
Optimum Scheduling and Memory Management in
Input Queued Switches with Finite Buffer Space

Saswati Sarkar

Abstract— This paper addresses scheduling and memory man-
agement in input queued switches with finite input buffers, with
the objective of minimizing packet loss. The framework and
algorithms proposed here apply to buffer constrained wireless
networks as well. The scheduling problem has been extensively
addressed under the assumption of infinite input buffers. We
study the finite buffer case here which arises in practice. The
introduction of memory constraint significantly complicates the
problem. The optimal strategies for infinite buffer case no longer
apply and become strictly suboptimal in presence of memory
limitations. We present closed form optimal strategies which
minimize packet loss in 2 × 2 switches with equal arrival rates
for all streams. We identify certain characteristics of the optimal
strategy for arbitrary arrival rates, and use these properties to
design a near optimal heuristic. We use the insight obtained
from the investigation for 2 × 2 switches to propose a heuristic
for N ×N switches, arbitrary N and show numerically that this
strategy performs close to optimal. The policies presented here
reduce packet loss by about 25% as compared to the optimal
strategy for the infinite buffer case.

I. INTRODUCTION

We consider resource allocation in input queued switches
with finite memory in the input adapters. The performance
objective is to minimize packet loss due to memory overflow.
To the best of our knowledge this problem has not been
addressed in input queued switches with memory constraints,
even though its counterpart with the infinite buffer assumption
has been the subject of extensive research. The finite memory
constraint introduces significant additional complications, and
as we discuss later the optimum strategies are significantly
different from the infinite buffer case. For example, if the
buffers are assumed to be infinite then the challenge is to
decide the packet scheduling so as to attain the desired
performance objective. However, in the finite buffer case,
additionally one needs to decide whether or not to accept an
arriving packet and which packet to drop in case of a memory
overflow. This decision has a significant impact on the packet
loss performance. Besides the packet scheduling must adapt
to the memory constraints.

We first briefly review the existing literature in optimum
scheduling in input queued switches. Karol et al [6] showed
that under FIFO scheduling the throughput is limited to 58.5%
of the switching capacity on account of head of line blocking.

S. Sarkar is with the Departments of Electrical and Systems Engineering
and Computer and Information Sciences with the University of Pennsylvania.
Her email is swati@ee.upenn.edu

The work of Saswati Sarkar was supported in part by NSF grant ANI01-
06984.

Mckeown et al. [7] presented the maximum weighted match-
ing based scheduling which attains the maximum possible
throughput. We will refer to this policy as MM in the rest
of the paper. Tassiulas et al. [15] presented a maximum
difference in backlog based scheduling which attains the
maximum possible throughput in any network of constrained
queues. The constraints there apply to input queued switches
as well. However, all these generic results apply to the case
where the queues have infinite buffer space, and consequently
they have not addressed memory management at all. Next,
we discuss how the resource management problem differs in
input queued switches when input buffers are assumed to have
finite memory.

INP 2

INP 1 OP 1

OP 2

(a)

INP 1 OP 1

OP 2INP 2

(b)

INP 1 OP 1

OP 2INP 2

(c)

Fig. 1. The figure shows a 2 × 2 switch with three different buffer
occupancies. The buffer occupancies are �x = (2, 2, 2, 2) (Figure (a)),
�x = (0, 4, 0, 4) (Figure (b)) and �x = (4, 0, 0, 4) (Figure (c)). Only one
packet can be transferred to the output at a time in Figure (b), while two
packets can be transferred simultaneously in the other two cases.

The resource management problem has two components
when the input buffers have finite memory: (a)packet schedul-
ing and (b)memory management. The first decides which
packets can be scheduled without violating the switching con-
straints imposed by the input queued switch. Input queueing

13730-7803-7753-2/03/$17.00 (C) 2003 IEEE

introduces several scheduling inter-dependencies, and allows
only certain scheduling patterns. The scheduling should be
such that an input or output port can be used for the transfer
of only one packet at a time. Different packets can be
simultaneously transferred to the outputs as long as these do
not share the same input or output port. Memory manage-
ment determines the packet acceptance policy, namely which
incoming packet will be accepted, and which packet should be
dropped in case of memory overflow (the choice is between
incoming packets and existing packets). These decisions will
depend on buffer occupancy and possibly arrival and service
statistics. More importantly, the packet scheduling and mem-
ory management decisions must be taken in conjunction, and
will depend on each other. For example, only one packet can
be transferred to the output side if all outstanding packets
are waiting at the same input or are destined to the same
output. However, many more packets can be transferred if the
outstanding packets do not have common inputs and outputs.
Refer to figure 1 for an illustration. Memory management can
be utilized efficiently to ensure that fewer outstanding packets
share input and output ports. We discuss this in details later. To
the best of our knowledge, neither problem has been addressed
in context of input queued switches with memory constraint.
Interestingly, we observed that the MM scheduling strategy [7]
which maximizes throughput in input queued switches with
infinite buffers is strictly suboptimal in terms of throughput
in presence of memory constraints.

Memory management has been addressed for other types
of switch architectures, e.g., shared memory switches[1],
[2], [5], [12]. However, scheduling is not an issue in these
switches. This is because multiple packets can be simulta-
neously transferred to an output from different inputs. The
outputs can simultaneously serve packets independent of each
other. Memory is the only shared resource in these switches.
Thus the problem of deciding a jointly optimal scheduling
and memory management strategy does not arise, and the
memory management strategies need not be designed to cater
to scheduling dependencies in these switches.

Similar scheduling and memory management problems
arise in optical switches as well[17], and these are seriously
constrained in memory. Also, mathematically the scheduling
and memory management problems in input queued switches
are equivalent to those in finite memory nodes in wireless
ad hoc networks. This observation has been made elsewhere
as well [14], and scheduling policies which attain maximum
throughput in wireless networks have been found to maximize
the throughput in networks of input queued switches as
well [7], [15]. The significance of this observation is that
mathematically the problem we address in this paper forms
the core of several applications of practical utility, and the
solution of this problem is expected to apply to all these
problems. We elaborate this aspect later (pp. 2).

The objective of this paper is to provide a theoretical basis
for the problem of jointly optimum scheduling and memory
management. The investigation yields several apparently
counter-intuitive results as will be described later. First we

mathematically model the problem and show its close connec-
tion with the bandwidth and memory management problems in
wireless adhoc networks in section II. The optimum strategy
can be obtained by computationally solving a markov decision
process [13]. Markov decision process based computations
are time and memory intensive, and the computations become
intractable even for switches with moderate buffer sizes. How-
ever, using this framework we present a closed form computa-
tionally simple optimal scheduling and memory management
strategy for input queued switches with 2 inputs and 2 outputs
under the assumption of equal arrival rates for all input-output
streams in section III-A. The optimal scheduling transfers as
many packets as possible at all times. The optimal memory
management uses a packet acceptance which balances the
number of outstanding packets for the different outputs. This
in turn allows the scheduling to transfer several packets to
the output and reduces the buffer occupancy and thus the
packet loss in the switch. We obtain several features of the
optimal strategy in 2 × 2 switches for arbitrary arrival rates
in section III-B, and using these properties we design a near
optimal heuristic strategy (SOP) in this case. The numerical
results will also demonstrate that the MM scheduling which
is known to be optimal in absence of memory constraint [7]
has 25% more packet loss than SOP in many cases. We
present a heuristic strategy (BCT) for the general case of
switches with N inputs and N outputs in section IV using the
strategies for the 2×2 switches and certain properties derived
from the general markov decision process framework. We
present numerical performance evaluation to demonstrate that
the packet loss experienced by BCT is close to the minimum
possible value. In addition, BCT performs substantially better
than MM, and in many cases reduces the packet loss by 40%
or more as compared to MM. We discuss implementation
challenges and future research directions in context of specific
applications such as input queues switches, wireless networks
and optical switches in section V. We omit proofs here on
account of space constraint. Refer to technical report [13]
for details.

II. NETWORK MODEL

We consider an input queued switch with N inputs and N
outputs (Figures 1 and 2). The size of the input buffers are
B1, . . . , BN . Incoming packets have predetermined outputs
and the arrival processes are independent Poisson. The arrival
rate of packets at input i for output j is λij , i = 1, . . . , N,
j = 1, . . . , N. Packets are stored in the respective input buffers
until they are transferred to the intended outputs. Queue length
of packets waiting at input i for output j at time t is xij(t).
Clearly

∑N
j=1 xij(t) ≤ Bi. Packets have exponential duration

with the service rate for the packets at the ith input and jth
output is µij . For simplicity we will assume equal buffer sizes
and equal service rates, i.e., Bi = B for all i and µij = µ
for all i, j. We will also assume that all packets which start
service at the same time end service at the same time as well.
These assumptions simplify the mathematical framework and

1374

the analysis substantially, without altering the nature of the
results. The assumptions can be justified from the observations
that switch performance is a function of the arrival rates,
service rates and the buffer sizes, and unequal buffer sizes
and service rates have the same effect on the performance
as unequal arrival rates. We will study the effect of unequal
arrival rates. In fact, the performance depends on the ratio
between the arrival and service rates rather than their absolute
values. We relax many of these assumptions in simulation,
e.g., we consider the effect of unequal packet sizes and heavy
tailed arrival processes on the design (Figure 10).

INP 1

INP 2

INP 3

OP 1

OP 2

OP 3

Fig. 2. The figure shows a switch with 3 inputs and 3 outputs. Here, each
input has only one packet waiting for transfer to the output, x11 = x22 =
x33 = 1, xij = 0, if i �= j. The input-output pairs 1 − 1, 2 − 2, 3 − 3
constitute a matching. Similarly, 1 − 2, 2 − 1, 3 − 3 is another example
matching. Either matching can be scheduled, but the first transfers 3 packets
while the second transfers only one packet as the 1 − 2 and 2 − 1 queues
are empty (x12 = x21 = 0).

An input-output pair can be involved in transfer of only one
packet at a time, i.e., while input i is transferring a packet
to output j, input i can not transfer any other packet and
output j can not receive any other packet. The scheduling
problem is to decide which packets are transferred from the
input to the output at any time t. Clearly the transfers must
constitute a matching∗ at any time t. There can be several
possible matchings and the scheduling problem at any time
is to choose the appropriate matching. Refer to Figure 2 for
examples of valid scheduling. Every time a packet transfer
is completed from input i to output j the queue length xij

decreases by one.
The memory management problem is to decide how the

input buffers should be shared by packets intended for differ-
ent outputs. When a new packet arrives at an input, one of
the following actions can be taken: (a)the packet is accepted
(b)the packet is rejected and (c) the packet is accepted while
some other packet waiting at the input is dropped. The last
action is commonly referred to as “push-out” (following the
terminology of [1], [2], [12] in a different context). If a packet
arrives when the input queue is full, then one of the last two
actions must be taken. The memory management problem
is to choose the appropriate course of action when a new
packet arrives. Every time a new packet is accepted in input

∗In graph-theoretic notions, a matching is a collection of edges which do
not share a node. In the switching context a matching is a collection of input
output pairs i, j which do not have a common input or output.

i for output j, the queue length xij increases by 1. If a
packet waiting at input i intended for output j is dropped,
xij decreases by one.

The objective is to choose the scheduling and the memory
management scheme so as to minimize the average packet
loss. A packet loss happens every time an incoming packet
is rejected or an existing packet is dropped. Throughput
of the switch is the average number of packets transferred
from the inputs to the outputs. Throughput maximization
and loss minimization are equivalent objectives, as the sum
of throughput and loss rates is equal to the sum of the
arrival rates. Thus a strategy which minimizes loss maximizes
throughput and vice versa.

Now we argue how the finite memory assumption compli-
cates the problem. Firstly, the issue of memory management
arises only because of the finite buffer assumption. Packet
loss never happens and thus packets can always be accepted
for infinite buffers. However, in presence of finite buffers,
which is the case in practice, packet loss happens whenever
an incoming packet finds the buffer full, and thus packet
acceptance and scheduling decisions need to be sophisticated
so as to minimize this loss. Secondly, a scheduling which
maximizes the system throughput under the infinite buffer
assumption will not maximize the throughput (and hence
minimize the loss) in the finite buffer case in general. This
can be explained as follows. A policy is said to maximize
the system throughput under the infinite buffer case if it
“stabilizes” the system under maximum possible load, i.e.,
the policy must “stabilize” the system for all arrival rates
(λ11, . . . λNN) such that

∑N
i=1 λij < µ and

∑N
j=1 λij < µ

∀ i, j [7], [14]. A system is said to be stable as long as
the queues become empty (xij(t) = 0∀i, j) infinitely often.
Note that for stability it is not important how soon the
queues empty, but it is sufficient that the system reaches the
all zero state infinitely often. However, in the finite buffer
case, the average time taken to empty the queues affect the
performance of the system. Consider a simple example to
illustrate this fact. Consider a switch with 2 inputs and 2
outputs (N = 2), λ11 = λ22 = 0.1, λ12 = λ21 = 0
µ = 0.4 ∀i, j. Consider two different policies. The first is
work conserving and serves the packets in FIFO order at the
output terminals. The second serves the packets in FIFO order
but takes a vacation after serving every packet. The duration
of the vacation is an exponential random variable with average
2.5 unit. Both of these policies stabilize† the system and attain
the same throughput under infinite buffer assumption (system
throughput is 0.2 for both policies). However, the average
duration of the busy period for the second is at least twice that
for the first, and the packet loss is higher in the second for any
finite buffer length. The bottomline is that the infinite buffer
assumption offers the system significant latitude, while in
presence of memory constraints the scheduling strategies need

†The 1−1 and 2−2 streams are served independent of each other in both
cases. The service rates are greater than the arrival rates in both cases (the
service rate is 1/(2.5 ∗ 2) in the second case), and thus the system is stable
in both cases.

1375

to use resource more carefully. Thus not all policies which
optimize the performance under infinite buffer assumption will
do so in the finite buffer case. In fact, as discussed before, we
will demonstrate that the MM scheduling which maximizes
system throughput under infinite buffer assumption [7] does
not maximize throughput in the finite buffer case.

Finally, we point out the similarities between resource allo-
cations in input queued switches and wireless adhoc networks.
Incidentally, future adhoc networks are expected to consist of
small, light weight terminals like PDAs, palmtops or laptops
which must perform the functions of end nodes as well as
intermediate routers. Thus these nodes will be constrained in
both memory and bandwidth, and hence efficient usage of
both resources via scheduling and memory management is
necessary for meeting the performance objectives. Consider
an adhoc network with nodes 1, . . . , N. Node i has buffer
Bi. Every node has a locally unique frequency ‡, but only
one radio unit. A node can be involved in at most one
transmission at a time in the role of either a transmitter or
a receiver on account of the single radio constraint. Several
transmissions can proceed simultaneously as long as every
node is involved in at most one transmission. At any time
the successful transmissions must constitute a matching, and
the scheduling problem is to decide the appropriate matching
like in input queued switches§. The memory management
problem is to decide whether to accept an incoming packet
at a node and also whether an existing packet should be
pushed out by a new packet. This is the same as the memory
management problem in input queued switches. We conclude
that the scheduling and the memory management problems are
similar in both cases. This further motivates the investigation
of the scheduling and the memory management problem in
either case, as the solution for one may be used in the other
case as well.

The optimal scheduling and memory management policy is
the one which minimizes the average packet loss. We present
a generic markov decision process(MDP) [10], [11] based
technique for computing the optimal loss rates and the optimal
scheduling and memory management decisions in technical
report [13]. However, the computations become intensive with
increase in B or N. This happens because the computation
needs several iterations and each iteration has a complexity
Ω

(
B2N2

)
.¶ For example, for a 2 × 2 switch with B = 50

each iteration involves computations with 106 variables. The
bottomline is that the generic computation technique does not
scale with the buffer size. However, we will use the general
results obtained from this MDP framework to compute closed
form optimal strategies for the simple case of 2 × 2 switches

‡Several current day networks have locally unique frequencies, e.g.,
Bluetooth networks.

§In wireless adhoc network a node may only be able to transmit packets
to a subset of other nodes as the rest may be out of its transmission range.
Similarly, in input queued switches an input node may not transmit packets
to all output nodes, e.g., λij may equal zero for certain pairs i, j.

¶A computation is said to have Ω(n) complexity for input size n if it
requires at least cn steps for some constant c and all large n.

where all arrival streams have equal arrival rates (λij = λ
for all i, j). Subsequently we will use the insight obtained
from the optimal strategy for this specific case and certain
properties deduced from the MDP framework to design near
optimal heuristics for the more general cases of 2×2 switches
with arbitrary arrival rates and N × N switches with N > 2.

III. OPTIMAL STRATEGY FOR 2 × 2 SWITCHES

In this section we will consider the scheduling and memory
management strategies for input queued switches with 2 inputs
and 2 outputs (N = 2). We will first present the intuition
behind the optimal resource allocation problem in this case.
Subsequently we will present the closed form optimal strategy
for symmetric traffic in subsection III-A. Extension to the case
of asymmetric traffic is considered in subsection III-B. There
we obtain certain key properties of the optimal strategy for
the asymmetric traffic case, and then using these properties
we design a heuristic. In subsection III-C we will show that
this heuristic attains near optimal packet loss using numerical
computations.

We first describe the optimal resource allocation problem
in this case. Refer to Figure 1 for illustration. There are four
different queues of packets, x11, x12, x21 and x22. The queue
xij stores packets at input i waiting for output j. The first
two queues share the memory in input buffer 1 and the other
two share the memory in input buffer 2. Arrival process is
poisson for each of these queues with rates λ11, λ12, λ21 and
λ22 respectively and the service process is exponential at rate
µ. Each buffer can store a maximum of B packets.

The pairs [x11, x22] and [x12, x21] can transmit packets si-
multaneously as the queues in these pairs do not share an input
or output port. The switch can also schedule a single queue
at a time. No other combination is allowed. Packet loss can
be minimized if the buffer occupancy is reduced. Intuitively
this happens if a pair of queues is scheduled together rather
than singletons because the former removes two packets from
the buffer while the latter removes only one packet from the
buffer. However, if the buffer occupancy is such that one
queue is empty in each pair then the switch will be forced to
schedule singletons. For example, if x11 = x21 = 0 then the
switch can schedule either x12 or x22 (Figure 1(b)). For further
illustration consider the buffer occupancies in Figures 1(a)
(x = (2, 2, 2, 2)) and 1(b)(x = (0, 4, 0, 4)). Observe that both
configurations have the same queue lengths at the two inputs
(4 packets) and also the total number of packets waiting for
transmission is the same for both (8 packets). The switch can
transmit only one packet in Figure 1(b) (from x12 or x22)
as all packets are intended for the same output (output 2).
However, the switch can transmit two packets in Figure 1(a)
(can schedule either the pair x11, x22 or the pair x12, x21 as
all the queues are nonempty).

Thus a larger number of packets can be transmitted and
hence packet loss can be reduced when the load is balanced
across the queues. However, load should be balanced across
“appropriate” queues. For example, consider the buffer oc-
cupancies in Figures 1(b) (x = (0, 4, 0, 4)) and 1(c)(x =

1376

(4, 0, 0, 4)). Comparing the configurations in the two cases,
only two queues have packets in both cases and the queue
lengths at the two inputs (4 packets) and the total number
of packets waiting for transmission (8 packets) are the same
in both. However, the switch can transfer only one packet
in Figure 1(b) as discussed before, whereas two packets can
be transferred in Figure 1(c) (from queues x11 and x22)
since there are packets waiting at different inputs intended
for different outputs. The configuration in Figure 1(c) allows
a transfer of a larger number of packets because it balances
the load between appropriate queues. This can be quantified
by considering the difference between the queue lengths of the
queues which can be scheduled together, i.e., |x11 − x22| and
|x12−x21|. Note that these differences are 0, 0 for Figures 1(a)
and 1(c) and 4 for Figure 1(b). In general, a larger number of
packets can be transferred if these differences are smaller.

Appropriate push-out policy can be used to reduce these
differences. When a new packet arrives and the input buffer
is full, then the packet can be rejected or accepted by pushing
out an existing packet. The appropriate decision can be taken
with a view to reducing this difference. Assume that B = 4
in Figure 1. Let a packet arrive at input 1 for output 1. In
Figure 1(b) the differences between the queue lengths of the
queues in the pairs remain 4, 4 if the new packet is rejected,
while the differences become 3, 3 if the new packet is accepted
while pushing out an existing packet waiting at input 1 for out-
put 2 (in the x12 queue). After this replacement, both queues
x11 and x22 can be scheduled transferring two packets simul-
taneously. In Figure 1(a) the new packet should be rejected
as its acceptance using push-out will adversely affect the
balance and increase the differences (packet rejection leaves
the differences at 0, 0 and push out increases the differences
to 1, 1). Summarizing, a pair of queues should be scheduled
whenever possible, and packet acceptance/rejection/push-out
should be used judiciously to balance the load across the
appropriate queues which facilitates a simultaneous transfer
of two packets whenever possible. These observations are the
key behind designing optimal strategies for symmetric traffic
and near-optimal heuristics for asymmetric traffic.

A. Optimal Strategy for Symmetric Traffic

In this subsection we will consider the symmetric traffic
case. We assume that all arrival rates are equal, i.e., λij = λ,
for all i, j. We present the scheduling and memory manage-
ment strategies which minimize the average packet loss in this
case. We will refer to the optimal policy as “SOP” (symmetric
optimal policy).

SOP Scheduling: The scheduling strategy needs to decide
which queues to serve whenever the current packets finish
transmission. The optimal scheduling is to serve the queues
of either pair whenever possible. Let the current state be x
(let x �= 0). If all the queues are nonempty (xij > 0 for all
i, j), schedule either the [1 − 1, 2 − 2] pair (x11, x22) or the
[1 − 2, 2 − 1] pair (x12, x21). The choice between the pairs
can be arbitrary and does not affect packet loss(proved in

[13]). Now consider the case when some queues are empty. If
min(x11, x22) > min(x12, x21) = 0, schedule the [1−1, 2−2]
pair. If min(x12, x21) > min(x11, x22) = 0, schedule the
[1 − 2, 2 − 1] pair. If min(x12, x21) = min(x11, x22) = 0,
only one queue can be scheduled, and the longest queue is
selected. If all the queues are empty (x = 0), no queue is
scheduled for service.

SOP Memory Management: The memory management
strategy decides whether to accept an incoming packet, and
if the decision is to accept the packet then whether to push
out an existing packet. The optimal decision is to accept an
incoming packet without any push out as long as the input
buffer has space. If the input buffer is full when a new packet
arrives, then the packet is either rejected or accepted while
dropping an existing packet from a different queue in the same
input buffer. The choice between the two is made with the
objective of reducing the difference between the queue lengths
of the pairs. We introduce some notations for describing this
part of the memory management more formally: diff1(x) =
x11 − x22, diff2(x) = x12 − x21. Let a packet arrive at input
buffer 1 for output 1 (in queue 1 − 1) and let input buffer
1 be full (x11 + x12 = B). Then the new packet is rejected
if diff1(x) ≥ diff2(x) − 1, accepted and a packet of queue
1 − 2 is dropped otherwise. Let x11 + x12 = B, and a new
packet arrives at queue 1−2. Then the new packet is rejected
if diff2(x) ≥ diff1(x) − 1, accepted and a packet of queue
1 − 1 is dropped otherwise. Let x21 + x22 = B, and a new
packet arrives at queue 2−1. Then the new packet is rejected
if diff2(x) ≤ diff1(x) + 1, accepted and a packet of queue
2 − 2 is dropped otherwise. Let x21 + x22 = B, and a new
packet arrives at queue 2−2. Then the new packet is rejected
if diff1(x) ≤ diff2(x) + 1, accepted and a packet of queue
2 − 1 is dropped otherwise. An illustrative example follows.
Example III.1: We illustrate SOP using the configurations in
Figure 1. Let B = 4. In Figure 1(a) (x = (2, 2, 2, 2)), SOP
schedules either the pair [1−1, 2−2] or the pair [1−2, 2−1]
choosing between them arbitrarily. Any incoming packet is
rejected. In Figure 1(b) (x = (0, 4, 0, 4)), only one queue can
be scheduled. SOP schedules either 1 − 2 or 2 − 2 choosing
between them arbitrarily since both have the same length
(4 packets). At either input, an incoming packet for output
1 is accepted by pushing out a packet waiting for output
2 at the same input, and an incoming packet for output 2
is rejected. In Figure 1(c) (x = (4, 0, 0, 4)), SOP schedules
the pair 1 − 1, 2 − 2. Any incoming packet is rejected. Now
let B = 5. The scheduling remains the same as before in
each case. The memory management decision is to accept
any incoming packet in all three cases.

The following theorem outlines the optimality of SOP.
Theorem 1: SOP minimizes the average packet loss in 2×2

switches with equal arrival rates for all streams (λij = λ for
all i, j).

B. A near optimal heuristic for asymmetric traffic

In this section we will consider the general case with
unequal arrival rates for different arrival streams, i.e., we

1377

no longer assume that λij = λ. First, we identify certain
properties of the optimal scheduling and memory management
strategy, and subsequently present a heuristic using these
properties.
Optimal Scheduling: The optimal scheduling schedules a pair
of queues whenever possible.
Optimal Memory Management: The optimal decision is to
accept an incoming packet without any push out as long as
the input buffer has space.

These properties specify the strategy in certain cases. For
instance, in Figure 1(c) the optimal scheduling is to serve the
pair 1 − 1, 2 − 2. Also, if B = 5 then the optimal memory
management strategy accepts all incoming packets for all three
configurations in Figure 1. However, these properties do not
completely specify the optimal strategy. For example, it is not
known how to choose between pairs of queues when either
pair can be scheduled (e.g., Figure 1(a)), or how to choose a
queue when the system state is such that only one queue can
be scheduled, i.e., when min(x12, x21) = min(x11, x22) =
0(e.g., Figure 1(b)). The packet acceptance/rejection/push-out
decision when the input buffer is full is also not known in the
asymmetric case (e.g., all three cases in Figure 1 with B = 4).

We propose SOP (Section III-A) as a heuristic here. We
justify the choice as follows. SOP satisfies the properties
obtained for the optimal strategy in this general case. Besides,
the scheduling and the memory management decisions of SOP
strive to balance the traffic across different queues which
allow the scheduling to transfer larger number of packets
and thus reduce the buffer occupancy and the packet loss.
Numerical computations presented in the next subsection will
demonstrate that the heuristic attains near minimum packet
loss.

We have obtained some other properties of the optimal strat-
egy under some additional assumptions. Let λi1 = λi2 i = 1, 2
(we still allow λ1j �= λ2k for any j, k i.e., unequal arrival rates
at different inputs). Under this additional assumption, (a)when
all queues have packets, then either pair can be scheduled and
the optimal scheduling does not distinguish between pairs,
(b) if an incoming packet finds the input buffer full, then
the optimal packet acceptance/rejection/push-out decision is
the same as that for SOP (Section III-A) [13]. Under this
additional assumption, the optimal strategy is known for all
cases in Example III-A.1, except the scheduling in Figure 1(b).
More generally, this additional assumption fully specifies the
optimal memory management scheme. The scheduling policy
is also specified except that it is not known how to choose
between queues when only one queue can be scheduled(e.g.,
Figure 1(b)).

C. Performance Evaluation using Numeric Computation

First we evaluate the performance of SOP for unequal
arrival rates, using the packet loss experienced by the optimal
strategy as a benchmark. We compute the average packet
losses of SOP and the optimal strategy using MDP based
techniques [13]. We have observed that SOP attains near

minimum average packet loss. We present numerical results
for two different traffic patterns. The computation technique
uses the MDP formulation, and has been described in technical
report [13].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Nonuniform Traffic Pattern NU1(2 X 2)

MM
SOP

OPTIMUM

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
P

er
ce

nt
ag

e
di

ff
er

en
ce

Departure Rate

Nonuniform Traffic Pattern NU1(2 X 2)

MM
SOP

Fig. 3. The figures compare the performances of SOP and MM with the
optimal strategy for different departure rates (µ) in a 2 × 2 switch with
B = 50 and the following arrival rate patterns: λ11 = 3.5λ12 = 3.5λ21 =
7λ22, λ22 = 1−µ

15 . Figure (a) plots the absolute values of the packet loss
probabilities (lMM, lSOP, lOPTIMUM). The SOP and the OPTIMUM curves
can not be distinguished, while the MM curve is above both. Figure (b) plots
the percentage relative difference between the loss probabilities for the SOP
and optimal (curve SOP) (100 ∗ (lSOP/lOPT − 1)) , and that between MM
and SOP (curve MM) (100 ∗ (lMM/lSOP − 1)). The SOP curve is close to
zero, and hence hardly visible.

When all arrival rates are equal, there is no difference
between the arrival rates of queues in the pairs which can
be scheduled together, and as discussed these differences are
important metrics. Thus in nonuniform traffic model, we study
the cases when the differences between arrival rates of queues
in these pairs are nonzero. First, we consider the case where
the arrival rates are unequal for one pair, and equal for the
queues in the other pair. Specifically, λ11 = 7λ22, λ12 =
λ21 and λ11 = 3.5λ12. We denote this pattern as “NU1.”
We compare the performances of SOP with the optimal for
different values of the departure rates (µ) (Figure 3), and for
each µ we choose the arrival rates such that the above ratios
are satisfied and µ+

∑2
i=1

∑2
j=1 λij = 1 (λ22 = 1−µ

15 ensure
this). Figure 3 show that the performances of the two are
almost identical in most cases with the difference between the
loss probabilities less than 2% for all µ (the curves can not be
distinguished). Next, we consider the case where the arrival
rates are unequal for both pairs, while the total arrival rates
are equal for both inputs, i.e, λ11 +λ12 = λ21 +λ22 (this did
not hold in the previous case). Here, λ11 = 4λ22, λ21 = 4λ12

1378

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Nonuniform Traffic Pattern NU2(2 X 2)

MM
SOP

OPTIMUM

0

5

10

15

20

25

30

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
er

ce
nt

ag
e

di
ff

er
en

ce

Departure Rate

Nonuniform Traffic Pattern NU2(2 X 2)

MM
SOP

Fig. 4. The figures compare the performances of SOP and MM with the
optimal strategy for different departure rates (µ) in a 2 × 2 switch with
B = 50 and the following arrival rate patterns: λ11 = λ21 = 4λ12 =
4λ22, λ22 = 1−µ

10 . Figure (a) plots the absolute values of the packet
loss probabilities(lMM, lSOP, lOPTIMUM). The SOP and the OPTIMUM
curves are very close to each other and can not be distinguished, while the
MM curve is above both. Figure (b) plots the percentage relative difference
between the loss probabilities for the SOP and the optimal (curve SOP)
(100 ∗ (lSOP/lOPT − 1)), and that between MM and SOP (curve MM)
(100 ∗ (lMM/lSOP − 1)). The SOP curve is close to zero, and hence hardly
visible.

and λ11 = λ21. We denote this pattern as “NU2.” Again, we
vary µ and for each µ we choose the arrival rates such that
the above ratios are satisfied and µ +

∑2
i=1

∑2
j=1 λij = 1

(λ22 = 1−µ
10 ensure this). Figure 4 show that the performance

of SOP is near optimal all through, again the curves can not
be distinguished. The trends remain similar for other patterns
of arrival rates which we do not exhibit on account of space
constraints.

We believe that the minor difference in the packet losses
of SOP and the optimal strategy is principally due to the sub-
optimality of the packet acceptance/rejection/push-out deci-
sion of SOP in the general case. Consider traffic pattern NU1
as an example. Let x be the current state. Since the 1 − 1
stream has significantly higher arrival rate as compared to
other streams, the optimal strategy should push out the packets
of the 1 − 2 stream less frequently than that of the 1 − 1
stream when input buffer 1 is full, i.e., 1 − 2 packets should
be pushed out only if diff1(x) is much smaller than diff2(x).
This is because the 1 − 1 stream will receive more packets
than the 1 − 2 stream in future. However, SOP pushes out
the 1 − 2 packets whenever a 1 − 1 packet finds input buffer
1 full and diff2(x) > diff1(x) + 1, even if the difference
between the two sides is small. But again, a state x where
diff2(x) > diff1(x) + 1 is rarely reached since the 1 − 1

stream has significantly high arrival rate as compared to the
other streams. Thus there is only slight sub-optimality. Also,
depending on the arrival rates, unlike SOP, the optimal strategy
may not schedule the longest queue whenever only a single
queue can be scheduled. Once again, the sub-optimality is
minimal.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Uniform Traffic Pattern (2 X 2)

MM
SOP

Fig. 5. The figure plots the packet loss probabilities of MM and SOP for
different departure rates (µ), and equal arrival rates λij = 1−µ

4 , ∀i, j in a
2×2 switch with B = 50. Note that SOP is optimal in this case (Theorem 1).

Now we consider the MM policy which schedules packets
as per a maximum weighted matching. This policy has been
proposed for the infinite buffer case and attains the maximum
possible throughput there [7]. Memory management is not an
issue under infinite buffer assumption, and as such MM does
not address it. We consider the obvious extension, whereby
MM always accepts a packet whenever there is space in the
buffer and always rejects a packet if the input buffer is full.
Push out is not used. Average packet loss experienced by
this policy can be computed using MDP based techniques
[13]. Numerical computation shows that MM has considerably
higher packet loss than SOP for unequal arrival rates. For
traffic patterns NU1 and NU2 (Figures 3 and 4 respectively),
SOP decreases the packet loss by more than 25% in certain
cases. Note that the difference brought about by intelligent
resource allocation is pronounced for medium departure rates.
For large departure rates, all policies attain low packet loss
and all policies suffer from heavy packet loss in the other
extreme. Thus MM and SOP perform similarly in these two
extremes, while SOP substantially outperforms MM in the
middle. We observed similar trends for other unequal arrival
rate patterns as well. When arrival rates are equal, MM is
consistently inferior to SOP for all departure rates(Figure 5).
However, the difference in performance is small in this case,
and thus the curves look identical in the figure.

The relative performance of MM w.r.t. SOP is much worse
for nonuniform traffic (Figures 3 and 4) than for uniform
traffic (Figure 5). This happens as the queues tend to be
heavily dis-balanced when arrival rates are unequal, while the
discrepancy is less for equal arrival rates. This load mismatch
worsens the performance for MM. Thus MM experiences
much heavier packet loss for non-uniform traffic than for
uniform traffic. The memory management in SOP restores
a balance in the queue lengths by replacing packets of

1379

more heavily loaded queues with those of the lightly loaded
queues whenever possible, and this retains the performance
for nonuniform traffic at the same level as for the uniform
traffic case. As an example, at service rate 0.2, sum of the
arrival rates (

∑2
i=1

∑2
j=1 λij) 0.8, MM has 39.1% and 51.5%

packet loss for equal arrival rates and arrival pattern NU1
respectively, while the numbers are 38.95% and 39.87% for
SOP. This shows that SOP is robust to different traffic patterns
(note that neither SOP nor MM uses statistics information in
the decision process).

Finally we discuss the implications of the sub-optimality of
MM. The main reason for sub-optimality of MM is that it does
not use any intelligent memory management scheme which
is important for performance optimization when buffers are
finite. The scheduling used by MM differs from the optimal
scheduling as well. Note that the optimal scheduling schedules
a pair whenever possible both for symmetric and asymmetric
traffic, but this is not the case with MM. Thus the optimal
scheduling is to schedule a matching of maximum size or a
“maximum matching,” which is different from the maximum
weighted matching MM uses. We explain MM scheduling
to illustrate this. The matchings for a 2 × 2 switch are the
single queues [1 − 1], [1 − 2], [2 − 1], [2 − 2] and the pairs
[1 − 1, 2 − 2], [1 − 2, 2 − 1]. Weight of a matching is the
sum of the queue lengths of the queues in the matching.
MM schedules the queues which constitute the matching with
the maximum weight. Let the current state be x. Suppose
x22 = 0, x11 > x12 + x21 and x12 > 0, x21 > 0 (e.g.,
x = (5, 2, 2, 0)). MM schedules only the queue 1−1, while the
optimum scheduling schedules the pair 1 − 2, 2 − 1. Thus the
optimum scheduling transfers a larger number of packets than
MM. This reduces the buffer occupancy and hence the packet
loss for the optimal strategy. MM attains optimum throughput
in the infinite buffer case in spite of transferring fewer
number of packets because the infinite buffer assumption
offers more latitude than the finite buffer case as discussed
before. Interestingly, an example provided by Mckeown et al.
shows that for infinite buffers maximum matching scheduling
is strictly suboptimal in terms of throughput [7], whereas
maximum weighted matching attains optimum throughput.
Apparently, it is somewhat counterintuitive that the result will
be opposite in the finite buffer case, particularly since infinite
buffer assumption is the limiting case of finite buffers. This
apparent contradiction can be explained by two observations.
(a)The example was provided for 3 × 3 switches while the
optimal scheduling properties presented so far are for 2 × 2
switches. (b)The example showed that the choice of a specific
maximum matching is suboptimal for unequal arrival rates
and does not show that every maximum matching based
scheduling is suboptimal. There can be several maximum
matchings. The analytical results obtained here show that the
optimal scheduling is to choose “some” maximum matching
or rather to choose a pair of queues whenever possible. The
choice between the pairs can be arbitrary for symmetric traffic,
but the choice may matter for asymmetric traffic.

We compared the performance of SOP with some other

scheduling strategies, e.g., choosing the maximum weighted
matching of maximum size etc. The performance differences
are similar to that with MM (technical report [13]), which
indicates that the performance advantage of SOP is primarily
due to the load balancing attained by the memory manage-
ment. Refer to [13] for performance comparisons for heavy
tailed and bursty arrival processes.

IV. RESOURCE ALLOCATION FOR N × N SWITCHES FOR

ARBITRARY N

We consider the scheduling and memory management prob-
lems in switches with N inputs and N outputs for arbitrary
N. The objective is to minimize the packet loss. The optimal
strategy can be computationally obtained using MDP [13].
However, no closed form solution is known for this case.
Since computations using MDP are complex, we propose a
computationally simple heuristic in this case and show using
numerical computation that this heuristic attains low packet
loss.

The objective of the scheduling policy is to transfer as many
packets as possible so as to minimize the packet loss, and
memory management decides which packets to accept, reject
and push-out so as to allow the transfer of several packets in
every scheduling. Consider the example shown in Figure 2.
All three packets can be transferred at the same time since
they are waiting at different inputs and intended for different
outputs. However, if all three were waiting at the same input,
only one can be transferred. Thus like in the special case for
2×2 switches we need to balance the load across appropriate
queues. The SOP memory management attains this in 2 × 2
switches by accepting/rejecting/pushing out packets so as to
reduce the difference between queue lengths of the queues
which can be scheduled together([1−1, 2−2] and [1−2, 2−1]).
For N > 2 more than two queues can be scheduled together,
e.g., 1− 1, 2− 2, 3− 3 can be scheduled together in the 3× 3
switch showed in Figure 2. Thus the notion of reducing these
differences can not be extended directly for N > 2.

We consider a new measure of congestion, the maximum
of the total number of packets waiting at an input and
waiting for an output. We denote this measure as cong(x),
where cong(x) = max(maxi

∑N
j=1 xij ,maxj

∑N
i=1 xij), and

x is the current state. Note that cong(x) = 1 in Figure 2,
cong(x) = 3 if all three packets were waiting at the same
input, or waiting for the same output in Figure 2. Three
packets can be transferred to the outputs simultaneously in
the first case, while only one packet can be transferred in
the latter cases. Thus intuitively larger number of packets
can be transferred when cong(x) is smaller. We propose a
strategy which minimizes this congestion measure. First we
justify why cong(x) is a measure of goodness for a state x.

1) If the current state is x, every packet has duration
T units and there is no future arrival, then the min-
imum time taken to transfer all waiting packets is
T cong(x) [4], [16]. This indicates that higher the value
of cong(x), more congested is the switch in some sense.

1380

2) We show in technical report [13] that the optimal
policy minimizes a parametrized function Jβ,OPT(x)
(parameter β) referred to as the “discounted loss rate
function” for each state x and all values of a certain
parameter β < 1. We show here that under heavy traffic
this function is lower bounded by cong(x) for each state
x and each β < 1.
Lemma 1: For all β < 1 and all states x Jβ,OPT(x) ≥
cong(x) if the total arrival rate at(intended for) each
input(output) is greater than the service rate, i.e.,
min(mini

∑N
j=1 λij ,minj

∑N
i=1 λij) > µ.

This indicates that low packet loss can be obtained by
choosing the next state so as to minimize this measure
of congestion.

We present the heuristic now. The scheduling is to schedule
the matching of largest size which minimizes cong(y) of the
next state y. Note that there can be several maximum match-
ings or matchings of the largest size. We choose a specific
maximum matching which minimizes the congestion measure
of the next state. Under such a matching, the congestion
measure reduces by one whenever the currently scheduled
packets complete transmission. Fast algorithms can be found
for computing such matchings using the theory of edge
coloring of bipartite graphs [3]. The memory management
policy accepts packets without pushing out any existing packet
as long as the input buffer has space (in fact this is the optimal
decision [13]). We consider the acceptance decision when an
incoming packet finds the input buffer full. Let the current
state be x. Suppose the packet is for input i and output j. We
consider the total number of packets waiting for each output
across all inputs. Let this number be maximum for output k
among those outputs for which at least one packet wait at
input i, i.e., k = arg maxm:xim>0

∑N
l=1 xlm. The incoming

packet is rejected if
∑N

l=1 xlj ≥
∑N

l=1 xlk − 1, and accepted
while pushing out a packet waiting for output k at input i
otherwise. In other words the acceptance policy reduces the
load for a more heavily loaded output at the expense of that
for a lightly loaded output. Overall, the policy minimizes the
congestion at both inputs and outputs, and thus we denote it
as a policy which balances congestion at terminals (BCT). We
present an example to illustrate this policy.

Example IV.1: Consider a 3 × 3 switch. Let the current state
be x with x11 = 2, x12 = x21 = x32 = 1. All other queues
are empty. Note that at most 2 packets can be transferred, and
the matchings which transfer two packets are [1 − 1, 3 − 2],
[1 − 2, 2 − 1], [2 − 1, 3 − 2]. The next states have congestion
measures 2, 2, 3 respectively for these choices. Thus either the
first or the second matching can be selected. Suppose B = 3.
Any new arrival at inputs 2 and 3 are accepted without any
push outs. Consider a new arrival at input 1 which is full. If
the packet is for output 1 or 2, it is rejected. However, a new
arrival for output 3 is accepted while pushing out a packet for
output 1, since

∑3
m=1 xm1 >

∑3
m=1 xm3 + 1.

BCT applies for 2×2 switches as well, and takes the same
decisions as SOP there [13]. Weller et al. [16] proposed a

similar scheduling strategy, and analyzed its throughput in
presence of infinite buffers and pseudo-deterministic traffic
arrival (a “α − S” traffic model) [16]. However, memory
constraints were not considered there, and as such the memory
management component has not been proposed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05 0.1 0.15 0.2 0.25 0.3

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Uniform Traffic Pattern (3 X 3)

MM
BCT

OPTIMUM

Fig. 6. The figure plots the packet loss probabilities of the optimum strategy,
BCT and MM for different departure rates (µ), and equal arrival rates λij =
1−µ

9 , ∀i, j in a 3 × 3 switch with B = 5. The packet losses are almost
identical for BCT and the optimum, while MM has a slightly higher packet
loss than BCT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Nonuniform Traffic Pattern (3 X 3)

MM
BCT

OPTIMUM

Fig. 7. The figure compares the performances of the optimum strategy,
BCT and MM for different departure rates (µ) in a 3×3 switch with B = 5
and the following arrival rate patterns: λ11 = 9λ, λij = λ, (i, j) �= (1, 1),
λ = 1−µ

17 . The packet losses are almost identical for BCT and the optimum,
while MM has substantially higher packet loss than BCT.

Average packet loss experienced by this policy can be
computed using MDP based techniques [13]. We present the
numerical performance evaluations for a 3×3 switch. We first
compare the performance of BCT with the optimal. However,
computation of the packet loss experienced by the optimal
using MDP involves several iterations, each involving B18

operations for buffer size B(refer to the concluding discus-
sions of Section II). We could thus compare the performances
for small values of B (B = 5) only. First consider the case of
uniform traffic λij = λ,∀i, j, λ = 1−µ

9 for scaling purposes.
Figure 6 shows the performance curves. Now consider a
nonuniform traffic pattern where the arrival rate in one queue
is significantly higher than others. Specifically, λ11 = 9λ,
λij = λ for (i, j) �= (1, 1) and λ = (1 − µ)/17 (the last
relation scales the sum of the arrival and departure rates to
1). Figures 6 and 7 show that in both cases the packet loss of
BCT is close to that of the optimum for all departure rates.

1381

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.1 0.15 0.2 0.25 0.3

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Uniform Traffic Pattern (3 X 3)

MM
BCT

Fig. 8. The figure plots the packet loss probabilities of BCT and MM for
different departure rates (µ), and equal arrival rates λij = 1−µ

9 , ∀i, j in a
3 × 3 switch with B = 50. MM has a slightly higher packet loss than BCT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
ac

ke
t L

os
s

P
ro

ba
bi

li
ty

Departure Rate

Nonuniform Traffic Pattern (3 X 3)

MM
BCT

0

5

10

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
er

ce
nt

ag
e

di
ff

er
en

ce

Departure Rate

Nonuniform Traffic Pattern (3 X 3)

MM

Fig. 9. The figures compare the performances of BCT and MM for different
departure rates (µ) in a 3 × 3 switch with B = 50 and the following arrival
rate patterns: λ11 = 9λ, λij = λ, (i, j) �= (1, 1), λ = 1−µ

17 . Figure (a) plots
the absolute values of the packet loss probabilities (lMM, lBCT). Figure (b)
plots the relative increase of the packet loss probability of MM w.r.t. BCT
(100 ∗ lMM/lBCT − 1).

MM performs inferior to BCT in both cases (the discrepancy
is substantially higher for nonuniform traffic case). Investiga-
tions for other nonuniform traffic patterns indicate the same
trends.

Buffer size of only 5 units may be small for drawing
reliable conclusions. Thus we compare the performance of
both BCT and MM via simulation for larger B, B = 50.
Note that MDP based computations need to consider 5018

operations in each iteration, and are thus computationally
infeasible. Thus we do not know the optimal packet loss rates.
Nevertheless, simulation results demonstrate the improvement

5

10

15

20

25

30

35

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

P
er

ce
nt

ag
e

di
ff

er
en

ce
 in

 P
ac

ke
t L

os
s

R
at

e

Departure Rate

Heavy Tailed Arrival Traffic(3 X 3)

Fig. 10. The figure compares the performances of BCT and MM for different
departure rates (µ) in a 3×3 switch for heavy tailed arrival distribution with
B = 500. Each arrival brings a Pareto distributed burst of packets, mean burst
size 3, α = 1.24. Arrival epochs are poisson with rates: λ11 = 9λ, λij =
λ, (i, j) �= (1, 1), λ = 1−µ

17 . The figure plots the relative increase of the
packet loss probability of MM w.r.t. BCT (100 ∗ lMM/lBCT − 1). Refer to
the technical report for absolute values of the packet losses.

obtained by BCT over MM. In the uniform traffic case,
MM is slightly inferior to BCT (Figure 8), while in the
nonuniform traffic case the difference is substantial (Figure 9).
BCT decreases the packet loss rate by more than 40% over
MM (Figure 9(b)) in certain cases! Once again, we observe
similar differences in performances between BCT and MM for
other nonuniform traffic patterns we considered. For instance,
Figure 10 shows the performance difference for bursty Poisson
arrivals, with the bursts having a Pareto distribution (F (x) ≤
1 − (b/x)α, b = 0.6, α = 1.24). The absolute values of the
packet losses can be found in [13]. Like in the 2×2 case, the
load balancing brought about by the memory management of
BCT safeguards against the detrimental effect of the difference
in arrival rates, while MM has no such protection, and this
explains the difference in performance for nonuniform traffic
patterns. We conclude that BCT is more robust than MM.

V. DISCUSSION AND FUTURE RESEARCH ISSUES

We mention potential approaches for addressing several
implementation related challenges of the proposed algorithms,
in context of the switching and wireless applications. We hope
that this paper will entice further research required to “nail
down these issues.”

Real time traffic demands delay guarantees, and thus loss
minimization may not be enough. Packet deadline satisfaction
can be facilitated in the proposed design if the oldest packet is
discarded (or replaced by a new packet) from a stream during
pushout (note that the push out strategy decides the queue for
push out and any packet can be discarded from the chosen
queue). Another approach is to deviate from the loss optimal
scheduling and serve a packet if it is close to deadline expiry.

Computing the desired matching for every scheduling de-
cision may become computationally intensive particularly
for high speed operations. Further research is required for
designing a computationally simple scheduling which attains
low packet loss. A possible direction is to proceed along the
results obtained by Mekkittikul et al. [8] and Tassiulas [14] in

1382

simplifying the throughput optimal scheduling strategies for
switches with infinite buffers.

The proposed memory management uses packet push-out
which may become difficult from an implementation point of
view, particularly for optical switches. An interesting topic for
future research is to design a memory management strategy
which optimizes packet loss under the constraint that existing
packets can not be discarded. In line with the results obtained
for similar objective in shared memory switches [5], the
optimal strategy is likely to accept packets selectively even if
the input buffer has space. We believe that a threshold based
packet acceptance policy will be required.

Our objective has been to minimize packet loss. We do not
address fairness issues in this paper. For example, in Figure III
the proposed strategy may starve the queue x12 if the queue
x21 has no packet, and queues x11, x22 are heavily loaded. The
fairness properties can be improved by forcing the scheduler
to serve a queue if it has not received service for certain time,
even at the cost of optimality. The time interval can be tuned
to attain the desired tradeoff between fairness and optimality.
Another possibility is to proceed in the direction of [9].

The scheduling strategy needs shared scheduling states in
an input queued switch, and similarly a centralized coordina-
tion for application in wireless networks. Further research is
needed to develop distributed scheduling strategies, and we
believe that developing a centralized policy is the first step in
that direction.

REFERENCES

[1] M. Arpaci and J. Copeland. Buffer-management of shared memory atm
switches. IEEE Communications Surveys, 2000.

[2] I. Cidon, L. Georgiadis, R. Guerin, and A. Khamisy. Optimal buffer
sharing. IEEE Journal on Selected Areas in Communications, 13(7),
1995.

[3] H. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs
and multigraphs. SIAM Journal of Computing, 11(1), February 1992.

[4] M. Hall Jr. Combinatorial Theory. John Wiley and Sons, 1998.
[5] F. Kamoun and L. Kleinrock. Analysis of shared storage in a computer

network node environment under general traffic conditions. IEEE
Transactions on Communications, 28(7), July 1980.

[6] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing
on a space-division switch. IEEE Transactions on Communications, 35,
December 1987.

[7] N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achiev-
ing 100% throughput in an input queued switch. IEEE Transactions on
Communications, 47(8), 1999.

[8] A. Mekkittikul and N. Mckeown. A practical scheduling algorithm to
achieve 100% throughput in input-queued switches. Proceedings of
INFOCOM’1998, April 1998.

[9] N. Ni and L. Bhuyan. Fair scheduling and buffer management in internet
routers. Proceedings of INFOCOM, NY, June 2002.

[10] M. Putterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley and Sons, 1998.

[11] S. Ross. Introduction to Stochastic Dynamic Programming. Academic
Press, 1998.

[12] R. Roy and S. Panwar. Optimal space priority policies for shared
memory atm systems. Proceedings of Allerton Conference on Com-
munication, Control, and Computing, October 1997.

[13] S. Sarkar. A scheme for jointly optimum scheduling
and memory management with application to switches
and wireless networks. Technical Report: Available at
http://www.seas.upenn.edu/∼swati/publication.htm, 2002.

[14] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switchs. Proceedings of INFO-
COM’1998, April 1998.

[15] L. Tassiulas and A. Ephremidis. Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks. IEEE Transactions on Automatic Control, 37(12), 1992.

[16] T. Weller and B. Hajek. Scheduling nonuniform traffic in a packet
switching system with small propagation delay. Proceedings of INFO-
COM’1994, 1994.

[17] M. Yoo, C. Qiao, and S. Dixit. Qos performance of optical burst
switching in ip-over-wdm networks. IEEE Journal on Selected Areas
in Communications, 18(10), October 2000.

1383

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

