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Abstract— With the rapid growth of Internet, parameter design
and analysis for large-scale networks has become a topic of
active interest. Since simulation of such large scale systems is not
easy, deterministic fluid models have been widely used for both
qualitative understanding of the behavior, as well as parameter
design for such networks.

In this paper, we first study a deterministic fluid model for
Internet congestion control when there are multiple TCP-like
flows present. We provide conditions under which such a system
is globally asymptotically stable in the presence of feedback delay.

We then study the corresponding system with the addition of
web mice and other non-responsive flows modeled as stochastic
disturbances. We show that, when there are a large number of
flows, choosing parameters based on the global stability criterion
for the deterministic system (with the noise replaced by its mean
value) ensures global stability for the stochastic system as well.

Numerical examples and simulation results with some popular
active queue management mechanisms validate the parameter
choices from analysis. The results indicate that a system with mul-
tiple TCP-like flows is globally stable as long as the bandwidth-
delay product per flow is not very small.

I. INTRODUCTION

The design philosophy of the current Internet is based on
the end-to-end paradigm, wherein most of the intelligence is
at the end hosts. The network’s task is to simply notify the
end systems whenever it detects congestion in the network.
Congestion detection is based on the aggregate flow behavior
at the router, and the end-hosts are notified by simply dropping
or by marking packets using the explicit congestion notifica-
tion (ECN) bit [4]. The end-host reacts to this information
by decreasing its transmission rate, thus adapting to network
congestion. In this manner, end-to-end control is maintained
using only minimal network resources.

This end-to-end design philosophy has motivated a lot of
work [7], [10] using a utility function maximization frame-
work, leading to a class of end-to-end rate control mechanisms
for Internet congestion control. Based on the choice of the
utility function, various types of fairness amongst users can
be achieved. Further, it has been shown in [10] that the
congestion-avoidance phase of TCP flow-control can be con-
sidered a special case of the above framework for appropriately
chosen utility functions. Such deterministic rate based models
of TCP have led to better understanding of TCP and points the

way to improve existing congestion control mechanism used
in the Internet.

Deterministic rate update models which explicitly account
for round-trip delay have been the focus of much study in the
recent past. An important question that has been addressed
deals with stability of network controllers based on these
deterministic rate adaptation mechanisms. In [8], a stability
condition for single proportionally fair congestion controller
with delayed feedback was provided. Since then, this result
has been extended to networks in [6], [12], [17], and in [13],
similar results were shown for a different class of controllers.
We also refer the reader to [5], [11] for other related analysis of
congestion controllers with delay. All of the above work dealt
with local stability of the linearized controllers in the presence
of round-trip delay. More recently, sufficient conditions were
derived in [3] for global exponential stability for the case of
a single flow accessing a link.

However, one may ask why we should consider determinis-
tic models for Internet congestion control. In realistic systems,
there are two sources of randomness. First, there can be flows
that do not react to congestion control. For instance, these
could be in the form of web-mice, which are short flows which
terminate before they can react to congestion control. Such
uncontrolled flows can be modeled as stochastic disturbances
at the router.

Second, the marking decisions at the router could be proba-
bilistic. To see this, consider a particular time-instance where
the router decides to mark 20% of the packets. Due to the
constraint that the router can toggle the state of only a single
bit in the packet header, a possible strategy is to mark each
packet independently, and with probability 0.2.

In this paper we concern ourselves with randomness gener-
ated due to uncontrolled short flows, in a many-flows regime.
We refer the reader to [2] for an analysis of TCP behavior in
the context of probabilistic marking at the router.

In [16], the authors justified using fluid deterministic model
for studying proportionally fair congestion controllers. They
showed that, in the many-flows regime, the trajectory of the
average rate at the router converged to that of the deterministic
model with the noise replaced by its mean.
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A. Main Contribution

In this paper, we consider a system consisting of a single
link accessed by a large number of TCP-like flows, each with
identical feedback delay, but with (possibly) different initial
conditions and also accessed by a large number of uncontrolled
flows. By a TCP-like mechanism, we refer to the rate control
model of the congestion avoidance phase of TCP proposed in
[10], which is also closely related to the model in [5]. We are
interested in relating this stochastic model to a deterministic
model where the noise process is replaced by its mean.

We show that, in the presence of uncontrolled flows modeled
as stochastic noise, the deterministic fluid model with noise
replaced by its mean value is accurate in the following sense:
The average rate of the flows behaves like a single flow
asymptotically in the number of flows and time. Thus, unlike in
the proportionally-fair case studied in [16] where convergence
was shown for each time (as opposed to asymptotically in
time), here, the trajectory of the stochastic system does not
converge to that of the deterministic system in the many-flows
regime.

However, if the number of flows is large enough, the global
stability criterion for a single flow (with minor modifications)
is also a global stability condition for the stochastic system
with multiple flows. Thus, the implication is that parameter
design can be carried out using deterministic analysis based
on the single flow model.

Further, for some standard marking functions used in lit-
erature, we show that TCP-like sources with standard TCP
parameters satisfy the stability criterion when the bandwidth-
delay product per source is sufficiently large.

B. Organization of this Paper

We begin with a description of the model in Section II.
We consider multiple TCP-like flows along with uncontrolled
flows in the model. In Section III, we study the system by
simply considering the mean of the uncontrolled flow rate
through the link. We present conditions on the congestion
control gain for the global stability of such a system. The next
natural question is whether such a choice of gain parameter is
the right one when the disturbance process due to uncontrolled
flows is not a constant but a time-varying (possibly stochastic)
process. We answer this question in Section IV. We show that
the choice of gain parameter with uncontrolled flows modeled
as a constant is appropriate when the number of flows is large.
In Section V we study the conditions derived in the context
of current TCP parameters and give examples to illustrate
the results. We provide some simulation results in Section VI
before concluding in Section VII.

II. SYSTEM MODEL

Our model is that of a single bottleneck link being accessed
by many TCP-like flows. The delay in the forward and the
reverse path is d/2 so that the round-trip delay of each
source is d. Such a model can be applicable in a scenario
when multiple users behind an ISP access a server through a
common bottleneck link as in Figure 1. The number of users

d/2

d/2

SOURCES

LINK

Fig. 1. The system model

in the system is N , which is also the scaling parameter. We
consider a sequence of such systems indexed by N . In the
N -th system, there are N sources accessing the link and the
capacity of the link is scaled as Nc so that capacity per source
is maintained at c. Further, in the N -th system there are N
uncontrolled flows accessing the link. Before we describe the
rate update mechanism of the sources we first comment on the
marking function of the link.

The link has a marking function p(λ,C) which denotes the
fraction of packets marked when the total arrival rate into
the link is λ and the link capacity is C (where C = Nc).
The marking function is assumed to satisfy the following
conditions.

Assumption 1: (Marking Function)
1) The function p(λ,C) is increasing in λ and is Lipschitz

continuous in λ.
2) We further assume that p(λ,C) = p(λ/C, 1). �
The first assumption is obvious since p(λ,C) is the fraction

of packets marked. The second assumption says that the
fraction of packets marked simply depends on the ratio of
the total arrival rate and the link capacity. To understand this
property in the context of our scaling, suppose in the N -th
system, the rate of the i-th controlled flow is xi and the rate
of the i-th uncontrolled flow is ei for 1 ≤ i ≤ N . Then the
marking function for the N -th system is,

p(λ,Nc) = p

(∑
i(xi + ei)
Nc

, 1
)

= p

(
x + e

c
, 1

)
,

where x and e are the average rate of the controlled and the
uncontrolled flows respectively. Thus, under this assumption,
the marking function in the N -th system simply depends on
the average flow rate through the link for some fixed capacity
per flow. Two examples of marking functions which have this
property are:

1. p(λ,C) =
(

λ

C

)B

2. p(λ,C) =
aλ

C − (1 − a)λ
.

The first marking function has the interpretation of the queue
size being B or larger in an M/M/1 queue with arrival
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rate x. The second marking function can be used a rate
based model for REM for a suitable choice of a [8]. We
remark that any reasonable marking function should satisfy
the second assumption. This ensures the scalability of the
marking function in the number of flows. Thus, from now
on, we will interpret the arguments x and c of the marking
function p(x, c), as the average arrival rate and the capacity
per flow respectively. Further, in the systems we consider from
now on, the capacity per flow c will remain constant, and the
only time-varying parameter is the average rate x. Thus, to
avoid unnecessary notation, we will hide the dependence of
p(·, c) on c, and let

p(x) ≡ p(x, c) = p(x/c, 1)

In addition to the controlled flows, we assume that the
system is accessed by uncontrolled flows. These are flows
which do not react to congestion signals and are modeled as
stochastic processes with mean a. In the N -th system, there
are N uncontrolled flows {e(N)

i (t) + a}N
i=i accessing the

link. We model {e(N)
i (t)}N

i=1 as i.i.d and bounded stochastic
processes with mean 0. We assume that e(N)

i (t)’s satisfy

lim
N→∞

sup
t∈[0,NT )

1
N

N∑

i=1

e
(N)
i (t) = 0 a.s. .

We now describe our model for the controlled flows. We
consider a fluid model for the rate update of the controlled
flows. Denote by y

(N)
i (t) the flow rate of the i-th flow at time

t when there are N such flows present in the system. Further,
denote by x(N)(t) the average flow rate of the controlled flows
through the link at time t and so

x(N)(t) =
1
N

N∑

i=1

y
(N)
i (t) .

Similarly, denote by (e(N)(t) + a) the mean flow rate of the
N uncontrolled flows through the link. The fraction of packets
marked by the link is p(x(N)+a+e(N)(t)), where the average
flow rate at the link consists of the average flow rate of the
controlled flows x(N)(t) and the average flow rate due to N
uncontrolled flows a + e(N)(t). The rate update of the i-th
flow is governed by,

ẏ
(N)
i (t) = κ[w−

y
(N)
i (t)y(N)

i (t − d)p(x(N)(t − d) + a + e(N)(t − d/2))] ,
i = 1, 2, . . . , N , (1)

where κ > 0 is a constant and determines stability in the
presence of delay. Note that, the feedback delay is constant.
This is reasonable if we employ early congestion notification
schemes using virtual queues which lead to negligible queue-
ing delays at the router. We comment that choosing κ = 2/3
and κw = 1/d2 results in the rate control model of TCP
[10]. It can be shown that, in the absence of delay and by
simply taking the mean of the noise process contributed by the

uncontrolled flows, the above system converges to the unique
equilibrium point given by the solution of

y∗
i

√
p(y∗

i + a) =
√
w .

In the rest of the paper, we find conditions under which
the system converges to the equilibrium point in the presence
of feedback delay, with and without stochastic disturbance
introduced by the uncontrolled flows. We also discuss the
implication of our results in the context of TCP.

III. MULTIPLE TCP-LIKE FLOWS WITH IDENTICAL

ROUND-TRIP DELAYS AND CONSTANT NOISE

In this section we study the system when the noise process
due to the uncontrolled flows is simply modeled by a constant
process of rate a. For the purposes of this section we keep
N , the number of flows, fixed and so we drop the superscript
on y

(N)
i (t) and x(N)(t) and simply denote them by yi(t) and

x(t) respectively.
The rate update of the i-th flow is,

ẏi(t) = κ[w − yi(t)yi(t − d)p(x(t − d) + a)] ,
i = 1, 2, . . . , N ,

and the trajectory of the average flow rate through the link
x(t) can be described by

ẋ(t) = κ[w −

[
1
N

N∑

1

yi(t)yi(t − d)

]
p(x(t − d) + a)] .

Our goal is to find suitable conditions on κ for the above
system to converge to its unique equilibrium point.

We first provide conditions under which the average flow
rate x(t) is bounded. The following result which is derived
in [15] provides such a condition.

Lemma 3.1: [15] Suppose κd < β. Fix δ > 0, where δ can
be arbitrarily small. Then there exists t0(δ) < ∞ such that for
all t > t0

x(t) ≤ Mβ ,

where Mβ is the smallest positive number satisfying

M2
βp(Mβ + a − 2w)

(
1 − 2wβ

Mβ

)
≥ w + δ

�
For the rest of this paper, we will assume that δ in the
preceding theorem is a very small number, fixed at, say,
δ = 0.0001. Without loss of generality, we study the system
evolution from time t0 onwards. Thus (by shifting the time-
axis), throughout the paper we assume that x(t) ≤ Mβ for
all t ≥ 0. Suppose the initial value of the average rate lies in
some compact set [0,K] in which the equilibrium point of the
system is included. Then, clearly, there exists a β for which
Mβ ≥ K. We now assume that initial condition for each flow
satisfies

Assumption 2: (Initial Condition) The initial trajectory for
any user i ∈ {1, 2 . . . N} satisfies

Mβ(1 − ε) ≤ yi(s) < Mβ(1 + ε), ∀ s ∈ [−d, 0]
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for some ε < 1. �
Essentially, this says that the initial values of the individual
user rates are not too far away from each other. Since the
value of Mβ is larger than the equilibrium rate, not allowing
the initial user rates to be more than twice the value of Mβ

is a reasonable assumption.
We now introduce the following notation for every pair of

flows.

rij(t) = yi(t) − yj(t) , (i, j) ∈ {1, 2, . . . , N}2 (2)

Our goal is to show that rij(t) converges to zero for ap-
propriately chosen κ. This will enable us to show that the
system indeed converges to the unique equilibrium point under
suitable conditions.

First, note that the dynamics of rij(t) can be described by
the following.

ṙij(t)
= −κp(x(t − d) + a)[yi(t)yi(t − d) − yj(t)yj(t − d)]
= −κp(x(t − d) + a)[yi(t)yi(t − d) − yi(t)yj(t − d)

+yi(t)yj(t − d) − yj(t)yj(t − d)]
= −κp(x(t − d) + a)[yi(t)rij(t − d) +

yj(t − d)rij(t)]

Before we state our result on the convergence of rij(t)
we restate the following result from [3] on general time-
varying linear delay differential equations. This will be useful
in proving the convergence of rij(t).

Lemma 3.2: [3] Consider the delay differential equation
given by

ẋ(t) = a(t)x(t) + b(t)x(t − d)

with some initial condition, x(t) = φ(t), t ∈ [−d, 0]. If there
exists q > 1 such that a(t) and b(t) satisfy

d
√
q max

t−d≤s≤t
(|a(s)| + |b(s)|) < −sgn(b(t)) − a(t)

|b(t)|
,

for all t ≤ t1, then

V (t) < qV (0)e−αt , ∀ t ≤ t1,

where V (x(t)) = supt−2d≤s≤t x
2(s) and α > 0, q > 1 are

constants. �
We are now in a position to state and prove the following
result on the convergence of rij(t).

Theorem 3.1: If κd satisfies

κd < min
[
β,

1
6Mβp(Mβ + a)

]
,

then
lim

t→∞
sup

(i,j)∈{1,2,...,N}2
rij(t) = 0 .

Remark: Before we go into the details of the proof we will
illustrate the key idea in the proof informally. First, we can
show that as long as all the flow rates {yi(t)} are less than 3M,
the difference between their rates {rij(t)} will decrease. This
will follow from the single flow global stability condition from

r (t)ij

y (t)
j

y (t)i

M

M

M3

2

Time 

Fig. 2. Main proof idea in Theorem 3.1

Lemma 3.2. Second, recall from Lemma 3.1 that the average
rate is upper-bounded as well, i.e., x(t) < M (see Figure 2).

Suppose at some time, say t1, it happens that for a particular
flow l, yl(t1) = 3M, and up to time t1, we have all the
individual flow rates strictly less than 3M. As the average
rate at this time x(t1) < M, there will be some flow k whose
rate yk(t1) < M.

On the other hand, by assumption, the initial value of
{rij(.)} is less than 2M . From the decreasing property of
{rij(.)}, it follows that rlk(t1) < 2M. This, along with the
fact that yk(t1) < M implies that yl(t1) < 3M leading to a
contradiction. Therefore, we must have that all the flow rates
are strictly less than 3M for all time, and the required result
will follow. We now formally prove this result.

Proof of Theorem 3.1: Since β is assumed to be fixed
throughout the proof, we drop the subscript in Mβ , and simply
use M in this proof. Define

t1 = inf
t>0

{t : max
i∈{1,2,...,N}

[yi(t)] ≥ 3M} , (3)

where we include the possibility of t1 being infinity (which
would mean maxi[yi(t)] < 3M ] for all t > 0). Further, define
the function Vij(t) as

Vij(t) = sup
t−2d≤s≤t

r2
ij(s) .

We divide the proof into two steps. In the first step we show
that under the condition on κd given by the statement of the
theorem, Vij(t) < qVij(0) exp(−αt) for all t < t1, for every
(i, j) and for some constants q and α. In the second step
we show that t1 = ∞ and use this to conclude that rij(t)
converges to zero.

Step 1: Consider the delay-differential equation,

ṙij(t) = −κp(x(t − d) + a)[yi(t)rij(t − d) + yj(t − d)rij(t)]

for every pair (i, j). Suppose that

κd max
t−2d≤s≤t

[p(x(t − d) + a)(yi(t) + yj(t − d))] <

1 +
yj(t − d)
yi(t)

.
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Since we are considering t such that t < t1, we have 0 <
yi(t) < 3M for all i ∈ {1, 2, . . . , N}. Further the average
rate x(t) < M by our assumption. Thus a sufficient condition
for the preceding inequality to be satisfied is

κd[6Mp(M + a)] < 1 .

Since we also have κd < β for M to be an eventual upper
bound on x(t), thus if κd satisfies the condition given by the
statement of the theorem, and q is chosen to satisfy

1 <
√
q <

1
6Mp(M + a)κd

,

then by Lemma 3.2,

Vij(t) < qVij(0) exp(−αt) ∀t < t1 ,

where α is a function of q. In this case choose q such that,

1 <
√
q < min

(
1
ε
,

1
6Mp(M + a)κd

)
,

where ε is such that the initial rates of the individual flows
lie in [M(1 − ε),M(1 + ε)]. We will consider q in the above
range for the rest of the proof.

Step 2: We now show that t1 as defined by (3) is not
finite. We will show it by contradiction. Suppose t1 < ∞.
Since the trajectories of yi(t)’s are continuous in t, we have
maxi[yi(t1)] = 3M . Suppose

k = arg max
i∈{1,2,...,N}

yi(t1) .

If κd satisfies the conditions given in the statement of
the theorem, we further have from Step 1 that, Vkj(t) <
qVkj(0) exp(−αt) for all t < t1. Since, Vkj(0) < (2Mε)2

for all j from our assumption on the initial condition, we
have Vkj(t) < q(2Mε)2 exp(−αt) for all t < t1. From the
continuity of Vkj(t) in t,

Vkj(t1) < q(2Mε)2

which in turn implies

sup
t1−2d≤s≤t1

|rkj(t1)| < 2Mε
√
q

which further implies

|yk(t1) − yj(t1)| < 2Mε
√
q ∀j .

We also have
1
N

N∑

i=1

yi(t1) < M

since x(t) < M for all t > 0. If the average of N quantities
is less than M , there must be at least one of them less than
M . Let that element be indexed by l so that yl(t1) < M . Note
that l = k since yk(t1) = 3M . We thus have,

yk(t1) ≤ |yk(t1) − yl(t1)| + yl(t1) < 2M
√
qε + M < 3M ,

(4)
where we have used the fact that

√
qε < 1. But, yk(t1) = 3M .

Thus we have arrived at a contradiction and so for all t > 0,

yi(t) < 3M for all i ∈ {1, 2, . . . , N}. This along with Step 1
implies that

Vij(t) < qVij(0) exp(−αt) ∀ t > 0 .

This proves the convergence of rij(t). To show that the
convergence is uniform in all pairs (i, j) we simply note that
the exponent in the exponential convergence only depends on
the choice of κ and not on any specific flow. �

Thus, we have shown that the trajectories of all the flows
get coupled if their round-trip delays are the same. Using this
we can now study the stability with multiple flows by using
stability results from the single flow case. First note that the
average flow rate through the link x(t) can be written as

x(t) =
1
N

N∑

i=1

yi(t)

= yk(t) +
1
N

N∑

i=1

[yi(t) − yk(t)]

= yk(t) + δ(t) ,

where yk(t) is any particular flow and δ(t) is a term which
goes to zero exponentially. Next we rewrite the update equa-
tion for flow k as follows.

ẏk

= κ[w − yk(t)yk(t − d)p(yk(t − d) + a + δ(t − d))]
= κ[w − yk(t)yk(t − d)p(yk(t − d) + a)] +

κ[yk(t)yk(t − d)p(yk(t − d) + a) −
yk(t)yk(t − d)p(yk(t − d) + a + δ(t − d))]

= κ[w − yk(t)yk(t − d)p(yk(t − d) + a)] −
yk(t)yk(t − d)p′(βk(t) + a)δ(t − d)

⇒ ẏk = κ[w−
yk(t)yk(t − d)p(yk(t − d) + a)] + η(t) (5)

The second last step follows from the mean-value theorem and
βk(t) = yk(t−d)+fδ(t−d)) for some f such that 0 < f < 1.
Note that since |δ(t)| → 0 exponentially and all the other terms
are bounded, |η(t)| → 0 exponentially. Thus we can view the
trajectory of the k-th flow as a single flow accessing the link
except for an additional term which is negligible for large t.
It is thus natural to believe that the stability criterion for

u̇ = κ[w − u(t)u(t − d)p(u(t − d) + a)] (6)

is sufficient to guarantee the stability of the system with
multiple flows. We show this in the next theorem, which is
a simple extension of the global stability result with single
flow in [3].

Theorem 3.2: Suppose

κd < min
[
β, R,

1
6Mβp(Mβ + a)

]
,

where R > 0 is such that κd < R is a sufficient condition
for (6) to be globally stable. Then the system described by (5)
is globally asymptotically stable.
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Before we prove the above result we state a useful result
on functional differential equation [9].

Lemma 3.3 (page 79, [9]): Consider the retarded func-
tional differential equation

ẋ(t) = f(xt), x0 = φ (7)

where xt = {x(t + θ) : −d ≤ θ ≤ 0} ∈ CB[−d, 0] and
φ ∈ CB[−d, 0]. Assume f : CB[−d, 0] → Rn is continuous,
Lipschitz, and, f(0) = 0. Then (7) is exponentially stable if
and only if there exists a functional V (t, φ) such that

c1‖φ‖ ≤ V (t, φ) ≤ c2‖φ‖
V̇ ≤ −c3‖xt‖ ≤ −c3

c2
V,

|V (t, φ) − V (t, ξ)| ≤ c4‖φ − ξ‖ ,

where the norms of the functions are defined as
‖φ‖ = sup−d≤θ≤0 |φ(θ) − ξ(θ)|, and, ci are some positive
constants. �
Proof of Theorem 3.2: Since,

ẏk = κ[w − yk(t)yk(t − d)p(yk(t − d) + a)]

is globally exponentially stable [3], we have from Lemma 3.3,
the existence of a Lyapunov function Vk(t, ykt) such that

V̇k ≤ −γVk

and satisfying the properties given in Lemma 3.3. Now, apply
the Lyapunov functional

V (t) ≡ V (t, yt) =
1
N

N∑

k=1

Vk(t, ykt) (8)

to the system given by(5). Since

sup
k

|ηk(t)| ≤ K1 exp(−αt) ,

it is easy to see that

V̇ ≤ −γV + K1c4 exp(−αt) ,

from which it follows that

V (t) ≤ V (0) exp(−γt) − K1c4
γ − α

[exp(−γt) − exp(−αt)].

The result thus follows since all the initial conditions are
assumed to lie in a compact set. We note that the exponent in
the exponential stability can be chosen as min(γ, α). �

We next extend the results to the case when the noise is
modeled as a time-varying process but satisfies a strong law
of large number type property as discussed in Section II.

IV. MULTIPLE TCP-LIKE FLOWS WITH TIME-VARYING

NOISE

We now consider a variation of the earlier system. We
consider a sequence of systems so that in the N -th system,
the rate adaptation of the i-th flow is described by,

ẏ
(N)
i = κ[w−

y
(N)
i (t)y(N)

i (t − d)p(x(N)(t − d) + a + e(N)(t − d/2))] ,
i ∈ {1, 2, . . . , N},

where (e(N)(t)+a) is the average noise due to N uncontrolled
flows and x(N)(t) is the average flow rate of N TCP-like
flows. Let us assume

lim
N→∞

sup
t∈[0,NT ]

e(N)(t) = 0 a.s. , (9)

where e(N)(t) is the average noise due to N uncontrolled
flows. Conditions for (9) to hold are given in [16]. Before
we extend our results to stochastic and bounded noise process
satisfying (9), in Subsection IV-A, we first study a system with
the noise process satisfying a slightly relaxed assumption as
follows.

lim
N→∞

sup
t∈[0,∞)

|e(N)(t)| = 0 . (10)

The case with e(N)(t) satisfying (9) is discussed in Sub-
section IV-B and the results follow from those derived in
Subsection IV-A.

A. TCP-like flows with noise process satisfying SLLN type
property over infinite time

We assume that,

lim
N→∞

sup
t∈[0,∞)

|e(N)(t)| = 0 .

Note that the value of κ does not change with the scaling N .
We also have an upper bound, M , on the average rate when
the disturbance due to uncontrolled flows is simply assumed
to be a constant rate a. Since the average disturbance process
becomes arbitrarily small as N grows, the following Lemma
is easy to show using the upper bound on the average rate
proved in [15].

Lemma 4.1: Suppose κd < β. Then given ε′ > 0, there
exists N and t(ε′) such that ∀(N ≥ N) and ∀(t ≥ t),

x(N)(t) ≤ Mβ + ε′ ,

where Mβ is as given in Lemma 3.1 �
As in the previous section, define

r
(N)
ij (t) = y

(N)
i (t) − y

(N)
j (t) , (i, j) ∈ {1, 2, . . . , N}2 (11)

As before, it can be shown that

ṙ
(N)
ij (t) = −κp(x(t − d) + a + e(N)(t − d/2))

[y(N)
i (t)r(N)

ij (t − d) + y
(N)
j (t − d)r(N)

ij (t)] .
(12)

Since the additional noise term becomes arbitrarily small for
large N , we can expect {r(N)

ij } to become small for conditions
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when κd given by Theorem 3.1 hold. We remind the reader
that for all N , the initial conditions are assumed to satisfy the
conditions given in Assumption 2.

Theorem 4.1: If

κd < min
[
β,

1
6Mβp(Mβ + a)

]
,

then, given ε′ > 0, ∃(t(ε′), N) such that ∀(N > N),

sup
t∈[t,∞)

|r(N)
ij (t)| < ε′

Further, if κd satisfies the condition given in Theorem 3.2,
then, given ε′ > 0, ∃ N ′(ε′) such that ∀(N > N ′),

lim
t→∞

|yk(t) − y∗| ≤ ε′ , k ∈ {1, 2, . . . N} ,

where y∗ is the solution of w = y2p(y + a).
Proof: We refer the reader to [14] for details of the proof.

B. TCP-like flows with noise process satisfying SLLN type
property over finite time

If the noise process is stochastic and bounded, then it can
be shown [16] that,

lim
N→∞

sup
t∈[0,NT ]

e(N)(t) = 0 a.s. , (13)

where e(N)(t) is the average noise due to N uncontrolled
flows. It is thus natural to believe that the results in the
previous subsection hold for almost all realizations of the noise
process satisfying the above condition.

Theorem 4.2: Suppose e(N)(t) satisfies (13). If κd satisfies
the condition given in Theorem 3.2, then, given ε′ > 0,
∃ N ′(ε′) such that ∀(N > N ′),

|y(N)
k (NT ) − y∗| ≤ ε′ , k ∈ {1, 2, . . . N} a.s. ,

where y∗ is the solution of w = y2p(y).
Proof: See [14] for the proof.

Finally, we note that in practice, the sources may update
their rates at discrete time slots. We can view each time slot
as a measurement interval over which rates are measured in
the system and control actions by the routers and flows are
updated. Typically, this measurement interval is measured in
terms of the number of packets that can be processed by
a typical router. For example, the time-step could be “100
packets long.” By scaling both the time-step and the capacity,
we maintain a constant time-step, as measured in packets [16].

To this end, let each time time-step in the N -th system be
1/N . Thus, the update of the i-th system at the (k + 1)-th
time-step can be described by the following.

y
(N)
i [k + 1] = y

(N)
i [k]+

κ

N

[
w − y

(N)
i [k]y(N)

i [k − Nd]p(x(N)[k − Nd]+

e(N)[k − Nd/2] + a)
]

Note that, since the delay d as measured in seconds is fixed,
the delay in the N -th system corresponds to Nd time slots.
The continuous time model can now be embedded as

y
(N)
i (t) = y

(N)
i [Nt] , for Nt ∈ N

with a straight line approximation used between integers.
Similarly, the average rate process x(N)(t) and the noise
process e(N)(t) can be defined. For such a system of the
continuous time processes y

(N)
i (t), the results in Theorem 4.2

can be proved as well using techniques analogous to those
used in [16]. For brevity, we skip the details here.

V. STABILITY CONDITIONS WITH STANDARD TCP

In previous sections, we have seen that that stability condi-
tion with a single TCP connection accessing a link along with
some additional condition is enough to ensure the stability and
the convergence of multiple TCP-like flows in a many flows
regime.

In this section, we use the earlier results to derive stability
conditions with the standard TCP parameters. Since the global
stability criterion of a single TCP-flow accessing a bottleneck
link plays an important role in the many flows regime, we
first state the stability condition with a single TCP flow
with parameters implied by standard TCP. Recall that the
congestion avoidance phase of TCP can be modeled as [10],

ẋ(t) =
1
d2 − 2

3
x(t)x(t − d)p(x(t − d) + a, c) , (14)

where x is in segments (each segment may correspond to
512 bytes) per time unit and a is the mean flow rate due
to the uncontrolled flows. We define w(t) as

w(t) = dx(t)

The evolution of the congestion-avoidance phase of TCP can
be re-written as,

ẇ(t) =
2
3d

[
3
2

− w(t)w(t − d)p
(
w(t − d) + ad

cd
, 1

)]
.

(15)
Since x(t) is the rate in segments per unit time and d is the
round trip time, w(t) can be interpreted as the congestion win-
dow size in segments. Further, the quantity cd determines the
desired bandwidth-delay product per source at the equilibrium.
Thus, (15) is a continuous time version of the window update
algorithm of TCP algorithm in the congestion avoidance phase.

The following lemma provides sufficient conditions under
which (15) is globally exponentially stable. The condition
follows from the results derived in [3]. We state the stability
condition of (15) below, which follows from Theorem 2.2
in [3]. For the the rest of this section, we let

q(w) = p
( w

cd
, 1

)
.

Lemma 5.1: The controller given by (15) is globally expo-
nentially stable if,

2
3
<

l2( 3
2 + M2R)

M3R( 3
2 + l2R)

,
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where, R = supl≤w≤M (q(w) + wq′(w)), M is the smallest
positive number satisfying

M (M − 1) p (M − 1 + ad) ≥ 3
2

,

and l is the largest positive number satisfying

l

(
l +

2
3
M2q(M + ad) − 1

)
×

q

(
l +

2
3
M2q(M + ad) − 1 + ad

)
≤ 3

2
�

Now we consider multiple TCP-flows. We further consider
only the mean flow rate of the uncontrolled flows, since the
stability of such a system is sufficient to ensure the stability of
the system with stochastic disturbances when the number of
flows is large. Continuing with the earlier model, let there be
N flows, with the update equation of the i-th flow described
by

ẇi(t) =
2
3d

[
3
2

− wi(t)wi(t − d)q(w(t − d) + ad)
]

i ∈ {1, 2, . . . N} , (16)

where w(t) is the average window size (w(t) = dx(t)
where x(t) is the average flow rate) of the N flows. Using
Theorem 3.2, we can easily derive stability conditions for the
system described by (16). The following result provides such
conditions.

Corollary 5.1: The system given by (16) is globally stable
if the following conditions hold:

1) We have 2
3M1q(M1 +a) < 1

6 , where M1 is the smallest
positive number satisfying

(M1 − 1)2 q (M1 + ad − 2)
(

1 − 1
M1 − 1

)
≥ 3

2
.

2) The condition given by Lemma 5.1 is satisfied.

�
We next present examples for two different marking func-

tions to demonstrate the usefulness of the previous result.
We are interested in finding the range of the equilibrium
bandwidth-delay product to ensure stability and convergence
of multiple TCP flows. We now demonstrate that, for the
examples considered, we can ensure global stability if the
bandwidth-delay product is large enough.

So far we have assumed that the marking function is a
function of the total flow rate through the link. However,
note that one could also consider queue based marking at
the router (such as RED or REM). Given a queue based
marking function, using a reflected Brownian motion (RBM)
approximation, a technique to find an equivalent rate based
marking function was suggested in [8]. We consider two
marking functions in the following examples: first, a rate
based marking function and second, a rate based marking
function equivalent to REM, which is a queue based marking
mechanism.

Example 1 (M/M/1 type marking function):

We consider the marking function,

p(x, c) =
(x

c

)B

=
( w

cd

)B

. (17)

Here x is the average flow rate of the sources through the
link and c is a parameter which can be adjusted for a desired
bandwidth per source at the equilibrium. Such a marking
function has the interpretation of probability of the buffer size
being larger than B in an M/M/1 queue with arrival rate x.
The equilibrium rate per source x∗ in this case is given by

x∗d =
(

3
2

) 1
B+2

(cd)
B

B+2 .

We are interested in finding values of equilibrium bandwidth-
delay product x∗d to guarantee global stability of multiple
TCP flows.

We show that the conditions given by Corollary (5.1) are
satisfied as x∗d → ∞. To make our calculations easy, we
assume that (cd)B/(B+2) > 5 for reasons which will become
obvious soon. In other words, we seek values of x∗d in the
range [5(3/2)1/(B+2),∞) to ensure global stability of multiple
identical TCP-like flows. For the given marking function, first
note that we have for M given in Lemma 5.1

M < 1 + (cd)
B

B+2 (3/2)
1

B+2

< (cd)
B

B+2

[
1
5

+
(

3
2

) 1
B+2

]
= K(cd)

B
B+2 ,

where

K =
1
5

+
(

3
2

) 1
B+2

.

It can also be easily seen that

M2q(M) < KB+2 .

Also, for l given in Lemma 5.1, we have

l > 1 + (cd)
B

B+2 (3/2)
1

B+2 − 2
3
M2p(M)

> (cd)
B

B+2

[(
3
2

) 1
B+2

− 1
5

(
2
3
KB+2 − 1

)]
.

It follows from some algebraic manipulations that Condition 2
in Corollary 5.1 is satisfied when

M

(
3

2l2
+ R

)
<

3
2

,

which is satisfied if

(cd)
B

B+2 ≥ 2
3
KB+1(1+B)+

K
(( 3

2

) 1
B+2 − 1

5

(
1 − 2

3K
B+2

))2 .

Next note that M1, the upper bound on the average rate in
condition 1 of Corollary 5.1, is such that

M1 <

(
3
2

) 1
B+2

(cd)
B

B+2 + 2 < K1(cd)
B

B+2 ,
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where

K1 =
2
5

+
(

3
2

) 1
B+2

.

One can check that a sufficient condition for Condition 1 in
Corollary 5.1 to be satisfied is

(cd)
B

B+2 ≥ 4KB+1
1 .

Since x∗d = (3/2)1/(B+2)(cd)b/(B+2), a sufficient global
stability criterion for multiple TCP-like flows is

x∗d ≥
(

3
2

) 1
B+2

max
[
2
3
KB+1(1 + B)+

K
(( 3

2

) 1
B+2 − 1

5

( 2
3K

B+2 − 1
))2 , 4KB+1

1 , 5



 .

It follows that the system is globally stable as x∗d → ∞.
With a more accurate numerical calculation based on Corol-

lary 5.1, it can be verified that for B = 8, the system is
globally stable for

x∗d ≥ 16.66 ,

which corresponds to at least 8 packets per source at the
equilibrium since each packet approximately consists of 2 seg-
ments. For B = 5 a sufficient condition is,

x∗d ≥ 13.43

corresponding to at least 7 packets per source at the equilib-
rium with packet sizes of 2 segments.

One can obtain similar results for the marking function

p(x) =

(
x
c

)B (
1 −

(
x
c

))

1 −
(

x
c

)B+1 ,

which can viewed as the blocking probability in an
M/M/1/B queue with arrival rate x and service rate c. A
sufficient condition with B = 8 is

x∗d ≥ 14.97 ,

and, with B = 5,
x∗d ≥ 12.44

provides a sufficient condition for global stability.

Example 2 (Random Early Marking or REM):
REM [1] marks a packet with probability (1−exp(−θW )) if

it arrives to find a workload of W already present in the virtual
queue. Using a reflected Brownian motion approximation [8]
this can be viewed as a mechanism with the following marking
function:

p(x, c) =
θσ2x

θσ2x + 2(c − x)
(18)

Here, σ2 denotes the variability of the traffic and c can be
tuned to obtain a desired rate allocation at the equilibrium.

For simplicity, we assume θσ2 = 0.5. The equilibrium rate
allocation can be obtained by solving

0.5(x∗d)3

0.5x∗d + 2(cd − x∗d)
=

3
2

.

It can be verified that

x∗d ≤ (6cd)
1
3 .

First we argue that the global stability condition is satisfied
as x∗d → ∞. Suppose we consider cd in the range cd ≥ 5,
which corresponds to x∗d ≥ 2.63. We are interested in finding
x∗d in the range [2.37,∞) to guarantee stability. Note that the
parameter M in Lemma 5.1 satisfies

K1(cd)
1
3 ≤ M ≤ K2(cd)

1
3 ,

for suitable constants K1 and K2. Further, it can be shown
that

l ≥ K3(cd)
1
3

and

R = sup
l≤w≤M

q(w) + wq′(w)) ≤ K4(cd)− 2
3

for appropriate positive constants K3 and K4. It follows that
Condition 2 in Corollary 5.1 is satisfied when

M

(
3

2l2
+ R

)
<

3
2

,

which is satisfied if

(cd)
1
3 ≥ 2

3
K2

(
1
K3

+ K4

)
.

Similarly, condition 1 is Corollary 5.1 can be expressed as

(cd)
1
3 ≥ K5 .

Since x∗d ≤ (6cd)
1
3 , a sufficient condition for global stability

in this case is

x∗d ≥ K

for a suitable constant K.
One can use numerical calculations to obtain the a sufficient

condition for global stability with multiple TCP flows as

x∗d ≥ 8.67 .

This corresponds to at least 5 packets per source at the
equilibrium with packet sizes of 2 segments.

The above examples clearly indicate that:
For reasonable marking functions and large enough target
bandwidth-delay product per source, multiple TCP flows even-
tually behave like a single flow and the system is globally
asymptotically stable.
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VI. SIMULATION RESULTS

In this section we present simulation results to illustrate
the effectiveness of deterministic fluid models in designing
marking function to meet a target equilibrium rate allocation.
The purpose of the simulation is two-fold. First, we show that
if the target equilibrium window size or the bandwidth-delay
product is large (in the range predicted by the global stability
criterion), then, the equilibrium window size in a packet based
simulation is close to the one predicted by the deterministic
fluid models.

Second, in our earlier sections we have derived condition for
global stability of a system with TCP-like flows. The natural
question is: Why is stability so important? To illustrate the
importance of designing parameters to ensure stability, we
compare the performance of TCP with a modified version.
We show that large oscillations can happen due to instability
in a badly designed system.

We simulate a single bottleneck link being accessed by
100 persistent flows. All the long-lived flows are TCP-flows
using the dynamic window flow control mechanism of TCP.
The simulation is packet based and the link marks a fraction
of the packets in the event of a congestion and the marks are
echoed back to the source. There are also uncontrolled flows
(around 20% of the link bandwidth), i.e., flows that do not
react to congestion. The link has an M/M/1 type marking
function given by the following.

p(x̂) =
(

x̂

C̃

)B

.

Here x̂ is the estimated arrival rate at the link and C̃ is the
virtual capacity. Using the fluid deterministic model, the value
of C̃ required to meet a target per source equilibrium rate of
y∗ is given by

C̃ = N

(
3
2

(
y∗ +

a

N

)B+2
d2

) 1
B

,

where d is the round trip time, N is the number of flows,
and, a is the mean flow rate due to the unresponsive flows.
In our simulations, we choose N = 100, d = 50 ms, and,
a = 20% of the link bandwidth. The parameter B in the
marking function is chosen as B = 8. For the purposes of
our simulation we simply simulate the congestion avoidance
phase of TCP so that each successful transmission increases
the current window size W by 1/�W � and each mark reduces
the window size by half. We also note that such a description
of the window update assumes the window size to be in
segments. In the following we assume that each segment is
equivalent to one packet.

We first choose C̃ to ensure total equilibrium rate of 40.5
packets/ms, which is equivalent to an equilibrium window
size per flow of roughly 16 packets. The plots comparing
the total rate into the link and the target rate are shown in
Figure 3. The plot is representative of simulations done with
different choices of parameters and for a large number of
flows. The simulation seems to indicate that, for moderately

large target equilibrium window size (in the range predicted
by the stability criterion), deterministic fluid models based
parameter and marking function design is appropriate.
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Fig. 3. Plot showing evolution of average rate (averaged over one round trip
time) of a typical flow and the rate predicted by the fluid model
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Fig. 4. Plot showing evolution of average rate (averaged over one round
trip time) of a typical flow and the rate predicted by the fluid model for two
cases: the standard TCP and a modified unstable TCP

We next demonstrate the oscillations that can happen in a
badly designed system. We consider a modified version of TCP
in which each successful transmission increases the window
size W by 10/�W �, and, each marked packet reduces the
window size by half as in standard TCP. In Figure 4, we
compare the average rate of this modified TCP with that of a
standard one for a target equilibrium rate of 8.33 packets/ms.
Clearly, the modified version of TCP has larger fluctuations in
the average rate. This may even lead to a lower throughput in
a drop based system (where packets are dropped at congestion
instead of being marked) with re-transmission of dropped
packets. The variance of total rate at the router in the case of
this modified TCP is about 16, whereas the variance is 0.63
for the case of standard TCP. This underlines the importance
of ensuring stability.
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VII. CONCLUSION

We have studied a system consisting of a single link
accessed by a large number of TCP-like flows, each with
identical delay access, but with (possibly) different initial
condition and also accessed by a large number of uncontrolled
flows. The contributions of this paper are:

(i) Our main result is that in the presence of uncontrolled
flows (stochastic noise), if the number of flows is large
enough, the global exponential stability criterion for a
single flow (with minor modifications) is also a global
exponential stability condition for the stochastic system
with multiple flows. Thus, the implication is that parame-
ter design can be carried out using deterministic analysis
based on the single flow model.

(ii) For the rate adaptation model of TCP [10], we have
shown that the stability is ensured if the target equilibrium
delay-bandwidth product (window size) per flow is large
enough, and we have derived upper bounds on this
quantity. Thus, we have derived sufficient conditions for
global stability. Numerical examples with two popular
marking functions indicate that the target window size
per flow required to ensure stability is actually not very
large.

(iii) Using simulations, we have verified that the deterministic
fluid models that are stable can be used to design active
queue management mechanisms.
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