
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

Optimal Replacement Policies for Non-Uniform Cache
Objects with Optional Eviction

by Omri Bahat, Armand M. Makowski

CSHCN TR 2002-16
(ISR TR 2002-28)

IEEE INFOCOM 2003 1

Optimal replacement policies for non-uniform
cache objects with optional eviction

Omri Bahat, Armand M. Makowski

Abstract— Replacement policies for general caching ap-
plications and Web caching in particular have been exten-
sively addressed in the literature. Many policies that focus
on document costs, size, probability of references and tem-
poral locality of requested documents, have been proposed.
In many cases these policies are ad-hoc attempts to take
advantage of the statistical information contained in the
stream of requests, and to address the factors above. How-
ever, since the introduction of optimal replacement policies
for conventional caching, the problem of finding optimal
replacement policies under the factors indicated has not
been studied in any systematic manner. In this paper, we
take a step in that direction: We first show, still under the
Independent Reference Model, that a simple Markov sta-
tionary replacement policy, called the policy��, minimizes
the long-run average metric induced by non-uniform docu-
ment costs when document eviction is optional. We then use
these results to propose a framework to operate caching sys-
tems with multiple performance metrics. We do so by solv-
ing a constrained caching problem with a single constraint.
The resulting constrained optimal replacement policy is ob-
tained by simple randomization between two Markov sta-
tionary optimal replacement policies�� but induced by dif-
ferent costs.

Index Terms— Web caching, Optimal replacement poli-
cies, Non-uniform cost, Independent Reference Model,
Caching under a constraint, Markov decision processes.

I. INTRODUCTION

WEB caching aims to reduce network traffic, server
load and user-perceived retrieval latency by repli-

cating “popular” content on proxy caches that are strate-
gically placed within the network. Key to the effective-
ness of such proxy caches is the implementation of doc-
ument replacement algorithms that can yield high hit ra-

The authors are with the Department of Electrical and Computer En-
gineering, and the Institute for Systems Research, University of Mary-
land, College Park, MD 20742. E-mail: obahat@glue.umd.edu, ar-
mand@isr.umd.edu.

This material is based upon work supported by the Space and Naval
Warfare Systems Center – San Diego under Contract No. N66001-00-
C-8063. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessar-
ily reflect the views of the Space and Naval Warfare Systems Center –
San Diego.

tios. A large number of techniques for file caching and
virtual memory replacement have been developed [1] [4],
but unfortunately they do not necessarily transfer to Web
caching as explained below. Despite the ever decreasing
prices of storage devices, the optimization or fine tun-
ing of cache replacement policies is not a moot point for
the benefits of even slight improvements in cache perfor-
mance can have an appreciable effect on network traffic,
especially when such gains are compounded through a hi-
erarchy of caches.

In the context of conventional caching the underly-
ing working assumption is the so-called Independent
Reference Model, whereby document requests are as-
sumed to form an i.i.d. sequence. It has been known
for some time [1] [4] that the miss rate (equivalently,
the hit rate) is minimized (equivalently, maximized) by
the so-called policy �� according to which a document
is evicted from the cache if it has the smallest prob-
ability of occurence (equivalently, is the least popular)
among the documents in the cache. More precisely, let
������� � � � � ������ denote the set of documents to be re-
quested and let ���� denote the probability of reference
of ������ �� � �� � � � � ��. When the cache is full and the
requested document is not in the cache, �� prescribes

����� ����	�

�	 	 �
��
�� ����� � ������ �� �
���� � (1)

In practice, the popularity vector � � ������ � � � � ����� is
not available and thus needs to be estimated on-line as re-
quests are coming in. This naturally gives rise to the LFU
(Least Frequently Used) policy which mimics �� through
the Certainty Equivalence Principle: When the cache is
full and the
�� requested document is not in the cache,
LFU prescribes

����� ����	�

�	 	 �
��
�� ������� � ������ �� �
���� (2)

where ������ is the frequency estimate of ���� based on
the trace measurements up to the
�� request. The focus
on miss and hit rates as performance criteria is reflective

of the fact that historically, pages in memory systems were
of equal size, and transfer times of pages from the primary
storage to the cache were nearly constant over time and
independent of the document transferred.

Interestingly enough, even in this restricted context, the
popularity information as derived from the relative access
frequencies of objects requested through the cache, is sel-
dom maintained and is rarely used directly in the design
of cache replacement policies. This is so because of the
difficulty to capture this information in an on-line fashion
in contrast with other attributes of the request stream, said
attributes being thought indicative of the future popularity
of the object. Typical examples include temporal locality
via the recency of access and object size which lead very
naturally to the Least-Recently-Used (LRU) and Largest-
File-First (LFF) replacement policies, respectively.

At this point it is worth stressing the three pri-
mary differences between Web caching and conventional
caching:

1) Web objects or documents are of variable size
whereas conventional caching handles fixed-size
documents or pages. Neither the policy �� nor the
LRU policy (nor many other policies proposed in
the literature on conventional caching) account for
the variable size of documents;

2) The miss penalty or retrieval cost of missed docu-
ments from the server to the proxy can vary signifi-
cantly over time and per each document. In fact, the
cost value may not be known in advance and must
sometimes be estimated on-line before a decision is
taken. For instance, the download time of a Web
page depends on the size of the document to be re-
trieved, on the available bandwidth from the server
to the cache, and on the route used. These factors
may vary over time due to changing network condi-
tions (e.g., link failure or network overload);

3) Access streams seen by the proxy cache are the
union of Web access streams from tens to thousands
of users, instead of coming from a few programmed
sources as is the case in virtual memory paging, so
the Independent Reference Model is not likely to
provide a good fit to Web traces. In fact, Web traf-
fic patterns were found to exhibit temporal locality
(i.e., temporal correlations) in that recently accessed
objects are more likely to be accessed in the near fu-
ture. To complicate matters, the popularity of Web
objects was found to be highly variable (i.e., bursty)
over short time scales but much smoother over long
time scales.

These differences, namely variable size, variable cost
and the more complex statistics of request patterns, pre-

clude an easy transfer of caching techniques developed
earlier for computer system memory. Yet, a large number
of studies have focused on the design of efficient replace-
ment policies; see [6] [7] [8] [9] and references therein
for a sample literature. Proposed policies typically ex-
ploit either access recency (e.g., the LRU policy) or ac-
cess frequency (e.g., the LFU policy) or a combination
thereof (e.g., the hybrid LRFU policy). The numerous
policies which have been proposed are often ad-hoc at-
tempts to take advantage of the statistical information con-
tained in the stream of requests, and to address the factors
above. Their performance is typically evaluated via trace-
driven simulations, and compared to that of other well-
established policies.

As should be clear from the discussion above, the clas-
sical set-up used in [1] and [4] is too restrictive to cap-
ture the salient features present in Web caching. Indeed,
the Independent Reference Model fails to capture both
popularity (i.e., long-term frequencies of requested doc-
uments) and temporal locality (i.e., correlations among
document requests). It also does not account for docu-
ments with variable sizes. Moreover, this literature im-
plicitly assumes that document replacement is mandatory
upon a cache miss, i.e., a requested document not found
in cache must be put in the cache. While this requirement
is understandable when managing computer memory, it is
not as crucial when considering web caches, 1 especially
if this approach results in simple document replacement
policies with good performance.

With these difficulties in mind it seems natural to seek
to extend these provably optimal caching policies in sev-
eral directions: (i) The documents have non-uniform costs
(as we assimilate cost to size and variable retrieval la-
tency), (ii) there exist correlations in the request streams,
and (iii) document placement and replacement are op-
tional upon a cache miss.

In this paper, we take an initial step in the directions (i)
and (iii): While still retaining the Independent Reference
Model, we consider the problem of finding an optimal
replacement policy with non-uniform retrieval cost ����
�� � �� � � � � �� under the option that a requested docu-
ment not in cache is not necessarily put in cache after be-
ing retrieved from the server. Interestingly enough, this
simple change in operational constraints allows us to de-
termine completely the structure of the optimal replace-
ment policy for the minimum average cost criterion (over
both finite and infinite horizons). Making use of stan-
dard ideas from the theory of Markov Decision Processes
(MDPs), we show [Theorem 1] that the optimal policy is

�In web caching timescales are slower than in conventional caching
due to variable network latencies.

2

the (pure) Markov stationary policy �� that prescribes

����� ����	� �	 (3)

	 �
��
����������� � ������ �� �
��� �� ��������

The simplicity of this optimal replacement policy should
be contrasted with the state of affairs in the traditional
formulation when replacement is mandatory. Indeed, in
the latter case, except for the optimality of �� for uni-
form cache objects, there are no known results concerning
the structure of the optimal policy for an arbitrary (thus
non-uniform) cost structure (to the best of the authors’
knowledge). It is tempting, yet erroneous, to conclude
that the simple stationary Markov replacement policy that
prescribes

����� ����	� �	 (4)

	 �
��
�� ��������� � ������ �� �
����

is optimal; this policy is “myopically” optimal but usually
not optimal as simple examples show. Curiously, the pol-
icy (4) is reminiscent of, and similar to, the policy �� as
given in (3).

The ability to find provably optimal policies under an
arbitrary cost structure can be put to advantage in the fol-
lowing way: As in most complex engineering systems,
multiple performance metrics need to be considered when
operating caches, sometimes leading to conflicting objec-
tives. For instance, managing the cache to achieve as
small a miss rate as possible does not necessarily ensure
that the average latency of retrieved documents is as small
as could be since the latter performance metric typically
depends on the size on retrieved documents while the for-
mer does not. One possible approach to capture the multi-
criteria aspects is to introduce constraints. In the second
part of the paper we formulate the problem of finding a
constrained replacement policy that minimizes an average
cost under a single constraint in terms of a long-run av-
erage metric. Using the developments indicated above we
are able to identify the structure of the constrained optimal
policy as a randomized Markov stationary policy obtained
by randomizing two simple policies of the type (3). The
analysis relies on a simplified version of a methodology
developed in the context of MDPs with a constraint in [2].

The paper is organized as follows: The search for op-
timal replacement policies with optional eviction is for-
mulated as a Markov decision process in Section II. Its
solution is discussed in Section III and Section IV is de-
voted to the constrained problem.

II. FINDING GOOD REPLACEMENT POLICIES

One approach for designing good replacement policies
is to couch the problem as one of sequential decision mak-
ing in the presence of randomness. The analysis that pro-
duced the policy �� described earlier (and its optimality
under the Independent Reference Model) is one based on
Dynamic Programming as developed in the framework of
MDPs [5] [11].

A. An MDP framework

The system is composed of a server where a copy of
each of its � documents is available, and of a cache of
size � with � ��
 � . Documents are first requested
at the cache: If the requested document has a copy already
in cache (i.e., a hit), this copy is downloaded by the user at
some cost (e.g., latency). If the requested document is not
in cache (i.e., a miss), a copy is requested from the server
to be put in the cache. If the cache is already full, then
a decision needs to be taken as to whether a document
already in cache will be evicted (to make place for the
copy of document just requested) and if so, which one.
In principle this decision is taken on the basis of earlier
decisions and past requests, and seeks to minimize a cost
function associated with the operation of the cache over
either a finite horizon or an infinite horizon.

Decision epochs are defined as the instants at which
requests for documents are presented at the cache, and
are indexed by � � �� �� � � �. At time � � �� �� � � �, let
�� denote the state of the cache, thus �� is a subset of
��� � � � � �� with size ���� �� . Let �� denote the col-
lection of all subsets of ��� � � � � �� of size less or equal to
� .

Let ���� � � �� �� � � �� denote the sequence of docu-
ment requests, with �� an ��� � � � � ��-valued random
variable (rv). When the request �� is made, the state of
the cache is �� and let �� denote the action prompted by
the request ��. If the request �� is already in cache, then
we use the convention �� � � to denote the fact that no re-
placement decision needs to be taken. On the other hand,
if the request �� is not in the cache, then �� takes value in
�� ��� and identifies the document to be removed: If ��
is selected in ��, then an eviction takes place with the doc-
ument �� removed from the cache and replaced by��. On
the other hand if �� � ��, then no document is replaced.
Thus, the resulting cache state ���� (just before the next
request ���� is made) is given by 2

���� � � ���� ��� ���

�Throughout, for any subset � of ��� � � � � �� and any elements �
and � in ��� � � � � ��, we write � � � � � to denote the subset of
��� � � � � �� obtained from � by adding � to it and removing � from
the resulting set, in that order.

3

�

���
��
�� if �� � ��
�� ��� if �� �� ��� ����
 �

�� ��� � �� if �� �� ��� ���� ��

In this formulation we note that a document is not neces-
sarily evicted from the cache if the requested document is
not in cache and the cache is full. Under these rules of
operation, we note that eventually the cache will become
full at some time and will remain so from that time on-
ward, i.e., given any initial cache ��, there exists � finite
such that ������ �� for all � � �� �� � � �.

The state variable at time � � �� �� � � � is the pair
���� ���. The state space is then the set � given by

� �� �� 	 ��� � � � � ���

The information available to make a decision when the
document �� �� � �� �� � � �� is requested is encapsulated
in the random variable �� defined recursively by

���� � ���� ��� ����� ������ � � �� �� � � �

with �� � ���� ���. Thus, the range
� of �� can be
defined recursively by

��� �
� 	 ��� � � � � �� 	 � � � �� �� � � �

with
� � � . The decision �� implemented in response
to request �� is then

�� � ������

for some mapping �� �
� � ��� �� � � � � ��. The collec-
tion � � ���� � � �� �� � � �� defines the replacement (or
evicition) policy �. Sometimes it is useful to consider ran-
domized policies which are now defined: A randomized
replacement policy � is a collection ���� � � �� �� � � �� of
mappings �� � ��� �� � � � � �� 	
� � ��� �� such that for
all � � �� �� � � �, we have

��
���

������� � �

with

������� � �� �� �� ��
�� � �� �� ���

and

������� � Æ��� ��� �� � �� �� ����
 �

for all � � �� �� � � � � � . The class of all (possibly ran-
domized) replacement policies is denoted by � .

If the replacement policy � has the property that

�� � ������ ���� � � �� �� � � �

for mappings �� � � � ��� �� � � � � ��, we say that � is a
Markov policy. If in addition, �� � � for all � � �� �� � � �
the policy is said to be a (Markov) stationary policy, in
which case the policy is identified with the mapping �

itself. Similar definitions can be given for randomized
Markov stationary policies [5].

Under the Independent Reference Model, the se-
quence of requests is a sequence ���� � � �� �� � � �� of
��� � � � � ��-valued rv distributed according to some pmf
� � ������ � � � � ����� on ��� � � � � ��.

The definition of the underlying MDP is completed by
associating with each admissible policy � in � , a proba-
bility measure �� defined through the following require-
ments: For each � � �� �� � � �, we have

�� ��� � ����� � ��������� � � �� � � � � � (5)

and

��

�
���� � ��� ���� � ����� ��

�
(6)

� ������

�
���� � ������ ��

�
� �����

�
� ���� ��� ��� � ��

�
for every state ���� �� in � . Let�� denote the expectation
operator associated with the probability measure �� .

B. The cost functionals

With any one-step cost function � � ��� � � � � �� � ���,
we associate several cost functions: Fix a replacement
policy � in � . For each � � �� �� � � �, define the total cost
over the horizon ��� � � under the policy � by

������ � � ��

�
	�
���

� ��� �� ��� �����

�
�

The average cost (over the entire horizon) under the policy
� is then defined by

����� � ��
 ��
	��

�

� � �
������ � (7)

� ��
 ��
	��

�

� � �
��

�
	�
���

� ��� �� ��� �����

�

We use the limsup operation in the definition above since
under an arbitrary policy � the limit in (7) may not exist;
this is standard practice in the theory of MDPs.

A number of situations can be handled by adequately
specializing the cost-per-step �: Indeed, if ���� � �
�� � �� � � � � ��, then ������ � and ����� are the ex-
pected number of cache misses over the horizon ��� � �
and the average miss rate under policy �, respectively.

4

On the other hand, if � is taken to be the size func-
tion � � ��� � � � � �� � �!, with ���� denoting the size (in
bytes) of ������ �� � �� � � � � ��, then the byte hit rate
under policy � can be defined by

������ � ��
 ��	
	��

��

	
	
��� � ��� � ��� �����

�
��

	
	
��� �����

� (8)

where the liminf operation reflects the fact that this perfor-
mance is maximized. To make use of the MDP framework
used here, we first note that

��

	��

�

� � �
�

�
	�
���

�����

�
� � ������

for some ��� � � � � ��-valued rv � with pmf �. Next, we
see that

������

� �� ��
 ��
	��

��

	
	
��� � ��� �� ��� �����

�
��

	
	
��� �����

�

� �� ��
 ��
	��

�
	����

	
	
��� � ��� �� ��� �����

�
�

	���
	
	

��� �����
�

� ��
�
���

� ������
�

Hence, maximizing the byte hit rate is equivalent to mini-
mizing the average cost associated with �.

The basic problem we address is that of finding a cache
replacement policy �� in � such that

����
�� � ������ � � ��

We refer to any such policy �� as an optimal replacement
policy. It is not necessarily unique, but in the next section
we identify such an optimal policy �� which also happens
to be a Markov stationary policy.

III. NON-UNIFORM COST OPTIMAL REPLACEMENT

POLICY WITHOUT MANDATORY EVICTION

In this section we discuss the optimal cache replace-
ment policy for non uniform costs under the Independent
Reference Model when eviction is not mandated. A useful
characterization of the optimal policy for the correspond-
ing MDP (being one with finite state and action spaces)
can be initiated with the help of the Dynamic Program-
ming Equation (DPE) [11].

A. The optimal replacement policy

For each � � �� �� � � �, we define the cost-to-go asso-
ciated with the policy � in � starting in the initial state
��� �� in � to be

��� ���� ���� �

�� ��

�
	�
���

� ��� �� ��� �������� � ���� � �

�

Next, the value function over the horizon ��� � � is defined
by

�	 ��� �� �� ��	
���

��� ���� ���� �� ��� �� � � �

Recall that regardless of the initial condition, the cache
will eventually become and remain full. Thus, under the
average cost criterion used here, there is no loss of gener-
ality in assuming the space state to be �� (instead of the
original �) with

� � �� ���� �� � � � ��� ����

For the MDP at hand, the DPE takes the form

�	����� ��

� � �� � ��� ��	 ����
��� (9)

� � �� �� ��

�
���� �
��

����

� ��	 �� � � � ������

for every state ��� �� in �� with �� denoting an
��� � � � � ��-valued rv with pmf �. The possibility of non-
eviction is reflected in the choice � � � (obviously in
� � �). Moreover, as well known [11], the optimal action
to be taken in state ��� �� at time � � � when minimizing
the cost criterion over the horizon ��� � � is simply given
by

��	 ��� �� ��
��
��
����

�� ��	 �� � � � ������� �

say with a lexicographic tie-braker for sake of concrete-
ness.

The main result of this section is contained in the fol-
lowing theorem that prescribes the optimal replacement
policy for the caching problem at hand.

Theorem 1: For each � � �� �� � � �, we have the identi-
fication

��	 ��� �� � ����� �� (10)

for any state ��� �� in �� whenever � is not in �, with

����� �� ��
��
��
����

���������� � (11)

5

The proof of Theorem 1 is given in Appendix A. Note
that ��	 does not depend on � , and that the Markov station-
ary policy associated with �� is the policy �� introduced
earlier. It is now plain from Theorem 1 that the Markov
stationary policy �� is optimal for both the finite and infi-
nite horizon cost problems.

B. Evaluation of the optimal cost

In order to calculate the average cost, byte hit rate, and
other interesting properties of the replacement policy of
Theorem 1, we find it useful to introduce the permuta-
tion � of ��� � � � � �� which orders the values ��	���	�
�	 � �� � � � � �� in decreasing order, namely

��������������
 ����"������"��
 � � � (12)

The key observation is that the long term usage of the op-
timal replacement policy �� results in a set of � fixed
documents in the cache, namely ������ � � � � �����, so
that every document in the set ������ � � � � ����� is never
evicted from the cache once requested. If we write

� �� ������ � � � � ����� (13)

for this steady-state stack, then formally

��

���

��� ���	� � ��� � �� 	 �� � �� � � � � �

and

������ �
�
� ���

��	���	� �
��

�����

����	������	�� (14)

for any cost � � ��� � � � � �� � ��� (and in particular the
cost � � ��� � � � � �� � ��� which induces the policy ��).
Thus, the byte hit rate associated with the policy �� is
simply given by

������� �

�
��� ��������������

� ������
� (15)

Another interesting observation is the relation of the
optimal replacement policy �� to the well-established
Greedy Dual* and Greedy Dual-Size replacement policies
described in [6] and [7]. Let ��� � ��� � � � � �� � ��� be
an arbitrary cost used by the Greedy Dual policies. The
Greedy Dual policies under optional document placement
in case of a cache miss prescribe

����� ����	� (16)

�	 	 �
��
��
����

�
� �

�
����������

����

 �

�

�
�

where is a contribution of the temporal locality of ref-
erence to the replacement policy and ! " � is a weight
factor that modulates the contribution of the probability of
reference, document size and document cost to the evic-
tion decision. Under the Independent Reference Model
used here, the temporal locality factor can be taken to
be zero, in which case the Greedy Dual policy simplifies
to

����� ����	� �	 	 �
��
��
����

�
����������

����
�

which is a special case of the optimal replacement policy
�� associated with cost function � � ��� � � � � �� � ���
given by

��	� �
����	�

��	�
� 	 � �� � � � � ��

C. Implementing the optimal policy

A natural implementation of the optimal replacement
policy �� is achieved by invoking the Certainty Equiva-
lence Principle. In addition to the online estimation of the
probability of references (as was the case for (2)), this ap-
proach now requires the estimation of additional param-
eters which enter the definition of the overall document
cost ������ � � �� � � � � ��, e.g., in the case of document
latency, the document size might be fully known but the
available bandwidth to the server needs to be measured
online at request time. Let �������� � � �� � � � � �� de-
note an estimate of the document costs which are avail-
able at the cache at the time instance of the
�� request:
If ����
 � , document placement always takes place;
otherwise the replacement action is dictated by

����� ����	� �	 	 �
��
��
�������

��������������

IV. OPTIMAL CACHING UNDER A CONSTRAINT

One possible approach to capture the multi-criteria as-
pect of running caching systems is to introduce con-
straints. Here, we revisit the caching problem studied in
Section III under a single constraint.

A. Problem Formulation

Formulating the caching problem under a sin-
gle constraint requires two cost functions, say
�� � � ��� � � � � �� � ���. As before, ����� and �����
represent different costs of retrieving the requested
document �� if not in the cache �� at time �. For instance,
we could take

���� � �
�� ���� � ����� � � �� � � � � � (17)

6

to reflect interest in miss rate and document retrieval la-
tency, respectively.

The problem of interest can now be formulated as fol-
lows: Given some # " �, we say that the policy � in �
satisfies the constraint at level # if

����� � #� (18)

Let����#� denote the class of all cache replacement poli-
cies in � that satisfy the constraint (18) at level #.

The problem is to find a cache replacement policy �� in
����#� such that

����
�� � ������ � � ����#��

We refer to any such policy �� as a constrained optimal
policy (at level #). With the choice (17) this formulation
would focus on minimizing the miss rate with a bound on
average latency of document retrieval (under the assump-
tion that retrieval latency is proportional to the size of the
document to be retrieved).

One natural approach to solving this problem is to con-
sider the corresponding Lagrangian functional defined by

#����� � ����� � $������ � � �� $
 �� (19)

The basic idea is then to find for each $
 �, a cache
replacement policy ���$� in � such that

#����
��$�� � #������ � � �� (20)

Now, if for some $�
 �, the policy ���$�� happens to
saturate the constraint at level #, i.e.,

����
��$��� � #�

then, the optimality of ���$�� implies

#�����
��$��� � #������� � � ��

In particular, for any policy � in ����#�, this last inequal-
ity readily leads to

����
��$��� � ������ � � ����#��

and the policy ���$�� solves the constrained optimization
problem.

The only glitch in this approach resides in the use of the
limsup operation in the definition (7), so that #����� is not
necessarily the long-run average cost under policy � for
some appropriate one-step cost. Thus, finding the optimal
cache replacement policy ���$� specified by (20) cannot
be achieved in a straightforward manner.

B. A Lagrangian approach

Following the treatment in [2], we now introduce an
alternate Lagrangian formulation which circumvents this
technical difficulty and allows us eventually to carry out
the program outlined above: For each $
 �, we define
the one-step cost function %� � ��� � � � � �� � ��� by

%���� �� ���� � $����� � � �� � � � � �

and consider the corresponding long-run average func-
tional (7), i.e., for any policy � in � , we set

����� �� ������ (21)

� ��
 ��
	��

�

� � �
��

�
	�
���

� ��� �� ��� %�����

�
�

With these definitions we get

������ �
#������ � � �

by standard properties of the limsup, with equality

������ �
#�����

whenever � is a Markov stationary policy.
For each $
 �, the (unconstrained) caching problem

associated with the cost %� is an MDP with finite state
and action spaces. Thus, there exists a Markov stationary
policy, denoted ��, which is optimal, i.e.,

������ � ������ � � �

and earlier remarks yield

#������ � #������ � � ��

In other words, the Markov stationary policy �� also min-
imizes the Lagrangian functional (19), and the relation

������ � ��	
���

����� � ��	
���

#����� (22)

holds. Consequently, as argued in Section IV-A, if for
some $�
 �, the policy ��� saturates the constraint at
level #, then the policy ��� will solve the constrained op-
timization problem.

The difficulty of course is that a priori we may have
������ �� # for all $
 �. However, the arguments given
above still show that the search for the constrained optimal
policy can be recast as the problem of finding &
 � and
a Markov stationary policy �� such that

����
�� � # (23)

and
����

�� � ������ � � �� (24)

7

C. On the way to solving the constrained MDP

The appropriate multiplier & and the policy �� appear-
ing in (23) and (24) will be identified in Section IV-D. To
help us in this process we need some technical facts and
notation which we now develop.

Theorem 2: The optimal cost function $� ������ is a
non-decreasing concave function which is piecewise lin-
ear on ���.

Some observations are in order before giving a proof of
Theorem 2: Fix $
 �. In view of Theorem 1 we can
select �� as the policy �� induced by %�, i.e.,

����� ����	� �$ 	 �
��
��
����

����� � $����� � (25)

Let �� denote the permutation of ��� � � � � �� which or-
ders the values ��	�%��	� (� �� � � � � �) in decreasing
order, namely

��������%��������
 �����"��%�����"��
 � � � (26)

with a lexicographic tie-breaker. Let ��$� denote the
steady-state stack induced by the policy ��, namely the
collection of documents in the cache that results from
long-term usage of the policy ��. Obviously, we have 3

��$� � ������� � � � � ������ (27)

so that

������ � ������� �
�

�������

��	�%��	� (28)

upon rephrasing comments made earlier in Section III.
Given the affine nature (in the variable $) of the

cost, there must exist a finite and strictly increasing se-
quence of non-zero scalar values $�� � � � � $� in ��� with
�
 $�
 � � �
 $� such that for each ' � �� � � � � , it
holds that

��$� � ��$��� $ � (� �� �$�� $����

with the convention $� � � and $��� ��, but with

��$�� �� ��$����� ' � �� � � � � � ��

In view of (28) it is plain that

������ �
�

��������

��	�%��	� (29)

whenever $ belongs to (� for some ' � �� � � � � .

�The steady-state stack � given by (13) corresponds to the case � �
� with � � ��.

Proof. For each policy � in � , the quantities ����� and
����� are non-negative as the one-step cost functions
� and � are assumed non-negative. Thus, the mapping
$� #����� is non-decreasing and affine, and we conclude
from (22) that the mapping $ � ������ is indeed non-
decreasing and concave. Its piecewise-linear character is
a straightforward consequence of (29).

In order to proceed we now make the following simpli-
fying assumption.
(A) If for some $
 �, it holds that

��	�%��	� � ����%����

for some distinct 	� � � �� � � � � � , then there does not
exist any) �� 	� � with) � �� � � � � � such that

��	�%��	� � ����%���� � ��)�%��)��

Assumption (A) can be removed at the cost of a more
delicate analysis without affecting the essence of the opti-
mality result to be derived shortly.

For each ' � �� �� � � � � , the relative position of the
quantities ��	�%��	� (� �� � � � � �) remains unchanged
as $ sweeps through the interval �$�� $����. Under (A),
when going through $ � $���, a single reversal occurs in
the relative position with

��$�� � �������� � � � � ����� � ��� �������

and

��$���� � �������� � � � � ����� � ��� ����� � ���

By continuity we must have

���������%������������

� ������� � ���%���������� � ���� (30)

Theorem 3: Under Assumption (A), the mapping
$� ������ is a non-increasing piecewise constant func-
tion on ���.

Proof. The analog of (29) holds in the form

������ �
�

��������

��	���	� (31)

whenever $ belongs to (� for some ' � �� � � � � . Hence,
the mapping $� ������ is piecewise constant.

Now pick ' � �� �� � � � � � � and consider $ and *
in the open intervals �$�� $���� and �$���� $����, respec-
tively. The desired monotonicty will be established if we

8

can show that ������� ������ � �. First, from (31), we
note

������� ������ (32)

�
�

������

��	���	� �
�

������

��	���	�

� ������������������

�������� � ���������� � ���

by comments made earlier as we recall that ��$� � ��$��
and ��*� � ��$����.

Next, pick + " � such that $ � + and * � + are in the
open intervals �$�� $���� and �$���� $����, respectively.
By (29) we get ��$� +� � ��$� and

����������� ������

�
�

���������

��	�%����	� �
�

�������

��	�%��	�

�
�

�������

��	�%����	��
�

�������

��	�%��	�

� +
�

�������

��	���	� (33)

Similarly,

����������� ������ � +
�

�������

��	���	�� (34)

By Theorem 2, the mapping $ � ������ is concave,
hence

����������� ������ � ����������� �������

Making use of (33) and (34) in this inequality, we readily
conclude that�

������

��	���	� �
�

������

��	���	�� (35)

But ��$� � ��$�� and ��*� � ��$����, whence (35) is
equivalent to

������������������ � ������� ����������� �����

The desired conclusion ������ � ������ � � is now
immediate from (32).

D. The constrained optimal replacement policy

We are now ready to discuss the form of the optimal
replacement policy for the constrained caching problem.
Throughout we assume Assumption (A) to hold. Several
cases need to be considered:

Case 1 –The unconstrained optimal replacement policy
�� satisfies the constraint, i.e., ������ � #, in which case
�� is simply the optimal replacement policy �� for the
unconstrained caching problem. This case is trivial and
requires no proof since by Theorem 1 the average cost is
minimized and the constraint satisfied.

Case 2 –The unconstrained optimal replacement pol-
icy does not satisfy the constraint, i.e., ������ " #, but
there exists $ " � such that ������ � #. Two subcases
of interest emerge and are presented in Theorems 4 and 5
below.

Case 2a –The situation when the policy �� above sat-
urates the constraint at level # was covered earlier in the
discussion; its proof is therefore omitted.

Theorem 4: If there exists $ " � such that ������ � #,
then the policy �� can be taken to be the optimal replace-
ment policy �� for the constrained caching problem (and
the constraint is saturated).

Case 2b –The case of greater interest arises when the
conditions of Theorem 4 are not met, i.e., ������ " #,
������ �� # for all *
 � but there exists $ " � such that
������
 #. In that case, by the monotonicity result of
Theorem 3, the quantity

& �� ��	 �$
 � � ������ � #�

is a well defined scalar in �����. In fact, we have the
identification

& � $���

for some ' � �� �� � � � � � �, and it holds that

���������
 #
 ������� (36)

For each � in the interval ��� ��, define the Markov sta-
tionary policy �� obtained by randomizing the policies ���
and ����� with bias �. Thus, the randomized policy ��
prescribes

����� ����	� �	

	 �

���
��

��
������
���	�%���	�� w��� �

��
������
���	�%�����	�� w��� �� �
(37)

Theorem 5: The optimal cache replacement policy ��

for the constrained caching problem is any randomized
policy �� of the form (37) with � determined through the
saturation equation

������ � #� (38)

Proof. For the most part we follow the arguments of

9

[2]: Pick $ and * in the open intervals �$�� $���� and
�$���� $����, respectively, in which case

�� � ���
�� �� � �����

with

������
 #
 ������� (39)

Thus, as in the proof of Theorem 4.4 in [2], let $ and * go
to $��� monotonically under their respective constraints.
The resulting limiting policies g and %� (in the notation of
[2]), are simply given here by

g � �����
�� %� � ���

with 4

������ � ��������� � ������� (40)

for every � in the interval ��� ��, and optimality

������ � ������ � � �

follows. Moreover, the mapping � � ������ being con-
tinuous [10], with

��������� � ���������
�� ��������� � ��������

there exists at least one value � in ��� �� such that (38)
holds. The proof of optimality is now complete in view
of comments made at the beginning of Section IV-C.

It is possible to give a somewhat explicit expression for
������ using � in ��� ��: Indeed, set

�� �� ��$�� � ��$����

� �������� � � � � ����� � ����

Then, we have

������ � � ������

� ��

	��

�

� � �
���

�
	�
���

� ��� � ��� �����

�

with

��

	��

�

� � �
���

�
	�
���

� ��� � ��� �����

�

�
�
����

��	���	� � ����������������������

���� ������������ � ���������� � ���

�See details in the proof of Theorem 4.4 in [2].

where ���� represents the asymptotic fraction of time that
the cache contains the document ������. It is a simple
matter to check that

���� ��
� � ���������

� � ��������� � ��� �� � ������� � ���

Case 3 –Finally, assume that

������ " #� $
 ��

This situation is of limited interest as we now argue: Fix
$ " �. For each policy � in � , we can use the optimality
of �� to write

 $�������� � ������ � $������� � ������

Thus, letting $ go to infinity, we conclude to

� ������ � � ��

The constrained caching problem has no feasible solution
unless there exists a policy that saturates the constraint.
Typically, the inequality above will be strict.

REFERENCES

[1] A. Aho, P. Denning and D. Ullman, “Principles of Optimal Page
Replacement,” J. ACM, vol.18, No. 1, January 1971.

[2] F. Beutler and K. Ross, “Optimal Policies for Controlled Markov
Chains with a Constraint,” J. Math. Analysis and Applications
112(1985), pp. 236-252.

[3] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algo-
rithms,” In Proceedings of the 1997 USENIX Symposium on In-
ternet Technology and Systems, pp. 193-206, Dec 1997.

[4] E. Coffman and P. Denning, Operating Systems Theory,
Prentice-Hall, NJ (1973).

[5] D. Heyman and M. Sobel, Stochastic Models in Operations Re-
search, Volume II: Stochastic Optimization, McGraw-Hill, New
York (NY), (1984).

[6] S. Jin and A. Bestavros, “GreedyDual* Web Caching Algorithm:
Exploiting the Two Sources of Temporal Locality in Web Re-
quest Streams,” In Proceedings of the 5th International Web
Caching and Content Delivery Workshop, Lisbon, Portugal, May
2000.

[7] S. Jin and A. Bestavros, “Popularity-Aware GreedyDual-
Size Web Proxy Caching Algorithms,” In Proceedings of
ICDCS’2000: The IEEE International Conference on Distributed
Computing Systems, Taiwan, May 2000.

[8] S. Jin and A. Bestavros, “Sources and Characteristics of Web
Temporal Locality,” In Proceedings of MASCOTS’2000: The
IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems,
San Fransisco, CA, August 2000.

[9] S. Jin and A. Bestavros, “Temporal Locality in Web Request
Streams: Sources, Characteristics, and Caching Implications”
(Extended Abstract) In Proceedings of SIGMETRICS’2000: The
ACM International Conference on Measurement and Modeling
of Computer Systems, Santa Clara, CA, June 2000.

10

[10] D.-J. Ma, A.M. Makowski and A. Shwartz, “Stochastic approx-
imations for finite–state Markov chains,” Stochastic Processes
and Their Applications, vol. 35 (1990), pp. 27-45.

[11] S.M. Ross, Introduction to Stochastic Dynamic Programming,
Academic Press, New York (NY), (1984).

[12] N.E. Young, “On-line caching as cache size varies,” In Proceed-
ings of Symposium on Discrete Algorithms, January 1991.

A. A PROOF OF THEOREM 1

The optimality of the Markov stationary policy �� for
both finite and infinite horizon cost problems is a direct
consequence of the following fact:

Proposition 1: For each � � �� �� � � �, it holds that

��
�� �� � � � � � � ��	 �� � � � �������

�
��
�� �� � � � � � ��������� (41)

for any state ��� �� in �� whenever � is not in �.
The equality (41) is understood to mean that if
, ��
��
���� � � � � � ���������, then

� ��	 �� � � � ,����� �
��
����

� ��	 �� � � � ������ �

This statement is weaker than the monotonicity statement
��������
 ��-���-�, if

� ��	 �� � � � ������

 � ��	 �� � � �-����� � �� - � � � ��

which is in the optimality proof in [1], [4].
The proof of Proposition 1 proceeds by induction on

� � �� �� � � �.
The basis step –Fix ��� �� in �� and note that

����� �� � � �� �� �� �����

Thus, for distinct � and , in � � �, we have

� ����� � � � ������

� � �� ��� �� � � � � �� ������

� � �� ��� �� � � �� ������ �� �� ��� � �� ������

with a similar expression for � ����� � � � ,�����.
Hence,

� ����� � � � �������� ����� � � � ,�����

� �������� � ��,���,�

and (41) does hold for � � �.
The induction step – Assume (41) to hold for some

� � �� �� � � �. Fix ��� �� in � � with � not in �. We need
to show that for � in � � �, we have

� ��	���� � � � ������ �	���� � � � ,�����
 �
(42)

if
, �
��
�� �� � � � � � ��������� � (43)

Fix � in � � � and let ��� denote an rv distributed like
�� and independent of it. Using the DPE (9) we can write

� ��	���� � � � ������ (44)

� � ��� � � � � � ��� ��	 �� � � � �������

�� �� ��� �� � � � � �� ������

��
	
� ��� �� � � � � �� #�	 �� � � � �����

�
with

#�	 ��� .� ��
��
������

�
�
�	 �� � .� ��� ����

�
for every set � with ��� �� and . not in �.

Note that

� ��� � � � � � ��� ��	 �� � � � �������

� � ��� � � � � � ��� ,��� ��	 �� � � � �������

���,�� ��	 �� � � � ������� (45)

and that

� �� ��� �� � � � � �� ������

� � �� ��� �� � � �� ������ � �������� (46)

with , as defined by (43). Finally,

�
	
� ��� �� � � � � �� #�	 �� � � � �����

�
� �

	
� ��� �� � � �� #�	 �� � � � �����

�
����� #�	 �� � � � �� �� (47)

Reporting (45), (46) and (47) into (44), we conclude that

� ��	���� � � � ������

� � ��� � � � � � ��� ,��� ��	 �� � � � �������

�� �� ��� �� � � �� ������ � ��������

����� #�	 �� � � � �� ��

���,�� ��	 �� � � � �������

��
	
� ��� �� � � �� #�	 �� � � � �����

�
(48)

We can now write the corresponding expression (48)
with � replaced by ,, and the difference in (42) takes the
form

� ��	���� � � � ������ �	���� � � � ,�����

� ��������� � ��,���,��

�� ��� � � � � � ��� ,��&�

�����&� � ��,�&� �&� (49)

11

with

&� �� � ��	 �� � � � �������

�� ��	 �� � � � ,������

&� �� #�	 �� � � � �� ���� ��	 �� � � � ,������

&� �� � ��	 �� � � � �������� #�	 �� � � � ,� ,�

and

&� �� �
	
� ��� �� � � �� #�	 �� � � � �����

�
��

	
� ��� �� � � �� #�	 �� � � � ,����

�

Observe that �����������,���,�
 � by the definition
of , and that the condition &�
 �, being equivalent to
(41), holds true under the induction hypothesis. Next, we
note that

#�	 �� � � � �� ��

�
��
�����

�
�
�	 �� � � � ��� ����

�
� � ��	 �� � � � ,������

by the induction hypothesis and the definition of ,, so that
&� � �. Similarly,

#�	 �� � � � ,� ,� �
��
�����

�
�
�	 �� � � � ,�� ����

�
whence &�
 � again by the induction hypothesis and the
definition of ,. Consequently,

� ��	���� � � � ������ �	���� � � � ,�����
 &�

and (42)-(43) will hold if we can show that &�
 �.
Inspection of &� reveals that &�
 � provided

#�	 �� � � � �� .�� #�	 �� � � � ,� .�
 � (50)

whenever . is not in � � �.
To establish (50) we find it useful to order the set of

documents ��� � � � ��� according to their expected cost:
For � and , in ��� � � � ��� we write �
 , (resp. � � ,)
if ��������
 ��,���,� (resp. �������� � ��,���,�),
with equality � � , if �������� � ��,���,�. We can now
interpret , as the smallest element in � � � according to
this order. Two cases emerge depending on whether , � .

or .
 ,:
Case 1 –Assume . � ,. Then, for � �� , in � � �, we

have

#�	 �� � � � �� .� (51)

�
��
�����
����

�
�
�	 �� � � � �� .� ��� ����

�

Note that . is not in � � � � � and that . is smallest in
� � � � . (thus in � � . � � which contains it). By the
induction hypothesis (applied to the state �� � � � �� .�)
we can conclude that the minimization above is achieved
at �� � ., so that

#�	 �� � � � �� .� � � ��	 �� � � � ������� (52)

The same argument shows that

#�	 �� � � � ,� .�

�
��
�����
����

�
�
�	 �� � � � , � .� ,�� ����

�
� � ��	 �� � � � ,������ (53)

by the induction hypothesis (applied to the state
�� � � � ,� .�). Combining these facts, we get

#�	 �� � � � �� .�� #�	 �� � � � ,� .� (54)

� � ��	 �� � � � ��������� ��	 �� � � � ,������

and (50) follows by invoking the induction hypothesis
once more, this time in state ��� ��.

Case 2 –Assume ,
 .. Then, going back to the ex-
pression (51) for � �� , in � � �, we note that now , is
the smallest element of � � � � � � ., hence achieves
the minimum in (51) by virtue of the induction hypothesis
applied to the state �� � � � �� .�. Therefore,

#�	 �� � � � �� .�

� � ��	 �� � � � �� .� ,������

� � ��	 �� � � � , � .� ������� (55)

On the other hand, by the induction hypothesis
applied to the state �� � � � ,� .�. we find that

#�	 �� � � � ,� .�

�
��
�����
����

�
�
�	 �� � � � , � .� ,�� ����

�
� � ��	 �� � � � , � .� ,�� ����� (56)

where ,� is the smallest element in � � � � , � .. Col-
lecting these expressisons, we find

#�	 �� � � � �� .�� #�	 �� � � � ,� .�

� � ��	 �� � � � , � .� �������

�� ��	 �� � � � , � .� ,�� ����� (57)

and here as well (50) follows by invoking the induction
hypothesis once more, this time in state �� � � � ,� .� as
we note that any � �� , in ��� is necessarily in ����,.
This completes the proof of Theorem 1.

12

