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Abstract— We introduce a methodology to predict when and
where link additions/upgrades have to take place in an IP
backbone network. Using SNMP statistics, collected continuously
since 1999, we compute aggregate demand between any two
adjacent PoPs and look at its evolution at time scales larger
than one hour. We show that IP backbone traffic exhibits visible
long term trends, strong periodicities, and variability at multiple
time scales.

Our methodology relies on the wavelet multiresolution analysis
and linear time series models. Using wavelet multiresolution
analysis, we smooth the collected measurements until we identify
the overall long-term trend. The fluctuations around the obtained
trend are further analyzed at multiple time scales. We show that
the largest amount of variability in the original signal is due to
its fluctuations at the 12 hour time scale.

We model inter-PoP aggregate demand as a multiple linear
regression model, consisting of the two identified components.
We show that this model accounts for 98% of the total energy in
the original signal, while explaining 90% of its variance. Weekly
approximations of those components can be accurately mod-
eled with low-order AutoRegressive Integrated Moving Average
(ARIMA) models. We show that forecasting the long term trend
and the fluctuations of the traffic at the 12 hour time scale yields
accurate estimates for at least six months in the future.

I. INTRODUCTION

IP network capacity planning is a very important task that
has received little attention in the research community. The
capacity planning theory for traditional telecommunication
networks is a well explored area [1], which has limited
applicability in a packet-based network such as the Internet.
It normally depends on the existence of a traffic matrix,
identifying the amount of traffic flowing between any source to
any destination of the network under investigation. Moreover,
it requires accurate modeling of the incoming traffic, as well
as accurate predictions of its future behavior. The above
information is then combined in a network simulation to
identify the points where future upgrades will be needed.

This approach cannot be used in the environment of an
IP backbone network because (i) we do not have a way of
measuring or accurately estimating the traffic matrix for such
a large scale network, (ii) we do not really know how to
model the incoming traffic of a backbone network, and (iii)
simulating such a large scale network is typically not feasible.

The current best practice in the area is based on the
experience and the intuition of the network operators. More-
over, it usually relies on marketing information regarding
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projected number of customers at different locations within
the network. Given provider-specific oversubscription ratios,
and traffic assumptions, the operators estimate the effect that
the additional customers may have on the network-wide load.
The points where link upgrades will take place are selected
based on experience, and/or current network state. For instance
links that currently carry larger volumes of traffic are likely
to be upgraded first.

Our goal is to enhance the above practices using historical
network measurements collected with the Simple Network
Management Protocol (SNMP). The intuition behind our ap-
proach is to use mathematical tools to process historical infor-
mation and extract trends in the traffic evolution at different
time scales. This approach requires the collection of network
measurements over long periods of time.

In this paper, we analyze three years of SNMP information
collected throughout a major tier-1 IP backbone. Correlating
those measurements with topological information, we calculate
the traffic aggregate between any two adjacent PoPs and track
its evolution over time. We explore the properties of these
time series, and propose a methodology that can be applied to
forecast network traffic volume months in the future.

Our methodology relies on wavelet multiresolution analysis
and linear time series models. Initial observations on the
traffic reveal strong periodicities, evident long term trends,
and variability at multiple time scales. We use wavelets to
smooth out the original signal until we identify the overall
long term trend. The fluctuations of the traffic around the
obtained trend are further analyzed at multiple time scales.
This analysis reveals that 98% of the energy in the signal
is captured by two main components, namely the long term
trend, and the fluctuations at the 12 hour time scale. Using
the analysis of variance (ANOVA) technique, we further show
that a multiple linear regression model containing the two
identified components also explains 90% of the variance.

We model the weekly approximations of the two compo-
nents using ARIMA models, and develop a prediction scheme
that is based on their forecasted behavior. We show that
forecasting network backbone traffic based on our model can
yield accurate estimates for at least six months in the future.
Moreover, with a minimal computational overhead, and by
modeling only the long term trend and the fluctuations of the
traffic at the 12 hour time scale, we produce estimates which
are within 10-15% of the actual measured behavior.

Our methodology combined with actual backbone traffic
measurements leads to different forecasting models for differ-
ent parts of the network. Our results indicate that different
PoP-pairs exhibit different rates of growth and experience
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different types of fluctuations. This illustrates the importance
of defining a methodology for deriving models as opposed
to developing a single model for inter-PoP aggregate traffic
flows.

In section II we present previous efforts at forecasting
Internet traffic. Our objectives are presented in section III. In
section IV, we present the data analyzed throughout the paper
and make some initial observations. Section V provides an
overview of the wavelet multiresolution analysis, along with
results of its application on our measurements. Forecasts are
derived using linear time series models, presented in section
VI. We discuss our findings and future work in section VII.
We conclude in Section VIII.

II. RELATED WORK

An initial attempt toward long-term forecasting of IP net-
work traffic is described in [2]. The authors compute a single
value for the aggregate number of bytes flowing over the
NSFNET, and model it using linear time series models. They
show that the time series obtained can be accurately modeled
with a low-order ARIMA model, offering highly accurate
forecasts (within 10% of the actual behavior) for up to two
years in the future.

However, predicting a single value for the future network-
wide load is insufficient for capacity planning purposes. One
needs to pinpoint the areas in the network where overload
may occur in order to identify the locations where future pro-
visioning will be required. Thus per-node or per-link forecasts
are required. The authors of [2] briefly address this issue,
mentioning that initial attempts toward this direction did not
prove fruitful.

Other work in the domain of Internet traffic forecasting
typically addresses small time scales, such as seconds or
minutes, that are relevant for dynamic resource allocation [3],
[4], [5], [6], [7], [8]. To the best of our knowledge, our work is
the first to model the evolution of IP backbone traffic at large
time scales, and to develop models for long-term forecasting
that can be used for capacity planning purposes.

III. OBJECTIVES

The “capacity planning” process consists of many tasks,
such as addition or upgrade of specific nodes, addition of PoPs,
and expansion of already existing PoPs. For the purposes of
this work, we use the term “capacity planning” only to refer
to the process of upgrading or adding links between two PoPs
in the core of an IP network.

The core of an IP network is usually overprovisioned
and consists of very high speed links, i.e. OC-48, OC-192.
Those links are a rather large part of a network operator’s
investment and have a provisioning cycle between six and
eighteen months. Therefore, the capability to forecast when
and where future link additions or upgrades will have to take
place would greatly facilitate network provisioning.

In order to address the issue of where upgrades or additions
should take place, we measure and forecast aggregate traffic
between adjacent PoPs. In that way carriers can determine

which pair of PoPs may need additional interconnecting ca-
pacity. There are a number of factors that influence when an
upgrade is needed. These factors include service level agree-
ments with customers, network policies toward robustness to
failures, the rate of failures, etc. We assume that carriers have
a method for deciding how many links should interconnect a
given pair of PoPs and the acceptable levels of utilization on
these links. Once carriers articulate a threshold beyond which
traffic levels between PoPs are considered prohibitive, one can
schedule an upgrade before these levels are actually exceeded.
Our task is to predict when in the future the traffic levels will
exceed these acceptable thresholds.

In this work, we use historical information collected contin-
uously since 1999 on the Sprint IP backbone network. There
are many factors that contribute to trends and variations in the
overall traffic. Our measurements come from a highly dynamic
environment reflecting events that may have short or long-
lived effects on the observed behavior. Some of the events
that may have a long-lived effect on the observed behavior
include changes in the network topology and in the number
of connected customers. These events influence the overall
long-term trend, and the bulk of the variability observed.
Events that may have a short-lived effect include link failures,
breaking news or flash crowd events, as well as denial of
service attacks. These events normally have a direct impact
on the measured traffic but their effect wears out after some
time. As a consequence, they are likely to contribute to the
measured time series with values which lie beyond the overall
trend. Given that such events are very hard to predict, and are
already taken into account in the calculation of the threshold
values that will trigger upgrades, as described earlier in this
section, we will not attempt to model them in this paper.

IV. MEASUREMENTS OF INTER-POP AGGREGATE DEMAND

We now describe the measurements collected and analyzed
throughout the paper. We present some initial observations
about Internet traffic at time scales larger than one hour. These
observations motivate the approach used throughout the rest
of the paper.

A. Data collected and analysis

We collect values for two particular MIB (Management
Information Base) objects, incoming and outgoing link utiliza-
tion in bps, for all the links of all the routers in the Sprint IP
backbone throughout a period that spans from 1999 until July
1st 2002. This operation yields traces from more than 2000
links, some of which may not be active anymore. The values
collected correspond to an exponentially weighted moving
average computed on 10 second link utilization measurements.
The exponential weighted average has an average age of 5
minutes and allows for more recent samples to be weighted
more heavily than samples earlier in the measurement inter-
val1.

Along with the SNMP data, we collect topological in-
formation. This information is collected several times per

1Because these objects belong to a proprietary MIB, we have no further
information about how this average value is calculated.
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day by an agent downloading configuration information from
every router in the network. It contains the names of the
routers in each PoP, along with all their active links, and their
destinations. Therefore, it allows us to identify those links
in the SNMP data set that interconnect specific PoPs in our
network.

We correlate the SNMP data with the topological infor-
mation, and derive aggregate demands, in bps, between any
two adjacent PoPs. In this procedure we need to address
two issues. Firstly, the collection is not synchronized, i.e. not
all links are polled at the same time to avoid overload at
the collection station. Secondly, the collection is not reliable
(SNMP messages use UDP as their transport protocol), i.e. we
may not have one record for each 5 minute interval for every
link in the network. As a consequence, the derivation of the
aggregate demands is performed as follows:

• For each link in the SNMP data, we identify its source
and destination PoP. We use the notation lsd(k) to denote
the kth link connecting PoP s to PoP d.

• Time is discretized in 90 minute intervals. We denote
time intervals with index t. The reasons why we selected
intervals of 90 minutes are provided in Section V-A.

• The aggregate demand for any PoP-pair (s, d) at time
interval t is calculated as the sum of all the records
obtained at time interval t from all links k in {lsd(k)},
divided by the number of records. This metric gives the
average aggregate demand of a link from PoP s to PoP
d at time interval t.

This approach allows us to handle the case of missing values
for particular links in the aggregate flow. Moreover, it does not
suffer from possible inaccuracies in the SNMP measurements,
since such events are smoothed out by the averaging operation.
With the aforementioned procedure we obtain 169 time series
(one for each pair of adjacent PoPs in our network). For the
remainder of the paper we focus our discussion on eight of
those. These are the longest traces at our disposal which also
correspond to highly utilized paths throughout the network.
In the following sections we look into their properties, and
devise techniques for forecasting their values in the medium
(i.e. months ahead) and long-term future (i.e. 6 months).

B. Initial observations

In Figure 1 we present the aggregate demand for three PoP
pairs in our network. The time series span from October 2000
to July 2002. Those time series correspond to an increasing
number of links in time. With vertical bars we denote the time
when additional links became active in the aggregate. As can
be seen, link additions are rarely preceded by a visible rise in
the carried traffic. This behavior is due to the long provisioning
cycles.

From the same figure we can see that different PoP pairs
exhibit different behaviors as far as their aggregate demand is
concerned. A long term trend is clearly visible in the traces.
For trace 1, and 5, this trend is increasing with time, while for
trace 6 it looks more constant with a sudden shift in January
2002, that lasts for two months.
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Fig. 1. Aggregate demand for Traces 1, 5, and 6.
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Fig. 2. Aggregate demand in May 2002 for Traces 1, 5, and 6.

Shorter-term fluctuations around the overall long term trend
are also present across all traces, and manifest themselves
in different ways. For instance, trace 1 shows an increasing
deviation around its long term trend. On the other hand, trace
6 exhibits smaller fluctuations, that look consistent over time.

Regardless of the differences observed in the three traces,
one common property is the presence of large spikes through-
out them. Notice that those spikes correspond to average values
across 90 minutes, which indicate a surge of traffic in that
particular interval that is high or constant enough to have a
significant effect on a 90 minute average. Those spikes may
correspond to link failures, which re-route part of the affected
traffic onto this particular path, routing changes, or even denial
of service attacks. As mentioned in Section II, we decide to
treat those spikes as outliers. This does not mean we ignore
the data but simply that we do not attempt to model or predict
these spikes.

In Figure 2 we present a detail of Figure 1, which corre-
sponds to the month of May 2002. This figure indicates the
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presence of strong daily and weekly cycles. The drop in traffic
during the weekend (denoted by the dashed lines) may be
substantial as in trace 1, smaller as in trace 5, or even non-
existent as in parts of trace 6.
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Fig. 3. Fast Fourier Transform for Trace 1, 2, and 3.

From the previous observations it is clear that there are
strong periodicities in the data. In order to verify their exis-
tence, we calculate the Fourier transform for the eight traces
at our disposal. Our results indicate that the most dominant
period across all traces is the 24 hour one. Other noticeable
periods correspond to 12, and 168 hours (i.e. weekly period).
Figure 3 presents the Fast Fourier Transform for three of
our traces. One can notice that when there is a strong 12
hour period, then it is usually stronger than the weekly one.
However, depending on the trace, such periods may not even
be present2.

In summary, initial observations from the collected time
series lead to three main findings: 1) there is a multi-timescale
variability across all traces (traces vary in different ways at
different time scales), 2) there are strong periodicities in the
data, and 3) the time series exhibit evident long-term trends,
i.e. non-stationary behavior. Such findings can be exploited
in the forecasting process. For instance, periodicities at the
weekly cycle imply that the time series behavior from one
week to the next can be predicted. In the next section, we
address these three points in our findings.

V. MULTI-TIMESCALE ANALYSIS

In this section, we analyze the collected measurements
at different time scales. We show that using the wavelet
multiresolution analysis we can isolate the underlying overall
trend, and those time scales that significantly contribute to its
variability.

2Trace 5, and 6, presented in the previous figures, exhibit similar behavior
to Trace 1. However, for Trace 6, the weekly period is stronger than the 12
hour one.

A. Wavelet MRA overview

The wavelet multiresolution analysis (MRA) describes the
process of synthesizing a discrete signal by beginning with
a very low resolution signal (at the coarsest time scale) and
successively adding on details to create higher resolution
versions of the same signal [9], [10], [11]. Such a process ends
with a complete synthesis of the signal at the finest resolution
(at the finest time scale). More formally, at each time scale
2j , the signal is decomposed into an approximate signal (or
simply, approximation) and a detailed signal through a series
of scaling functions φj,k(t) and wavelet functions ψj,k(t),
where k ∈ Z is a time index at scale j. The scaling and
wavelet functions are obtained by dilating and translating the
mother scaling function φ(t), φj,k(t) = 2−j/2φ(2−jt−k), and
the mother wavelet function ψ(t), ψj,k(t) = 2−j/2ψ(2−jt−k).
The approximation is represented by a series of (scaling)
coefficients aj,k, and the detail by a series of (wavelet)
coefficients dj,k.

Consider a signal/time series x(t) with N data points at the
finest time scale. Using MRA, x(t) can be written as

x(t) =
∑

k∈Z

ap,kφp,k(t) +
∑

0≤j≤p

∑

k∈Z

dj,kψj,k(t) (1)

where p ≤ logN . The sum with coefficients ap,k represents
the approximation at the coarsest time scale 2p, while the sums
with coefficients dj,k represent the details on all the scales
between 0 and p.

Using the signal processing parlance, the roles of mother
scaling and wavelet function φ(t) and ψ(t) can be described
and represented via a low-pass filter h and a high-pass
filter g [11]. Consequently, the multiresolution analysis and
synthesis of a signal x(t) can be implemented efficiently
as a filter bank. The approximation at scale j, {aj,k}, is
passed through the low-pass filter h and the high-pass filter
g to produce the approximation, {aj+1,k}, and the detail,
{dj+1,k}, at scale j + 1. Note that at each stage, the number
of coefficients at scale j is decimated into half at scale j + 1,
due to downsampling. This decimation reduces the number of
data points to be processed at coarser time scales, but also
leaves some “artifacts” in coarser time scale approximations.

More recently, the so-called à-trous wavelet transform has
been proposed, which produces “smoother” approximations
by filling the “gap” caused by decimation, using redundant
information from the original signal [12], [13]. Under the à-
trous wavelet transform, we define the approximations of x(t)
at different scales as:

c0(t) = x(t) (2)

cj(t) =
∞∑

l=−∞

h(l)cj−1(t+ 2j−1l). (3)

where 1 ≤ j ≤ p, and h is a low-pass filter with compact
support. The detail of x(t) at scale j is given by

dj(t) = cj−1(t) − cj(t). (4)

Let dj = {dj(t), 1 ≤ t < N} denote the wavelet coefficient
at scale j, and cp = {cp(t), 1 ≤ t < N} denote the signal at
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the lowest resolution, often referred to as the residual. Then
the set {d1, d2, · · · , dp, cp} represents the wavelet transform
of the signal up to the resolution level p, and the signal x(t)
can be expressed as an expansion of its wavelet coefficients:

x(t) = cp(t) +
p∑

j=1

dj(t) (5)

At this point we can justify our decision about averaging
our measurements across 90 minutes intervals. We know that
using the wavelet MRA we can look into the properties of
the signal at time scales 2j times coarser than the finest time
scale. Furthermore, the collected measurements exhibit strong
periodicities at the cycle of 12 and 24 hours. Using 1.5 hours
as the finest time scale allows us to look into the behavior
of the time series at the periods of interest by observing its
behavior at the 3rd (23 × 1.5 = 12) and 4th (24 × 1.5 = 24)
time scale.

B. MRA application on inter-PoP aggregate demands

For the smoothing of our data we chose as the low-pass
filter h in Equation 3 the B3 spline filter, defined by (1/16,
1/4, 3/8, 1/4, 1/16). This is of compact support (necessary
for a wavelet transform), and is point-symmetric. Symmetric
wavelets have the advantage of avoiding any phase shifts;
the wavelet coefficients do not “drift” relative to the original
signal. The B3 spline filter gives at each resolution level a
signal which is much smoother than the one at the previous
level without distorting possible periodicities in the data, and
preserving the original structure. The B3 spline filter has been
previously used in time series smoothing in [14], [15], [16].

In order to understand how cj(t) is computed at each time
scale j, we schematically present in Figure 4 how c1(5),
c2(5), and c3(5) are calculated according to Equation 3,
and the B3 spline filter. Element c1(5) is computed based
on the values c0(t) = x(t) at times (5 − 2), (5 − 1), 5,
(5 + 1), and (5 + 2). Then, we can calculate c2(5), based
on c1(1), c1(3), c1(5), c1(7), and c1(9). Notice that moving
toward coarser levels of resolution we need values from the
previous resolution level which are farther apart from each
other. For this reason, this wavelet transform is called the
à-trous wavelet transform, which means “with holes”. One
important point we should make is that cp(t) is defined for
each t = 1, 2, · · · , n, where n corresponds to 1.5 hour intervals
and is limited by the size N of the original signal. According
to Equation 3, computing cp(n) requires values of cp−1 until
time n + 2p, which iteratively requires values of cp−2 until
time n+2p−1, etc. As a consequence, the calculation of cp(n)
requires the original time series x(t) to have n +

∑j=p
j=1 2j

values. Given that our original signal contains N values, our
wavelet coefficients up to the 6th resolution level will contain
n values, where n+

∑j=6
j=1 2j = N , or n = N − 126.

In Figure 5 and 6 we present the approximation and detail
signals for trace 5 at each time scale, when it is analyzed
up to resolution level 26 = 96 hours. We chose to use
the 6th time scale as our coarsest time scale because it
provides a sufficiently smooth approximation signal, capturing
the evolution of the time series from one week to the next
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.....
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.....

.....
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..

Fig. 4. The à trous wavelet transform.

without the effect of the fluctuations at the 12 and 24 hour time
scale. Figure 5 clearly shows how the wavelet MRA smooths
out the original signal. Visual inspection of the derived detail
signals in Figure 6 further suggests a difference in the amount
of variability that each one contributes.

Given the derived decomposition, we calculate the energy
apportioned to the overall trend (c6) and each one of the detail
signals. The energy of a signal y(t), 1 ≤ t ≤ N, is defined
as E =

∑N
t=1 y

2(t). Table I shows that the overall trend c6
accounts for 95 to 97% of the total energy. Once one subtracts
the overall trend from the data, then we notice a substantial
difference in the amount of energy distributed among the detail
signals. Figure 7 shows that across all eight traces in our study,
the maximum amount of energy in the details is always located
at the 3rd time scale, which corresponds to the fluctuations
across 12 hours. Approximating the original signal as the long
term trend, c6, and the fluctuations at the 12 hour time scale,
d3, is further capable of accounting for 97 to 99% of the total
energy (Table I).

Trace ID 1 2 3 4
c6 96.07% 97.20% 95.57% 96.56%

c6 + d3 98.10% 98.76% 97.93% 97.91%
Trace ID 5 6 7 8

c6 95.12% 95.99% 95.84% 97.30%
c6 + d3 97.54% 97.60% 97.68% 98.45%

TABLE I

PERCENTAGE OF TOTAL ENERGY IN c6 , AND c6 + d3 .

In the next section, we look into the properties of the signals
derived from the wavelet MRA with respect to the variance
they account for in the overall signal.

C. Analysis of Variance

As explained in Section V-A, the original signal can be
completely reconstructed using the approximation signal at the
6th time scale, and the six detail signals at lower time scales.
The model defined in Equation 5 can also be conceived as
a multiple linear regression model, where the original signal
x(t) is expressed in terms of its coefficients.

The “Analysis of Variance” (ANOVA) technique is a sta-
tistical method used to quantify the amount of variability
accounted for by each term in a multiple linear regression
model [17]. Moreover, it can be used in the reduction process
of a multiple linear regression model, identifying those terms
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Fig. 5. The approximation signals for trace 5.
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Fig. 6. The detail signals for trace 5.

in the original model that explain the most significant amount
of variance.

Using the ANOVA methodology we calculate the amount
of variance in the original signal explained by the 6th approx-
imation signal and each one of the detail signals. The results
indicate that the detail signals d1, d2, d5, and d6 contribute
less than 5% each in the variance of the original signal.

Ideally, we would like to reduce the model of Equation 5,
to a simple model of two parameters, one corresponding to
the overall long term trend, and a second one accounting for
the bulk of the variability. Possible candidates for inclusion in
the model, except from the overall trend c6, are the signals d3
and d4. We know that the detail signal d3 carries the majority
of the energy among all the detail signals. Thus one possible
reduced model is the following:

x(t) = c6(t) + β d3(t) + e(t) (6)

Using least squares, we calculate the value of β for each
one of the traces in our disposal. All traces led to a β estimate
between 2.1 and 2.3 (Table II). Using ANOVA, we test how
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Fig. 7. Energy distribution for the detail signals.

representative the model of Equation 6 is with respect to the
proportion of variance it explains [17].

Trace ID 1 2 3 4
β 2.09 2.06 2.11 2.23
R2 0.87 0.94 0.89 0.87

Trace ID 5 6 7 8
β 2.12 2.18 2.13 2.16
R2 0.92 0.80 0.86 0.91

TABLE II

ANOVA RESULTS FOR ALL EIGHT TRACES.

If x(t) is the observed response, and e(t) is the error
incurred in Equation 6, we define SSX =

∑n
t=1(x(t))

2,
SSE =

∑n
t=1 e(t)

2. The total sum of squares (SST ) is
defined as the uncertainty that would be present if one had
to predict individual responses without any other information.
The best one could do is predict each observation to be equal to
the sample mean. Thus we set SST =

∑n
t=1(x(t)− x̄)2. The

ANOVA methodology partitions this variability into two parts.
One portion is accounted for by the model. It corresponds to
the reduction in uncertainty that occurs when the regression
model is used to predict the response. The remaining portion is
the uncertainty that remains even after the model is used. We
define SSR as the difference between SST and SSE. This
difference represents the sum of the squares explained by the
regression. The fraction of the variance that is explained by
the regression, SSR/SST , determines the goodness of the
regression and is called the “Coefficient of Determination”,
R2. The model is considered to be statistically significant if
it can account for a large fraction of the variability in the
response, i.e. yields large values for R2. In Table II, we present
the results obtained for the value of β, and R2 for all eight
traces.

The reduced model is capable of explaining 80% to 94% of
the variance in the signal. Moreover, if we decide to include
the term d4 in the model of Equation 6, the results about
R2, presented in Table II, are only marginally improved, and
increased by 0.01 to 0.04.
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D. Summary of findings from MRA and ANOVA

From the wavelet multiresolution analysis, we draw three
main conclusions:

• There is a clear overall long-term trend present in all
traces.

• The fluctuations around this long term trend are mostly
due to the significant changes in the traffic bandwidth at
the time scale of 12 hours.

• The long term trend and the detail signal at the 3rd time
scale account for approximately 98% of the total energy
in the original signal.

From the Analysis of Variance, we further conclude that:

• The largest amount of variance in the original signal can
be explained by its long term trend c6 and the detail
signals d3, and d4 at the time scales of 12 and 24 hours
respectively.

• The original signal can be sufficiently approximated by
the long term trend and its third detail signal. This
model explains approximately 90% of the variance in the
original signal.

Based on those findings, we derive a generic model for our
time series, presented in Equation 7. This model is based on
Equation 6, where we set β = 3, for a model valid across the
entire backbone.

x′(t) = c6(t) + 3 d3(t) (7)

E. Implications for modeling

For forecasting purposes at the time scale of weeks and
months, one may not need to accurately model all the short
term fluctuations in the traffic. More specifically, for capacity
planning purposes, one only needs to know the traffic baseline
in the future along with possible fluctuations of the traffic
around this particular baseline.

Component d3(t) in the model of Equation 7 is defined for
every 90 minutes interval in the measurements capturing in
time the short-term fluctuations at the time scale of 12 hours.
Given that the specific behavior within a day may not be
that important for capacity planning purposes, we calculate
the standard deviation of d3 within each day. Furthermore,
since our goal is not to forecast the exact amount of traffic
on a particular day months in the future, we calculate the
weekly standard deviation dt3(j) as the average of the seven
values computed within each week. Such a metric represents
the fluctuations of the traffic around the long term trend from
day to day within each particular week.

In Figure 8 we show the aggregate demand for trace 5, as
calculated from the SNMP data. In the same figure we plot the
long term trend in the data, along with two curves showing the
approximation of the signal as the sum of the long term trend
plus/minus three times the average daily standard deviation
within a week (Equation 7). We see that approximating the
original signal in such a way exposes the fluctuations of the
time series around its baseline with sufficient accuracy.

Notice that the new signal dt3 features one value every
week, exposing the average daily standard deviation within
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Fig. 8. Approximation of the signal using c6(t) and the
average daily standard deviation within a week dt3(j).

the week. Similarly, we can approximate the long term trend
with a more compact time series featuring one value for every
week. Given that the 6th approximation signal is a very smooth
approximation of the original signal, we calculate its average
across each week, and create a new time series l(j) capturing
the long term trend from one week to the next. The forecasting
process will have to predict the behavior of

x̂(j) = l(j) + 3 dt3(j), (8)

where j denotes the index of each week in our trace.
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Fig. 9. Approximation of the signal using the average weekly
long term trend l(j) and the average daily standard deviation
within a week dt3(j).

The resulting signal is presented in Figure 9. We confirm
that approximating the original signal using weekly average
values for the overall long term trend, and the daily standard
deviation results in a model which accurately captures the
desired behavior.

In the next section, we introduce the linear time series
models, and show how they can help derive forecasts for the
two identified components. Once we have those forecasts, we
compute the forecast for the original time series and compare
it with collected measurements.
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VI. TIME SERIES ANALYSIS USING THE ARIMA MODEL.

A. Overview of linear time series models

Constructing a time series model implies expressing Xt

in terms of previous observations Xt−j , and noise terms
Zt which typically correspond to external events. The noise
processes Zt are assumed to be uncorrelated with a zero mean
and finite variance. Such processes are the simplest processes,
and are said to have “no memory”, since their value at time t
is uncorrelated with all the past values up to time t− 1.

Most forecasting models described in the literature are
linear models. From those models, the most well-known are
the “Autoregressive” (AR), “Moving Average” (MA), and
“Autoregressive Moving Average” (ARMA) models.

A time series Xt is an ARMA(p,q) process if Xt is
stationary and if for every t

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q

where Zt ∼WN(0, σ2) and the polynomials (1−φ1z−· · ·−
φpz

p) and (1 + θ1z + · · · + θqzq) have no common factors
[18]. If p = 0, then the model reduces to a pure MA process,
while if q = 0, the process reduces to a pure AR process.

This equation can also be written in a more concise form
as:

φ(B)Xt = θ(B)Zt (9)

where φ(·), and θ(·) are the pth and qth degree polynomials,
and B is the backward shift operator (BjXt = Xt−j , B

jZt =
Zt−j , j = 0,±1, · · ·).

The ARMA model fitting procedure assumes the data to
be stationary. If the time series exhibits variations that violate
the stationary assumption, then there are specific approaches
that could be used to render the time series stationary. The
most common one is what is often called the “differencing
operation”. We define the lag-1 difference operator ∇ by

∇Xt = Xt −Xt−1 = (1 −B)Xt, (10)

where B is the backward shift operator as already introduced.
If the non stationary part of a time series is a polynomial
function of time, then differencing finitely many times can
reduce the time series to an ARMA process.

An ARIMA(p,d,q) model is an ARMA(p,q) model that has
been differenced d times. Thus it has the form:

φ(B)(1 −B)dXt = θ(B)Zt, Zt ∼WN(0, σ2) (11)

If the time series has a non-zero average value through time,
then the previous equation also features a constant term µ on
its right hand side.

B. Time series analysis of the long-term trend and deviation

In order to model the obtained components l(j) and dt3(j)
using linear time series models, we have to separate the
collected measurements into two parts: 1) one part used for
the estimation of the model parameters, and 2) a second part
used for the evaluation of the performance of the selected
model. Since our intended application is capacity planning,
where traffic demand has to be predicted several months ahead

in the future, we select the estimation and evaluation period
such that the latter contains six months of data.

For each one of the analyzed traces, we use the measure-
ments collected up to 15th January 2002 for the modeling
phase, and the measurements from 16th January 2002 until
1st July 2002 for the evaluation phase. Given that not all time
series are of the same duration, the isolation of the last six
months for evaluation purposes may lead to specific traces
featuring a small number of measurements for the estimation
phase. Indeed, after posing this requirement three out of the
eight traces in our analysis (Trace 2, 3, and 7) consist of
less than six months of information. Such limited amount of
information in the estimation period does not allow for model
convergence. As a consequence, we continue our analysis on
the five traces remaining.

We use the Box-Jenkins methodology to fit linear time series
models [18]. Such a procedure involves the following steps:
i) determine the number of differencing operations needed to
render the time series stationary, ii) determine the values of p,
and q in Equation 9, iii) estimate the polynomials φ, and θ,
and iv) evaluate how well the derived model fits the data.
For the model fitting we used both Splus [19] and ITSM
[18], and obtained similar results. The estimation of the model
parameters is done using Maximum Likelihood Estimation.
The best model is chosen as the one that provides the smallest
AICC, BIC, and FPE measures [18], while offering the small-
est mean square prediction error six months ahead. Due to
space constraints, we will not go into details about the metrics
used in the quality evaluation of the derived model, and refer
the reader to [18]. One point we should emphasize is that
metrics like AICC, and BIC not only evaluate the fit between
the values predicted by the model and actual measurements,
but also penalize models with large number of parameters.
Therefore, the comparison of the derived models against such
metrics leads to the most parsimonious models fitting the data.

C. Models for l(j), and dt3(j)

The computed models for the long term trend l(j) indicate
that the first difference of those time series (i.e. the time series
of their changes) is consistent with a simple MA model with
one or two terms (i.e, d = 1, q = 1 or d = 1, q = 2), plus
a constant value µ (Table III). The need for one differencing
operation at lag 1, and the existence of term µ across all the
models indicate that the long-term trend across all the traces
is a simple exponential smoothing with growth. The trajectory
for the long-term forecasts will typically be a sloping line,
whose slope is equal to µ. For instance, for trace 1 the long-
term forecast will correspond to a weekly increase of 0.5633
Mbps. This forecast corresponds to the average aggregate
demand of a link in the aggregate. The weekly increase in the
total demand between two adjacent PoPs can thus be estimated
through the multiplication of this value with the total number
of active links in the aggregate. Given the estimates of µ across
all models in Table III we conclude that all traces exhibit
upward trends, but grow at different rates.

Applying the Box-Jenkins methodology on the deviation
measurements, we see that for some traces the deviation
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ID Order Model µ σ2

T1 (0,1,2) X(t) = X(t − 1) + Z(t) − 0.1626Z(t − 1) − 0.4737Z(t − 2) 0.5633E+06 0.2794E+15
T4 (0,1,1) X(t) = X(t − 1) + Z(t) + 0.4792Z(t − 1) 0.4155E+06 0.1339E+15
T5 (0,1,1) X(t) = X(t − 1) + Z(t) + 0.1776Z(t − 1) 0.2301E+07 0.1516E+15
T6 (0,1,2) X(t) = X(t − 1) + Z(t) − 0.3459Z(t − 1) − 0.4578Z(t − 2) 0.7680E+06 0.6098E+15
T8 (0,1,1) X(t) = X(t − 1) + Z(t) + 0.2834Z(t − 1) 0.2021E+07 0.1404E+16

TABLE III

ARIMA MODELS FOR THE LONG TERM TREND.

ID Order Model µ σ2

T1 (0,1,1) X(t) = X(t − 1) + Z(t) − 0.6535Z(t − 1) 0.3782E+05 0.2024E+14
T4 (2,0,0) X(t) = 0.8041X(t − 1) − 0.3055X(t − 2) + Z(t) 0.1287E+08 0.7295E+13
T5 (0,1,1) X(t) = X(t − 1) + Z(t) − 0.1493Z(t − 1) 0.3094E+06 0.8919E+13
T6 (3,0,0) X(t) = 0.3765X(t − 1) − 0.1964X(t − 2) − 0.2953X(t − 3) + Z(t) 0.2575E+08 0.3057E+14
T8 (0,1,1) X(t) = X(t − 1) + Z(t) − 0.5565Z(t − 1) 0.3924E+05 0.4423E+14

TABLE IV

ARIMA MODELS FOR THE WEEKLY DEVIATION.

dt3(j) can be expressed with simple AR models (Trace 4,
and 6), while the remaining can be accurately modeled as
MA processes after one differencing operation (Table IV).
Therefore, the deviation for traces 1, 5, and 8 increases with
time (at rates one order of magnitude smaller than the increase
in their long term trends), while the deviation for traces 4,
and 6 can be approximated with a weighted moving average,
which indicates slower evolution. These results confirm earlier
observations on Figure 1 in Section IV-B.

From the previous tables we see that one cannot come up
with a single network-wide forecasting model for the inter-
PoP aggregate demand. Different parts of the network grow at
different rates (long-term trend), and experience different types
of variation (deviation from the long-term trend). Our method-
ology extracts those trends from historical measurements and
can identify these PoP pairs in the network that exhibit higher
growth rates and thus may require additional capacity in the
future.

At this point we should note that the Box-Jenkins method-
ology could also have been applied on the original time series
x(t). However, given the existence of three strong periods
in the data (which would require a seasonal ARIMA model
with three seasons [18]), the variability of the time series at
multiple time scales, the existence of outliers, and the size
of the original time series, such an approach leads to highly
inaccurate forecasts, while being extremely computationally
intensive. Our technique is capable of isolating the overall long
term trend and identifying those components that significantly
contribute to its variability. Predictions based on weekly ap-
proximations of those components provide accurate estimates
with a minimal computational overhead. All our forecasts were
obtained in seconds.

In the next section, we use the derived models for the
weekly prediction of the aggregate traffic demands. Our fore-
casts are compared against actual measurements.

D. Evaluation of forecasts

Using our models we predict a baseline aggregate demand
for a particular week in the future, along with possible
deviations around it. The overall forecast for the inter-PoP
aggregate demand is then calculated based on Equation 8. We
constrain ourselves to the upper limit alone, since this is the
value that would be used for capacity planning purposes.

Dec00 Feb01 Apr01 Jun01 Aug01 Oct01 Dec01 Feb02 Apr02 Jul02
0

100

200

300

400

500

600

700

A
gg

re
ga

te
 d

em
an

d 
(M

bp
s)

Trace ID 5

forecasted behavior 

modeled behavior 

original signal 

Fig. 10. Six month forecast for Trace 5.

In Figure 10, we present the time series collected until July
1st 2002. On the same figure we present the modeled behavior
in the estimation period, and the forecasts in the evaluation
period3. From visual inspection of the presented plot, one can
conclude that the proposed methodology behaves very well for
this particular trace.

In order to be able to quantify the quality of the predictions
with respect to the observed behavior, we proceed as follows:

• We apply the MRA on the measurements in the evaluation
period.

• We calculate the long term trend l(j) and weekly devia-
tion dt3(j) for each week in the same period.

• We compute x̂(j) based on Equation 8.

3In Figures 10, 12 and 13, the vertical dashed line indicates the beginning
of the forecasting period.
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• Lastly, we calculate the error in the derived forecast as
the forecasted value minus x̂(j), divided by x̂(j).

In Figure 11 we present the relative error between the de-
rived forecast and x̂(j) for each week in the evaluation period.
Negative error implies that the actual demand was higher
than the one forecasted. As can be seen from the figure, the
forecasting error fluctuates with time, but is centered around
zero. This means that on average we neither underestimate nor
overestimate the aggregate demand. More specifically, we see
that 24 weeks in the future our prediction error is 4%. The
average prediction error across weeks is -3.6%. Lastly, across
all five traces, the average absolute relative prediction error is
lower than 15%.
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Fig. 11. Weekly relative prediction error for Trace 5.

Notice that our forecasting models can be used to predict de-
mand for more than six months in the future, and identify when
the forecasted demand will exceed the operational thresholds
that will trigger link upgrades (as explained in section III). In
that case though forecasts should be used with caution. As is
the case with any forecasting methodology, the farther ahead
in the future one attempts to predict, the larger the error margin
that should be allowed.

VII. DISCUSSION AND FUTURE WORK

In the previous sections, we modeled the average aggregate
demand between any two adjacent PoPs based on its long
term trend and possible short-term fluctuations around it.
The long term trend in the data is sensitive to long-lasting
routing changes, topological changes, and market conditions
that dictate the behavior of the users in the Internet.

Consequently, there will be cases when the fitted ARIMA
models will have to be re-estimated in order to adjust to
changes in the environment. One example is trace 1. This
particular trace is the worst-performing trace in our dataset
exhibiting a dramatic change in its overall long term trend
right after April 2002. Our analysis uses data until January
15, 2002 to estimate the parameters of the ARIMA models,
missing the change in trend that occurs in April. As a result our
forecasts are highly accurate until April 2002 (with an average
relative prediction error of 1%) but substantially smaller than
the ones observed between April and July 2002 (Figure 12).

Nonetheless, if re-estimation of the model parameters is
triggered at the end of April 2002, then the forecasts are
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Fig. 12. Weekly prediction for Trace 1.
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Fig. 13. Adjusted weekly prediction for Trace 1.

much closer to the measured behavior, and within 7% (Figure
13). Due to lack of SNMP information beyond July 2002, we
cannot evaluate the accuracy of the new predictions in the six
months horizon.

Future work will address the issue of detecting changes
in the overall trend. Once such a change is detected, then
our models can be applied as already shown. In fact, such a
detection should not necessarily be automated. Network oper-
ators themselves could trigger the re-estimation of the derived
ARIMA models a few months after significant topological
and/or routing configuration changes have taken place. Within
the topological changes, we also include the activation of new
high-capacity customer links which may have a significant
effect on the load in the core. Such changes would usually
be known ahead of time. Consequently, in future work we
also intend to incorporate marketing information in our model
and evaluate its effect on our forecasts.

VIII. CONCLUSIONS

We presented a methodology for predicting when and where
link upgrades/additions have to take place in the core of an
IP network. We measured aggregate demand between any two
neighboring PoPs in the core of a major tier-1 IP network, and
analyzed its evolution at time scales larger than one hour.

We showed that the derived time series exhibit strong
periodicities at the cycle of 12, and 24 hours, as well as one
week. Moreover, they experience variability at multiple time
scales, and feature distinct overall long-term trends.

Using wavelet MRA, we isolated the overall long term
trend, and analyzed variability at multiple time scales. We

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



showed that the largest amount of variability in the signal
comes from its fluctuations at the 12 hour time scale. Our
analysis indicates that a parsimonious model consisting of
those two identified components is capable of capturing 98%
of the total energy in the original signal, while explaining 90%
of its variance. The resulting model is capable of revealing the
behavior of the network traffic through time, filtering short-
lived events that may cause traffic perturbations beyond the
overall trend.

We showed that the weekly approximations of the two
components in our model can be accurately modeled with low-
order ARIMA processes. Our results indicate that different
parts in the network grow at different rates, and may also
experience increasing deviations from their overall trend, as
time progresses. We further showed that calculating future
demand based on the forecasted values for the two components
in our traffic model yields highly accurate estimates. Our
average relative forecasting error is less than 15% for at least
six months in the future.

Due to the properties of the collected time series direct
application of traditional time series analysis techniques proves
cumbersome, computationally intensive and prone to error.
Our methodology is simple to implement, and can be fully
automated. Moreover, it provides accurate forecasts for at
least six months in the future with a minimal computational
overhead. In this paper, we demonstrated its performance
within the context of capacity planning. However, multireso-
lution analysis of the original signal and modeling of selected
approximation and detail signals using ARIMA models could
possibly provide accurate forecasts for the behavior of the
traffic at other time scales, such as from one day to the next
or at a particular hour on a given day in the future. These
forecasts could be useful for other network engineering tasks,
like scheduling of maintenance windows or large database
network backups.
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