
Performance Evaluation 61 (2005) 299–328

Analysis on packet resequencing for reliable network protocols

Ye Xiaa,∗, David Tseb

a Computer and Information Science and Engineering Department, University of Florida, Room 301,
CSE Building, P.O. Box 116120, Gainesville, FL 32611-6120, USA

b Electrical Engineering and Computer Science Department, University of California, 261M Cory Hall,
Berkeley, CA 94720-1770, USA

Received 3 April 2004; received in revised form 22 September 2004
Available online 11 November 2004

Abstract

Packets are sometimes disordered in the network. Reliable protocols such as TCP require packets to be accepted,
i.e., delivered to the receiving application, in the order they are transmitted at the sender. In order to do so, the
receiver’s transport layer must resequence the packets with the help of a resequencing buffer. Even if the application
can consume the packets infinitely fast, the packets may still be delayed for resequencing. In this paper, we model
packet disordering by adding an independently and identically distributed (IID) random propagation delay to each
packet and analyze the required buffer size for packet resequencing and the resequencing delay for an average packet.
We demonstrate that these two quantities can be significant and show how they scale with the network bandwidth.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Resequencing queue; Packet disordering; Transmission control protocol

1. Introduction

Packets can be disordered by the communication networks for various reasons[17]. For instance, with
the help of the destination address contained in every packet, the network can deliberately route packets
via different paths to the destination, possibly for load balancing or for reducing transfer delay. Some
packets may be dropped when the network is congested or when the packet is corrupted. For reliable

∗ Corresponding author. Tel.: +1 352 392 2714; fax: +1 352 392 1220.
E-mail address:yx1@cise.ufl.edu (Y. Xia).

0166-5316/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2004.09.002

300 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

communication, the sender must retransmit the dropped packet, possibly causing it to arrive out-of-order
at the receiver.

Most applications can only accept packets (which contain application-level data) in the same order
they are transmitted at the sender. They typically rely on reliable transport protocols, such as the transmis-
sion control protocol (TCP), to temporarily buffer out-of-order packets and to resequence them as new
packets arrive. The study of packet disordering and resequencing is important because of the following
performance implications:

• Insufficient buffer size causes packet losses and reduced throughput.
• Even when the application can consume the packets infinitely fast, the packets may still suffer rese-

quencing delay, which increases the response time of the application.
• The large number of queued packets create bursty load to the processor. Long queue length is typically

the result of one or a few very late packets. During the time of queue build up, the processor stays
idle most of the time. When the late packets finally arrive, all queued packets are suddenly eligible for
processing.

• The out-of-order packets that have arrived at the receiver must wait at the transport layer, consuming
precious system resources such as memory and computation cycles. Since they are shared resources,
an unusually large amount of out-of-order packets can negatively affect all applications in the same
system.

• For network queues, many performance measures typically improve when link bandwidth scales up.
For example, aggregate traffic may become smoother; router throughput may improve; given the same
traffic load, the delay at the router queue may be reduced. We will see that this is not the case for the
resequencing delay and queue size.

In this paper, we model packet disordering by adding an independently and identically distributed (IID)
random propagation delay to each packet and analyze the required buffer size for packet resequencing and
the resequencing delay for an average packet. We demonstrate that these two quantities can be significant
and show how they scale with the network bandwidth. The models formulated in this paper are fairly
general and may have applications in other areas, such as the distributed database or link-layer automatic
repeat request (ARQ). The results of this paper caution us to carefully consider the consequence of a
fundamental principle of the packet network, that is, each packet contains its destination address and can
be routed independently.

This paper is organized as follows. In the reminder of this section, we describe the resequencing model
analyzed in this paper, discuss related models that have been studied previously, and give an overview of
the results. We then give two variations of the resequencing model. In Section2, we describe the results
for the first variation, calledstop-and-wait ARQ. The focus of the paper is on the second variation, called
selective-repeat ARQ, which is presented in Section3. The conclusion is presented in Section4.

1.1. Network model

We will examine the model shown inFig. 1, where the sender and the receiver are separated by a
network that causes a random variable delay on each data packet, in addition to a fixed propagation delay.
The transmission capacity of the sender is denoted byCs. When packets are ready to be accepted, the
receiver can consume them at the capacity,Cr. Typically, we assumeCr = ∞. Each transmitted packet

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 301

Fig. 1. The network model.

contains a sequence number, known also as the packet identification (ID). The sender transmits new
packets in increasing order of the packet ID. The fixed delay experienced by each packet is denoted
by T, and the variable delay experienced by packeti is denoted byXi. We assume that the{Xi}’s are
independently and identically distributed random variables. The receiver needs to accept packetsin order.
It may temporarily store out-of-order packets in its resequencing buffer of sizeb. When a packet that has
just arrived finds the buffer full,the packet with the largest ID among all stored and incoming packets
is dropped.The receiver sends perfect feedback information to the sender about the reception status of
each packet, subject to a fixed delay,T. The sender must retransmit the dropped packet at a later time.

1.2. Related previous studies

1.2.1. ARQ models
There can be many causes for packet disordering in the network, many of which are not precisely

known at the present. As stated previously, the retransmission of dropped packets and multi-path routing
are among them in today’s and possibly future networks. Many previous studies in fact treat these two
causes separately. Disordering caused by packet retransmission is studied within the context of automatic
repeat request protocol[23,13,15,20,1,18,19]. In these studies, ARQ is typically considered as a link-
layer protocol running between a sender–receiver pair over a noisy link with constant propagation delay.
The sender must retransmit corrupted or dropped packets based on the feedback information it gets from
the receiver. Models in this family can not be easily combined into a generic model. Their details and
analytical techniques involved differ greatly. Their strength lies in that they typically can model the
feedback from the receiver to the sender. We will call the models in this familyARQ models.

Note that the end-to-end reliable transport protocols, such as TCP, resemble the link-layer ARQ protocol
in the areas of packet retransmission at the sender and resequencing at the receiver. In this paper, we borrow
the term ARQ even though what we have is not the same as the link-layer ARQ. In particular, we allow
causes for packet disordering other than packet retransmission.

Many previous studies on ARQ models focused on the throughput of the ARQ protocol, or the delay
and queue size at the sender side. For instance, Miller and Lin[15] analyzed the throughput for certain
selective-repeat ARQ schemes. Towsley and Wolf analyzed the queue size and delay at the sender side for
the stop-and-wait ARQ and the go-back-NARQ in [23], and mean queue length for the stutter-go-back-N
ARQ in [24]. Konheim[13] analyzed a go-back-N ARQ and a selective-repeat ARQ. Anagnostou and
Protonotarios[1] analyzed the queue size and delay at the sender side in a selective-repeat ARQ model.

There are also several studies on the resequencing delay and queue size at the receiver in the ARQ
literature. Rosberg and Shacham[18] analyzed a specific selective-repeat ARQ protocol over a noisy
forward channel from the sender to the receiver and a perfect feedback channel. The time is divided into
intervals, each with length equal toN packet transmission time slots. Suppose on intervali and slotj,

302 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Fig. 2. Resequencing network model followed by a GI/GI/1 queue.

packetk is transmitted. On intervali + 1 and slotj, if packetk is successfully acknowledged (ACKed), the
sender transmits the new packet with the smallest sequence number. If packetk is negatively acknowledged
(NAKed) or no feedback information has been received for it (i.e., a timeout has occurred), the sender
retransmits packetk. The distributions of the buffer occupancy and the resequencing delay at the receiver
were derived. Rosberg and Sidi[19] extended the above model to allow non-greedy source.

We briefly list several other studies of the resequencing problem in the ARQ literature. Shacham and
Towsley[22] considered the resequencing problem for a multicast selective-repeat ARQ. Shacham and
Shin [21] analyzed the resequencing problem of a selective-repeat ARQ with parallel channels, using
a discrete-time model. The delays on the channels are all equal to a constant and the packet losses are
independent from time slot to slot and among different channels. Varma[25] and Ayoun and Rosberg[2]
considered optimal control problems in a queue with two servers of different service rates. The question
is how to assign the customers to the servers so as to minimize the end-to-end delay[25] or the long-run
average holding costs of the customers[2]. Packets get disordered at the server-assignment stage and are
required to be resequenced after leaving the two-server queue.

1.2.2. Open queueing models
The studies on packet disordering due to multi-path routing (also including parallel processing or

load balancing) typically analyze an open queueing network, with no feedback and no retransmission.
Fig. 2shows a generic model, where packets (or customers) numbered sequentially arrive at the system
following some stochastic process, get disordered by the disordering network and are resequenced at the
resequencing buffer. In some studies, a FIFO queue follows the resequencing buffer. The disordering
network is also modelled as a queueing system, whose type typically distinguishes different studies. For
instance, the disordering network is an M/M/∞ queue in[12], an M/GI/∞ queue in[9], a GI/GI/∞
queue in[3], an M/M/2 queue in[14], an M/M/K queue in[27], an M/H2/K queue in[5], an M/M/2 queue
with a threshold-type server-assignment policy in[10], two parallel M/M/1 queues with additional fixed
propagation delays in[8], andK parallel M/GI/1 queues in[11]. A survey is given in[4]. Most of these
studies are concerned mostly with finding the distribution and/or the mean of the resequencing delay or
the end-to-end delay. Several also give results on the number of customers in the resequencing queue.

1.3. Summary of results

We analyze two different variations of the model shown inFig. 1. In the first case, discussed in Section
2, we assume the sender’s capacity,Cs, is infinitely large so that it can dump a block of packets onto the
network instantaneously. Here, it makes sense to consider the stop-and-wait-nARQ protocol,1 where, at

1 In this paper, we borrow the term ARQ from the commonly known link-layer ARQ. Stop-and-wait-n ARQ is a variation of
the link-layer stop-and-wait ARQ.

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 303

the beginning of each fixed time interval, the sender transmits a block ofn packets simultaneously. The
receiving status of the packets reaches the sender at the end of the interval. The main result is, for large
n, if we want to accept a fractionα in each block ofn packets, the resequencing buffer size must beαn.
As a result, for any fixed buffer size, the fraction of accepted packets in each block becomes vanishingly
small when the block sizen approaches infinity.

When the sending capacity is limited, we consider the selective-repeat ARQ, as discussed in Section
3. In this case, the sender transmits one packet in each time slot. When a packet is rejected at the receiver
due to buffer overflow, this information is fed back to the sender. In each time slot, the sender always
retransmits the rejected packet with the smallest packet sequence number and only transmits a new
packet when there are no rejected packets. For the selective-repeat ARQ, we have results for the buffer
requirement to achieve small packet rejection ratio, or equivalently, near 100% throughput. When the
variable packet delay is exponential with mean 1/λ, we show that

P{Q̄(t) > m} ≈ e−(m+2)λτ

1 − e−λτ
(1)

whereQ̄(t) is an upper bound on the resequencing queue size andτ is the packet transmission time at
the sender. Here,τ = 1/Cs if the unit ofCs is packet per second, orτ = U/Cs if Cs is in bits per second
andU is the packet size in bits. For the Pareto delay distribution with CDFF (x) = 1 − Kαx−α, where
x ≥ K, we have

P{Q̄(t) > m} ≈ Kα

(α − 1)τ
((k∗ − k0 + m + 2)τ)−α+1, (2)

wherek∗ − k0 is a small number compared with the queue sizem for which the above approximation
holds.

Our analysis in Section3assumes the buffer size is infinite. This simplifies the analysis since no packets
ever get rejected at the resequencing queue. We use the probability that the queue size exceeds a threshold,
b, as the approximation for the packet rejection (or loss) ratio when the buffer size isb. This approximation
can be expected to be accurate only when the buffer size is large, and hence, the probabilities involved
are very small. As a result, we do not have results for the packet loss ratio for small buffer sizes. We
supplement this deficiency with a set of simulation results for the finite buffer case in Section3.3.

Again assuming the resequencing buffer is infinite, the packet’s waiting time in the queue before it
is accepted, also called the resequencing delay, can be computed in principle. We do not have concise
expressions for it in either the exponential or the Pareto case. For the exponential case, we do have a
simple approximation for the expected waiting time at the resequencing buffer

E[W] ≈ 1

λ

(
log

(
1

2(1− e−λτ)

)
+ 0.5

)
, (3)

whereW is the waiting time. WhenCs ≥ 10 Mbps, we can further approximateE[W] and get

E[W] ≈ 1

λ

(
log

(
Cs

2λU

)
+ 0.5

)
, (4)

whereU is the packet size in bits. We see that the mean waiting time of a packet scales logarithmically
with the link capacity. We also see that, at a given link speed, reducing the packet size, and hence, the
packet transmission time, increases the mean waiting time.

304 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

The above analysis for the expected waiting time uses the memoryless property of the exponential
distribution. The technique does not apply to the case where the network delay of the packet is Pareto.
With simulation, we can show that the expected waiting time can be very large in this case. To reduce the
resequencing delay, it is very helpful to add a bound, sayd, to the Pareto delay. In practice, this can be
approximated by retransmitting the unacknowledged packets at appropriate times.

A feature of this paper is, when possible, we rely on approximations and bounds to get simple and
easily interpretable results. This is complementary to many previous studies whose solutions are exact
but complicated and are hard to construe.

1.4. Discussions

Our models can be compared with the model in[18]. In [18], retransmissions of the same packet are
always separated byN time slots. Furthermore, the packet delay in the network is due to the time it takes
to retransmit an erroneous or dropped packet. Its statistics is completely specified by the ARQ protocol.
Our models allow different delay statistics, and therefore, are more versatile in modelling different causes
of delays. In our paper, we give results for the exponential and Pareto network delay distributions.

Our simulation experiments handle packet retransmissions faithfully, as specified by each of the ARQ
protocols. Our analysis never handles that aspect. Therefore, from analytical point of view, our model falls
in the class of models shown inFig. 2. We choose to model the causes for packet disordering by adding
IID random delays to the packets for both simplicity and for generality. This is equivalent to saying that
the packet disordering network is a D/M/∞ queue in the exponential delay case, and is a D/P/∞ queue
in the Pareto delay case, where “P” stands for Pareto. In reality, the variable packet delays are most likely
correlated. For instance, multi-path routing is probably better modelled asK-parallel·/GI/1 queues. The
IID delay model is still valuable because we typically do not know the parameters that give a realistic
model, such as the value ofK, the dispatching policy to each of the queues, and the server rates of the
queues.

At this point, a natural question is what distribution we should choose for the random delay. We choose
the exponential distribution whose tail probability decays exponentially and the Pareto distribution whose
tail probability has a power-law decay and is said to have a heavy tail. We will see that the tail probability
is a very important factor to the resequencing delay and the buffer requirement. In some sense, the
exponential distribution represents a “nice” case and the Pareto distribution represents a “bad” case. To
be more precise, the exponential distribution has CDF

F (x) = 1 − e−λx,

where 1/λ is the mean. As stated earlier, the Pareto distribution has the CDF, forx > K,

F (x) = 1 −
(

K

x

)α

.

Here,α governs the rate of decay of the tail probability and is the important parameter. We requireα > 1 in
order for the mean to exist, which isαK/(α − 1). In our simulation and numerical examples, we typically
fix α and the mean, which together determineK.

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 305

2. Stop-and-wait-n ARQ

In this section, we assume that the sender’s capacity and the receiver capacity are both infinite. That
is, a packet can be transmitted instantaneously at the sender, and when all preceding packets have arrived
at the receiver, it can be accepted instantaneously. We also assume that the fixed propagation time,T, is
zero. The resequencing buffer has a finite sizeb.

Data packets transmitted at the sender are assigned sequential packet IDs, starting from 1. We require
that they must be presented to the receiving application in increasing order of their IDs. In this section,
we assume the stop-and-wait-n ARQ protocol is used, wheren is the block size and 1≤ b ≤ n. More
specifically, let the time be divided into intervals of identical length. At the beginning of each interval,
the sender transmits a block ofn packets simultaneously. These packets experience IID random network
delays, denoted byXi’s. In this section, we assume the network delays are bounded by the interval length.
Hence, by the end of the interval, allnpackets in the block have arrived at the receiver and the arrival order
is a random permutation with the uniform distribution on the set of permutations. The receiver re-orders
the packets in the resequencing buffer, and immediately accepts all packets that do not leave sequencing
gaps in the accepted packets. When an incoming packet finds the resequencing buffer full, the receiver
drops the packet with the largest sequence number. At the end of the interval, the receiver also drops all
remaining packets in the buffer, i.e., the ones that cannot be accepted due to missing packets with smaller
packet IDs. The receiver sends perfect and instantaneous feedback to the sender during the interval. By
the end of the interval, the sender knows which packets have been accepted and which have been dropped.
In the following interval, the sender transmitsnmore packets, sequentially numbered, starting from the
next packet ID expected by the receiving application.

Take the example ofn = 3. Suppose the buffer sizeb = 1 and suppose the order of packet arrival at the
receiver is 2, 1 and 3. When packet 2 arrives at the receiver, it will be stored in the resequencing buffer.
When packet 1 arrives, packet 2 will be evicted from the buffer and dropped because there is no additional
buffer space to hold it. Packet 1 enters the buffer and is immediately accepted by the application. Packet
3 will not be accepted because 2 is missing. In our case, we will drop it at the end of the current interval.
In the next interval, the sender will transmit packets 2–4.

Let the number of packets accepted by the receiver in intervali beNi, i = 1, 2, The above algorithm
makes{Ni} an IID random sequence. Let the interval length beL. Then, the long time throughput of the
communication system is simplyENi/L. To improve the throughput, one can increaseENi or reduce
L. We investigate what quantitiesENi depends on. Define the packet acceptance ratioρ(n, b) = ENi/n.
The main result is the following theorem.

Theorem 2.1.Let integern ≥ 1be the block size and let integer b be the buffer size.Then, for 1 ≤ b ≤ n,

ρ(n, b) = 1

n

(
n∑

k=b

b! bk−b

k!
+ b − 1

)
(5)

Proof. Let Jk be the set{1, 2, . . . , k}, wherek can vary from 1 ton. First, note that the order of packet
arrival at the receiver during each interval is the random permutation of the setJn with a uniform probability

306 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

distribution. To computeEN,2 we will use

EN =
n∑

k=1

P{N ≥ k}.

The event{N ≥ k} is the same as the event{all i ∈ Jk are accepted}, denoted byEk. Given an arrival
sequence of then packets, denoted byΠ, we only need to focus on the sub-sequence ofΠ generated by
restrictingΠ to the setJk, when we consider the eventEk. Denote this sub-sequenceΠk. It is easy to see
that the eventEk occurs inΠ if and only if it occurs inΠk, due to the rule of rejecting the packet with
the largest ID when the buffer is full.

For any setS ⊆ Jn of contiguous packets, a permutation ofS is said to beb-acceptable if it can be
arranged in sequence with the help of a resequencing buffer of sizeb. For instance, the permutation (3, 2,
4) of S = {2, 3, 4} is 2-acceptable, but not 1-acceptable. It isb-acceptable for anyb ≥ 2. We will count
the numberb-acceptable permutations ofJk. Denote this number byAk. Note that a permutation onJk is
b-acceptable if and only if none of the packets inJk is dropped. We claim

Ak =
{

k! for 1 ≤ k ≤ b,

b! bk−b for b < k ≤ n.
(6)

For 1≤ k ≤ b, it is obvious that, any of thek! permutations ofJk is b-acceptable, since the buffer size is
large enough to hold all of them.

For b < k ≤ n, a permutationΠk on Jk can be accepted if and only if (1) packet 1 is in one of the
first b positions inΠk and (2)Πk\{1} is b-acceptable. Here,Πk\{1} denotes the permutationΠk with 1
removed, which is an permutation on the set{2, 3, . . . , k}. Since the number ofb-acceptable permutations
on {2, 3, . . . , k} is Ak−1 and packet 1 can be in any of the firstb positions, we have, forb < k ≤ n,

Ak = bAk−1.

By iterating the indexk from b, we get(6).
Since all permutations of the setJk are equally likely to be the packet arrival orders, we have

EN =
n∑

k=1

P{N ≥ k} =
n∑

k=1

Ak

k!
=

n∑
k=b

b! bk−b

k!
+

b−1∑
k=1

k!

k!
=

n∑
k=b

b! bk−b

k!
+ b − 1.

We next study some features of the functionρ(n, b). �

Theorem 2.2. For any0 ≤ α ≤ 1, let b = �αn�.3 Then, ρ(n, b) → α, asn → ∞.

Proof. The proof uses a standard convergence argument. It is sufficient to show, forb = �αn�,
(1/n)

∑n
k=b b! bk−b/k! → 0 as n → ∞. We drop the floor notation for simplicity, with the under-

standing that the relevant quantities are integers. Letm = n/l, for some positive numberl > 1. Split

2 We have omitted the index to the interval,i.
3 �x� stands for the floor ofx, i.e., the largest integer less than or equal tox.

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 307

∑n
k=b b! bk−b/k! into two parts:

∑m−1
k=b b! bk−b/k! and

∑n
k=m b!bk−b/k!. Notice that the ratio between the

(i + 1)th term andith term in the sum isαn(αn + i). For i ≥ m,

αn

αn + i
≤ αn

αn + n/l
= r < 1

wherer = α/(α + 1/l) by definition. Forb = αn,

1

n

n∑
k=m

b! bk−b

k!
≤ 1

n

(αn)m

(αn + 1)(αn + 2) · · · (αn + m)
(1 + r + r2 + · · · + rn−αn−m+1)

= 1

n

(αn)m

(αn + 1)(αn + 2) · · · (αn + m)

1 − rn−αn−m+2

1 − r

≤ 1

n

1 − rn−αn−m+2

1 − r
−→ 0 asn −→ ∞, (7)

1

n

m−1∑
k=b

b! bk−b

k!
= 1

n

(
1+ αn

αn + 1
+ (αn)2

(αn + 1)(αn + 2)
+ · · · + (αn)m−1

(αn + 1)(αn + 2) · · · (αn + m−1)

)

≤ 1

n
m −→ 1

l
asn −→ ∞. (8)

Combining(7) and (8), for b = αn, and for any positive numberl > 1, we get

lim sup
n→∞

1

n

n∑
k=1

b! bk−b

k!
≤ 1

l
.

Let l goes to infinity, we get, forb = αn,

lim sup
n→∞

1

n

n∑
k=1

b! bk−b

k!
= 0. �

Theorem 2.2says, in order to achieve reasonable acceptance ratio, the buffer size must scale linearly
with the block size,n. As an easy corollary, for any fixed buffer sizeb, lim

n→∞ ρ(n, b) = 0. These asymptotic

results can be good approximations for largen. We will use numerical examples to show how large the
block sizenmust be and what happens whenn is not so large.

Fig. 3shows the acceptance ratioρ versus the buffer size for block sizen = 10 and 100, respectively.
In these plots, the label “limit” refers to the asymptotic limit ofρ as inTheorem 2.2, and the label “exact”
refers to the exact value ofρ. We see that the asymptotic result becomes good approximation forn > 100
at all buffer sizes. Even at very small values ofn, say,n = 10, the asymptotic result is not too far from
the exact value.

In Fig. 4, we show the convergence ofρ to the limit asn increases while the buffer size is kept at
b = 0.5n. In this case, the limit is 0.5.

308 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Fig. 3. Acceptance ratio vs. buffer size for block sizes: (a)n = 10; (b)n = 100.

Fig. 4. Acceptance ratio converges to 50%: buffer sizeb = 0.5n.

The convergence inTheorem 2.2can be strengthened to an almost sure convergence. LetN(n, b) be
the number of packets accepted by the receiver in one interval. The notation makes the dependency on
the block sizen and the buffer sizeb explicit.

Theorem 2.3.For any0 ≤ α ≤ 1, let b = �αn�. Then, N(n, b)/n → α almost surely asn → ∞.

Proof. For convenience, let us drop the floor notation in the buffer sizeband assumeb = αn is an integer.
We wish to show

lim
n→∞

N(n, b) − b

n
= 0 almost surely (9)

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 309

Fix ε > 0. For every positive integern, define the event

En =
{

N(n, b) − b

n
≥ ε

}
.

Hence,

P{En} = P{N(n, b) ≥ b + nε}. (10)

From the proof ofTheorem 2.2, we know that, forb < k ≤ n,

P{N(n, b) ≥ k} = Ak

k!
= b! bk−b

k!
. (11)

Hence, assumingnε is rounded to an integer

P{N(n, b) ≥ b + nε} = b! bnε

(b + nε)!
= (αn)!(αn)nε

((α + ε)n)!
. (12)

We will use the following Stirling-type of bounds forn! (see page 184 of[16]):

√
2πnnn e−n exp

1

12n + 1
< n! <

√
2πnnn e−n exp

1

12n
. (13)

We get

(αn)!(αn)nε

((α + ε)n)!
≤

√
2παn(αn)αn e−αn(αn)εn

√
2π(α + ε)n((α + ε)n)(α+ε)n e−(α+ε)n

exp (1/12αn)

exp (1/(12(α + ε)n + 1))

=
√

α

α + ε

((
α

α + ε

)α+ε

eε

)n
exp (1/12αn)

exp (1/(12(α + ε)n + 1))
. (14)

Define

f (ε) =
(

α

α + ε

)α+ε

eε.

We claim,ε > 0

f (ε) < 1.

To see this, note thatf (0) = 1, and that

(logf (ε))′ = log
α

α + ε
< 0

for ε > 0. Hence,f (ε) strictly increases to 1 asε decreases to 0. Next,

exp(1/12αn)

exp(1/(12(α + ε)n + 1))
→ 1 asn → ∞.

310 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Hence, the right-hand side of(14)decreases to 0 geometrically fast. Hence,

∞∑
n=0

P{En} =
∞∑

n=0

P

{
N(n, b) − b

n
≥ ε

}
< ∞.

By the Borel–Cantelli lemma[7], the probability thatEn occurs infinitely often is 0. That is,

P

{
N(n, b) − b

n
≥ ε infinitely often

}
= 0

which implies

P

{
lim sup

n→∞
N(n, b) − b

n
> ε

}
= 0.

Or,

P

{
lim sup

n→∞
N(n, b) − b

n
≤ ε

}
= 1.

Let ε decreases to 0, we see that

N(n, b) − b

n
→ 0 almost surely asn → ∞. �

We now know that, for largen, the fraction of packets that are not accepted is 1− ρ. An interesting
question is, out of these packets, how many are rejected due to buffer overflow and how many are discarded
at the end of the interval. It can be shown that the number of rejected packets is at least(1−α)2

2 n. Hence,
at least a constant fraction of the packets are rejected. This result implies that, to achieve near 100%
acceptance ratio, we must ensure that the size of the resequencing buffer is close ton, regardless whether
we keep the remaining packets or not at the end of each interval.

3. Selective-repeat ARQ

In this section, we will study a more realistic refinement to the stop-and-wait-n ARQ, called
selective-repeat ARQ, and find its throughput-buffer relationship. We assume thatCs is finite and the
propagation delay,T, can be non-zero. In every packet time slot, the sender either transmits a new packet
or retransmits a previously rejected packet. More specifically, the sender maintains a list of packets
rejected by the receiver, and retransmits them in increasing order of the packet IDs. When this list is
empty, it sends the next new packet. The receiver behavior and the packet-dropping rule are similar to
those for the stop-and-wait-nARQ.

Selective-repeat ARQ resembles the retransmission and resequencing behaviors of TCP and many link-
layer protocols. In particular, it captures the resequencing behavior at the TCP receiver. The feedback is
similar to TCP’s selective acknowledgement. We will discuss in more details the relevance of our model to
TCP in Section4. We emphasize that, by assumingCr is infinite, the receiver’s processing capacity is not a

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 311

Fig. 5. Selective-repeat ARQ examples. Two cases for the buffer size:b = 1 (left) andb = 2 (right).

limitation. This models the situation that the transmission bottleneck is at the sender or the network, not at
the receiver. If packets were not required to be resequenced, they would have been accepted immediately
and the buffer would have been empty. The receiver’s buffer is for resequencing only.

Fig. 5shows two examples about the operation of the selective-repeat ARQ. The left-hand side is for
the case of receiver buffer sizeb = 1, and the right-hand side is for the case ofb = 2. Let us focus on the
b = 2 case. In the figure, time progresses downward. The labels “D”, “A” and “B” stand for “dropped”,
“accepted” and “buffered”, respectively. The “x” represents an available buffer space that can store one
packet. The sender transmits packets 1–3. Packet 1 is delayed in the network, and packet 2 arrives at the
receiver first. Since packet 2 is not in sequence, it is stored in the receiver buffer, i.e., it is buffered. When
packet 3 arrives, it is also buffered and the buffer becomes full. Next, packet 1 arrives. The packet with
the largest sequence number is dropped, in this case, 3. At this point, packets 1 and 2 can be accepted
in sequence, leaving an empty buffer. The receiver sends a negative feedback to the sender about the
dropped packet. The feedback packet will reach the sender after the transmission of packet 6, and packet
3 will be retransmitted at that point. The next packet that arrives at the receiver is 4. Since packet 3 has not
been accepted, packet 4 must be stored in the buffer. Then, packets 5 and 6 arrive, in that order. Packet 5
is stored and packet 6 is dropped. When the retransmitted packet 3 arrives next, packet 5 is evicted from
the buffer, and packets 3 and 4 are accepted.

The retransmission strategy in the model is intuitively a good one. Suppose, at a fixed time,i is the
smallest packet ID of all rejected packets known to the sender. Then, in terms of achievable throughput,
sendingi at the next packet time slot is at least as good as sending any packet greater thani. For, withouti,
the receiver cannot accept any packets greater thani. However, this strategy may be worse than a strategy
that allows retransmission of packets whose rejection–acceptance status is unknown to the sender. We do
not pursue a strategy of the latter type at this point.

3.1. Buffer size to achieve near 100% throughput

In this section, we wish to approximate the required buffer size for achieving near 100% throughput
by considering an infinite buffer queue and finding the queue sizem for which Prob{Q ≤ m} ≈ 1. Note

312 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Fig. 6. A snapshot of the resequecing buffer.

that when the buffer size is infinite, no packets will be retransmitted. The sender simply transmits new
packets one after another. Then, the selective-repeat ARQ is the same as the stop-and-wait-n ARQ with
infinite block size and with finite sending capacity,Cs. Suppose the sender has been transmitting forever
and suppose it starts transmitting packet 1 at time 0.4 Then, packetk leaves the sender att = kτ, for
k ≥ 1, whereτ is the packet transmission time at the sender. Let the random delay for packetk beXk,
where the{Xk}’s are IID random variables. Packetk arrives at the receiver at timeAk = kτ + T + Xk,
for k = . . . , 1, 2,

At time t, let S(t) be the set of packets that have arrived at the receiving queue, letM(t) be the largest
packet inS(t), and letL(t) be the largest packet that has been accepted by the receiver.5 They can be
expressed as

S(t) = {i : Ai ≤ t}
M(t) = max{i : Ai ≤ t}
L(t) = max{i : max{. . . , Ai−1, Ai} ≤ t}

Fig. 6 illustrates various quantities about the resequencing buffer. The stripe represents packet sequence
numbers, increasing from the left to the right. To the left of the sequence numberL are packets that have
arrived and have been accepted. The unshaded areas are the packets that have not arrived. By definition,
none of the packets greater thanM have arrived yet. The darker-shaded areas betweenL andM represent
the packets that have arrived but have not been accepted. They constitute the content of the current queue.

The queue size at timet is Q(t) = |S(t) − {. . . , L(t) − 2, L(t) − 1, L(t)}|. It does not seem easy to
keep track the setS(t). Instead of computing the distribution ofQ(t), we will compute the distribution
of an upper bound forQ(t), denoted byQ̄(t) = (M(t) − L(t) − 1)+. Note that if there is exactly one gap
betweenL(t) andM(t), that is, exactly one packet betweenL(t) andM(t) has not arrived at the receiver,
thenQ̄(t) = Q(t). In this case, the missing packet must beL(t) + 1. In order forQ̄(t) be a tight upper
bound, there should be no or few gaps fromL(t) to M(t). When the queue size is large, we have good
reason to believe this is the case. For, the large queue size is typically caused by the exceptionally long
delay of a very early packet that has not arrived after most other packets betweenL(t) andM(t) have
arrived.

For m = 0, 1, 2, . . ., we have

P{Q̄(t) ≤ m} = P{L(t) ≥ M(t) − m − 1}.

4 Packet ID numbers can be negative.
5 The terms “largest” or “smallest” packet refer to the packet ID. All packets are identical in size.

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 313

We can partition the above probability with the event{M(t) = k}, for k ≤ k∗, wherek∗ = �(t − T)/τ� is
the largest packet that can possibly arrive before timet

P{Q̄(t) ≤ m} =
∑
k≤k∗

P{. . . , Ak−m−2 ≤ t, Ak−m−1 ≤ t, M(t) = k}

=
∑
k≤k∗

P{. . . , Ak−m−2 ≤ t, Ak−m−1 ≤ t, Ak ≤ t, Ak+1 > t, . . . , Ak∗ > t}

=
∑
k≤k∗

P{. . . , Ak−m−2 ≤ t, Ak−m−1 ≤ t}P{M(t) = k}. (15)

where we have used the fact that theAi’s are independent random variables. Due to the same independence
property, it is easy to write an expression for the probability

P{M(t) = k} = P{Ak ≤ t, Ak+1 > t, . . . , Ak∗ > t}.

The right hand of(15) is a key quantity (or 1 minus of it) we wish to compute. In Section3.1.1, we will
first computeP{M(t) = k} and will argue that the infinite sum in(15) can be approximated by a finite
sum. Then, in Section3.1.2, we will computeP{. . . , Ak−m−2 ≤ t, Ak−m−1 ≤ t} and give the final answer
to P{Q̄(t) ≤ m}.

3.1.1. Computation of P{M(t) = k}
For exponential delay with mean 1/λ,

P{M(t) = k} = (1 − e−λ(t−kτ−T)) e−(k∗−k)λ(t−(k+1+k∗)τ/2−T) (16)

For Pareto delay with parameterK > 0 andα > 1,

P{M(t) = k} =
(

1 − Kα

(t − kτ − T)α

)
Kα

(t − (k + 1)τ − T)α
· · · Kα

(t − k∗τ − T)α
. (17)

Since this number decays to 0 geometrically fast askdecreases, we can find ak0 < k∗ so thatP{M(t) = k}
is negligible fork < k0. For practical purpose, the sum in(15)involves a small number of terms. Suppose
k satisfiesP{M(t) = k} ≤ ε for some 0< ε < 1. In the case of exponential distribution, let us ignore the
factor (1− e−λ(t−kτ−T)) in (16)since it is no greater than 1. Usingk∗ = �(t − T)/τ�, we get

k∗ − k ≥
√

−2 logε

λτ
+ 1. (18)

Hence, we can choose

k0 = k∗ −
(√

−2 logε

λτ
+ 1

)
.

Table 1shows the lower bounds onk∗ − k obtained by using(18)(labelled “analysis”) and by using(16)
(labelled “exact”). The purpose of the comparison is to make sure that the simpler expression on the right
hand of(18) does not lose much accuracy. This is indeed confirmed by the table of results. We also see

314 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Table 1
Lower bound onk∗ − k to achieveP{M(t) = k} ≤ ε for the exponential distribution

Cs (Mbps) Lower bound onk∗ − k: analysis/exact

ε = 10−5 ε = 10−10 ε = 10−20

1 8/6 10/9 14/13
10 21/20 29/28 41/40

100 63/58 89/87 125/124

1/λ = 20 ms.

Table 2
Lower bound onk∗ − k to achieveKα/(t − (k + 1)τ − T)α ≤ ε for the Pareto distribution

Cs (Mbps) Lower bound onk∗ − k

1 2
10 13

100 123

Mean delay = 20 ms,α = 1.1, ε = 0.1.

Table 3
Lower bound onk∗ − k to achieveP{M(t) = k} ≤ ε for the Pareto distribution

Cs (Mbps) Lower bound onk∗ − k

ε = 10−5 ε = 10−10 ε = 10−20

1 6 9 14
10 12 17 25

100 37 48 65

Mean delay = 20 ms,α = 1.1.

that the values of the lower bound are not very large for very smallε’s. Expression(18)shows that these
values grow very slowly asε decreases or asλτ increases.

We can do similar analysis for the Pareto case. We do not have a more compact expression for(17).
Hence, we will show at what valuek the factorKα/(t − (k + 1)τ − T)α in (17) becomes small, say 0.1.
From that point on, ask continues to decrease, the value ofP{M(t) = k} will rapidly decrease toward
zero. By settingKα/(t − (k + 1)τ − T)α ≤ ε, we get

k∗ − k ≈ K

τε1/α
. (19)

The approximation above is due to rounding real numbers to integers. For the case whereα = 1.1,
EX = 20 ms, andε = 0.1, the results are shown inTable 2. With exact numerical analysis on(17),
the lower bound onk∗ − k to achieveP{M(t) = k} ≤ ε is in fact very small. The results are shown in
Table 3.

3.1.2. Asymptotic behavior ofP{Q̄(t) ≤ m}
In order to computeP{Q̄(t) ≤ m} as in (15), we next turn to the calculation ofa(k, m)

:=P{. . . , Ak−m−2 ≤ t, Ak−m−1 ≤ t}. For eachm, ask decreases,a(k, m) increases to 1 for the delay

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 315

distributions we are considering. We will first study the asymptotic behavior ofP{Q̄(t) ≤ m} for large
values ofm. From the previous analysis, we canassumethe summation in(15) is over a small number of
terms,k0, k0 + 1, . . . , k∗. That is, let us write6

P{Q̄(t) ≤ m} =
k∗∑

k=k0

a(k, m)P{M(t) = k}.

Similarly, let us assume

k∗∑
k=k0

P{M(t) = k} = 1.

Sincea(k, m) increases ask decreases, we get

a(k∗, m)
k∗∑

k=k0

P{M(t) = k} ≤ P{Q̄(t) ≤ m} ≤ a(k0, m)
k∗∑

k=k0

P{M(t) = k}.

Hence,

a(k∗, m) ≤ P{Q̄(t) ≤ m} ≤ a(k0, m). (20)

The key is to computea(k, m).

3.1.2.1. Exponential case.First, let us consider the exponential case. We will use the following result.

Lemma 3.1. For x ≥ 2 log(1+ √
2),

log(1− e−x) ≥ −e−x/2. (21)

Proof. Form a functiong(x) := log(1− e−x) + e−x/2 on (0, ∞). We see that lim
x→∞ g(x) = 0. Next,

g′(x) = e−x(2 + e−x/2 − ex/2)

2(1− e−x)
.

6 This can be made more rigorous by

k∗∑
k=k0

a(k, m)P{M(t) = k} ≤ P{Q̄(t) ≤ m} ≤ C

k∗∑
k=k0

a(k, m)P{M(t) = k}

for some small constantC > 1.

316 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

When 2+ e−x/2 − ex/2 ≤ 0, or equivalently, whenx ≥ 2 log(1+ √
2), g′(x) ≤ 0. Sinceg(x) decreases

to 0 on [2 log(1+ √
2), ∞), it must be true thatg(x) ≥ 0 on [2 log(1+ √

2), ∞). �

We use this lemma in the following derivation withx = λ(t − (j − m)τ − T).

loga(k∗, m) =
∑
j<k∗

log(1− e−λ(t−(j−m)τ−T)) ≥ −
∑
j<k∗

e−λ(t−(j−m)τ−T)/2 = −e−λ(t−(k∗−m−1)τ−T)/2

1 − e−λτ/2
.

(22)

The last equality above is derived from summing the geometric series in the previous expression. The
condition for the above inequality isλ(t − (j − m)τ − T) ≥ 2 log(1+ √

2) for j < k∗. This is satisfied
if (k∗ − j + m) ≥ 2 log(1+ √

2)/(λτ). A weaker condition is simplym ≥ 2 log(1+ √
2)/(λτ). When

1/λ = 20 ms and when the packet size is 1500 bytes,m ≥ 3, 30 and 294 for the link speedCs = 1, 10
and 100 Mbps, respectively. We would like to point out that these are very loose bound. In practice, we
expect the inequality(22) to hold for much smallerm. Combining(20) and (22), we get the lower bound

P{Q̄(t) ≤ m} ≥ exp

(
−e−λ(t−(k∗−m−1)τ−T)/2

1 − e−λτ/2

)
. (23)

Or, using the fact ex ≥ 1 + x for all x, we get the upper bound

P{Q̄(t) > m} ≤ 1 − exp(−e−λ(t−(k∗−m−1)τ−T)/2

1 − e−λτ/2
) ≤ e−λ(t−(k∗−m−1)τ−T)/2

1 − e−λτ/2
≤ e−(m+2)λτ/2

1 − e−λτ/2
. (24)

Thus, for large enoughm,P{Q̄(t) > m} converges to zero very rapidly, at a rate no slower than exponential
in m. In the above analysis, if we supposeλ(t − (j − m)τ − T) is large enough, we can write

loga(k∗, m) =
∑
j<k∗

log(1− e−λ(t−(j−m)τ−T)) ≈ −
∑
j<k∗

e−λ(t−(j−m)τ−T) = −e−λ(t−(k∗−m−1)τ−T)

1 − e−λτ
. (25)

Furthermore, since ex ≈ 1 + x, for x near 0,

P{Q̄(t) > m} ≤ 1 − exp

(
−e−λ(t−(k∗−m−1)τ−T)

1 − e−λτ

)
≈ e−λ(t−(k∗−m−1)τ−T)

1 − e−λτ
≈ e−(m+2)λτ

1 − e−λτ
. (26)

The approximation in(26)turns out to be very good.Fig. 7compares the values ofP{Q̄(t) > m} obtained
with (26) (labelled as “approximation”) with numerical results of(15) (labelled as “numerical”).7 The
mean delay, 1/λ, is 20 ms. The approximation agrees extremely well with the numerical results. InFig. 7,
we also compare the tail distribution of̄Q(t) with the loss probability under finite buffer sizes, obtained
by simulation (the curves are labelled as “simulation”). We see that the two distributions agree very well
when the queue size is large enough. We may consider the tail probability of the queue size upper bound,
P{Q̄(t) > m}, as an approximation of the packet loss ratio when the buffer size ism. Fig. 7(a) and (b)
differ in the transmission speed, whereCs = 1 and 100 Mbps, respectively.8 We see that the queue size

7 Throughout Section3, all simulation results are for finite buffer sizes, and the queue size should be interpreted as the buffer
size. All analytical and numerical results are forQ̄ under the infinite buffer assumption.

8 In all our simulation results, the chosen packet size is 1500 bytes, which is the size of Ethernet’s maximum transfer unit
(MTU).

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 317

Fig. 7. Tail probabilities forQ̄ (“numerical” and “approximation”) and loss probabilities under finite buffer size (“simulation”),
for the exponential distribution (1/λ = 20 ms): (a)Cs = 1 Mbps; (b)Cs = 100 Mbps.

Fig. 8. Tail probabilities forQ̄ for the exponential distribution. Comparison of different mean delays.Cs = 100 Mbps.

depends the transmission speed quite sensitively. InFig. 8, we show the comparison between two different
mean delays: 1/λ = 10 and 20 ms. The sender’s link speed in this case isCs = 100 Mbps.

3.1.2.2. Pareto case.Next, we will show a similar analysis for the Pareto case. Fork ≤ k∗,

loga(k, m) =
∑
j<k

log

(
1 − Kα

(t − (j − m)τ − T)α

)
≤ −

∑
j<k

Kα

(t − (j − m)τ − T)α

≤
∫ k−1

−∞
− Kα

(t − (x − m − 1)τ − T)α
dx = −Kα

(α − 1)τ
(t − (k − m − 2)τ − T)−α+1. (27)

318 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Fig. 9. Tail probabilities forQ̄ for the Pareto distribution (α = 1.9): (a)Cs = 10 Mbps; (b)Cs = 100 Mbps.

By P{Q̄(t) ≤ m} ≤ a(k0, m),

P{Q̄(t) ≤ m} ≤ exp

{ −Kα

(α − 1)τ
(t − k0τ − T + (m + 2)τ)−α+1

}

≤ exp

{ −Kα

(α − 1)τ
((k∗ − k0 + m + 2)τ)−α+1

}
, (28)

P{Q̄(t) > m} ≥ 1 − exp

{ −Kα

(α − 1)τ
((k∗ − k0 + m + 2)τ)−α+1

}

≈ Kα

(α − 1)τ
((k∗ − k0 + m + 2)τ)−α+1. (29)

Eq. (29) shows that the tail probability decays as a power function. InFig. 9, we show an example of
the tail probability,P{Q̄(t) > m}, based on the approximation in(29), and compare the result with those
based on numerical analysis. Numerical analysis of the queue length distribution for the Pareto case is
difficult. The numerical results inFig. 9are for Pareto distributions “truncated” at large values, denoted
by d. In these plots, we see extraordinarily good match between the approximation and the numerical
results. We believe that the slight discrepancy between the two is because the delay bounds,d, are not
large enough.

In Fig. 10, we compare the tail distribution of̄Q(t) with the loss probabilities under finite buffer sizes,
obtained through simulation. The Pareto distribution is truncated atd = 1000 s. We see that they are
very close to each other for large queue sizes. Unlike the semi-log scale inFig. 9, Fig. 10uses log–log
scale.

After we establish enough confidence on the “goodness” of the approximation, we use the approxima-
tion to investigate dependency of the tail probability of the queue size on various parameters. The results
are shown inFig. 11in log–log scale. Again, we may consider the tail probability of the queue size upper
bound,P{Q̄(t) > m}, as an approximation of the packet loss ratio when the buffer size ism. FromFig.
11(a) and (b), we notice that to achieve low packet loss probability, the buffer size must be large. For
instance, to achieve less than 1% packet loss ratio or equivalently 99% of throughput atα = 1.9, we must

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 319

Fig. 10. Tail probabilities forQ̄ for the Pareto distribution (“numerical” and “approximation”): comparison with actual loss
probabilities under finite buffer sizes (“simulation”).Cs = 1 Mbps;α = 1.9; d = 1000 s.

havem > 102, 104 and 106 for Cs = 1, 10 and 100 Mbps, respectively. As illustrated inFig. 11(b) and
(c), the loss ratio depends crucially on the parameterα, but less crucially on the mean variable delay.

3.2. Waiting time in the queue

In this section, we analyze the distribution of the resequencing delay, i.e., the waiting time at the receiver
queue. Again, suppose the buffer sizeb is infinite. Let the waiting time for packeti beWi. Packeti will
be accepted immediately after all packetsj ≤ i arrive at the queue. Therefore, packeti’s waiting time is,

Wi = max
j≤i

Aj − Ai = max
j≤i

{Aj − Ai}.

Hence, fort ≥ 0,

P{Wi ≤ t} = P{Aj − Ai ≤ t, for all j < i} =
∏
j<i

P{Aj − Ai ≤ t}

=
∫ ∏

j<i

F (x + (i − j)τ + t) dF (x). (30)

Note thatAk = kτ + T + Xk. The last equality is obtained by conditioning onXi = x.
When the variable delay is bounded byd,

P{Wi ≤ t} =
∫ d

0

i−1∏
i−�(d−t−x)/τ�

F (x + (i − j)τ + t) dF (x).

The mean waiting time of a packeti is

EW = E max
j≤i

Aj − EAi. (31)

320 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Fig. 11. Tail probabilities forQ̄ for the Pareto distribution (log–log plot): (a)α = 1.9, mean delay = 20 ms; (b)Cs = 1 Mbps,
mean delay = 20 ms; (c)Cs = 100 Mbps,α = 1.9, mean delays = 10 and 20 ms.

3.2.1. Waiting time for exponential variable delay
In the case of the exponential variable delay, we can find the expression for an approximation of the

expected waiting time. When packeti arrives at the queue, letGi be the number of sequence gaps in the
received packets prior toi. In other words,Gi is the number of packets that are transmitted beforei but
have not arrived at the receiver

Gi = |{j < i : Aj > Ai}|.

Packeti needs to stay in the queue until all theseGi packets arrive. Due to the memoryless property
of the exponential distribution, the remaining time in the network of each packet is still exponentially
distributed. Hence,

Wi = max{Yj : j = 1, 2, . . . , Gi},

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 321

where theYj ’s are IID exponential random variables representing the packets’ remaining times in the
network. We know from([6], p. 49) that thekth order statistics for a collection ofn IID exponential
random variables has the expectation

EX(k) = 1

λ

k∑
i=1

1

n − i + 1
, (32)

where 1/λ is the mean of the exponential distribution andk = 1, 2, . . . , n. Conditional onGi and using
(32), we get

E[Wi|Gi] = 1

λ

Gi∑
j=1

1

j
.

For Gi > 1, the sum can be approximated by

E[Wi|Gi] ≈ 1

λ
(logGi + 0.5).

Then,

E[Wi] ≈ 1

λ
(E logGi + 0.5) ≤ 1

λ
(logEGi + 0.5).

Since the log function is fairly flat over the range of values of practical interest, we will use the following
approximation

E[Wi] ≈ 1

λ
(logEGi + 0.5). (33)

The expected value ofGi can be computed as follows:

E[Gi] = E

∑

j<i

1(Aj>Ai)

 =

∑
j<i

P{Aj > Ai} =
∑
j<i

P{Xj − Xi > (i − j)τ}

=
∑
j<i

1

2
e−λ(i−j)τ = 1 − e−λiτ

2(1− e−λτ)
.

Substituting the result forE[Gi] into (33)and leti go to infinity, we get the stationary mean waiting time.

E[W] ≈ 1

λ

(
log

(
1

2(1− e−λτ)

)
+ 0.5

)
. (34)

In Table 4, we compare the mean waiting times derived from the above analysis with those from simulation.
The analytic approximation becomes quite good when the link speed exceeds 10 Mbps. When the link
speed is smaller, it appears that the approximation is not accurate. The reason is that, at 1 Mbps,G is very
close to 1 on average, making the two approximations we use in deriving(34) less appropriate. However,
at this link speed, the packet transmission time,τ, is 12 ms. So the inaccuracy in the approximation of
E[W] at 1 Mbps is no greater than one packet transmission time. In any case, we are more interested in

322 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Table 4
Mean waiting time for the exponential delay: analysis vs. simulation

Cs (Mbps) E[W]: analysis/simulation (ms)

1/λ = 10 1/λ = 20

1 1.65/0.2 12.1/0.2
10 19.9/17.5 53.0/48.5

100 42.3/40.0 98.5/94.0

situations where the link speed, and hence, the waiting time, are large. At link speedCs = 10 Mbps and
1/λ = 10 ms, we haveE[G] = 4.4, which is not a very large number. We see that the approximation of
E[W] is already quite good. WhenCs ≥ 10 Mbps, we can further approximateE[W] by noticing that
e−λτ ≈ 1 − λτ whenλτ is small. Then,

E[W] ≈ 1

λ

(
log

(
Cs

2λU

)
+ 0.5

)
, (35)

whereU is the packet size in bits. We see that the mean waiting time of a packet scales logarithmically
with the link capacity. We also see that, at a given link speed, reducing the packet size, hence, the packet
transmission time, increases the mean waiting time. The observation that small packet size is undesirable
from the point of view of resequencing delay cautions us that a design to improve the performance in one
area may negatively affect the performance in another area. For instance, in the ATM network, the small
packet (cell) size, 53 bytes, is considered appropriate for packetizing voice traffic. But it may result in
worse resequencing delay than the 1500-byte Ethernet packet.

Table 4shows that, at the moderately high link speed of 100 Mbps and at the mean variable delay of
20 ms, the mean resequencing delay is about 100 ms. This is fairly large considering that (i) the maximum
tolerable delay for interactive voice is 200 ms, (ii) the total end-to-end delay also includes the propagation

Table 5
Mean waiting time for Pareto delay: simulation results

Cs (Mbps) E[W]: simulation (ms)

d = 0.2 s d = 0.5 s d = 2 s d = 10 s d = 1000 s

EX = 20 ms,α = 1.1
1 33.12 81.82 279.15 1093.49 51403.21

10 129.39 327.84 1223.43 5434.29 342886.45
100 172.83 458.22 1859.36 9183.65 826939.37

EX = 20 ms,α = 1.9
1 11.56 20.02 34.52 59.00 71.81

10 74.67 135.29 257.73 431.85 677.99
100 152.28 351.43 988.85 2433.43 4416.03

EX = 10 ms,α = 1.9
1 3.73 6.08 9.92 16.89 20.02

10 37.50 58.27 94.60 158.44 211.46
100 121.30 232.90 519.41 1079.91 1205.94

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 323

Fig. 12. Throughput vs. buffer size for exponential distributions: (a)Cs = 1 Mbps,T = 30 ms; (b)Cs = 10 Mbps,T = 30 ms;
Cs = 100 Mbps,T = 30 ms; (d)EX = 20 ms,Cs = 100 Mbps.

delay and the queueing delay in the network, (iii) the packet size here is quite large (1500 bytes), and (iv)
the exponential distribution for the random delay is a “nice” case, compared to heavy-tail distributions.

3.2.2. Waiting time for Pareto variable delay
Table 5shows the simulation results for the expected waiting time,EW , for “truncated” Pareto delays.

The delay bounds ared = 0.2, 0.5, 2, 10 and 1000 s. We see thatEW dependsd, α andCs in significant
ways. In many cases, the resequencing delay is non-trivial. When the Pareto distribution has a “heavy”
tail, e.g.,α = 1.1, and when the sending rate is fairly large, e.g.,Cs = 100 Mbps,EW is close to the
delay bound,d. If the delay bound is determined by a timeout mechanism similar to the one used in
TCP, then it is typicald ranges from 0.5 to 2 s. The resequencing delay ranges from 232 ms to 1.8 s for
Cs = 100 Mbps, and is expected to be higher for largerCs. Luckily, the delay increases much more slowly
thanCs increases. Also notice that reducingd to 0.2 s can greatly reduce the expected delay. In the case
of TCP, there is incentive to reduce the transmission timeout value, which depends on the round-trip time
of the transmission path. Therefore, it pays to accurately estimate the round-trip time.

324 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

Fig. 13. Throughput vs. buffer size for “truncated” Pareto distributions (α = 1.9, T = 30 ms): (a)Cs = 10 Mbps, linear scale;
(b) Cs = 10 Mbps, semi-log scale; (c)Cs = 100 Mbps, linear scale; (d)Cs = 100 Mbps, semi-log scale.

3.3. Throughput for finite buffer sizes

This section shows some simulation results on the throughput under finite buffer sizes. We also vary
other parameters, such as the link speed, the propagation delay and the parameters for the distribution
functions.Fig. 12is for the exponential delays. The link speed is 1, 10 and 100 Mbps for plots (a)–(c),
respectively. The two curves in each of the above plots correspond to the mean variable delay 10 and
20 ms, respectively. The buffer requirement depends on the link speed in fairly regular fashion for a large
range of the throughput values, say between 10 and 90%. For instance, for the case where the mean delay,
EX, is 20 ms and throughput is 50%, the buffer size is 4, 40 and 550 when the link speed is 1, 10 and
100 Mbps, respectively. In plot (d), we vary the fixed propagation delayT.

Figs. 13 and 14are for the “truncated” Pareto distributions withα = 1.9 and 1.1, respectively. We
see that the delay bound,d, severely affects the throughput-buffer size characteristics in the Pareto case.
So do the sending speed,Cs, and the speed of decay of the Pareto complimentary distribution function,
represented byα. To demonstrate the large buffer requirement under large values ofd, the axis for the
buffer size is shown in both linear scale and log scale.

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 325

Fig. 14. Throughput vs. buffer size for “truncated” Pareto distributions (α = 1.1,T = 30 ms): (a)Cs = 1 Mbps, linear scale; (b)
Cs = 1 Mbps, semi-log scale; (c)Cs = 10 Mbps, linear scale; (d)Cs = 10 Mbps, semi-log scale.

4. Conclusion

4.1. General comments

For reliable communication, the receiver’s transport layer must resequence packets that are disordered
by the network. This paper studies the delay and the required buffer size for packet resequencing. The
results are summarized in Section1.3. We have shown that both quantities can be significant, especially
when the variable packet delay in the network has a heavy-tail distribution. Besides requiring extra
resource, the delay caused by packet resequencing negatively affects the performance of delay-sensitive
applications. A network that causes severe packet disordering, such as one that allows multi-path routing,
must employ mechanisms to reduce the resequencing delay. Fast detection and retransmission of delayed
or dropped packets can be very helpful or even necessary. The results show how the loss probability and
the resequecing delay scale with technology, i.e., the link speed, the packet size, and the distributions and
parameters for the variable delay. The key message is: the resequencing problem becomes worse as the
link speed increases. This is in contrast with many other performance measures. For instance, assuming

326 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

the characteristics of the data sources do not change, as the link speed of the backbone increases, more
connections and traffic can be aggregated together. The combined traffic is typically smoother and its
queueing delay in the network is smaller under the same link utilization. Another message is that making
the packet size smaller also increases the resequencing delay.

In terms of modelling, this paper presents two models, the stop-and-wait ARQ and the selective-repeat
ARQ. The two models are increasingly more complex, but are also increasingly more suitable for reality.
The analysis of the stop-and-wait ARQ is for the whole range of buffer sizes. The analysis of the selective-
repeat ARQ is for large buffer sizes only. Many results of this paper are in terms of simple expressions,
which can be easily interpreted. We frequently use approximations in their derivation. In this paper, the
random packet delays that cause the disordering of the packets are assumed be IID. In our other work
[26], we analyze a model with correlated delays where the disordering is caused by multi-path routing.

4.2. Selective-repeat ARQ: relevance to TCP

How are the models relevant to the resequencing problem in TCP, the dominant transport protocol?
We will focus our discussion on the selective-repeat ARQ model. The model captures the resequencing
behavior at the TCP receiver. The feedback is similar to TCP’s selective acknowledgement. However,
TCP is more complicated. TCP has flow control and congestion control. With the flow control, packets
are never really dropped at the receiver. Packet can be dropped in the network due to congestion. TCP uses
cumulative acknowledgement by default, and optionally selective acknowledgement, to carry feedback
information. There is uncertainty in the feedback information because the reverse channel is unreliable.
There is also variation in the timing of packet retransmissions. In a real TCP connection, the bandwidth
bottleneck can be at the sender, the network or the receiver.

Given the many interacting factors of TCP, a fully accurate TCP model with resequencing will be hard
to analyze, or even to write down. Our model represents a piece-meal approach for understanding the
resequencing problem under TCP. We get rid of many details of TCP and concentrate on a single isolated
phenomenon, the disordering/resequencing of packets. In essence, we ask: if everything else goes well,
even better than what TCP allows, how bad is the resequencing problem?

In our model, we assume that (i) the receiver has infinite capacity, i.e.,Cr = ∞ (seeFig. 1for notation).
We also assume that (ii) the connection is bandwidth-bottlenecked at the sender. Assumption (ii) leads
to the fact that no packets are dropped in the network. TCP has a flow control window, whose size is the
amount of packets that the sender can transmit without overflowing the receiver’s buffer. It is equal to
the buffer space available at the receiver minus the number of packets on the flight to the receiver. Under
assumptions (i) and (ii), if all packets are in sequence, there will never be packets waiting at the receiver
buffer, because they get immediately accepted (to the upper layer) when they arrive at the receiver. Hence,
the buffer at the receiver is used solely for packet resequencing.

Let us imagine what happens in actual TCP under the assumptions (i) and (ii). Note that the missing
packets in the receiver’s buffer are due to packet disordering in the network, not due to packet losses. With
TCP’s flow control, packets are never dropped at the receiver, because the TCP sender has an estimate of
the receiver’s buffer size based on the flow control window size contained in the feedback packets. The
TCP sender will receive feedback about the missing packets, say, with the selective acknowledgement,
and will retransmit the missing packets. From the feedback information, the TCP sender can not deduce
whether the packets are lost in the network or merely delayed, and it might reduce the congestion control
window, depending on the exact sequence of events. The TCP sender will stop sending new packets if either

Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328 327

the congestion control window or the flow control window is used up. Hence, insufficient resequencing
buffer size will lead to reduced throughput of TCP, instead of packet losses at the receiver as in our model.

With all these differences, what can be said about TCP based on our mode? In a sense, the results from
our model tell us how to size the receiver’s buffer so that TCP throughput does not suffer from packet
disordering. For instance, if in our model, a particular buffer size leads to 10−4 packet loss ratio, we know
that will be the buffer size at which TCP throughput won’t be affected much by packet disordering. Our
model-based results are, on one hand, optimistic because, first, we assumeCr is infinite, and second,
TCP’s congestion control does not kick in to further reduce the throughput. The buffer size would have
to be even larger with a finiteCr and with TCP’s congestion control activated. On the other hand, our
mechanism for packet disordering (i.e., due to IID delays on packets) is likely to be pessimistic for normal
situations.

References

[1] M.E. Anagnostou, E.N. Protonotarios, Performance analysis of the selective repeat ARQ protocol, IEEE Trans. Commun.
COM-34 (2) (1986) 127–135.

[2] S. Ayoun, Z. Rosberg, Optimal routing to two parallel heterogeneous servers with resequencing, IEEE Trans. Automat.
Control 36 (12) (1991) 1436–1449.

[3] F. Baccelli, E. Gelenbe, B. Plateau, An end-to-end approach to the resequencing problem, J. Assoc. Comput. Machinery
31 (3) (1984) 474–485.

[4] F. Baccelli, A.M. Makowski, Queueing models for systems with synchronization constraints, Proc. IEEE 77 (1) (1989)
138–161.

[5] S. Chowdhury, An analysis of virtual circuits with parallel links, IEEE Trans. Commun. 39 (8) (1991) 1184–1188.
[6] H.R. David, Order Statistics, 2nd ed., Wiley, New York, 1981.
[7] R. Durrett, Probability—Theory and Examples, 2nd ed., Duxbury Press, Florence, KY, 1996.
[8] N. Gogate, S.S. Panwar, On a resequencing model for high speed networks, in: Proceedings of INFOCOM ’94, Toronto,

Canada, June 1994, pp. 40–47.
[9] G. Harrus, B. Plateau, Queueing analysis of a reordering issue, IEEE Trans. Software Eng. SE-8 (2) (1982) 113–123.

[10] I. Iliadis, L.Y.-C. Lien, Resequencing delay for a queueing system with two heterogeneous servers under a threshold-type
scheduling, IEEE Trans. Commun. 36 (6) (1988) 692–702.

[11] A. Jean-Marie, L. G̈un, Parallel queues with resequencing, J. Assoc. Comput. Machinery 40 (5) (1993) 1188–1208.
[12] F. Kamoun, L. Kleinrock, R. Muntz, Queueing analysis of the reordering issue in a distributed database concurrency control

mechanism, in: Proceedings of the Second International Conference on Distributed Computing Systems, Versailles, France,
April 1981, pp. 13–23.

[13] A.G. Konheim, A queueing analysis of two ARQ protocols, IEEE Trans. Commun. COM-28 (7) (1980) 1004–1014.
[14] Y.-C. Lien, Evaluation of the resequence delay in a Poisson queueing system with two heterogeneous servers, in: Proceedings

of the International Workshop on Computer Performance Evaluation, Tokyo, Japan, September 1985, pp. 189–197.
[15] M.J. Miller, S.-L. Lin, The analysis of some selective-repeat ARQ schemes with finite receiver buffer, IEEE Trans. Commun.

COM-29 (9) (1981) 1307–1315.
[16] D.S. Mitrinovic, Analytic Inequalities, Springer, Berlin, 1970.
[17] V. Paxson, End-to-end Internet packet dynamics, IEEE/ACM Trans. Netw. 7 (3) (1999) 277–292.
[18] Z. Rosberg, N. Shacham, Resequencing delay and buffer occupancy under the selective-repeat ARQ, IEEE Trans. Inform.

Theory 35 (1) (1989) 166–172.
[19] Z. Rosberg, M. Sidi, Selective-repeat ARQ: the joint distribution of the transmitter and the receiver resequencing buffer

occupancies, IEEE Trans. Commun. 38 (9) (1990) 1430–1438.
[20] B.H. Saeki, I.R. Rubin, An analysis of a TDMA channel using stop-and-wait, block, and selective-and-repeat ARQ error

control, IEEE Trans. Commun. COM-30 (5) (1982) 1162–1173.

328 Y. Xia, D. Tse / Performance Evaluation 61 (2005) 299–328

[21] N. Shacham, B.C. Shin, A selective-repeat-ARQ protocol for parallel channels and its resequencing analysis, IEEE Trans.
Commun. 40 (4) (1992) 773–782.

[22] N. Shacham, D. Towsley, Resequencing delay and buffer occupancy in selective-repeat ARQ with multiple receivers, IEEE
Trans. Commun. COM-39 (6) (1991) 928–937.

[23] D. Towsley, J.K. Wolf, On the statistical analysis of queue lengths and waiting times for statistical multiplexers with ARQ
retransmission schemes, IEEE Trans. Commun. COM-27 (4) (1979) 693–702.

[24] D. Towsley, The stutter go back-NARQ protocol, IEEE Trans. Commun. COM-27 (6) (1979) 869–875.
[25] S. Varma, Optimal allocation of customers in a two server queue with resequencing, IEEE Trans. Autom. Control 36 (11)

(1991) 1288–1293.
[26] Y. Xia, D. Tse, On the large deviation of resequencing queue size: 2-M/M/1 case, in: Proceedings of the IEEE Infocom

2004, Hong Kong, March 2004.
[27] T.-S.P. Yum, T.-Y. Ngai, Resequencing of messages in communication networks, IEEE Trans. Commun. COM-34 (2)

(1986) 143–149.

Ye Xia is an assistant professor at the Computer and Information Science and Engineering department at
the University of Florida, starting in August 2003. He has a PhD degree from the University of California,
Berkeley, in 2003, an MS degree in 1995 from Columbia University, and a BA degree in 1993 from
Harvard University, all in Electrical Engineering. Between June 1994 and August 1996, he was a member
of the technical staff at Bell Laboratories, Lucent Technologies in New Jersey. His research interests are
in computer networking area, including performance evaluation of network protocols and algorithms,
congestion control, resource allocation, and load balancing on peer-to-peer networks. He is also interested
in probability theory, stochastic processes and queueing theory.

David Tsereceived the BASc degree in systems design engineering from University of Waterloo, Canada
in 1989, and the MS and PhD degrees in electrical engineering from Massachusetts Institute of Technology
in 1991 and 1994 respectively. From 1994 to 1995, he was a postdoctoral member of technical staff at A.T.
& T. Bell Laboratories. Since 1995, he has been at the Department of Electrical Engineering and Computer
Sciences in the University of California at Berkeley, where he is currently a Professor. He received a 1967
NSERC 4-year graduate fellowship from the government of Canada in 1989, a NSF CAREER award
in 1998, the Best Paper Awards at the Infocom 1998 and Infocom 2001 conferences, the Erlang Prize in
2000 from the INFORMS Applied Probability Society, the IEEE Communications and Information Theory
Society Joint Paper Award in 2001, and the Information Theory Society Paper Award in 2003. His research
interests are in information theory, wireless communications and networking.

	Analysis on packet resequencing for reliable network protocols
	Introduction
	Network model
	Related previous studies
	ARQ models
	Open queueing models

	Summary of results
	Discussions

	Stop-and-wait-n ARQ
	Selective-repeat ARQ
	Buffer size to achieve near 100%throughput
	Computation of P {M(t)=k }
	Asymptotic behavior of
	Exponential case.
	Pareto case.

	Waiting time in the queue
	Waiting time for exponential variable delay
	Waiting time for Pareto variable delay
	Throughput for finite buffer sizes

	Conclusion
	General comments
	Selective-repeat ARQ:relevance to TCP

	References

