weights in LP: &AM, Gilbert loss model for

40 1000-node random topologies with maximudi@yree = 10 and f = 0.95.
20 -
0

Random LP Gibbs D. Real Topology

We also evaluate the effectiveness of inference using a real

pology (constructed from traceroute data) spanning1683,

clients. We assign a loss rate to each link based on.thig

Bernoulli loss model with different settings gf Figure 12

C. Different Weightsin LP shows the performance of random sampling. As with the ran-
As discussed in Section IV-C, the linear optimization tectiom topologies, random sampling has very good coverage but

nique seeks to minimize 3", L; + Y, |S;|, where the weight, @ significant false positive rate. _
w, reflects the relative importance between finding a parsimo-YVe were unable to evaluate the performance of LP and Gibbs

nious solution versus satisfying the end-to-end loss caimss. Sampling over the real topology because of computatiormatco

So far in our experiments, we uge = 1. In this section, we PleXxity.

vary w and examine its effect on the performance of the infer-
ence. VI. INTERNETRESULTS

Figure 10 and Figure 11 show the LP performance for 1000-In this section, we evaluate the passive tomography tech-
node random topologies under Gilbdtf\/; and LM, loss niques using the Internet traffic traces fromicrosoft.com. Val-
models, respectively. As we can see, the smaillés, the bet- idating our inferences is challenging since we only have end
ter is coverage that the inference achieves, but at the ¢@st do-end performance information and do not know the true link

# links

\ I # true lossy links W # correctly identified lossy links O # false positive \

Fig. 8. A LM, Gilbert loss model for 1000-node random topologies Wiﬂ}
maximumdegree = 10 and f = 0.95. 0
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Fig. 13. Overlap in the top N lossy links identified by diffeteschemes.

‘I:I# true lossy links W # correctly identified lossy links O# false positive ‘

Fig. 11. Effects of different weights in LP: &AM, Gilbert loss model for

1000-node random topologies with maximuiagree = 10 andf = 0.95. B Characteristics of Inferred Lo Links
We vary the loss threshol, and only the links with loss rate higher thén =Y

are considered lossy. In this section, we examine the characteristics of the iater
lossy links. We are interested in knowing the location of the
inferred lossy links in the Internet topology. As shown igFi

Real topology (random sampling)

35000 ure 14, more than 95% of lossy links detected through random
30000 - sampling and Gibbs sampling terminate at leaves (i.entslje
25000 - In other words, these are non-shared links that includettlygs-p
£ 20000 - ical last-hop link to clients. (Recall from Section IV-A tha
% 15000 the tomography techniques operate on virtual links, whigly m
10000 - span multiple physical links.) Even though the linear ojxan
5000 1 tion technique is biased toward ascribing lossiness toeshar
0 links, more than 75% of the inferred lossy links are non-star
=095 =09 f=08 =07 =06 f=0.5 links terminating at clients. These findings are consisiétit
M¥ e lossy ks tosey ks the common belief that the last-mile to clients is often the b
O# false positive tleneck in Internet paths [9]. Since many losses happenrat no
Fig. 12. Real topology from the Dec 2000 traceroute. shared links, it is not surprising that there is only a lirditée-
gree of spatial locality in end-to-end loss rate, as rejgloirte
L i _ i Section Ill.
loss rates. The validation approach we use is to (i) checkison
tency in the inferences made by the three techniques, ¢R lo Number of leaves among the top 100
at the characteristics of inferred lossy links, and (iiijpm¥ne identified lossy finks

whether clients downstream of an inferred lossy link do @t fa 100
experience high loss rates.

The evaluation we present here is based on the first hour of
the Dec 2000 trace mentioned in Section Ill. To compute the
end-to-end loss rate, we only consider clients that recaive
least a threshold number of packetswhich is set to 500 or
1000 packets in our evaluation. The results presented asglba 0
on about 4000 such clients.

#links terminate at leaves
(41
o
|

Random LP Gibbs
@t=1000 W t=500

. ) Fig. 14. Number of lossy links that terminate at leaf nodes.
A. Consistency Across the Different Schemes

First, we examine the consistency in the lossy links iden- we also examine how many of the links inferred to be lossy
tified by the three tomography techniques. Figure 13 showfss AS boundaries since such crossings (such as peering
the amount of overlap when we consider the fégossy links points) are thought to be points of congestion. We find that
found by different schemes. Gibbs sampling and random sagimong all the virtual links in our topology (each of which may
pling yield very similar inferences, with an overlap that@-  include multiple physical links), around 45% cross AS bound
sistently above 95% wheiV is varied from 1 to 100° The aries, and 45% have roundtrip delay (i.e., the delay betireen
overlap between LP and the other techniques is also significgwo ends of the virtual link as determined from the traceeout
— over 60%. data) over 100 ms. When we consider only the virtual links in-

8This overlap is higher than we had expected, since randorplsegrhas a ferred to be lossy, the perlcentag? of links that cross AS dsoun
relatively high false positive rate in our simulations. As wescribe in Sec- aries or have long delay is considerably higher. For example
tion VI-B, most of the lossy links terminate at leaves and minernal links  if we only consider those links with an inferred loss rateabo
are not lossy. So clients whose last hop links are not lospgrénce little or 10%, 70% cross AS boundaries, and 80% have one-way delay

no loss. This places tighter constraints on the space abfeaslutions, which ) ’
makes random sampling more accurate. over 100 ms. Some examples of such links we found include
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L; | Method t N; | N, VIlI. CONCLUSIONS
4% | Rand | 1000| 5 S In this paper, we investigate the problem of inferring theslo
Rand | 500 | 5 4 characteristics of Internet links based on passive observat
LP 1000 8 S a server of existing end-to-end, client-server traffic. d&hen
LP 500 | 11 | 6 our analysis of traffic traces gathered at the buiyrosoft.com
2% | Rand | 1000| 11 | 10 Web site, we find that the end-to-end packet loss rate coesela
Rand | 500 | 14 | 13 poorly with the server-to-client hop count, remains stable
LP 1000| 22 | 14 up to tens of minutes, and exhibits a limited degree of spatia
LP 500 | 24 | 20 locality. These findings suggest that it would be intergstm
1% | Rand | 1000| 24 | 17 identify the few lossy links that dominate the end-to-ensklo
Rand 500 23 19 rate.
LP | 1000| 46 | 28 We develop and evaluate three techniques for passive net-
LP 500 | 106 | 77 work tomography: random sampling, linear optimizationd an
TABLE | Bayesian inference using Gibbs sampling. In general, we find

that random sampling has the best coverage but also a high fal
TRACE-DRIVEN VALIDATION FOR RANDOM SAMPLING AND LINEAR positive rate, WhICh can be problematic When the nUmber Of
OPTIMIZATION. lossy links is large. Linear optimization has a very low éals
positive rate but only a modest coverage. Gibbs sampling of-
fers the best of both worlds: a high coverage (over 80%) and a

the connection from AT&T in San Francisco to Indolnternet iH)W false ppsn_we rate (below .5%)' L .
Indonesia (inter-ISP and transcontinental), from Sparriva- On the flip side, however, Gibbs sampling is computationally

lent (inter-ISP), and an international link in ChinaNetrfréhe the most expensive of our techniques. On the other h_and, ran-
U.S. to China. dom sampling is the quickest one. Therefore, we believe that

random sampling may still be useful in practice despiteigb h
false positive rate. For instance, when the number of laekg |
in (the portion of) the network of interest is small, it mayflre
to apply random sampling since the number of false positives
We now consider the problem of validating our inferencegn apsolute terms) is likely to be small. Furthermore, & th
more directly than the intuitive arguments made in Sectibn Vi,ymber of lossy links is large (for instance, tfie= 0.5 con-
B. This is a challenging problem since we do not know the trygyurations in Section V), it is a moot question as to whether
loss rates of Internet links. (All the inferences were mafie gyetwork tomography will be very useful.
fline. So we could not validate the results using active mgb| In addition to Simulation, we have app“ed some of our to-
We have developed the following approach for validatiommography techniques to Internet packet traces gatherdubat t
We partition the clients in the trace into two groups: the tamicrosoft.comsite. The main challenge is in validating our in-
mography set and the validation set. The partitioning isedoferences. We validate the inference by first checking censis
by clustering all clients according to BGP address prefixes atency across the results from different schemes. We find over
dividing each cluster into two sets. One set is included & thy504 overlap between the top 100 lossy links identified by ran-
tomography set and the other in the validation set. This-parom sampling and Gibbs sampling, and over 60% overlap be-
tioning scheme ensures that there is a significant overl#ein tween LP and the other two techniques. We also find that most
end-to-end path to clients in the two sets. of the links identified as lossy are non-shared links tertaina
We apply the inference techniques to the tomography setitg at clients, which is consistent with common belief tha t
identify lossy links. For each lossy link that is identifiecs ex-  |ast-mile is often the bottleneck. Finally we develop aririeck
amine whether clients in the validation set that are dowastr validation scheme, and show the false positive rate is manag
of that link experience a high loss rate on average. If they dable (below 30% in most cases and often much lower).
we deem our inference to be correct. Otherwise, we count itAlthough the finding that most of the lossy links are non-
as a false positive. Clearly, this validation method cary@@ shared may appear to weaken our original motivation of ielent
applied to shared lossy links. We cannot use this method+o viying lossy links in the interior of the network, we wouldéiko
idate the many “last-hop” lossy links reported in SectioAB/l note that our simulation results do indicate that the tegphes
Table | shows our validation results for random sampling avée have developed are effective in finding shared lossy links
linear optimization, wheré, is the loss rate threshold we usedvhere they exist. This makes us optimistic about the effeeti
to deem a link to be lossy,is the minimum number of packetsness of these techniques in instances where significargdoss
a client should have received to be considered in the toraroghappen in the interior of the network, say due to a major autag
phy computation)V; is the number of inferred (shared) lossyor failure, as well as in the future Internet where the lagem
links, andN, is the number of correct inferences according tproblems may be alleviated with the increasing deploymént o
our validation method. In most cases random sampling ard limoadband connectivity.
ear optimization have a false positive rate under 30%. GibbsWe are presently investigating an approach based on selec-
sampling identified only 2 shared lossy links, both of whiok ative active probing to validate the findings of our passive to
deemed correct according to our validation method. mography techniques. To this end, we are working on making

C. Trace-driven Validation
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inferences in real time. [23] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On thestancy
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