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Abstract— We investigate a widely popular Least-Recently-
Used (LRU) cache replacement algorithm with semi-Markov
modulated requests. Semi-Markov processes provide the flexi-
bility for modeling strong statistical correlation, including the
broadly reported long-range dependence in the World Wide Web
page request patterns. When the frequency of requesting a page
n is equal to the generalized Zipf’s law c/nα, α > 1, our main
result shows that the cache fault probability is asymptotically,
for large cache sizes, the same as in the corresponding LRU
system with i.i.d. requests. This appears to be the first explicit
average case analysis of LRU caching with statistically dependent
request sequences. The surprising insensitivity of LRU caching
performance demonstrates its robustness to changes in document
popularity. Furthermore, we show that the derived asymptotic
result and simulation experiments are in excellent agreement,
even for relatively small cache sizes. The potential of using our
results in predicting the behavior of Web caches is tested using
actual, strongly correlated, proxy server access traces.

I. INTRODUCTION

The basic idea of caching is to maintain high-speed access
to a subset of k items out of a larger collection of N documents
that cannot be accessed quickly. Originally, caching was used
in computer systems to speed-up the data transfer between the
central processor unit and slow local memory. The renewed
interest in caching stems from its application to increasing the
speed of accessing Internet Web documents.

One of the fundamental issues of caching is the problem
of selecting and possibly dynamically updating the k items
that need to be stored in the fast memory (cache). The
optimal solution to this problem is often very difficult to find
and, therefore, a number of heuristic, usually dynamic, cache
updating algorithms have been proposed. Among the most
popular algorithms are those based on the Least-Recently-
Used (LRU) cache replacement rule. The wide popularity of
this rule is primarily due to its high performance and ease of
implementation. The LRU algorithm tends to both keep more
frequent items in the cache as well as quickly adapt to the
potential changes in document popularity, resulting in efficient
performance.

In order to further the insight into designing network
caching algorithms, it is important to gain a thorough under-
standing of the baseline LRU cache replacement policy. Basic
references on the performance analysis of caching algorithms
can be found in Section 6 of Knuth [1]. In the analysis

of LRU caching scheme there have been two approaches:
combinatorial and probabilistic studies. For the combinatorial
(amortized, competitive) analysis the reader is referred to [2],
[3]; recent results and references for this approach can be
found in [4], [5]. In this paper we focus on the average-case
or probabilistic analysis.

Informally, our main results show that the LRU fault proba-
bility is asymptotically invariant to the underlying dependency
structure of the modulating process, i.e., for large cache sizes,
the LRU fault probability behaves exactly the same as in the
case of independent request sequences [6]. This may appear
surprising given the impact that the statistical correlation has
on the asymptotic performance of queueing models. Further-
more, in Section V, extensive numerical experiments show
an excellent agreement between our analytical results and
simulations. In the same section, we test the predictive power
of our results using real, highly dependent, proxy cache access
traces. The paper is concluded in Section VI with a brief
discussion on the impact of our findings on designing network
caching systems.

II. MODEL DESCRIPTION

Consider N items, out of which k are kept in a fast memory
(cache) and the remaining N−k are stored in a slow memory.
Each time a request for an item is made, the cache is searched
first. If the item is not found there, it is brought in from the
slow memory and replaced with the least recently accessed
item from the cache. Such a replacement policy is commonly
referred to as LRU, as previously stated in the introduction.
The performance quantity of interest for this algorithm is the
LRU fault probability, i.e. the probability that the requested
item is not in the cache. Our objective in this paper is to
asymptotically characterize this probability.

The fault probability of the LRU caching is equivalent to
the tail of the search cost distribution for the MTF searching
algorithm. In order to justify this claim, we note that k
elements in the cache, under the LRU rule, can be arranged
in an increasing order of their last access times. Each time
there is a request for an item that is not in the cache, the
item is brought to the first position of the cache and the
last element of the cache is moved to the slow memory. We
argue that the fault probability stays the same if the remaining
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N − k items in the slow memory are arranged in any specific
order. In particular, they can be arranged in an increasing
order of their last access times. The obtained algorithm is
then the same as the MTF searching algorithm. Additional
arguments that justify the connection between the MTF search
cost distribution and LRU cache fault probability can be found
in [7], [8], [6]. Hence, we proceed with a description of the
MTF algorithm.

More formally, consider a finite list of items L =
{1, . . . , N}, and a sequence of requests that arrive according to
a sequence of Poisson points {τn,−∞ < n < ∞} of unit rate.
At each point τn, we use Rn to denote a document that has
been requested, i.e. an event {Rn = i} represents a request for
document i; we assume that the sequence {Rn} is independent
of the arrival Poisson points {τn}. The dynamics of the MTF
algorithm is defined as follows. Suppose that the system starts
at moment τ0 of 0th request with an initial permutation of the
list Π0. Then, at every time instant τn, n ≥ 0, that an item,
say i, is requested, its position in the list is first determined; if
i is in the kth position we say that the search cost CN

n for this
item is equal to k. Now, the list is updated by moving item i to
the first position of the list and items in positions 1, . . . , k−1,
are moved one position down. Note that, according to the
discussion in the preceding paragraph, P[CN > k] represents
the stationary fault probability for a cache of size k.

In the remaining part of this section we describe the
dependency structure of the request sequence {Rn}. Let
{Tn,−∞ < n < ∞}, T0 ≤ 0 < T1, be a point process with
almost surely (a.s.) strictly increasing points (Tn+1 > Tn)
and {JTn

,−∞ < n < ∞} a finite state space process
taking values in {1, . . . ,M}. Then, we construct a piecewise
constant right-continuous modulating process Jt, as

Jt = JTn
, if Tn ≤ t < Tn+1.

We assume that Jt is stationary and ergodic with stationary
distribution πk = P[Jt = k] and independent of Poisson points
{τn}. Next, for any k,m ≤ M , due to ergodicity

P[Jt = k|J0 = m] → πk as t → ∞. (1)

To avoid trivialities, we assume that mink πk > 0. For each
1 ≤ k ≤ M , let q(k)

i , i ≥ 1 be a probability mass function; in
other words, given that the underlying process Jt is in state
k, the probability of requesting item i is equal to q

(k)
i . Next,

the dynamics of Rn is uniquely determined by the modulating
process Jt according to the following equation

P[Rl = il, 1 ≤ l ≤ n|Jt, t ≤ τn] =
n∏

l=1

q
(Jτl

)
il

, n ≥ 1. (2)

Therefore, the constructed request process {Rn} is station-
ary and ergodic as well. We will use

qi = P[R = i] =
M∑

k=1

πkq
(k)
i

to express the marginal request distribution with the assump-
tion that qi > 0 for all i ≥ 1. The preceding processes are
constructed on a common probability space (Ω, σ(Ω),P).

III. PRELIMINARY RESULTS

In this section we first provide, in Lemma 1, general
conditions under which the search cost process CN

n converges
to stationarity. Then, in the following subsection we charac-
terize the stationary search cost distribution in Theorem 1 and
Proposition 1. The remaining part of the section contains the
results on MTF searching with i.i.d. requests that will be used
in proving our main theorems.

Lemma 1: If the request process Rn is stationary and
ergodic, then for any initial permutation Π0 of the list, the
search cost process CN

n converges in distribution to CN as
n → ∞, where

CN �
N∑

i=1

∞∑

m=1

(1 + Si(m− 1))

× 1[R−m = i,Ri(m− 1), R0 = i],

Si(m) is the number of distinct items, different from i, among
R−m, . . . , R−1 and event Ri(m) � {R−j �= i, 1 ≤ j ≤ m},
m ≥ 1; S(0) ≡ 0, Ri(0) ≡ Ω.

The proof is given in [9]. ♦

A. Representation theorem

At this point, we will derive a representation theorem for
the stationary search cost CN , as defined in Lemma 1. Note
that CN is uniquely defined by the request process {Rn, n ≤
0} and, therefore, it implicitly depends on {Jτ0+t, t ≤ 0}.
However, since τ0 is independent from {Jt}, the process
{Jτ0+t, t ≤ 0} is equal in distribution to {Jt, t ≤ 0}. Thus,
without loss of generality we can set τ0 = 0. Next, let τ i

−1
be the last moment of time t < 0 that item i was requested.
Then, an equivalent continuous time representation of CN is
equal to

CN =
N∑

i=1

(1 + Si(τ i
−1;J))1[R0 = i],

where, similarly as in Lemma 1, Si(t;J) represents the
number of distinct items, different than i, that are requested in
interval [−t, 0). Now, using double conditioning and the last
identity, we arrive at

P[CN > x] = E
∫ ∞

0

N∑

i=1

Pσt

[
Si(t;J) > x− 1, R0 = i, τ i

−1 ∈ (−t,−t+ dt)
]
,

where σt is the σ-algebra σ(Ju,−t ≤ u ≤ 0) and Pσt
[·] =

P[·|σt]. Using the fact that the request process Rn, by (2),
is conditionally independent given the modulating process Jt

and that the variables Si(t;J) and τ i
−1 are uniquely determined

by the values of {Rn, n ≤ −1} and the Poisson arrivals for
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t < 0, we conclude that R0 is conditionally independent from
Si(t;J) and τ i

−1, given σt, and thus

P[CN > x] = E
∫ ∞

0

N∑

i=1

q
(J0)
i

× Pσt

[
Si(t;J) > x− 1, τ i

−1 ∈ (−t,−t+ dt)
]
. (3)

Next, we intend to show that variables Si(t;J) and τ i
−1 are

conditionally independent given σt. To this end, we exploit the
Poisson superposition/decomposition properties of the arrival
process. Let Nj(u;J) be the number of requests for item j
in [−u, 0), 0 < u ≤ t and Bj(t;J) = 1[Nj(t;J) > 0]. Then,
Si(t;J) can be represented as

Si(t;J) =
∑

j �=i,1≤j≤N

Bj(t;J). (4)

Now, we show that, for different j, processes {Nj(u;J), 0 <
u ≤ t} are mutually independent Poisson processes given σt.
In this regard, for any t > u > 0, let Vn be an interval in
[−u, 0) on which the modulating process stays constant, i.e.

Vn = Tn+1 ∧ 0 − Tn ∨ (−u),

where a ∧ b ≡ min(a, b) and a ∨ b ≡ max(a, b). Since, by
(2), the request process is conditionally independent given σt,
and independent from the Poisson arrival points, the Poisson
decomposition theorem (see Section 4.5 of [10]) implies that
the number of requests for item j in an interval Vn, given
σt, is a Poisson variable with expected value q

(JTn∨(−u))
j Vn.

Furthermore, the Poisson variables for different j and differ-
ent intervals Vn are independent given σt. Thus, given σt,
aggregating the independent Poisson requests for item j over
all intervals Vn ⊂ [−u, 0], by Poisson superposition theorem
(see Section 4.4 of [10]), shows that Nj(u;J) are mutually
independent Poisson variables for different j. Furthermore,
by repeating the preceding arguments over an arbitrary set
of disjoint intervals [−um,−um−1), . . . , [−u1, 0), 0 < u1 ≤
· · · ≤ um−1 ≤ um ≤ t, it easily follows that, for different
j, {Nj(u;J), 0 < u ≤ t} are mutually independent Poisson
processes given σt. In particular, for any fixed t, the Bernoulli
variables Bj(t;J) are conditionally independent given σt with

Pσt
[Bj(t;J) = 1] = 1 − e−q̂jt, (5)

where q̂j ≡ q̂j(t) and π̂k ≡ π̂k(t) are defined as

q̂j =
M∑

k=1

q
(k)
j π̂k and π̂k =

1
t

∫ 0

−t

1[Ju = k] du. (6)

The sequence of probabilities π̂k, 1 ≤ k ≤ M , represents the
empirical distribution of Ju over the interval [−t, 0), while
q̂i, i ≥ 1, is the corresponding marginal request distribution.
Therefore, since {τ i

−1 > t} = {Ni(t;J) = 0}, the conditional
independence of variables Nj(t;J), and equation (4) show
that Si(t;J) and τ i

−1 are conditionally independent given σt.

Using this fact and

Pσt
[τ i

−1 ∈ (−t,−t+ dt)]
= Pσt

[Ni(t− dt;J) = 0, Ni(t;J) −Ni(t− dt;J) = 1]

= e−q̂itq
(J−t)
i dt

in (3) we derive the following representation theorem
Theorem 1: The stationary distribution of the search cost

CN satisfies

P[CN > x] =

E
∫ ∞

0

N∑

i=1

q
(J0)
i q

(J−t)
i e−q̂itPσt

[Si(t;J) > x− 1]dt, (7)

with Sj(t;J), Bj(t;J) and q̂j satisfying equations (4), (5) and
(6), respectively.

Remark 1: Throughout this paper we will repeatedly use
the property that variables Sj(t;J), Bj(t;J), j ≥ 1 are
monotonically increasing in t and Bj(t;J), j ≥ 1 are con-
ditionally independent given σt. Furthermore, the continuous
time Poisson arrival structure is critical in establishing the
conditional independence of Bj(t;J). In general, for descrete
arrival sequences, these variables may not be conditionally
independent. Therefore, in order to facilitate the analysis, one
is advised to embed the request sequence into a Poisson
process. In the i.i.d. case, the Poisson embedding technique
was first introduced in [11] for this class of problems.

Remark 2: It is clear that the preceding analysis does not
rely on the fact that the requests arrive at a constant rate. Thus,
our results can be easily extended to the case where the arrival
rate depends on the state of the modulating process Jt, i.e.,
the rate can be set to λk when Jt = k. We do not consider
this extension, since it further complicates the notation without
providing any new insight.

In the proposition that follows we investigate the limiting
search cost distribution when the number of items N → ∞.
Now, assume that the probability mass functions q

(k)
i , 1 ≤

k ≤ M are defined for all i ≥ 1 with max q(k)
i > 0. Using

these probabilities, for a given modulating process Jt and each
1 ≤ N ≤ ∞ we define a sequence of request processes {RN

n },
whose conditional request probabilities are equal to

q
(k)
i,N =

q
(k)
i∑N

i=1 q
(k)
i

, 1 ≤ i ≤ N ;

then, for each finite N , let CN be the corresponding stationary
search cost. In the case of the limiting request process Rn =
R∞

n , similarly as in (4), introduce Si(t;J) =
∑

j �=i Bj(t;J)
to be equal to the number of different items, not equal to i,
that are requested in [−t, 0); Bj(t;J) is the Bernoulli variable
representing the event that item j was requested at least once
in [−t, 0). Now, we prove the limiting representation result
that provides a starting point for our large deviation analysis
in Section IV.
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Proposition 1: The constructed sequence of stationary
search costs CN converges in distribution to C as N → ∞,
where the distribution of C is given by

P[C > x] =

E
∫ ∞

0

∞∑

i=1

q
(J0)
i q

(J−t)
i e−q̂itPσt

[Si(t;J) > x− 1] dt. (8)

The proof is presented in [9]. ♦
Remark 3: For the i.i.d. case, this result was proved in

Proposition 4.4 of [8].

B. Results for i.i.d. requests

In this section we state several results that consider LRU
caching scheme with independent requests that will be used in
proving our main results. The MTF model with i.i.d. requests
follows from our general problem formulation when the modu-
lating process is assumed to be a constant, i.e. Jt ≡ constant.
In this case the Bernoulli variables {Bj(t), j ≥ 1} that indicate
that an item j was requested in [−t, 0) are independent with
success probabilities P[Bi(t) = 1] = 1 − e−qit. Then, using
the notation Si(t) =

∑
j �=i Bj(t), it is easy to see that the

distribution of the limiting stationary search cost C from
Proposition 1 reduces to

P[C > x] =
∫ ∞

0

∞∑

i=1

q2
i e

−qitP[Si(t) > x− 1]dt. (9)

In this paper we are using the following standard notation. For
any two real functions a(t) and b(t) and fixed t0 ∈ R ∪ {∞}
we use a(t) ∼ b(t) as t → t0 to denote limt→t0 a(t)/b(t) =
1. Similarly, we say that a(t) � b(t) as t → t0, if
lim inft→t0 a(t)/b(t) ≥ 1; a(t) � b(t) has a complementary
definition. The following two results, originally proved in
Lemmas 1 and 2 of [6], are restated here for convenience.

Lemma 2: Assume that qi ∼ c/iα as i → ∞, with α > 1
and c > 0. Then, as t → ∞

∞∑

i=1

(qi)2e−qit ∼
c

1
α

α
Γ

(
2 − 1

α

)
t−2+ 1

α ,

where Γ is the Gamma function.
Lemma 3: Let S(t) =

∑∞
i=1 Bi(t) and qi ∼ c/iα as i →

∞, with α > 1 and c > 0. Then, as t → ∞

m(t) � ES(t) ∼ Γ
(
1 − 1

α

)
c

1
α t

1
α .

Throughout the paper H denotes a sufficiently large positive
constant, while h denotes a sufficiently small positive constant.
The values of H and h are generally different in different
places. For example, H/2 = H , H2 = H , H + 1 = H , etc.
The next two lemmas will be repeatedly used in the paper;
their proofs are given in [9].

Lemma 4: Let {Bi, i ≥ 1} be a sequence of independent
Bernoulli random variables, S =

∑∞
i=1 Bi and m = E[S].

Then for any ε > 0, there exists θε > 0, such that

P[|S −m| > mε] ≤ He−θεm.

Lemma 5: If 0 ≤ qi ≤ H/iα, then for any x ≥ 1

P[C > x] ≤ H

xα−1 .

IV. MAIN RESULTS

In this section we state our main results in Proposition 2
and Theorems 2 and 3. We provide the detailed proofs of
Proposition 2 and Theorem 2, while the proof of Theorem 3,
due to space limitations, is presented in the extended version
of this paper [9].

A. Lower bound

In preparation for our main results, we prove the following
lower bound that holds for the entire class of stationary and
ergodic modulating request processes, as defined in Section II.

Proposition 2: Assume that qi ∼ c/iα as i → ∞, α > 1,
c > 0 and

K(α) �
(
1 − 1

α

)[
Γ

(
1 − 1

α

)]α

, (10)

where Γ is the Gamma function. Then, as x → ∞

P[C > x] � K(α)P[R > x].
Proof: For any 1 > ε > 0, let {B−ε

i (t), i ≥ 1} be
a sequence of independent Bernoulli random variables with
P[B−ε

i (t) = 1] = 1 − e−qi(1−ε)t, S−ε(t) �
∑∞

i=1 B
−ε
i (t)

and m−ε(t) � ES−ε(t) =
∑∞

i=1(1 − e−(1−ε)qit). Note that,
using the independent reference model interpretation from the
beginning of Subsection III-B, S−ε(t) represents the number
of distinct items requested in interval (−t(1−ε), 0). Therefore,
we can assume that S−ε(t) is constructed, on a possibly
extended probability space, monotonically nondecreasing in
t. We also define

ν(t) � max
1≤k≤M

|π̂k − πk| (11)

that for all ω ∈ {ν(t) ≤ ε} and 1 ≤ k ≤ M , implies

πk(1 − ε) ≤ π̂k ≡ π̂k(t) ≤ πk(1 + ε),

and, therefore

qi(1 − ε) ≤ q̂i ≡ q̂i(t) ≤ qi(1 + ε), (12)

for all i ≥ 1. This further implies that for every ω ∈ {ν(t) ≤
ε}

Pσt
[Bj(t;J) = 1] = 1 − e−q̂it

≥ 1 − e−(1−ε)qit = P[B−ε
i (t) = 1].

Therefore, for every ω ∈ {ν(t) ≤ ε}, by Strassen’s theorem
on stochastic dominance (e.g., see Theorem 2.3.1 of [12]), the
total number of distinct items S(t;J) ≡ Si(t;J) + Bi(t;J)
requested in [−t, 0) satisfies

Pσt
[S(t;J) > x] ≥ P[S−ε(t) > x]. (13)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Then, representation expression (8) and equations (12-13)
render for any gε > 0

P[C > x]

≥ E
∫ ∞

gεxα

∞∑

i=1

q
(J0)
i q

(J−t)
i e−q̂itPσt

[S(t;J) > x] dt

≥ E
∫ ∞

gεxα

∞∑

i=1

q
(J0)
i q

(J−t)
i e−qi(1+ε)t

× P[S−ε(t) > x]1[ν(t) ≤ ε] dt.

Now, using the last expression and monotonicity of S−ε(t) we
derive

P[C > x] ≥ P[S−ε(gεx
α) > x]

×
∫ ∞

gεxα

∞∑

i=1

e−qi(1+ε)tE
[
q
(J0)
i q

(J−t)
i 1[ν(t) ≤ ε]

]
dt. (14)

The ergodicity of Jt and finiteness of its state space implies
that uniformly in k, l and all t large enough (t ≥ tε)

P[ν(t) ≤ ε, J0 = k, J−t = l] ≥ (1 − ε)πkπl,

which yields for all i ≥ 1 and t large,

E
[
q
(J0)
i q

(J−t)
i 1[ν(t) ≤ ε]

]
≥ (1 − ε)(qi)2. (15)

Next, if we choose

gε =
(1 + 2ε)α

c(1 − ε)[Γ(1 − 1
α )]α

,

then, it is easy to check that, by Lemma 3, Em−ε(gεx
α) ∼

(1 + 2ε)x as x → ∞, from which, for all x large (x ≥ xε), it
follows that Em−ε(gεx

α) ≥ (1+ε)x. Therefore, by Lemma 4,
for all x ≥ xε

P[S−ε(gεx
α) > x] ≥ 1 − ε.

Thus, replacing the last inequality and (15) in (14), we
conclude that for all large x

P[C > x] ≥
(1 − ε)2

(1 + ε)2

∫ ∞

gεxα

∞∑

i=1

(qi(1 + ε))2e−qi(1+ε)t dt. (16)

In order to estimate the last integral, we observe that, by
Lemma 2, for all t ≥ tε

∞∑

i=1

(qi(1 + ε))2e−qi(1+ε)t

≥ (1 − ε)
((1 + ε)c)

1
α

α
Γ

(
2 − 1

α

)
t−2+ 1

α .

Hence, using the last estimate in (16) and computing the
integral result in

P[C > x] ≥
(1 − ε)3

(1 + ε)2
((1 + ε)c)

1
α

α− 1
Γ

(
2 − 1

α

)
(gεx

α)−1+ 1
α ,

that, in conjunction with the definition of gε, for all x ≥ xε

yields

P[C > x] ≥ (1 − ε)4− 1
α

(1 + 2ε)1+α− 1
α

K(α)
c

(α− 1)xα−1 .

The last bound and the asymptotic behavior of the request
distribution P[R > x] ∼ c/((α− 1)xα−1) further imply

lim inf
x→∞

P[C > x]
P[R > x]

≥ (1 − ε)4− 1
α

(1 + 2ε)1+α− 1
α

K(α),

which, by passing ε ↓ 0, concludes the proof. ♦

B. General modulation

In this section we prove our first main result, with the
underlying process Jt being stationary and ergodic, as defined
in Section II, with sufficiently fast rate of convergence of the
empirical distribution.

Theorem 2: If qi ∼ c/iα as i → ∞, α > 1, c > 0 and for
any ε > 0

max
1≤k≤M

P[|π̂k(t) − πk| > ε] = o
(
t

1
α −2

)
as t → ∞, (17)

then
P[C > x] ∼ K(α)P[R > x] as x → ∞,

with K(α) as defined in (10).
The complete proof of the theorem is given in the appendix.

♦
Remark 4: This result and Theorem 3 of the following

subsection show that LRU fault probability is asymptotically
invariant to the modulating process and behaves the same as
in the case of i.i.d. requests with frequencies equal to the
marginal distribution qi. The constant K(α) is monotonically
increasing in α with limα→1 K(α) = 1 and limα→∞ K(α) =
eγ ≈ 1.78, where γ is the Euler constant; this was formally
provided in Theorem 3 of [6].

Remark 5: Condition (17) may exclude the set of processes
whose autocorrelation functions decay slower than t1/α−2, in
particular long-range dependent modulating processes Jt. To
see this, consider the case when the jump points (Tn −Tn−1)
are i.i.d. with the first jump point distributed as

P[T1 > t] =
d

tβ
, 0 < β ≤ 1

for some constant d, and the modulating process observed at
this points JTn

is a finite state Markov chain independent of
{Tn}. Then, Theorem 7 of [13], shows that the autocorrelation
function of Jt satisfies

ρ(t) ∼ P[T1 > t] as t → ∞,

implying that
∫ ∞
1 ρ(t) dt = ∞; hence, Jt is long-range

dependent. On the other hand, since J0 is independent of T1

P[|π̂k(t) − πk| > ε] ≥ P[|π̂k(t) − πk| > ε, T1 > t]

= P[|1[J0 = k] − πk| > ε]P[T1 > t] =
d1

tβ
,
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where d1 = dP[|1[J0 = k] − πk| > ε]. Therefore,

t2− 1
α P[|π̂k − πk| > ε] ≥ d1t

2− 1
α −β → ∞ as t → ∞,

which violates condition (17).

C. Semi-Markov modulation

In order to cover the cases when condition (17) is not
satisfied, e.g. those examples from Remark 5 that exhibit
the long-range dependence, we assume the following detailed
structure of the modulating process. We consider the class
of semi-Markov processes that is uniquely defined by the
following evolution of Jt at jump points Tn

P[JTn
= k, Tn+1 − Tn ≤ t|JTj

, Tj+1, j < n]
= pik(1 − Fk(t)) on {JTn−1 = i},

where Fk(t) = P[Tn+1 − Tn ≤ t|JTn
= k] and pik =

P[JTn+1 = k|JTn
= i] (see Section 5 of Chapter 10 in

[10]). We assume that {pij} is a stationary and ergodic
(irreducible) finite state Markov chain. Recall that, without
loss of generality, we set T0 < 0 ≤ T1. Throughout this section
we assume that E[T2 − T1]1+δ < ∞ and define

νk �P[JT1 = k], µk � E[T2 − T1|JT1 = k]

and µ � E[T2 − T1] =
M∑

k=1

νkµk.

Then, for Jt in stationarity, E(T2 − T1)1+δ < ∞ implies for
all 1 ≤ k ≤ M

P[T1 > x|J0 = k] =

∫ ∞
x

(1 − Fk(u)) du
µk

= o

(
1
xδ

)
as x → ∞. (18)

For Jt as described above, we state our second main result.
Theorem 3: Assume that Jt is semi-Markov with E[T2 −

T1]1+δ < ∞, for some δ > 0. If qi ∼ c/iα as i → ∞, α > 1,
c > 0 then

P[C > x] ∼ K(α)P[R > x] as x → ∞,

with K(α) as defined in (10).
In preparation for the proof we define the moments of

reversed jump points T r
n � −T−n, n ≥ 0; this notation is

convenient since C depends on Jt for negative values of
t ≤ 0. Note that (T r

0 , J0) is equal in distribution to (T1, J0)
and, thus, (18) holds for T r

0 as well.

Heuristic outline of the proof: The proof of the lower
bound follows from Proposition 2. Hence, in order to complete
the proof, we need to prove the upper bound. To this end, we
observe that f̂(t), as defined in (21), is a random variable
measurable with respect to σt. Therefore, using S(t;J) ≥
Si(t;J) and Pσt

[S(t;J) > x] = Eσt
1[S(t;J) > x], the

integral representation in (8) is bounded by

P[C > x] ≤ E
∫ ∞

0
f̂(t)1[S(t;J) > x− 1] dt

= E
∫ T r

0

0
+E

∫ T r

�x1/3�

T r
0

+E
∫ ∞

T r

�x1/3�

� I1(x) + I2(x) + I3(x). (19)

For a given initial state J0 = k, the integral representation in
I1(x) approximately corresponds to the case of i.i.d. requests,
represented in (9), where qi is replaced by q

(k)
i and the

integration is truncated by a random time T r
0 . Now, using the

fact that P[T r
0 > x] → 0 as x → ∞ and Lemma 5, we estimate

I1(x) = o(1/xα−1) as x → ∞. Next, observe that for x large
enough T r

�x1/3� ≈ x1/3µ. Then, by using f̂(t) ≤ 1 and the
definition of S̄(t) from the proof of Theorem 2, we conclude

I2(x) �
∫ x1/3µ

0
P[S̄(t) > x− 1] dt

≤ x1/3µP[S̄(x1/3µ) > x− 1]

= o

(
1

xα−1

)
as x → ∞,

where in the last equality we exploited Lemma 4. Finally, due
to ergodicity of the process Jt, for t large enough q̂i ≈ qi

and, therefore, from the definitions of Bi(t;J) and S(t;J),
we deduce that S(t;J) ≈ S(t), where S(t) corresponds to
the number of distinct requests in [−t, 0) for the case of i.i.d.
requests with distribution qi, as defined in Subsection III-B.
Hence, for x large enough, I3(x) is approximately

I3(x) ≈ E
∫ ∞

x1/3µ

f̂(t)1[S(t;J) > x− 1] dt

≈
∫ ∞

x1/3µ

∞∑

i=1

e−qitE[q(J0)
i q

(J−t)
i ]P[S(t) > x− 1] dt

�
∫ ∞

0

∞∑

i=1

e−qit(qi)2P[Si(t) > x− 2] dt,

since, by (1), E[q(J0)
i q

(J−t)
i ] ≈ (qi)2 and Si(t) ≥ S(t) − 1.

The last expression is equal to the case of i.i.d. requests stated
in equation (9) and can be estimated using either Theorem 3
of [6] or our Theorem 2. ♦

A complete rigorous proof of this theorem is presented in
[9], which, unfortunately, is much more involved and technical.

V. EXPERIMENTAL RESULTS

In this section, we compare our theoretical and simulation
results. In the subsection that follows we generate a dependent
request process for the cache that uses LRU replacement
policy and observe an agreement between its performance and
theoretically obtained formula. In Subsection V-B, we perform
a trace-driven simulation that further validates our theoretical
estimate.
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A. Simulation

In this subsection, we provide two simulation experiments
that illustrate our analytical results. We consider the case
where the underlying process Jt is a two-state {0, 1} semi-
Markov process with parameters implying strong correlation.
Since the asymptotic results were obtained first by passing
the list size N to infinity and then investigating the tail of
the limiting search cost distribution, it can be expected that
the asymptotic expression gives a reasonable approximation
for P[CN > k] when both N and k are large. However, it is
surprising how accurately the approximation works even for
relatively small values of N and almost all values of k < N .

The initial position of items in the list is chosen uniformly at
random. In each experiment, before we conduct measurements,
we allow 107 units of warm-up time for the system to reach
its steady state. In order to make sure that the simulation
results are accurate, we run another simulation, with the initial
position of items according to the reversed order of their
popularity (i.e. the first item is the least popular, etc.). In all
these experiments, the measured results are almost identical
for these different initial conditions. Therefore, one can safely
assume that the experiments reached the steady state. The
actual measurement time is set to be 107 units long. In all of
the experiments, the measurements are conducted for cache
sizes k = 50j, 1 ≤ j ≤ 16 and are presented with star
“*” symbols on Figures 1 and 2, while our approximation,
K(α)P[R > n], with K(α) defined in (10), is represented
with the solid line on the same figures.

The total number of documents in both experiments is set
to N = 1000. The Markovian transitions of the two-state
modulating process are p01 = p10 = 1. We use τ0 and τ1

to denote the variables equal in distribution to the sojourn
times corresponding to states 0 and 1, respectively; random
variables τ0 and τ1 are discrete in our experiments.
Example 1 In this experiment we choose discrete random
variables τ0 and τ1 to be distributed as P[τ1 = 10i] = P[τ0 =
10i] = a(1/(10i)3 − 1/(10(i+ 1))3), where i ∈ {1, . . . , 104}
and a = 103(1 − 1/(104 + 1)3)−1. In state 0, only odd
items are requested according to q

(0)
2i+1 = H0

N/(2i + 1)1.4,

q
(0)
2i = 0, where 1/H0

N =
∑499

i=0 1/(2i + 1)1.4, while in
state 1, the probabilities are concentrated exclusively on even
documents, q(1)

2i = H1
N/(2i)

1.4, q(1)
2i+1 = 0, where 1/H1

N =∑N/2
i=1 1/(2i)1.4. The experimental results are presented in Fig-

ure 1. This model corresponds to the case where two different
classes of clients request documents from disjoint sets. Even
in this extreme scenario, our approximation K(α)P[R > k]
matches very precisely the simulated results.
Example 2 Here, we select variables τ0 and τ1 to be
distributed as P[τ1 = 10i] = P[τ0 = 10i] = b(1/(10i)0.8 −
1/(10(i+ 1))0.8), where i ∈ {1, . . . , 104} and b = 100.8(1 −
1/(104+1)0.8)−1. In state 0, items are requested according to
distribution q

(0)
i = H0

N/i
1.4, where 1/H0

N =
∑N

i=1 1/i1.4,
and in state 1, the popularity of documents is given by
q
(1)
i = H1

N/i
4, where 1/H1

N =
∑N

i=1 1/i4. Our intention
in this experiment is to show that only the heavier tailed
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Fig. 1. Illustration for Example 1

request process impacts the LRU performance. The simulation
results in this case are presented in Figure 2. As in the
preceding experiment, we obtain accurate agreement between
the approximation and simulation.
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Fig. 2. Illustration for Example 2

B. Trace-driven simulation

Encouraged by several recent experimental studies, showing
that Web proxy traces exhibit Zipf’s law characteristics (e.g.
see [14], [15]), we believe that our theoretical results could
be applicable in estimating the LRU fault probability in real
proxy caches. Thus, we investigate the performance of the
LRU algorithm using request sequences that are obtained from
real traces.

The experimentally measured traces are obtained from the
National Laboratory for Applied Network Research. We ana-
lyze two scenarios: Scenario 1 - a one-day, 173680 long, trace
of HTTP requests to a proxy cache in Palo Alto, California
and Scenario 2 - a one-day, 324231 long, trace to two proxy
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caches in Boulder, Colorado; both traces are measured on June
21, 2002.

For both Scenarios we first compute the empirical autocor-
relation function and conclude that the request sequences are
strongly correlated, as shown in Figures 3 and 4.

Then, we measure the empirical request distribution. In
these measurements we exclude the statistically insignificant
items that were requested only once. We estimate the slope α
of the tail of the empirical distribution using MATLAB’s least-
square linear fitting tool. Similarly as in other empirical studies
(e.g. see [15]), in estimation of α we exclude the most popular
items; in particular, we disregard the top 100 items. For the
traces from Scenarios 1 and 2, we obtain α = 1.0469 and
α = 1.0454, respectively. The estimated tail of the empirical
distribution, P[R > x], is presented with ’–’ symbols on
Figures 5 and 6. Finally, we multiply the tail of the empirical
distribution by K(α) for estimated α, i.e. log10 K(1.0469) =
0.0522 and log10 K(1.0454) = 0.0512. Although this is a
relatively rough analysis, it gives a surprisingly good match
between our theoretical result K(α)P[R > x] and a trace-
driven simulation P[C > x].
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Fig. 3. Empirical autocovariance function of the request process from
Scenario 1.

VI. CONCLUDING REMARKS

In this paper we investigated the asymptotic behavior of the
LRU cache fault probability, or equivalently the MTF search
cost distribution, for a class of semi-Markov modulated request
processes. This class of processes provides both the analytical
tractability and flexibility of modeling a wide range of statisti-
cal correlation, including the empirically measured long-range
dependence. When the marginal probability mass function of
requests follows Zipf’s law, our main results show that the
LRU fault probability is asymptotically proportional to the tail
of the request distribution. These results assume the same form
as the recently developed asymptotics for the i.i.d. requests,
implying that the LRU cache fault probability is invariant
to the underlying, possibly strong, dependency structure in
the document request sequence. This surprising insensitivity
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Fig. 4. Empirical autocovariance function of the request process from
Scenario 2.
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Fig. 5. Trace-driven simulation results corresponding to Scenario 1

suggests that one may not need to model accurately, if at all,
the statistical correlation in the request sequence. Hence, this
may simplify the modeling process of Web access patterns
and further improve the speed of simulating network caching
systems.

Our results are further validated using both model-driven
and trace-driven simulations from real proxy servers. The
excellent agreement between the analytical and experimental
results implies the potential use of our results in predicting
the performance and properly engineering Web caches. The
explicite nature, high degree of accuracy and low computa-
tional complexity of our result contrast the lengthy procedure
of trace-driven simulation experiments.

APPENDIX

Proof of Theorem 2: In view of Theorem 1, it remains to
prove an upper bound. Using S(t;J) ≡ Si(t;J)+Bi(t;J) ≥
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Fig. 6. Trace-driven simulation results corresponding to Scenario 2

Si(t;J) and the representation in (8), for any h > 0

P[C > x] ≤ E
∫ hxα

0
f̂(t)Pσt

[S(t;J) > x− 1] dt

+ E
∫ ∞

hxα

f̂(t)Pσt
[S(t;J) > x− 1] dt

� I1(x) + I2(x), (20)

where

f̂(t) �
∞∑

i=1

q
(J0)
i q

(J−t)
i e−q̂it ≤

∞∑

i=1

q
(J0)
i = 1. (21)

Furthermore, the empirical probabilities are uniformly
bounded by q̂i =

∑M
k=1 π̂kq

(k)
i ≤

∑M
k=1 q

(k)
i ≤ q̄i �

qi/mink πk < ∞, since mink πk > 0. Then, we define a se-
quence of independent Bernoulli random variables {B̄i(t), i ≥
1}, with P[B̄i(t) = 1] = 1 − e−q̄it and S̄(t) =

∑∞
i=1 B̄i(t);

similarly as in the proof of the lower bound, S̄(t) can
be constructed nondecreasing in t. Note that for every ω,
Pσt

[Bi(t;J) = 1] ≤ P[B̄i(t) = 1] and, therefore, by stochastic
dominance (see Strassen’s Theorem 2.3.1 in [12]), we obtain
Pσt

[S(t;J) > x−1] ≤ P[S̄(t) > x−1] uniformly in ω. Using
this observation and the monotonicity of S̄(t), we arrive at

I1(x) ≤
∫ hxα

0
P[S̄(t) > x− 1] dt

≤ HxαP[S̄(hxα) > x− 1]. (22)

Now, due to Lemma 3 and ES̄(t) ≤ Ht
1
α , we can always find

h small enough such that for any ε > 0 and all x large enough

ES̄(hxα) < (1 − ε)(x− 1). (23)

Then, (22), (23), Lemma 4 and Lemma 3 imply, as x → ∞

I1(x) ≤ Hxαe−θεx = o

(
1

xα−1

)
. (24)

Then, by using ν(t) as defined in (11), we obtain

I2(x) ≤ E
∫ ∞

hxα

f̂(t)Pσt
[S(t;J) > x− 1] dt

= E
∫ ∞

hxα

f̂(t)Pσt
[S(t;J) > x− 1]1[ν(t) ≤ ε] dt

+ E
∫ ∞

hxα

f̂(t)Pσt
[S(t;J) > x− 1]1[ν(t) > ε] dt

= I21(x) + I22(x). (25)

Note that, by assumption of the theorem, for any δ > 0 and
t large enough, P[ν(t) > ε] ≤ δt1/α−2 and, therefore, using
(21), for all x large enough

I22(x) ≤
∫ ∞

hxα

δ

t2− 1
α

dt ≤ δ

(1 − 1
α )h1− 1

αxα−1
.

Thus, since δ can be arbitrarily small

I22(x) = o

(
1

xα−1

)
as x → ∞. (26)

Next, we provide the estimate for I21(x). Similarly as in the
proof of the lower bound, we define Sε(t) �

∑∞
i=1 B

ε
i (t),

where {Bε
i (t), i ≥ 1} is a sequence of independent Bernoulli

random variables with P[Bε
i (t) = 1] = 1 − e−qi(1+ε)t. As

before, Sε(t) can be constructed nondecreasing in t. Therefore,
by stochastic dominance, for every ω ∈ {ν(t) ≤ ε},

Pσt
[S(t;J) > x− 1] ≤ P[Sε(t) > x− 1].

Furthermore, since for all ω in {ν(t) ≤ ε} the inequality (12)
holds, using (21), we obtain that for any constant gε > 0

I21(x) ≤ E
∫ ∞

0

∞∑

i=1

q
(J0)
i q

(J−t)
i e−q̂it

× P[Sε(t) > x− 1]1[ν(t) ≤ ε] dt

≤ E
∫ gεxα

0
P[Sε(t) > x− 1] dt

+
∫ ∞

gεxα

∞∑

i=1

E
[
q
(J0)
i q

(J−t)
i 1[ν(t) ≤ ε]

]
e−(1−ε)qit dt. (27)

If we select

gε =
(1 − 2ε)α

c(1 + ε)[Γ(1 − 1
α )]α

,

then, due to Lemma 3, ESε(gεx
α) ∼ (1−2ε)x, which implies

that for all x large enough (x ≥ xε),

ESε(gεx
α) < (1 − ε)(x− 1).

Hence, since Sε(t) is nondecreasing, by applying Lemmas 4
and 3 we conclude that for x large (x ≥ xε)

∫ gεxα

0
P[Sε(t) > x− 1] dt

≤ gεx
αP[Sε(gεx

α) > x− 1]

≤ Hxαe−θεx = o

(
1

xα−1

)
. (28)
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At this point, it remains to derive an estimate of the second
integral in (27). Similarly as in the proof of the lower bound,
since Jt is ergodic and has finitely many states, for all i ≥ 1
and t large (t ≥ tε)

E[q(J0)
i q

(J−t)
i 1[ν(t) ≤ ε]] ≤ (1 + ε)(qi)2.

This implies that for x large enough (x ≥ xε), the second term
in (27) is bounded by

1 + ε

(1 − ε)2

∫ ∞

gεxα

∞∑

i=1

((1 − ε)qi)2e−(1−ε)qit dt.

Bounding the preceding expression is analogous to evaluating
the integral in (16), i.e., we use Lemma 2 to upper bound
the sum under the integral for large x and then compute the
integral for the chosen gε. Therefore, combining the bound
obtained in this way with (28), (27), (26), (25),(24) and (20),
we derive

lim sup
x→∞

P[C > x]xα−1 ≤ (1 + ε)3− 1
α

(1 − 2ε)1+α− 1
α

K(α)
c

(α− 1)
,

which, by passing ε ↓ 0, finishes the proof.
♦
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