
Achieving Near-Optimal Traffic Engineering
Solutions for Current OSPF/IS-IS Networks

Ashwin Sridharan†, Roch Guérin†, Christophe Diot††

Abstract— Traffic engineering is aimed at distributing traffic
so as to “optimize” a given performance criterion. The ability
to carry out such an optimal distribution depends on both the
routing protocol and the forwarding mechanisms in use in the
network. In IP networks running the OSPF or IS-IS protocols,
routing is over shortest paths, and forwarding mechanisms are
constrained to distributing traffic uniformly over equal cost
shortest paths. These constraints often make achieving an optimal
distribution of traffic impossible. In this paper, we propose and
evaluate an approach, based on manipulating the set of next hops
for routing prefixes, that is capable of realizing near optimal traf-
fic distribution without any change to existing routing protocols
and forwarding mechanisms. In addition, we explore the trade-
off that exists between performance and the overhead associated
with the additional configuration steps that our solution requires.
The paper’s contributions are in formulating and evaluating an
approach to traffic engineering for existing IP networks that
achieves performance levels comparable to that offered when
deploying other forwarding technologies such as MPLS.

Index Terms— Routing, Networks, Traffic Engineering, Aggre-
gation.

I. INTRODUCTION

As the amount and criticality of data being carried on
IP networks grows, it is becoming increasingly important
to manage network resources in order to ensure reliable
and acceptable performance. Furthermore, it is desirable to
accomplish this while minimizing or deferring costly upgrades.
One of the techniques that is being evaluated by many Internet
Service Providers to achieve this goal is traffic engineering.
Traffic engineering aims at using information about the traffic
entering and leaving the network to optimize network per-
formance. Most often the output of traffic engineering is an
“optimal” set of paths and link loads that produce the best
possible performance given the available resources. This set
of paths can then be used by network administrators within
an autonomous system to control the flow and distribution of
traffic across the network. However, explicitly setting up such
paths and (optimally) assigning traffic to them, typically calls
for changes to both the routing protocols and the forwarding
mechanism they rely on, e.g., through the introduction of new
technology such as MPLS [1].

Currently, two of the most widely used Interior Gateway
routing protocols are OSPF [2] and IS-IS [3]. Hence it would

† {ashwin,guerin}@ee.upenn.edu, Dept. of Elec. Eng., Univ. of
Pennsylvania, Philadelphia, PA 19104
†† cdiot@sprintlabs.com, Sprint Advanced Technology Labs, One
Adrian Court,Burlingame, CA, 94010
The work of A. Sridharan and R. Guérin has been supported in part by NSF
grant ANI-9902943

be beneficial to devise solutions that allow these protocols to
emulate “optimal routing,” thus leveraging their widespread
deployment. There are two main difficulties in doing so. The
first is that these protocols use shortest path routing with
destination based forwarding. The second is that when the
protocols generate multiple equal cost paths for a given des-
tination routing prefix, the underlying forwarding mechanism
performs load balancing across those paths by equally splitting
traffic on the corresponding set of next hops . These added
constraints make it difficult or impossible to achieve optimal
traffic engineering link loads. One of the first works to explore
this issue was [4], where a local search heuristic was proposed
for optimizing OSPF weights assuming knowledge about the
traffic matrix. [4] showed that in spite of these constraints,
properly selecting OSPF weights could yield significant per-
formance improvements. However, the paper also showed that
for some topologies, performance can still be substantially
different from the optimal solution. Subsequently, a result from
linear programming ([5][Chap. 17, Sec. 17.2]) was used in [6]
to prove that any set of routes can be converted into a set of
shortest paths based on some link weights, that matches or
improves upon the performance of the original set of routes.
This establishes that the shortest path limitation is in itself not
a major hurdle. However, the result of [6] assumes forwarding
decisions that are specific to each source-destination pair, and
more importantly, the ability to split traffic in an arbitrary ratio
over different shortest paths. Both of these assumptions are at
odds with current IP forwarding mechanisms.

In this paper, we propose an approach that remedies both of
these problems. It builds on [6] by taking advantage of the fact
that shortest paths can be used to achieve optimal link loads,
but it is compatible with both destination based forwarding and
even splitting of traffic over equal cost paths. Compatibility
with destination based forwarding can be achieved through
a very minor extension to the result of [6], simply by taking
advantage of a property of shortest paths and readjusting traffic
splitting ratios accordingly. Accommodating the constraint of
even splitting of traffic across multiple shortest paths is a
more challenging task. The solution we propose leverages
the fact that current day routers have thousands of route
entries (destination routing prefixes) in their routing table.
Instead of changing the forwarding mechanism responsible for
distributing traffic across equal cost paths, we plan to control
the actual (sub)set of shortest paths (next hops) assigned to
routing prefix entries in the forwarding table(s) of a router.
In other words, for each prefix we define a set of allowable
next hops, by carefully selecting this subset from the set of
next hops corresponding to the shortest paths computed by

0-7803-7753-2/03/$17.00 (C) 2003 IEEE 1167

the routing algorithm. This allows us to control how traffic is
distributed without modifying existing routing protocols such
as OSPF or IS-IS, and without requiring changes to the data
path of current routers, i.e., their forwarding mechanism. It
does require some changes to the control path of routers in
order to allow the selective installment of next hops in the
forwarding table.

Our initial focus is on gaining a better understanding of
how well the selective installment of next hops for different
routing prefixes can approximate an optimal traffic allocation
(set of link loads). Because the problem is NP-hard, we
present a heuristic with a provable performance bound as
well as two other heuristics which perform very well in our
set of experiments. Even though we study these heuristics
in the context of a routing problem, we believe that they
are generic enough to be of potential use in other load
balancing scenarios. The main finding from our investigation
is that the performance achieved by this approach is essentially
indistinguishable from the optimal. This being said, an obvious
drawback of “hand-crafting” the set of next hops that are to
be installed for each routing prefix in a router’s forwarding
table, is the configuration overhead it introduces. The potential
magnitude (proportional to the size of the routing/forwarding
table) of this overhead could make this approach impractical.
As a result, our next step is to investigate a solution that can
help mitigate this overhead, albeit at the cost of a possible
degradation in performance. Specifically, we limit the num-
ber of routing prefixes for which we perform the proposed
selective installment of next hops. Our results indicate that a
significant reduction in configuration overhead can be achieved
without a major loss of performance.

The rest of the paper is structured as follows. Section II in-
troduces the linear program formulation used in [6] to generate
an ”optimal” set of shortest paths, and introduces our proposed
modifications to make it compatible with existing IP routers.
Section III presents a set of heuristics for approximating an
optimal traffic distribution by manipulating the set of next
hops assigned to each routing prefix. A performance bound is
derived for one of the heuristics (see Appendix). Section IV
presents several experiments that first establish the efficacy of
the heuristics of Section III, and then explore the impact on
performance of lowering configuration overhead. Section V
provides a brief summary of the paper’s contributions and
outline directions for future work.

II. FROM OPTIMAL ROUTING TO SHORTEST PATH

ROUTING

In this section, we first briefly review the classic result from
linear programming [5][Chap. 17, Sec. 17.2] that was cast in
the context of routing in communication networks in [6] to
show how optimal routing can be achieved using only shortest
paths. We then discuss why this result is not directly usable in
current IP networks, and finally propose solutions that allow
us to implement the result under the existing paradigm.

The network is modeled as a directed graph G = (V,E)
with m =‖ V ‖ nodes and n =‖ E ‖ directed links.
We assume the existence of a traffic matrix T where entry

T (sr, tr) = dr denotes the average intensity of traffic from
ingress node s to egress node t for commodity r ∈ R. A
good reference on how to construct such a traffic matrix can
be found in [7]. Assume that an optimal allocation based on
some network wide cost function yields a set of paths Pr for
each commodity r, so that the total bandwidth consumed by
these paths1 on link (i, j) is c̃ij . It can be shown that the
same performance, in terms of the bandwidth consumed on
each link, can be achieved with a set of shortest paths by
formulating and solving a linear program and its dual. The
linear program can be formulated as ([6])

min
∑

(i,j)∈E

∑

r∈R
drX

r
ij

subject to∑

j:(j,i)∈E

Xr
ij −

∑

j:(i,j)∈E

Xr
ij = 0 , i �= sr, tr r ∈ R

∑

j:(j,i)∈E

Xr
ji −

∑

j:(i,j)∈E

Xr
ij = 1 , i = tr r ∈ R

∑

r∈R

drX
r
ij ≤ c̃ij (i, j) ∈ E

0 ≤ Xr
i,j ≤ 1(i, j) ∈ E, r ∈ R, (1)

where Xr
ij is the fraction of traffic for commodity r that flows

through link (i, j). Solving the linear program gives a traffic
allocation {X̃r

i,j} that consumes no more than c̃i,j amount of
bandwidth on any link (i, j). In order to obtain link weights
for shortest path routing, the dual of the linear program as
formulated in [6] needs to be solved:

max
∑

r∈R, t∈V

Ur
tr

−
∑

(i,j)∈E

c̃ijWij

subject to

Ur
j − Ur

i ≤ Wij + 1 ∀ r ∈ R, (i, j) ∈ E

Wij ≥ 0
Ur

sr
= 0. (2)

The dual gives a set of link weights {W̃i,j}, from which
a set of shortest paths can be constructed that are consistent
with the traffic allocation variables {X̃r

i,j}.
It is, however, important to understand that although routing

can now be done over shortest paths, this is still quite different
from the forwarding paradigm currently deployed in existing
OSPF and IS-IS networks. The reasons are two-fold and both
can be traced to the output of the primal LP, namely, the traffic
allocation {X̃r

i,j}. Firstly, observe that the traffic allocation is
for each commodity or source-destination pair. This means
that the routing protocol could possibly generate different set
of next hops for each source-destination pair on which traffic
is to be forwarded. This impacts the forwarding mechanism
on the data path, as it now needs to make decisions on the
basis of both source and destination addresses.

The second problem relates to the fact that current for-
warding mechanisms support only equal splitting of traffic on
the set of equal cost next hops. The linear program yields a

1The bandwidth consumed on a link is assumed to be the sum of the traffic
on all paths that use the link

1168

traffic allocation that is not guaranteed to obey this constraint.
Modifying the forwarding engine to support unequal splitting
(see, for example, [8]) of traffic would involve significant
and expensive changes. The function used to select the next
hop on which to send a packet would have to be modified,
and additional information stored in the forwarding entries in
order to achieve the desired split ratios. This change is all the
more difficult since it impacts the data path. In the next two
sub-sections we suggest methods that overcome both these
problems.

A. Destination Based Aggregation of Traffic

The first problem of translating a traffic allocation that dis-
tinguishes between source-destination pairs into one that only
depends on destinations is relatively straightforward. It can be
achieved simply by transforming the individual splitting ratios
of source-destination pairs that share a common destination
into a possibly different splitting ratio for the aggregate traffic
associated with the common destination. The reason this is
possible is because all routes are shortest paths. Shortest paths
have the property that segments of shortest paths are also
shortest paths, so that once two flows headed to the same
destination meet at a common node they will subsequently
follow the same set of shortest paths. This means that we need
not distinguish these packets based on their source address, and
can make splitting and forwarding decisions simply based on
their destination address. The new splitting ratios that are to
be used on the aggregate traffic in order to achieve the same
traffic distribution can be computed as follows.

Let the traffic heading for destination t at node i �= t be
denoted as

f t
i =

∑

j:(j,i)∈E

∑

s:(s,t)∈R

drX
r
i,j .

The fraction of destination t traffic that is forwarded on link
(i, j) is then

αt
ij =

∑
s:(s,t)∈R

drX
r
i,j

f t
i

.

It can be readily seen that using αt
ij as the fraction of the

overall traffic headed toward destination t and sent on link
(i, j) will maintain the optimal traffic profile.

B. Approximating Unequal Split of Traffic

In the previous sub-section, we saw that solving the prob-
lem of source-destination based forwarding decisions was
relatively straightforward. Unfortunately, the same does not
hold for the uneven splitting issue, and as mentioned earlier
providing such a capability is a significant departure from
current operations. Our proposal to overcome this problem is
to take advantage of the fact that today’s routing tables are
relatively large, with multiple routing prefixes associated with
the same egress router. By controlling the (sub)set of next hops
that each routing prefix is allowed to use, we can control the
traffic headed toward a particular egress router(destination).
In other words, instead of the current operation that has all

routing prefixes use the full set of next hops, we propose to
selectively control this choice based on the amount of traffic
associated with each routing prefix and the desired link loads
for an optimal traffic allocation.

The following example illustrates the idea behind the ap-
proach. Assume that at some node, there are four routing
prefixes, r1, r2, r3 and r4 that map to a common destination d
and have traffic intensities t(r1) = 2, t(r2) = 5, t(r3) = 8 and
t(r4) = 4. Let there be three shortest paths associated with
destination d, so that the routing table has 3 possible next
hops to d, and assume that the optimal distribution of traffic
to the three next hops is f1 = 6, f2 = 4 and f3 = 9. We can
then intuitively match this traffic distribution by the following
next hop assignment:

r1 → Hops 1, 3

r2 → Hop 1

r3 → Hop 3

r4 → Hop 2

The resulting traffic distribution is f ′
1 = (2/2 + 5/1) =

6, f ′
2 = (4/1) = 4, f ′

3 = (2/2 + 8/1) = 9, which matches the
optimal allocation.

The advantage of the above approach is that the forwarding
mechanism on the data path remains unchanged, as packets
are still distributed evenly over the set of next hops assigned
to a routing prefix. This means that a close approximation of
an optimal traffic engineering solution might be feasible even
in the context of existing routing and forwarding technologies.
There are, however, a number of challenges that first need to
be addressed. The first is the need for traffic information at the
granularity of a routing prefix entry instead of a destination
(egress router). This in itself is not an insurmountable task as
most of the techniques currently used to gather traffic data,
e.g., router mechanisms’ like Cisco’s Netflow or Juniper’s
cflowd, can be readily adapted to yield information at the
granularity of a routing prefix.

The second issue concerns the configuration overhead in-
volved in communicating to each router the subset of next hops
to be used for each routing prefix,. This can clearly represent
a substantial amount of configuration data, as routing tables
are large and the information that needs to be conveyed is
typically different for each router. The approach we propose
and study is to identify a small set of prefixes for which
careful allocation of next hops is done and rely on default
behavior for the remaining prefixes. The trade-off will then
be in terms of how close one can get to an optimal traffic
distribution, while configuring the smallest possible number of
routing prefixes. We investigate this trade-off in Section IV,
where we find that near optimum performance can often be
achieved by configuring only a small number of routes.

The third and last challenge is to actually formulate a
method for determining which subset of next hops to choose
for each routing prefix in order to approximate an optimal
allocation. The goal of any solution will be to minimize some
metric that measures discrepancy between the optimal traffic
allocation and the one achieved under equal-splitting con-
straints on any hop. We explored two metrics: the maximum

1169

gap between the optimal traffic and the allocated traffic on
any hop, and the maximum load on any hop, where the load
on a hop is the ratio of the allocated traffic and the optimal
traffic. We note that this allocation problem is a generalized
version of scheduling unsplittable tasks on a set of processors
with speed-up, and hence is NP-hard [9]. In the next section,
we propose some simple heuristics that are both fast and still
give reasonably good performance.

III. HEURISTICS FOR TRAFFIC SPLITTING

Ideally, one should consider the problem of selective next-
hop allocation at the global level, that is, do a concurrent
optimal assignment of next hops for each routing prefix at each
node. However, since even the single node allocation problem
is computationally difficult, we propose heuristics that perform
independent computations for each routing prefix at each node.
These computations are based only on the incoming traffic at
the node and the desired outgoing traffic profile. A potential
problem with this approach is that the traffic arriving at a
node may not match the optimal profile due to the heuristic
decisions at some upstream node. Consequently, the profile of
the outgoing traffic from the node in question, could further
deviate from the desired one. However, as we shall see, the
heuristics perform excellently and hence incoming traffic seen
at any node and the resultant outgoing traffic have a near-
optimal profile. We propose three heuristics that are greedy in
nature and try to minimize one of the two metrics mentioned
in Section II-B.

In the following discussion, we focus on a given egress
point, and use the words “stream” and “traffic intensity of a
routing prefix associated with the egress point” interchange-
ably. The three heuristics we propose work broadly in the fol-
lowing fashion. When performing computation at an arbitrary
node

1) Order routing prefixes destined to a particular egress
router in decreasing order of traffic intensity,

2) Sequentially assign each routing prefix to a subset of
next hops so as to minimize a given metric.

For clarity we use the following notation in our subsequent
discussion:
At an arbitrary node n, when assigning routing prefixes
associated with an arbitrary egress router (destination) m to
next hops:

1) Denote the set of next hops to egress router m by K =
{1, 2, . . . ,K}, ‖ K ‖= K.

2) Denote the desired (optimal) traffic load (for egress
router m) on hop k ∈ K by fk.

3) Denote the traffic intensity of routing prefix i by xi.
Denote the collective set of the routing prefixes (at n
for m) that need to be assigned to next hops by Xn,m.

4) Denote the traffic load on hop k after heuristic H
has assigned i routing prefixes by lik. Assume lik =
0 for i ≤ 0.

We now describe the three heuristics we investigate in the
paper.
MAX-MIN RESIDUAL CAPACITY : This heuristic tries to

assign each routing prefix so that the minimum gap between

the optimal and desired traffic on any hop is maximized.
Although this may seem to be at odds with the goal of
matching the optimal profile, the intuition behind such an
assignment is to always keep enough residual capacity (differ-
ence between optimal and assigned traffic) so as to be able to
accommodate subsequent routing prefixes. Since all routing
prefixes must be allocated a set of next hops, by keeping
enough residual capacity we try to ensure that an allocation
does not ”overflow”.
Algorithm MAX-MIN RESIDUAL-CAPACITY:

1) Sort the set of prefixes Xn,m in descending order of
traffic intensity.

2) For each prefix i ∈ Xn,m choose a subset of next hops
M̃ ∈ K, with cardinality ‖ M̃ ‖ which maximizes

mink∈K(fk − li−1
k + xi

‖ M̃ ‖
) .

Note that Step 2) can be easily achieved by simply
sorting all the next hops in decreasing order of
their residual capacity fk − li−1

k , indexing them in
that order, going through an increasing sequence of
M = {d ≤ k : d ∈ K}, k = 1, 2, . . . ,K assignments
over ‖ M ‖ hops and choosing the best one, ie., one with
maximum min gap.

MIN-MAX GAP : This heuristic tries to assign each routing
prefix so as to minimize the maximum gap between the
optimal and desired traffic on any hop. Observe that even
though, the metric used by this heuristic is the opposite of that
used by heuristic MAX-MIN RESIDUAL CAPACITY, both
essentially try to achieve the same goal. This is because both
heuristics must obey the conservation constraint of assigning
all routing prefixes.
Algorithm MIN-MAX GAP:

1) Sort the set of prefixes Xn,m in descending order of
traffic intensity.

2) For each prefix i ∈ Xn,m, choose a subset of next hops
M̃ ∈ K, with cardinality ‖ M̃ ‖ which minimizes

maxk∈K(fk − li−1
k + xi

‖ M̃ ‖
) .

Again, note that this step can be executed in the same fashion
as for MAX-MIN RESIDUAL CAPACITY.

MIN-MAX LOAD :The Min-Max Load heuristic is similar
to a work conserving scheduling algorithm which tries to
minimize the maximum load on any processor (the maximum
makespan). Heuristic MIN-MAX LOAD tries to minimize the
maximum ratio of assigned traffic to the optimal traffic load
over all hops. The difference now is that each task (stream)
can be split equally among multiple processors (next hops) and
the processors (next hops) can have different speeds (optimal
traffic loads).

Algorithm MIN-MAX LOAD:

1) Sort the set of prefixes Xn,m in descending order of
traffic intensity.

1170

2) For each prefix i ∈ Xn,m choose a subset of next hops
M̃ ∈ K, with cardinality ‖ M̃ ‖ which minimizes

maxk∈K(
li−1
k + xi

‖M‖
fk

)

Step 2) can be achieved in two stages. First, for each index
p = 1, 2, . . . ,K, do a virtual assignment of routing prefix i to
a set of p hops which yields the smallest maximum. This can

be done by simply sorting the set { l
i−1
k + xi/p

fk
}, k ∈ K

in increasing order, re indexing them and virtually assigning
i only to the first p hops.

Second, from all the K such possible assignments, choose
the one with the smallest maximum for an actual assignment.
In case of a tie, choose a lexicographically smaller assignment.

We outline our implementation of the heuristics in the
pseudo-code below :

procedure Selective Hop Allocation
Input ← (Link Weights {W̃ij}, optimal traffic allocation
{f̃ t

ij}, Traffic Matrix T)
For each destination node m do

Run Dijkstra’s algorithm with weights {W̃ij}
For each node n �= m in order of decreasing distance

from m do
Apply the heuristic to the set of routing prefixes Xn,m

to determine, for each routing prefix i, the set of next hops
Ki

For each routing prefix i ∈ Xn,m do
Update the intensity of the corresponding routing

prefix at each node j ∈ Ki

done
done

done
In the appendix, we analyze the MIN-MAX LOAD heuristic

and show that the load ratio achieved is within a factor of (1+
lnK/2) of the ratio achieved by an optimum allocation (under
the equal splitting constraint). We have as yet not been able to
provide tight bounds for the other two heuristics, although as
one will see in Section IV, all three heuristics appear to give
very similar results.

IV. EXPERIMENTS

In order to evaluate the effectiveness of our approach, we
conducted two sets of experiments on artificially generated
topologies as well as on an actual ISP topology, namely the
Sprint Backbone 2. In the first set we studied the performance
of our heuristics when compared against optimal routing.
In the second set of experiments we studied the trade-off
between performance and configuration overhead by varying
the number of routing prefixes for which we controlled the set
of next hops they were assigned.

For purposes of comparison, we solved a linear multi-
commodity flow routing problem with the same piecewise
linear cost function used in [4]. The only constraint in the
routing problem is flow conservation and consequently it

2www.sprint.net

provides a lower bound on the performance of any routing
scheme, for the same metric. Hence forth, we shall refer to
this problem as the “optimal routing problem” and its solution
as the “optimal routing solution”. The solution to this problem
is a set of paths (traffic allocation) for each commodity which
yields c̃ij , the bandwidth consumed on each link.

We reproduce the optimal allocation problem with regard
to this cost function below for completeness. Let the flow of
commodity r on link (i, j) be denoted by yr

i,j . Let the total
flow on link (i, j) is fi,j =

∑
r∈R

yr
i,j and the capacity is Ci,j .

Denote the cost of link (i, j) by Φi,j(fi,j , Ci,j), which is a
piecewise linear function that approximates an exponentially
growing curve (the exact pieces of the function are presented
in Equation 4 - 9). The cost grows as the traffic on the link
increases and the rate of growth accelerates with increasing
utilzation. Evolution of the cost function with link load is
shown in Figure 1. The problem may then be formulated as:

min
∑

(i,j)∈E

Φi,j(fi,j , Ci,j)

subject to

∑

j:(j,i)∈E

yr
j,i −

∑

j:(i,j)∈E

yr
i,j =

dr if i = sr

−dr if i = tr
0 otherwise

(3)

∀ i ∈ V, r ∈ R
fi,j =

∑

r∈R

yr
i,j

ui,j = fi,j/Ci,j , ∀(i, j) ∈ E
Φi,j = fi,j , ui,j ≤ 1/3 (4)

Φi,j = 3fi,j − 2
3
Ci,j , 1/3 ≤ ui,j ≤ 2/3 (5)

Φi,j = 10fi,j − 16
3
Ci,j , 2/3 ≤ ui,j ≤ 9/10 (6)

Φi,j = 70fi,j − 178
3
Ci,j , 9/10 ≤ ui,j ≤ 1 (7)

Φi,j = 500fi,j − 1468
3

Ci,j , 1 ≤ ui,j ≤ 11/10 (8)

Φi,j = 5000fi,j − 19468
3

Ci,j , 11/10 ≤ ui,j (9)

(10)

Equation 3 imposes flow conservation constraints, and Equa-
tions 4 - 9 describe the cost function. Note that our approach
(like [6] and [4]) is not limited to any particular cost function.
We simply chose this cost function as an example. Also
note that the cost function in the Linear Program (1) tries to
avoid long paths while trying to meet bandwidth constraints.
In the rest of the section, we explain our experimental set
up and discuss our observations regarding performance and
complexity trade-off.

A. Experimental Set Up

For our experiments, the artificial topologies were generated
using the Georgia Tech [10] and BRITE [11] topology gen-
erators3. The topologies generated using both generators were

3BRITE allows several options for generating topologies: AS Level, Hier-
archical and router level. We chose the router level option.

1171

0 20 40 60 80 100 120
0

1

2

3

4

5

6
x 10

4

Link Load f

C
o

s
t

F
u

n
c
ti
o

n
 Φ

(f
,C

)

Fig. 1. Evolution of cost function Φi,j(fi,j , Ci,j) as a function of link load
fi,j .

random graphs constructed by choosing points uniformly on
a grid. In all instances of simulated topologies, the link ca-
pacities were set to 500 Mbps. Actual physical link capacities
were used for the topology based on the Sprint backbone.

For the artificially generated topologies, random traffic
matrices were generated by picking the traffic intensity of
each routing prefix from a Pareto distribution. The choice of a
Pareto distribution was motivated by measurements taken from
several routers on the Sprint backbone (see [12] for details).
We also experimented with other distributions, i.e., uniform,
bimodal, Gaussian, and exponential in other experiments, but
do not include them as the results were similar to those
obtained with the Pareto distribution. The Sprint traffic matrix
was based on actual traffic traces downloaded from access
links to two of the Sprint backbone routers. The traces was
measured at the granularity of the routing table entries4 and
gives us two rows of the traffic matrix. The routing prefix in-
tensities in the remaining rows were generated artificially using
a Pareto distribution. The other parameter of importance is the
number of routing prefix associated with each egress router.
For this, we used both a uniform and a Pareto distribution,
as it gives a reasonable coverage for the possible difference
in the number of available routing prefixes to a given egress
router.

Each experiment was conducted in the following fashion :

1) For each network topology, we generated random traf-
fic matrices, varying both the total number of routing
prefixes and distribution5 from which the ingress traffic
intensity of each routing prefix was picked.

2) Hot spots were introduced in the traffic matrix by
randomly selecting elements from the traffic matrix and
scaling them to create several instances of the traffic
matrix. We tested cases where only some of the traffic

4The routing prefixes are averages over 10 hrs.
5Except in the case of the Sprint traffic matrix.

elements were chosen and also cases where all entries
were chosen. In the latter case, this involves scaling the
entire traffic matrix.

3) The “optimal routing problem” (10) was then solved for
each such instance (topology and traffic matrix).

4) The linear program (1), with the optimal link bandwidths
from the “optimal routing solution” as input, was solved
to obtain the traffic allocation (which was aggregated
based on destination, ref. Section II-A) and the set of
link weights.

5) Finally, the three heuristics were run over the network
with the link weights and traffic flows from the previous
step (please refer to pseudo-code).

In most of our trials, the link weights turned out to be integers
in the range 1−20. In a few experiments however, the weights
were not integers. In such cases, we rounded the link weights
to within 5 digit accuracy, which was found to be sufficient in
all cases. We used ILOG CPLEX to solve the optimal routing
problem and the linear program (1). On a Dell 2500 1 Ghz
machine it took about 2 hours to solve the optimal routing
problem and 30 minutes and less than 10 minutes for the
LP (1) and our heuristics respectively, on the largest networks.

0 0.5 1 1.5 2 2.5 3

x 10
9

0

2

4

6

8

10

12

14
x 10

5

Total Traffic

C
o

s
t

F
u

n
c
ti
o

n

50 Nodes 200 Edges Graph

Optimal
Max−Min Residual Capacity
Min−Max Residual Gap
Min−Max Load
F&T Heuristic
Max link util=100%
Max link util=50%
Max. link util=25%

Fig. 2. BRITE 50 Node 200 Edge graph: Performance of the 3 heuristics
with an average of 26500 routing prefixes per node.

B. Performance Comparison against Optimal Routing

We now present and discuss the results of our experiments.
In Figure 2, we plot cost vs total traffic demand for all
3 heuristics and optimal routing on a 50 Node 200 Edge
graph with a granularity of 26500 routing prefixes per node.
This number was chosen simply as an approximation of the
number of routing prefixes in a backbone router. We have
conducted experiments with upto 100,000 routing prefixes
and as few as 500 routing prefixes without any significant
change in performance. The graph was generated using the
BRITE generator. The horizontal lines represent various levels
of maximum average link utilization over all links for optimal

1172

0 0.5 1 1.5 2 2.5 3

x 10
9

0

0.2

0.4

0.6

Total Traffic

P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n
 f

ro
m

 O
p

ti
m

a
l

50 Nodes 200 Edges Graph

Max−Min Residual Capacity
Min−Max Residual Gap
Min−Max Load

Fig. 3. BRITE 50 Node 200 Edge graph:% Deviation of the 3 heuristics
from the optimal with an average of 26500 routing prefixes per node.

0 2 4 6 8 10 12 14 16

x 10
9

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Total Traffic

C
o
s
t
F

u
n
c
ti
o
n

Sprint Backbone

Optimal
Max−Min Residual Capacity
Min−Max Residual Gap
Min−Max Load
F&T Heuristc
Max link util=100%
Max link util=70%
Max. link util=25%

Fig. 4. Sprint Backbone: Performance of the 3 heuristics.

routing. The traffic matrix for this experiment was scaled by
selecting 70% of the traffic elements as hotspots. From the
figure, we see that in all the cases, the heuristics are very near
the optimal solution indicating that they are able to match the
optimal traffic split very closely. Moreover, all three heuristics
perform equally well in all instances. For comparison, we have
also shown the performance of standard OSPF routing with
weights computed using our implementation of the heuristic
proposed in [4] (denoted by “F&T Heuristic” in the graph).
In Figure 3 we plot the % deviation from the optimal for the
three heuristics. The low percentage deviation (0.2% − 1%)
from the optimal value highlights how effective the heuristics
are.

In Figures 4 and 5, we plot the performance of the heuristics
on the Sprint Backbone. The entire traffic matrix was scaled

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
10

0

0.1

0.2

0.3

Total Traffic

P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n
 f

ro
m

 O
p

ti
m

a
l

ISP Backbone

Max−Min Residual Capacity
Min−Max Residual Gap
Min−Max Load

Fig. 5. Sprint Backbone:% Deviation of the 3 heuristics from the optimal.

for the experiments involving the Sprint backbone. We can see
again that the heuristics clearly perform very well (well within
1% of the optimal). We observed this kind of performance in
a number of other experiments that we conducted but have not
shown here due to their similar nature. For results regarding a
topology generated using the Georgia Tech topology generator
please refer [12].

C. Lowering Configuration Overhead

Our other goal was to investigate the trade-off between
configuration overhead and performance. Recall that in the
original approach the heuristics decide the subset of next
hops assigned to every routing prefix. However, it has been
observed that in practice ([13]), a large fraction of the traffic is
distributed over a relatively small number of routing prefixes.
Our analysis of the backbone traces obtained from the Sprint
router show that 95% of the total traffic was accounted for
by only 10% of the routing prefixes, confirming the results
reported in [13]. Figure 6 highlights this observation, where
we have plotted the cumulative traffic intensity as a function
of the number of routing prefixes sorted in decreasing order
of their traffic intensities. We can potentially exploit such a
phenomenon by configuring the set of next hops for only a
few selective routing prefixes that carry most of the traffic
and allowing the default assignment of all next hops for
the remaining routing prefixes. This has the advantage of
lowering configuration overhead, but raises the question of
how it impacts performance.

We carried out a systematic study of such a trade-off on
all the previous topologies. In each instance, we configured
the set of next hops at each node for only a certain set of
routing prefixes that were selected based on the amount of
traffic they carried. The remaining routing prefixes were split
equally over the entire set of next hops as would happen with
default OSPF/IS-IS behavior. The set of configured routing
prefixes was then progressively increased in each experiment

1173

to determine the evolution of the impact on performance.
In all cases the MIN-MAX LOAD heuristic was used when
configuring the set of next hops.

The resulting performance curves for the 50 Node 200 Edge
graph are shown in Figure 7 and the number of configured
routing prefixes are shown in Table I. Each curve on the plot
is referenced by the amount of traffic that was accounted for by
the configured routing prefixes. This can be cross-referenced
from the table against the number of routing prefixes that were
configured. We observe that on an average, by configuring
about 165 routing prefixes per router we get good performance
till about 50% maximum link utilization. If we configure next
hops for about 17 % of all routing prefixes, or 4500 entries,
at a router, we account for approximately 75% of the traffic
and the resulting performance is quite close to that of optimal
routing.

Experiments conducted on the Sprint Backbone (Figure 8,
Table II) yield similarly encouraging results. We get good
performance up to approximately 50-60% maximum link
utilization, by configuring only 200 routing prefixes per router
and up to more than 70% link utilization if we configure 600
routing prefixes per router.

0 1 2 3 4 5 6 7

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Contribution of Routes at an ISP Router

Route Index in Decreasing Order of Intensity

F
ra

c
ti
o
n
 o

f
T

o
ta

l
R

a
te

Fig. 6. Cumulative contribution of routing prefixes at a Sprint Router sorted
in decreasing order of intensity.

Prefixes Total No. of % Allocated % of
Configured Prefixes Fraction Traffic

75 26500 0.3% 10 %
165 26500 0.62% 20 %

1252 26500 4.7 % 50 %
4500 26500 17.0 % 75 %

11747 26500 44.32 % 90 %

TABLE I

CONFIGURATION OVERHEAD: 50 NODE 200 EDGE GRAPH, ALL ENTRIES

ARE PER NODE

0 0.5 1 1.5 2 2.5

x 10
9

0

1

2

3

4

5

6

7

8
x 10

5

Total Traffic

C
o
s
t
F

u
n
c
ti
o
n

50 Nodes 200 Edges Graph

Optimal
10%
20%
50%
75%
90%
Max Link util=100%
Max Link Util = 50%
Max Link Util=25%

Fig. 7. BRITE 50 Node 200 Edge graph : Performance as a function of
configuration overhead

Prefixes Total No. of % Allocated % of
configured Prefixes Fraction Traffic

160 30700 0.5% 10 %
200 30700 0.6% 20 %
620 30700 2 % 50 %

1750 30700 6 % 75 %
4180 30700 14 % 90 %

TABLE II

CONFIGURATION OVERHEAD: SPRINT BACKBONE, ALL ENTRIES ARE PER

NODE

4 5 6 7 8 9 10 11 12 13 14

x 10
9

1

2

3

4

5

6

7
x 10

5

Total Traffic

C
o

s
t

F
u

n
c
ti
o

n

ISP Backbone

Optimal
10%
20%
50%
75%
90%
Max Link util=90%
Max Link Util=70%
Max Link Util = 50%
Max Link Util=25%

Fig. 8. Sprint Backbone: Performance as a function of configuration
overhead.

1174

V. CONCLUSION

In this paper, we have described and evaluated an approach
that has the potential for providing the benefits of traffic
engineering to existing IP networks, i.e., without requiring
changes to either the routing protocols or the forwarding
mechanisms.

Our contribution is three-fold. First, we propose a solution
whereby we can closely approximate the optimal link loads
without changing current forwarding mechanisms, namely, by
carefully controlling the set of next hops for each prefix.
Second, we propose a heuristic with a provable performance
bound (see Appendix) as well as two other simple heuristics.
All three were shown to give excellent and similar perfor-
mance through experiments. We believe the heuristics are
general enough to be potentially useful in their own right.
Finally, we showed, using actual traffic traces, that configura-
tion overhead can be vastly reduced without significant loss of
performance. Specifically, by only configuring next hops for
a small set of prefixes, we were able to obtain near-optimal
performance for link loads of up to 70%. This is obviously
an important aspect for the practical deployment of our traffic
engineering solution.

There are clearly many other aspects that need to be
addressed in order to formulate a fully operational solution to
traffic engineering. One topic we are currently investigating
is that of making our traffic engineering solution robust to
unexpected changes in network topology, e.g., link or router
failures. This is obviously an important aspect and one of
the areas that traffic engineering solutions that rely on new
forwarding technologies, e.g., MPLS, have focused on ([14]).
The general direction of the solution we are pursuing, is
to compute a set of link weights that are robust enough to
give good performance in normal or failure scenarios. In case
of a failure, the assignment of next hops, as proposed in
the paper, would either remain the same, or default to the
standard assignment for routing prefixes that are going over
an entirely different set of next hops after the failure. We are
currently investigating the performance and robustness of such
an approach ([15]).

Another issue we are investigating, is that in some cases
we encountered, link weights were not integer. Although this
did not happen often, it is still problematic since the dual of
the LP (2) does not guarantee integer link weights as required
by OSPF/IS-IS. In our experiments, we rounded off the link
weights to 5 digit accuracy. However such a solution may not
always be feasible due to the limited field length for weights
in current OSPF and IS-IS protocols, which limits scaling.
Instead, we are investigating methods that will allows us to
obtain integer weights consistent with the original weights.
We believe that a solution that accounts for both problems
is feasible, and that this work represents another argument in
favor of evolving the current infrastructure to support traffic
engineering, if and when needed, rather than embark on a
migration to a rather different technology. There may be
justifications for such a migration, e.g., better support for
policies or VPNs, but traffic engineering does not appear to
be one of them, and we hope that the results of this paper can

help clarify this issue.

REFERENCES

[1] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” Internet Engineering Task Force, Request For Comments
(Standards Track) RFC 3031, January 2001.

[2] J. Moy, “OSPF Version 2,” Internet Engineering Task Force, Request
For Comments (Standard) RFC 2328, April 1998.

[3] R. Callon, “Use of OSI IS-IS for routing in TCP/IP and dual envi-
ronments,” Internet Engineering Task Force, Request For Comments
(Standard) RFC 1195, December 1990.

[4] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proceedings of INFOCOM’2000, Tel Aviv, Israel,
March 2000.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows, Chapter
17, Section 17.2. Prentice-Hall Inc., 1990.

[6] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in Proceedings of INFOCOM’2001, Anchorage,
Alaska, April 2001.

[7] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True, “Deriving traffic demands for operational IP networks: Method-
ology and experience,” IEEE/ACM Transactions on Networking, vol. 9,
2001.

[8] C. Villamizar, “MPLS optimized multipath MPLS-OMP,” INTERNET-
DRAFT, draft-villamizar-mpls-omp-01.txt, February
1999, (work in progress).

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[10] E. W. Zegura, “GT-ITM: Georgia tech internet-
work topology models (software),” Georgia Tech,”
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm/tar.gz, 1996.

[11] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Boston uni-
versity representative internet topology generator,” Boston University,”
http://cs-www.bu.edu/brite, April 2001.

[12] R. G. Ashwin Sridharan and C. Diot, “Achieving Near-Optimal
Traffic Engineering Solutions for Current OSPF/IS-IS Networks,”
University of Pennsylvania, Tech. Rep., May 2002, Available at
http://einstein.seas.upenn.edu/publications.html.

[13] S. Bhattacharya, C. Diot, J. Jetcheva, and N. Taft, “Pop-level and
access-link level traffic dynamics in a tier-1 pop,” Proceedings of ACM
SIGCOMM Internet Measurement Workshop (IMW 2001), November
2001.

[14] M. Kodialam and T. Lakshman, “Dynamic routing of bandwidth guar-
anteed tunnels with restoration,” in PROCEEDINGS of INFOCOM, Tel
Aviv, Israel, March 2000.

[15] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” Journal on Selected Areas in Communication, February 2002.

[16] R. L. Graham, “Bounds on multiprocessing timing anamolies,” SIAM
Journal on Applied Mathematics, vol. 17, March 1969.

APPENDIX

Our analysis of the MIN-MAX LOAD heuristic consists of
two steps. We first give a performance bound when the set of
routes is unordered. We then demonstrate an improved bound
when the set of routes is ordered according to their traffic
intensity.

Proposition 1: Heuristic MIN-MAX LOAD achieves a load
that is no more than (1 + ln K) times that of the maximum
load with an optimal algorithm, where K is the number of
next hops (for a given destination).
Proof: The proof proceeds in two steps. First we identify a
key property of the MAX-MIN LOAD heuristic, namely that
for each virtual assignment, we can associate a distinct hop.
Next we use this property to establish the main result.

We start by establishing some notation. Denote the max-
imum load achieved by Heuristic MIN-MAX LOAD as
γ(Xn,m,K). Let hop t ∈ K achieve this load and the last
prefix assigned to hop t be prefix j. For simplicity, we denote

1175

the intensity on hop k before j is assigned by lk. By definition,
we have

γ(Xn,m,K) ≥ lk
fk

∀ k ∈ K.

Let γo(Xn,m,K) denote the maximum load achieved by
an optimum algorithm that satisfies the equal subset splitting
constraint, i.e., splits traffic equally across the subset of next
hops that have been assigned to a route. Let

L =
N∑

i=1

xi

F =
K∑

k∈K

fk.

Note that γo(Xn,m,K) ≥ L
F where LF is the optimum attained

if arbitrary splitting of routes was allowed at the node.
First recall how the second step of heuristic MIN-MAX

LOAD works. The heuristic does a virtual assignment of the
streams over an increasing sequence of hops, M = {d ≤ k :
d ∈ K}, k = 1, 2, . . . ,K as described in the algorithm and
chooses the arrangement with the smallest maximum for an
actual assignment. We make the following observations:

1) The smallest maximum among all virtual assignments
of prefix j must be γ(Xn,m,K). If there were a smaller
maximum, it would contradict our assumption that j is
the last prefix assigned to hop t.

2) In a virtual assignment of prefix j over p hops, let rp
denote the index of the hop with the maximum load
among the virtually assigned hops (to which a portion
xj/p of the route was virtually assigned). Then rp must
be maximal over all hops, for that virtual assignment. If
it were not, let there exists a hop k (which must belong
to the set of virtually unassigned hops) such that

lk
fk

>
lrp

+ xj/p

frp

. (11)

Since all hops satisfy the property lk
fk

≤ γ(Xn,m,K),
we have an assignment of prefix j which yields a lower
load ratio than γ(Xn,m,K). This contradicts our initial
assumption that j was the last prefix assigned to hop t
such that its load was γ(Xn,m,K). Hence rp must be
maximal.

From Observation 1, we have

lrp
+ xj/p

frp

≥ γ(Xn,m,K). (12)

Clearly, the following relation holds for all the K−p virtually
unassigned hops

lk + xj/p

fk
≥

lrp
+ xj/p

frp

(13)

since only the p smallest hops are chosen in the virtual
assignment. We then have from Equations (12) and (13) that
the following relation must hold for rp and the remaining (if
any) K − p virtually unassigned hops :

lk + xj/p

fk
≥ γ(Xn,m,K). (14)

Using these 2 observations we make the following claim.
Claim : For every virtual assignment over p = 1 . . .K hops
of prefix j, we can identify a distinct hop k(p) that satisfies

lk(p) + xj/p

fk(p)
≥ γ(Xn,m,K). (15)

Proof: The proof is by induction. For a virtual assignment by
the heuristic over p hops, let Ap denote the set of hops such
that:

Ap = {k :
lk + xj/p

fk
≥ γ(Xn,m,K)}.

Note from Observation 2 and Equation (14) that Ap comprises
of at least rp and the K − p unassigned hops. Hence

‖ Ap ‖≥ K − p+ 1.

Also note that Ap is a non-decreasing sequence for p =
K,K − 1, . . . , 1, because if some hop k ∈ An, then k ∈
An−1, n ≥ 1. The claim certainly holds for p = K since
by Observation 1, there is at least 1 hop which has a load of
γ(Xn,m,K). Let the claim hold for all p = K,K − 1, . . . , n.
Then by the non-decreasing property, An contains all the
K − n + 1 distinct hops. Let us look at a virtual assignment
over n− 1 hops. We know that

‖ An−1 ‖≥ K − n+ 2.

Since only K−n+1 hops have been associated (with virtual
assignments p = K to p = n) and by the non-decreasing
property, An−1, contains all these hops, there is at least 1 hop
which has not yet been used and hence can be associated with
a virtual assignment over n−1 hops. This completes the proof.
We are now in a position to prove Proposition 1.
By our previous result, for each possible virtual assignment
of prefix j over p = 1, 2, . . . ,K hops, we have a distinct hop
k(p) which satisfies Equation (15). Summing Equation (15)
over this set of K distinct hops, we have

K∑

p=1

lk(p) ≥
K∑

p=1

fk γ(Xn,m,K) −
K∑

p=1

xj

p
,

K∑

p=1

lk(p) ≥ F γ(Xn,m,K) −
K∑

p=1

xj

p
,

L− xj ≥ F γ(Xn,m,K) − xj(ln K + 1), (16)

γ(Xn,m,K) ≤ L

F
+
xj

F
(ln K) ≤ L

F
(1 + ln K),

γ(Xn,m,K) ≤ γo(Xn,m,K)(1 + ln K), (17)

where the LHS (16) of follows from the fact that the total
assigned load is not more than L−xj . This proves Proposition
1.

The above analysis holds for an arbitrary ordering of the
prefixes. If the prefixes are ordered in decreasing order as is
the case in MAX-MIN LOAD, the bound can be improved as
can be the performance of the algorithm. Our proof for this
result draws on the method used in [16].

Proposition 2: If the prefixes are assigned in decreasing
order of their traffic intensities, then,

γ(Xn,m,K)
γo(Xn,m,K)

≤ (1 +
ln K

2
).

1176

Proof: The proof is by contradiction. Assume that the above
result does not hold for some ordered set of prefixes with
intensities I = {x1, x2, . . . , xN}, where

x1 ≥ x2 ≥ . . . ≥ xN .

Without loss of generality assume xN is the intensity of
the last prefix(N) assigned to the hop, which achieves the
maximum load under heuristic MIN-MAX LOAD. If it
is not, we can truncate the sequence up to the prefix last
assigned to a hop which achieves the maximum load without
affecting the maximum achieved by MIN-MAX LOAD. If
the optimum for the truncated sequence is γ′

o(X ,K), then
γ′

o(X ,K) ≤ γo(Xn,m,K) and our assumption still holds. Let
as before,

L =
N∑

i=1
xi and F =

k∑
k=1

fk.

Following the exact same analysis as for the arbitrary
ordering we have

γ(Xn,m,K) ≤ L

F
+
xN

F
ln K,

≤ γo(Xn,m,K) +
xN

F
ln K,

γ(Xn,m,K)
γo(Xn,m,K)

≤ 1 +
xN

γo(x, f) · F
ln K.

By our assumption, we have

1 +
xN

γo(Xn,m,K) · F
ln K > 1 +

ln K
2

,

or
xN

F
>

γo(Xn,m,K)
2

.

Note that xN
F is the smallest achievable load under any split.

Hence, if the above inequality, and our assumption, is to
hold, we can have only one route (destination prefix) in X .
However it is clear from the algorithm itself that MIN-MAX
LOAD achieves an optimal allocation when there is only one
stream(prefix). This proves Proposition 2.

1177

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

