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Abstract—There is a growing interest among service providers
to offer new services with Quality of Service (QoS) guarantees that
are also resilient to failures. Supporting QoS connections requires
the existence of a routing mechanism, that computes the QoS paths,
i.e., paths that satisfy QoS constraints (e.g., delay or bandwidth).
Resilience to failures, on the other hand, is achieved by providing,
for each primary QoS path, a set of alternative QoS paths used
upon a failure of either a link or a node. The above objectives, cou-
pled with the need to minimize the global use of network resources,
imply that the cost of both the primary path and the restoration
topology should be a major consideration of the routing process.

We undertake a comprehensive study of problems related to
finding suitable restoration topologies for QoS paths. We consider
both bottleneck QoS constraints, such as bandwidth, and additive
QoS constraints, such as delay and jitter. This is the first study
to provide a rigorous solution, with proven guarantees, to the
combined problem of computing QoS paths with restoration. It
turns out that the widely used approach of disjoint primary and
restoration paths is not an optimal strategy. Hence, the proposed
algorithms construct a restoration topology, i.e., a set of bridges,
each bridge protecting a portion of the primary QoS path. This
approach guarantees to find a restoration topology with low cost
when one exists.

Index Terms—Approximation algorithms, QoS routing, restora-
tion, restricted shortest path.

I. INTRODUCTION

THERE is a growing interest among service providers to
offer their customers new revenue-generating services

with Quality of Service (QoS) guarantees. This is facilitated
by current efforts to provide resource reservations and explicit
path routing, e.g., MultiProtocol Label Switching (MPLS).
On the other hand, physical network infrastructures may be
prone to failures; for example, in optical networks, a single link
failure is frequent enough in order to warrant consideration
[8]. Therefore, a key requirement for such services is that they
also be resilient to failures. This goal, namely, providing QoS
paths with failure resilience, can be achieved by provisioning
primary and restoration paths that satisfy the QoS constraints.
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The primary QoS path is used during normal network operation;
upon failure of a network element (node or link) in the primary
path, the traffic is immediately switched to a restoration path.
To facilitate this seamless recovery to a restoration path in the
event of a failure, it is necessary to reserve network resources
(e.g., bandwidth) on both the primary and restoration QoS
paths. Such resources should be consumed in a networkwide
efficient manner. A common way for modeling the impact
of such resource consumption on each link is by associating
“costs” with the links. Accordingly, a major problem is to
find primary and restoration paths that satisfy end-to-end QoS
constraints at minimum cost. This problem is the subject of this
study.

QoS constraints occur naturally in a number of practical set-
tings involving bandwidth and delay sensitive applications such
as voice over IP, audio and video conferencing, multimedia
streaming, etc. QoS constraints can be divided into bottleneck
constraints, such as bandwidth and additive constraints, such
as delay or jitter.

QoS routing has been the subject of several recent studies and
proposals (see, e.g., [4], [16], [18], [19] and references therein).
However, none of the prior studies on QoS routing consider the
problem of provisioning QoS paths with restoration. Similarly,
path restoration and routing over alternate paths has also at-
tracted a large body of research (see, e.g., [9]–[11], [13], [14]).
Most of the proposed solutions, however, consider only bottle-
neck QoS constraints. The few studies that do consider additive
constraints, focus on heuristic approaches and do not provide
proven performance guarantees.

Bottleneck QoS constraints can be efficiently handled by
pruning infeasible links. However, additive QoS constraints are
more difficult to handle. Indeed, the basic problem of finding
an optimal path that satisfies an additive QoS constraint is

-hard [6]. Moreover, it turns out that, in the presence of
additive QoS constraints, the widely used approach of disjoint
primary and restoration paths is not an optimal strategy. A
better solution is to provide a restoration topology, i.e., a set of
bridges, with each bridge protecting a portion of the primary
path. The advantage of the disjoint paths strategy is its ability
to switch promptly from the primary path to the backup path
in the event of a failure. While a restoration topology strategy
requires more sophisticated switching with a proper signaling
mechanism, it has several advantages over the disjoint paths
strategy. First, it provides a cheaper solution in terms of resource
consumption. Second, it may find a solution when one does not
exist for the disjoint paths strategy [13]. Third, a restoration
topology strategy uses fewer backup links upon a failure, which
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facilitates more efficient sharing of backup bandwidth [11].
Finally, the restoration topology strategy enables the network
to recover from a failure by simply activating a local bridge,
rather than switching to a completely new path.

Accordingly, this study investigates the problem of pro-
visioning primary and restoration paths that satisfy QoS
constraints. Since this problem is -hard, we present solu-
tions that are guaranteed to be within a certain factor of the
optimum. Focusing on the fundamental problem of resilience to
a single failure, the paper makes two major contributions. First,
we address the issue of link sharing by different bridges, which
complicates the process of finding the set of optimal bridges,
and we prove that there is an optimal restoration topology in
which each link is shared by at most two bridges. This enables
us to identify restoration topologies whose cost is at most two
times more than the optimum. The second contribution is the
novel concept of adjusted delay, which allows us to represent
the set of bridges that compose a restoration topology as a
single walk1 between the source and the destination nodes. This
concept makes it possible to adapt standard schemes such as
Bellman–Ford’s Shortest Path algorithm [3] for identification
of restoration topologies.

To further illustrate the effectiveness of our proposed solu-
tions, we conduct some simulation experiments. The simula-
tion results demonstrate that our proposed algorithms perform
well in practice, and, in a number of cases, return a restoration
topology even when prior approaches fail to do so.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the network model and formulate the prob-
lems considered in this paper. In Section III, we discuss a funda-
mental property of optimal restoration topologies, namely, the
sharing of links by several bridges. In Section IV, we introduce
the basic concepts of adjusted delay and feasible walk. In Sec-
tion V, we provide approximation algorithm for provisioning
of the restoration topologies. In Section VI, we extend our re-
sults for directed networks. Simulation results are presented and
discussed in Section VII. Finally, conclusions appear in Sec-
tion VIII. Due to space limits, some proofs are omitted and can
be found in [2].

II. MODEL AND PROBLEM FORMULATION

In this section, we describe the network model and the two
problems addressed in this paper. For simplicity of exposition,
we use the terms bandwidth and delay requirements in order to
generically refer to bottleneck QoS constraints and additive QoS
constraints, respectively. Table I summarizes the notation used
throughout the paper.

A. Network Model

We represent the network by an undirected graph ,
where is the set of nodes and is the set of links. We as-
sume that the network does not contain parallel links (i.e., two
or more links that connect the same nodes). We denote by
and the number of network nodes and links, respectively,
i.e., and . An -walk is a finite se-
quence of nodes , such that, for

1In contrast to a path, a walk may include loops.

TABLE I
NOTATION USED IN THE PAPER

, . Here, is the hop count
of . Note that nodes and links may appear in a walk several
times. An -path is an -walk whose nodes are dis-
tinct. The subwalk (subpath) of that extends from to
is denoted by . Let be a -walk and

be a -walk; then, denotes the -walk
formed by the concatenation of and .

Each link offers a bandwidth guarantee (which is typ-
ically the available bandwidth on ), and a delay guarantee .
The bandwidth of a walk is identical to the bandwidth of its
worst link. The delay of a walk is the sum of the QoS
requirements of its links, i.e., .

In order to satisfy QoS constraints, certain resources such as
bandwidth and buffer space must be reserved along QoS paths.
In order to optimize the global resource utilization, we need to
identify QoS paths that consume as few network resources as
possible. Accordingly, we associate with each link a nonneg-
ative cost , which estimates the quality of the link in terms of
resource utilization. The link cost may depend on various fac-
tors, e.g., the link’s available bandwidth and its location. The
cost of a walk is defined to be the sum of the costs of
its links, i.e., .

Network links are prone to failures. Following [10] and [12],
we assume that only a single failure can occur at a time. Indeed,
protection from multiple failures would have incurred exces-
sively high cost in terms of network utilization, which, typically,
is not justified by the rare occurrence of simultaneous failures.

In order to model networks with nodes connected by asym-
metric or unidirectional links, we also consider directed graphs
(Section VI). For instance, in such networks, for a pair of con-
nected nodes , the bandwidth allocated on the link in the
direction from to may be much larger than the allocated
bandwidth in the opposite direction. In addition, the delay and
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Fig. 1. Example of a network. The delay of all links is 10, except for bold links
whose delay is 1.

cost characteristics of a link may be very different from
those of the reverse link .

B. QoS Paths

A fundamental problem in QoS routing is to identify a min-
imum cost path between a source and a destination that satis-
fies some delay and bandwidth constraints. Bandwidth require-
ments can be efficiently handled by simply pruning infeasible
links from the graph, i.e., links whose bandwidth is lower than
the constraint. Thus, in the rest of the paper, we only consider
delay requirements. Accordingly, the fundamental problem is to
find a minimum cost path that satisfies a given delay constraint.
This can be formulated as the Restricted Shortest Path problem.

Problem RSP (Restricted Shortest Path): Given a source
node , a destination node and a delay constraint , find an

-path such that

1) , and
2) for every other -path that satisfies

.
In general, Problem RSP is intractable, i.e., -hard [6].

However, there exist pseudo-polynomial solutions, which give
rise to fully polynomial approximation schemes2 (FPAS), whose
computational complexity is reasonable (see [5], [7], and [15]).
The most efficient algorithm, presented in [15], has a computa-
tional complexity of , and computes
a path with delay at most , and cost at most times the
optimum. We refer to this algorithm as Algorithm RSP.

C. Bridges and a Restoration Topology

As mentioned earlier, our study focuses on provisioning QoS
paths with restoration. The QoS path that is used during normal
network operation is referred to as the primary path. Upon
failure of a network element (node or link) in the primary path,
the traffic is immediately switched to a restoration path. Thus,
we require that in addition to the primary path, the restoration
paths also satisfy the delay constraint . In this paper, we
primarily focus on link failures, but our results can be easily
extended to deal with node failures by using standard node
splitting technique (see, e.g., [20]).

A common approach for path restoration is to provision two
disjoint paths that satisfy the delay constraint. However, as we
illustrate below (see also [13]), in some cases, such disjoint
paths do not exist, although it is possible to provision a pri-
mary path with a set of restoration paths. Consider the net-
work depicted in Fig. 1. Here, the delay of all links is 10, ex-
cept for the links marked by bold lines, whose delay is 1. The

2A Fully Polynomial Approximation Scheme (FPAS) provides a solution
whose cost is at most (1 + ") times more than the optimum with a time
complexity that is polynomial in the size of the input and 1=".

only two disjoint paths between the source node and the des-
tination node are and

. For a delay constraint ,
and cannot be used as primary and restoration paths, be-
cause . However, it is possible
to provision a primary path and a set of restoration paths
that satisfy the delay constraint . Specifically, we use
the primary path and restoration
paths defined as follows. Upon failure of links

or we use restoration path
with , while upon failure of link path

with is used. Similarly,
we construct restoration paths . As demonstrated in
this example, a restoration path comprises portions of the pri-
mary path and a bridge, which serves as a backup for the failed
segment of the primary path. For example, in Fig. 1, the restora-
tion paths and include the bridges and

, respectively.
Definition 1 (Bridge for a Link Failure): Let

be a QoS path and be a subpath of
. A path between and that has no common

links with is referred to as a bridge. We say that bridge
protects the subpath of .

Recall that each restoration path must satisfy the delay con-
straint . This implies that the delay of a bridge must
also be constrained. Specifically, the delay of a bridge

must be at most , where
is the subpath of protected by . We denote the

quantity by . Clearly, for larger values of , it is
possible to find cheaper bridges that satisfy

.
A set of bridges that provides a restoration path for the failure

of any link is referred to as a restoration topology.
Definition 2 (Restoration Topology for Link Failures): Let
be a QoS constraint and be a

QoS path that satisfies (i.e., ). Then, a restoration
topology for is a set of bridges such
that:

1) for each bridge , it holds that
, and

2) for each link , there exists a bridge
that “protects” , i.e., is included in the subpath
of protected by .

We refer to as a feasible restoration topology, in order
to emphasize that each restoration path satisfies the delay con-
straint .

Let be the set of links that belong to bridges of ,
i.e., . The cost of a restora-
tion topology is defined as the total cost of links in , i.e.,

. Note that the cost of each link is counted
only once, even if it belongs to several bridges. We denote by

the number of links in the restoration topology.
We seek restoration topologies that minimize the usage of

network resources. Since the cost of a link is a measure of its
desirability for routing (with lower cost links being more desir-
able), our goal is to find a (feasible) restoration topology with
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TABLE II
APPROXIMATION RATIOS OBTAINED BY OUR ALGORITHMS

minimum cost . Note that, depending on how costs are as-
signed to links, our approach enables a wide range of restoration
topologies to be selected. For example, associating unit costs
with all links would translate into computing restoration topolo-
gies with a minimum number of links. Also observe that in an
optimal restoration topology, the subpaths of protected by two
bridges and are not nested, one within the other. Thus, for
any two bridges and in ,
if precedes in then also precedes in , and vice
versa. For clarity of presentation, we assume that the bridges in

are enumerated such that the source of bridge is either
identical to or a predecessor of the destination of bridge

in .

D. Problem Statement

We are now ready to formulate the two problems that we con-
sider in this study. The first problem seeks to compute a suitable
restoration topology for a given QoS path.

Problem RT (Restoration Topology for a QoS Path): Given
an -path and a QoS constraint , such that ,
find a minimum cost restoration topology for .

We denote by the minimum cost of a restoration
topology for . Next, we consider the problem of provi-
sioning a QoS path with a restoration topology.

Problem P+RT (QoS Path and Restoration
Topology): Given a source , a destination , and a
QoS constraint , find an -path that satisfies
and a restoration topology for such that their total
cost is minimum.

Each of the above problems, namely RT and P+RT, includes
Problem RSP as a special case; hence, they are both -hard.
Furthermore, as discussed below, in most cases we cannot pro-
vide an efficient solution without violating the delay constraint
in the restoration paths. Accordingly, we introduce the following
definition of -approximations.

Definition 3 ( -Approximation): For constants and
, an -approximate solution to, either Problem RT or

Problem P+RT is a solution, for which:

1) the cost is at most times more than the optimum;
2) the primary path satisfies the delay constraint;
3) each restoration path violates the delay constraint by a

factor of at most .

E. Our Results

In Table II, we summarize the approximation ratios that we
obtain for the above two problems. In this table, is a parameter
that captures the trade-off between the quality of the approxima-
tions and the running time of the algorithms. Specifically, the
time complexity of the algorithms is proportional to ; thus
smaller values of yield better approximate solutions at the ex-
pense of higher running times.

Fig. 2. Node v is shared by bridges B = P � P and B = P � P .

The solution of Problem P+RT is the main contribution of this
paper. We emphasize that our solutions may violate the delay
constraint only for restoration paths, while the primary paths
always satisfy the QoS constraints. Therefore, such delay vio-
lations have no effect during normal network operation. More-
over, many time-sensitive applications can tolerate short-term
delay violations (until the failed link is repaired), e.g., by way
of buffering.

III. PROPERTIES OF RESTORATION TOPOLOGIES

Finding an optimal restoration topology is a complicated
problem due to the fact that bridges may share links. However,
in this section we show that this obstacle can be overcome
with a minimum penalty in terms of the cost of the solution
obtained. We begin by establishing the existence of an optimal
restoration topology in which the number of appearances of a
node or a link is bounded by 2.

Lemma 1: Given an undirected graph , a delay constraint
, an -path , , and a restoration topology for

, there exists a restoration topology for such that
, and each node or link is included

in at most two bridges.
Proof: Let be a restoration topology for such that

and is minimum. We prove that each
node of is included in at most two bridges.

By way of contradiction, let , be the
set of bridges of that contain , sorted according to their in-
dexes. Since is minimum, it follows that the subpaths

and of protected by bridges and , re-
spectively, are disjoint (i.e., is a predecessor of in ),
otherwise we can omit from the bridges . We
denote the subpaths and of by
and , respectively (see Fig. 2). The subpaths and

of are denoted by and , respectively.
The delay of each bridge exceeds the delay of the subpath

of protected by by at most , i.e.,

and

It is easy to verify that one of the following two conditions
must hold:

or

If the first condition holds, then we can substitute bridge
in by a new bridge formed by concatenating and the
reverse path of . This substitution yields a valid restoration
topology with fewer links than in which contradicts our as-
sumption that is minimum. Note that this substitution
yields a restoration topology with fewer links even if has
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common links with or . Similarly, we can show a contra-
diction if the second condition holds.

We thus conclude that each node is shared by at most
two bridges. It follows that each link is also shared by at
most two bridges.

Clearly, the fact that a link can be shared by several bridges
reduces the cost of the restoration topology, since the cost of the
shared link is counted only once. However, finding restoration
topologies with shared links is a difficult task that incurs a high
computational complexity. An alternative approach is to ignore
such link sharing, i.e., count the cost of a shared link as many
times as it appears in the bridges.

Corollary 1: Let be a restoration topology for ,
where is a primary path and is a delay constraint. We
denote by the cost of when sharing
is not considered, i.e., the cost of each shared link is counted
several times. Then, there exists a feasible restoration topology

for such that and ,
where is minimum cost of a feasible restoration topology
for .

Proof: Immediate from Lemma 1.
Corollary 1 implies that, by ignoring link sharing (i.e., finding

a minimum cost topology with respect to cost ), we
can identify a restoration topology whose cost is at most twice
more than that of an optimal solution (with sharing). We adopted
this approach in order to construct efficient approximation algo-
rithms.

In Section VI, we derive a similar bound of 2 on the degree
of sharing for each link in a directed network graph. But first,
in Sections IV and V, we focus on developing approximation
algorithms for Problems RT and P+RT for undirected graphs.

IV. ADJUSTED DELAY AND FEASIBLE WALK CONCEPTS

In this section, we introduce the basic concepts of adjusted
delay and feasible walk, which lay the foundations for our ef-
ficient approximation algorithms for Problems RT and P+RT,
presented in Section V.

A. A Simple Algorithm

In order to set the stage for the concept of adjusted delay,
we first present a simple algorithm for Problem RT. The algo-
rithm, at a high level, consists of the following steps. First, we
compute for each node pair in , the cheapest bridge

whose delay is at most .
To that end, we delete all the links of the path from and
apply Algorithm RSP [15] to the resulting graph. Next, we con-
struct a restoration topology by selecting a subset of bridges

such that each link of is protected and the total cost
is minimum. To achieve this, we construct an auxiliary directed
graph whose nodes are essentially the nodes of . Further,
for each link we add to a link and
assign it a zero cost. Also, for each pair of nodes of ,
such that , we add to a link whose cost is
identical to the cost of the bridge . We now show that each

-path in corresponds to a feasible restoration topology.
Consider an -path in , and let be the set of bridges
that correspond to links in . Consider two successive bridges

Fig. 3. Auxiliary graph for the network depicted on Fig. 1.

and in . Note that ei-
ther precedes or else coincides with , while succeeds

in the path . This ensures that every link in is protected
by a bridge, and thus corresponds to a feasible restoration
topology. Hence, a near-optimal restoration topology can be de-
termined by finding the shortest -path in .

Specifically, Lemma 1 implies that there exists an -path
in whose cost is at most . Indeed, let be an
optimal restoration topology and let be a restoration topology
whose existence is guaranteed by Lemma 1. Then, we can con-
struct a path such that each bridge in corresponds
to a link , and . The last inequality fol-
lows from the fact that, for each pair of nodes , Algorithm
RSP returns a path whose cost is at most times more
than the optimum.

The above algorithm, while conceptually simple, is compu-
tationally expensive, because it applies Algorithm RSP [15] for
each pair of nodes in . Since the time complexity of the RSP
algorithm is , it requires a total of

time. In the Sections IV-B and C,
we describe Algorithm RT, which employs similar ideas, but
whose computational complexity is comparable to that of Al-
gorithm RSP.

B. The Adjusted Delay Concept

The algorithm presented in the previous section exploited the
relationship between the shortest path in an auxiliary graph and
the restoration topology. In this section, we use this idea again,
but for devising a more efficient algorithm. We construct a di-
rected auxiliary graph from by reversing each link
and assigning it a zero cost. In addition, we also substitute each
link , by two directed links
and such that and .
Clearly, each -walk in the auxiliary graph corresponds
to a set of bridges that protects each link . For example,
Fig. 3 depicts the auxiliary graph for the network depicted in
Fig. 1 and the primary path . The walk

in auxiliary graph corresponds to
a set of bridges . In general, however, as explained
below, not every -walk in the auxiliary graph corresponds
to a feasible restoration topology, i.e., one that satisfies the delay
constraint.

One of the key contributions of this study is an efficient
method for verifying, during its construction, whether a given
walk represents a feasible restoration topology. This method
is used as a basic building block in our algorithm, and enables
us to find a low-cost feasible restoration topology. In order to
identify a walk in that corresponds to a feasible restoration
topology, we introduce the notion of adjusted delay for a walk

in .
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Fig. 4. Example of a walk in the auxiliary graph G .

Consider a walk in
that defines a set of bridges, and let
be the restoration path obtained by activating the bridge ; thus,

. We refer to nodes and as the start-
point and termination-point of bridge , respectively. Recall
that a bridge satisfies the delay constraint only if

, or, equivalently,

(1)

where .
Furthermore, every subwalk of corresponds to a

subset of complete bridges in and, possibly, a subpath of an
additional bridge . The adjusted delay of the
walk maintains the following invariant: if all the bridges
in satisfy the delay constraint, then represents the
delay between the source node and the node along ,
i.e., . Otherwise, if there is a bridge

in that does not satisfy the delay constraint, is set
to infinity, thus indicating that the restoration topology formed
by the walk is infeasible. Thus, by applying Condition
(1), the adjusted delay enables us to check easily whether bridge

satisfies the delay constraint, when its termination-point
is reached.

The adjusted delay of a walk
is calculated in a recursive manner.

The adjusted delay of an empty walk is zero, that is .
Now, let us turn to compute the adjusted delay of and
suppose that we have already calculated the adjusted delay of
the sub-walk . Let ,
where is the delay of the link . Generally
speaking, the adjusted delay , except for the
case when . In this case, a special procedure is required
for verifying if node is the termination-point of a bridge and
whether the newly formed bridge satisfies the delay constraint.
Node is not necessarily a termination-point of a
bridge, since a bridge may have several common nodes with
the primary path. For instance, in Fig. 4, bridge comprises
of the two segments and , and node is not a
termination-point of a bridge. However, if for link
of , it holds that and , then must be the
termination-point of a bridge since a bridge cannot share links
with the primary path. As illustrated in Fig. 4, node must be
the termination-point of the bridge , since its successor node
in the walk, node , is also included in .

Based on the above observations, the adjusted delay of a walk
ending at node is defined as follows. (Below,

).

• Case 1: If , and ,
then node cannot be the termination-point of a valid

bridge and it may only be an internal node of a bridge.
Thus, .

• Case 2: If , , and
then node may be either the termination-point or an
internal node of a bridge. As a result, since may be
the starting-point of a new bridge, we set

.
• Case 3: If and

, then it follows that node is not a ter-
mination-point of a bridge and all the bridges included
by the walk satisfy the delay constraint. Since may be
the starting-point of a new bridge, its adjusted delay is

.
• Case 4: If and

, then it follows that, if node is
the termination-point of a bridge (that is, the predecessor
of in walk does not belong to ), then the bridge
ending at does not satisfy the delay constraint (due
to Condition (1)). On the other hand, if is not the
termination-point of a bridge, then an induction argument
can be used to show that some bridge preceding
in walk does not satisfy the delay constraint. Hence,

is set to .

Note 1: Cases 1–4 above consider all possibilities ex-
cept the case that and

. However, it can be shown
by an inductive argument that this case is impossible.

We proceed to present a formal definition of adjusted delay
that considers the four cases mentioned above.

Definition 4 (Adjusted Delay): Let be a primary path and
let be the auxiliary graph formed from by reversing each
link . Then, the adjusted delay of a walk

in is defined recursively as follows:

1) The adjusted delay of an empty walk (i.e., ) is 0:
;

2) Otherwise, the adjusted delay of a walk
is

• if , , and
,

• if and
,

• if and
,

• otherwise,
where .

We illustrate the calculation of the adjusted delay using
the walk shown in bold in Fig. 4. Here, the primary path is

. The delay of every link is
and the delay constraint . Thus,

and . The delay of every other link is depicted
in the figure. Let us calculate the adjusted delay of the walk

and its various prefixes. At the base of the recursion,
. Since node does not belong to , we set

. For computing the adjusted delay of node
we calculate the value .

Since , node may be either the



654 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

termination-point of a bridge that satisfies the delay constraint
or an internal node of a bridge. To allow these two possibilities,
we set .
Since , node must be the termination-point
of the bridge . Since the bridge satisfies the delay
constraint, we have .
Now, to compute , we calculate the corre-
sponding value . Be-
cause , node can
only be an internal node inside a bridge and its adjusted
delay is . Finally, when computing the ad-
justed delay of , .
Node is the termination-point of a valid bridge and

. We conclude that the given
walk represents a feasible restoration topology.

C. Feasible Walk Concept

An -walk whose adjusted delay does not exceed the
delay of the primary path is referred to as a feasible

-walk. From Lemma 2 below, it follows that there is a
one-to-one correspondence between feasible walks and feasible
restoration topologies.

Lemma 2:

1) Let be a feasible restoration
topology and be the corresponding -walk in .
Then, .

2) Let be a primary path and be an -walk in the
auxiliary graph such that . Then, there
exists a feasible restoration topology that corresponds
to .

Proof: See [2].

In general, there may be more than one way to decompose a
walk into a set of bridges, i.e., there are several sets of bridges
that can be constructed out of a single walk. For example, in
Fig. 4 there are two sets of bridges and that correspond to
walk : is formed by bridges , while in ,
the bridges and are combined into a single bridge .
Note that only some of these sets constitute feasible restoration
topologies. One can construct a feasible restoration topology
from a feasible walk by simply choosing as the termination-
point for a bridge, the first node in the bridge for whom

.

We denote by the minimum cost feasible -walk
in the auxiliary graph and by the cost of . We
show a relationship between and the optimum restoration
topology (whose cost is denoted by ).

Suppose that we assign a cost of 0 to each link in the auxiliary
graph that originated from a link . Clearly, due to
Lemmas 1 and 2, it follows that there exists a feasible walk
such that . Thus, . Further,
note that the cost of a restoration topology constructed from a
walk never exceeds the cost of the walk itself. Thus, if we could
compute the optimal feasible walk, then we could compute a
(2,1)-approximation to the optimal restoration topology.

V. APPROXIMATION ALGORITHMS FOR PROVISIONING OF

RESTORATION TOPOLOGIES

We are now in a position to present efficient approximation
algorithms for Problems RT and P+RT. We begin with a pseudo-
polynomial algorithm for Problem RT, which serves as the basic
building block for the approximation algorithm for Problem RT
presented in Section V-B. Finally, in Section V-C we present
the approximation algorithm for Problem P+RT.

A. Pseudo-Polynomial Solution for Problem RT

The fundamental concepts of adjusted delay and feasible
-walk give rise to a pseudo-polynomial algorithm for

Problem RT, i.e., an algorithm whose running time is pro-
portional to the cost of the optimal solution. The algorithm,
referred to as Algorithm PP is presented in this section. Because
of its simplicity, the algorithm can be easily implemented in
practice. However, in the worst case, its running time can be
very high.

Algorithm PP computes a minimum-cost feasible -walk
and the corresponding restoration topology. The algorithm is

a natural extension of the well-known Bellman–Ford algorithm
and uses the dynamic-programming technique of relaxation [3].
The algorithm assumes that the costs of links are integer values
greater than 0, and an upper bound on the cost of the solution
is given.

We first describe the relaxation technique used by Algorithm
PP. For each node , we maintain an array of min-
imum delay estimates. The array stores, for each cost ,
the minimum adjusted delay of an -walk, whose cost is at
most . Initially, for every and . We
only relax links whose cost does not exceed the current budget
restriction . The process of relaxing a link consists of
testing whether we can improve the best -walk (i.e., the
walk whose adjusted delay is minimum) found so far to by
going through without exceeding the current budget restric-
tion and if so, updating . The relaxation technique is
implemented by Procedure RELAX (see Fig. 5).

Next, we proceed to describe Algorithm PP, whose pseudo-
code appears in Fig. 5. The purpose of Algorithm PP is to check,
for a given value of upper bound , whether there exists an

-walk in , such that and
, and if so, to find a minimum cost -walk such that

. We start with a zero budget for and increment
it by a value of 1 in each iteration until either ,
i.e., there exists a walk between and whose adjusted delay is
at most , or else . In each iteration, we process each
node by relaxing all links entering .

As discussed below, we apply Algorithm PP to graphs in
which for each link . Thus, the cost of each link is
at least 1, except for links in that originate from the primary
path . Note that for each link with zero cost, node
must be processed before . Accordingly, the nodes
are processed in an order such that is before if is a suc-
cessor of in .

Also, in Step 15, the algorithm identifies a walk
whose adjusted delay is at most using

backtracking. Suppose that is the value at which Algorithm PP
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Fig. 5. Algorithm PP.

breaks out of the for loop (in Step 16), that is, .
Then, beginning with node , for each node , the backtracking
procedure adds to the returned walk, the link that
resulted in the value until node is reached, where the

values for are computed as follows: for the initial node
, and for every subsequent node ,

. Thus, the cost of the walk can be shown to
be at most . The computational complexity of Algorithm PP is

.
Theorem 1: Let denote the minimum cost of a feasible

-walk in . Then, the following two conditions hold:

1) The walk returned by Algorithm PP is feasible.
2) If then Algorithm PP returns a minimum cost

feasible walk .

Proof: See [2].

B. Approximation Algorithm for Problem RT

In this section, we develop an approximation algorithm for
computing a near-optimal feasible -walk, and use this walk
to construct a near-optimal restoration topology. The technique
we use is similar to the one presented in [15].

Fig. 6. Algorithm RT.

We begin with a high-level overview of the approximation
algorithm. A critical building block of the algorithm is Proce-
dure SCALE (Fig. 6), which uses scaling and rounding in order to
efficiently find an approximate solution. The efficiency of Pro-
cedure SCALE depends on the tightness of the lower and upper
bounds, , , on the cost of the optimal solution. To compute
sufficiently tight lower and upper bounds, we rely on two pro-
cedures, namely Procedure BOUND and Procedure TEST. The
former is used for obtaining initial values of , such that

, while the latter performs iterations to tighten
the bounds further. Finally, we combine all the ideas in Proce-
dure RT.

1) Scaling and Rounding: Recall that the computational
complexity of Algorithm PP is , where is an
upper bound on the minimum cost of a feasible -walk
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in . Thus, the computational complexity of Algorithm PP
effectively depends on , which in turn depends on the
values of the link costs. This implies that the computational
complexity is high for large values of link costs. The idea of the
scaling method is to reduce link costs, and, in turn, the com-
putational complexity of the algorithm. Scaling introduces a
certain penalty in terms of the quality (i.e., cost) of the obtained
solution and a key point is to perform it in a way that keeps this
penalty low. Specifically, we substitute the cost of each link

by a new value , as follows:

where . Clearly, with the new costs , there must
exist a feasible walk with cost at most and
no more than links (due to Lemma 1). Thus, the actual cost
of the path returned by Algorithm PP (in the final step) is no
more than . It follows that if Proce-
dure SCALE is invoked with valid lower and upper bounds, i.e.,

, then it returns a walk whose cost is at most
times more than the optimum. The formal description

of Procedure SCALE appears in Fig. 6.
We summarize this discussion in the following lemma:
Lemma 3: If Procedure SCALE is invoked with valid upper

bound, i.e., , then it returns a walk whose cost is at
most times more than the optimum.

We note that Procedure SCALE might return a feasible walk
even if it is invoked with non valid upper bound, i.e.,

. However, we show that the cost of a walk returned by
the algorithm always satisfies . We use this
property later to compute tight lower and upper bounds on .

Lemma 4: Any walk returned by Procedure SCALE is fea-
sible and satisfies .

Proof: Let be a walk returned by Procedure SCALE.
Note that was returned by Algorithm PP. By Theorem 1 (Part
1), is a feasible walk. Let be the cost of with resect
to the scaled link costs . Since ,
and since for each , we have

.
The running time of Procedure Scale is . Thus,

if we can compute tight lower and upper bounds on such
that the ratio is a constant, then we can reduce the com-
putation time of Procedure Scale to . We next show
how to compute these tight bounds.

2) Lower and Upper Bounds: In this subsection, we present
Procedure Bound (see Fig. 6), which identifies lower and upper
bounds , on the minimum cost of a feasible walk
such that .

We begin by constructing a set that contains
the values of the link costs. Then, we sort this set in order to
obtain the distinct cost values . Note that
this operation requires time. Our goal is to find the
maximum cost value such that the graph derived
from by omitting all links whose cost is greater than , does
not contain a feasible -walk. Clearly, a feasible -walk
contains at least one link whose cost is or more, hence
is a lower bound on . In addition, there exists a feasible

-walk that comprises of links whose cost is or less, and

whose hop count is, by Lemma 1, at most . We conclude that
is an upper bound on .

Procedure BOUND performs a binary search on the values
. At each iteration, we need to check whether

, where is the current estimate of . For this purpose, we
remove from all links whose cost is more than , and assign
the unit cost to the remaining links. Then, we apply Algorithm
PP on the resulting graph, with the parameter . If Al-
gorithm PP returns a feasible walk, then ; otherwise,

. The computational complexity of Procedure BOUND

is .
3) A Testing Procedure: In order to tighten the bounds fur-

ther, we make use of Procedure TEST (shown in Fig. 6). Proce-
dure TEST performs the following 2-approximation test: if the
procedure returns a positive answer, then definitely ;
otherwise, it is the case that .

Procedure TEST is implemented by invoking Procedure
SCALE with and .

Lemma 5: If Procedure TEST returns a positive answer, then
. Otherwise, .

Proof: If Procedure TEST returns a positive answer, then
Procedure SCALE does not fail. Thus, by Lemma 4, Procedure
SCALE returns a feasible walk , for which ,
hence .

We proceed to prove the second part of the lemma. By way of
contradiction, assume that . By Lemma 3, Procedure
SCALE does not return FAIL, hence Procedure TEST returns a
positive answer, which contradicts the condition of the lemma.

4) Putting it All Together: We are now in a position to com-
bine the results of the previous subsections in order to present
our final approximation algorithm, referred to as Algorithm RT
(see Fig. 6).

The algorithm begins by applying Procedure BOUND, which
provides the lower and upper bounds and on such
that . Then, we iteratively apply Procedure TEST

to improve these bounds until the ratio falls below 8. As
we show below (proof of Lemma 6), this requires only a small
number (at most ) of iterations.

In each iteration, we invoke Procedure TEST with
. If Procedure TEST returns a positive answer,

then, , hence is set to . Otherwise, it is the case
that , hence is set to . Note that, if the ratio
is equal to at the beginning of an iteration, then at the end
of the iteration we have . Thus, since the above
process terminates once , the number of iterations
performed can be shown to be .

Having obtained lower and upper bounds , such that
, we use Procedure SCALE to find a feasible walk

, whose cost is at most . Finally, we return the
restoration topology corresponding to .

Lemma 6: The computational complexity of Algorithm PP
is .

Proof: Procedure BOUND requires time;
the execution of Procedure SCALE in line 9 requires
time.

We proceed to analyze the computational complexity of the
loop of lines 2–8. We denote by the ratio at the be-
ginning of iteration . Initially, we have . As dis-
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cussed above, after the execution of iteration it holds that
. It follows that

At iteration we have . We conclude
that the loop performs iterations. At each itera-
tion we execute Procedure TEST, which requires
time. We conclude that the total running time of the loop is

.
We conclude that the total running time of Algorithm RT is

.
We summarize our results in the following theorem.
Theorem 2: Given an undirected graph , a primary QoS

path , a delay constraint , and an approximation ratio
, Algorithm RT identifies, in time, a

feasible restoration topology for , whose cost is at most
times more than the optimum.

Proof: By Lemma 5, lines 4–7 ensure that at each iteration
and are valid bounds, i.e., . Thus, Procedure

SCALE is called at line 9 with valid bounds, hence by Lemma 3
it finds a feasible walk whose cost .
Further, from Lemmas 1 and 2, it follows that .
Thus, and the cost of the restoration
topology corresponding to satisfies

.

C. Approximation Algorithm for Problem P+RT

The approximation algorithm for simultaneous provisioning
of a primary QoS path and the restoration topology is imple-
mented as follows. First, using Algorithm RSP, we identify a

-delay constrained - path in whose cost is at most
times the optimum. Then we apply Algorithm RT with

parameters , , , and . The resulting algorithm
is referred to as Algorithm P+RT.

Theorem 3: Algorithm P+RT identifies, in
time, a -approximate solution for Problem

P+RT.
Proof: The computational complexity of Algorithm P+RT

is identical to that of Algorithm RT.
For a path we denote by the set of links in . Simi-

larly, denotes the set of links in bridge .
Let be the output of Algorithm P+RT and let

be the optimal solution to Problem P+RT.
We prove that there exists a restoration topology for

such that .
For each link we identify a bridge

such that protects and . We
consider the following two cases.

• Case 1. If and then we
choose to be the subpath of , where is

the first predecessor of in that belongs to and
is a first successor of in that belongs to (see
Fig. 7(a)).

• Case 2. If and then let
be a bridge of that protects .

We denote by the path , i.e., the
restoration path for link in the optimal solution. Then,

Fig. 7. (a) Optimal primary path R̂ and an (s; t)-path P̂ . (b) Optimal
solution (P̂ ; R̂ ) to problem P+RT and an (s; t)-path P̂ .

we choose to be the subpath of , where

is the first predecessor of in that belongs to and
is a first successor of in that belongs to (see

Fig. 7(b)).
We note that, in both cases, . Indeed, in the first

case, is a subpath of the optimal path , hence
; and in the second case, is a subpath of the

restoration path used by the optimal solution, whose delay is
at most .

Let be a restoration topology formed by bridges
. We observe that each link is protected by a bridge in
. Thus, as for each bridge it holds that ,
is a feasible restoration topology for .

We also note that , since,
contains only links from and . By Theorem 2, the cost

of is at most times more than the cost of the
optimal restoration topology for , thus

. As a result,
. Since , we have

. Since ,
it follows that is a -approximate solution for
Problem P+RT.

VI. DIRECTED NETWORKS

In this section, we extend the previous results and apply them
for directed networks, modeled as directed graphs. In such net-
works, for a pair of connected nodes , the bandwidth pro-
visioned on the link in the direction from to may be much
larger than the allocated bandwidth in the opposite direction. In
addition, the delay and cost characteristics of a link may
be very different from those of the reverse link .

We observe that, with such asymmetric links, it is possible
that a node or a link is shared by several bridges, which consti-
tutes a major obstacle for identifying efficient solutions. For ex-
ample, consider the network depicted on Fig. 8(a). The numbers
show the link delays. For a delay constraint , there exists
only one feasible restoration topology ,

, , ,
and . Note that the nodes , and the link

are shared by all the bridges of .
We overcome this obstacle by combining bridges. Specif-

ically, suppose that is an optimal restoration topology for
. We combine the bridges , and into a single bridge

, such that , as depicted in Fig. 8(b).
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Fig. 8. (a) Example of arestoration topology R formed by bridges
B = fv ; v; u; v g, B = fv ; v; u; v g, B = fv ; v; u; v g, and
B = fv ; v; u; v g. Link l(v; u) is shared by the bridges B ; . . . ;B .
(b) Bridges B and B are replaced by a single bridge.

We note that for each bridge it holds that the delay of
exceeds the delay of the subpath of protected by by at

most . Thus, we have
and . This implies that

where the last inequality follows from the fact that

. We conclude that the delay of
the restoration path that includes the bridge is at most

. We employ this observation
in order to prove the following lemma, which is the counterpart
of Lemma 1 for undirected networks.

Lemma 7: Given a directed graph , a delay constraint ,
and an -path, , there exists a restoration topology

for such that , and each node
or link is shared by at most two bridges.

Proof: See [2].
Lemma 7 implies that is a feasible restoration topology

with respect to the delay constraint . Thus, in order to
achieve an efficient solution, we relax the delay constraint by
using instead of . For example, by invoking the (simple)
algorithm presented in Section IV-A with the delay constraint

, we obtain a -approximate solution for Problem
RT.

In this section we denote by the optimal walk with re-
spect to . The cost of is denoted by .

Generally, the approximation algorithm for directed networks
is similar to that for the undirected case, except for the fol-
lowing.

1) The adjusted delay is defined with respect to the delay
constraint .

2) We use instead of .
3) Algorithm PP is applied with the delay constraint (in-

stead of .
4) A more elaborate procedure is required for finding the

lower and upper bounds , on .

A more detailed discussion follows.

A. Approximation Algorithm for Problem RT

Recall that our approach for the undirected case was to first
identify lower and upper bounds, and , on the cost of an
optimum walk , such that , and then iteratively
improve these bounds by employing scaling on the link costs.
For directed networks, however, computing lower bound on

incurs high complexity. This is because any optimum walk
might have a large hop count (recall that, in the undirected case,
by Lemma 1, there exists an optimum walk whose hop count
is at most ). Our approach is to consider, for the purpose
of computing the lower bound, only walks whose hop counts
do not exceed . More specifically, we denote by the
feasible walk of minimum cost whose hop count is at most ,
and by the cost of . We then use the lower bound
on instead of .

We identify initial bounds and by invoking Procedure
BOUND (See Section V-B) for . More specifi-
cally, for a given value , we construct an auxiliary graph
out of by omitting all links whose cost is greater than and
assigning the unit cost to the remaining links. Then, we find
the maximum cost value such that Algorithm PP, applied to

, returns FAIL for any value . Clearly,
any feasible walk whose length is at most contains at least
one link whose cost is , hence we set . In addition, Al-
gorithm PP identifies a feasible walk that includes at most
links, such that the cost of each link is at most , hence we
set . Then, the bounds and are iteratively im-
proved until either a suitable walk is found or . In the
latter case, we apply Procedure SCALE with parameters and

in order to find a suitable walk.
Our algorithm is based on the following two lemmas.
Lemma 8:

Proof: By Lemmas 2 and 7, there exists a feasible walk
such that and . Hence,

.
Lemma 9: If , then Procedure SCALE returns a fea-

sible walk whose cost is at most times more than ,
i.e., .

Proof: Similar to the proof of Lemma 3, but using
Lemma 8 instead of Lemma 1.

We proceed to describe the approximation algorithm in more
detail. First, we invoke Procedure BOUND with parameters

, , . It is easy to verify that the procedure returns
a lower bound on and an upper bound on such
that . Next, we use the following iterative process
in order to improve the bounds and . At each iteration,
we compute and apply Procedure SCALE for

. There are several possible cases.

• Case 1: Procedure SCALE returns FAIL. Then, due to
Lemma 9, , i.e., there exists no feasible walk

such that and . Accordingly,
we set ;

• Case 2: Procedure SCALE returns a feasible walk such
that . Then, the algorithm halts and returns the
walk . Note that .

• Case 3: Procedure SCALE returns a feasible walk such
that . In this case we set .
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Fig. 9. Algorithm DRT.

Note that, by Lemma 4, if Procedure SCALE does not fail, it
returns a feasible walk , whose cost is at most , hence all
possible cases are covered. The process stops when a suitable
walk is found or .

Having obtained a lower bound on and an upper bound
on such that , we apply Procedure SCALE for
and . If the algorithm fails, then , hence we return

the walk due to which the upper bound was assigned its
current value. Note that, due to Lemma 8,

. Otherwise, due to Lemma 9, Procedure SCALE returns
a walk such . In both cases, we iden-
tify a feasible restoration topology that corresponds to . It
follows that . The formal description of
the algorithm, referred to as Algorithm DRT, appears in Fig. 9.

We summarize our results in the following theorem.
Theorem 4: Given are a directed graph , a primary QoS

path , a delay constraint , and an approximation ratio .
Then, Algorithm PP identifies, in time,
a feasible restoration topology for , whose cost is at
most times more than OPT, i.e., a -approx-
imate solution to Problem RT.

B. Approximation Algorithm for Problem P+RT

The approximation algorithm for identifying the primary QoS
path and restoration topology is similar to the undirected case.
Namely, we first identify a -delay constrained -path
in , whose cost is at most times more than the op-
timum. Then, we apply Algorithm PP with parameters , ,

, and . The resulting algorithm is referred to as Al-
gorithm DP+RT.

Theorem 5: Algorithm DP+RT identifies, in
time, a -approximate solution for Problem

P+RT in directed graphs.

Proof: The proof follows similar lines as in Theorem
3. Let be the output of Algorithm P+RT and let

be the optimal solution to Problem RT. By The-
orem 4, Algorithm DRT returns a restoration topology for

such that . Since
, is a -approximate

solution for Problem P+RT.
The running time of the algorithm is dominated by Algorithm

DRT, hence it is .

VII. SIMULATION EXAMPLES

In order to further illustrate the efficiency of the proposed so-
lutions, we conducted some simulation experiments. Our exper-
iments included the following steps. First, we generated a net-
work topology and chose source and destination nodes , ,
and a delay constraint . Then, we computed a primary path
between and that satisfies the delay constraint at minimum
cost (by using Algorithm RSP). Finally, we compared the fol-
lowing two algorithms for computing the restoration topology.

• Algorithm DP—Two Disjoint Paths. Find a minimum
cost path that does not have common links with path

and satisfies the delay constraint . The path is com-
puted by using Algorithm RSP.

• Algorithm RT—Restoration Topology. We use Algo-
rithm RT (described in Section V-B) to provision the
restoration topology for .

Recall that Algorithms RSP and RT use an approximation
parameter . In our experiments we chose to be a fairly small
constant.

A. Network Generation Models

We used two different methods for generating the undirected
network topologies, using the BRITE topology generation tool
[17]. The first is Waxman’s method [21] and the second is
Barabasi and Albert’s [1], described below. Both network gen-
erators assign delays to links based on the distance between the
link’s endpoints. Further, we assigned costs to links uniformly
and randomly out of a fixed interval.

• Waxman model [21]. In this model, nodes are placed
on a plane; the probability of interconnecting two nodes
decreases exponentially with the Euclidean distance be-
tween them. We set the value for parameters and to
0.15 and 0.2, respectively.

• Barabasi–Albert model [1]. In this model, the node con-
nectivity follows a power-law rule: very few nodes have
high connectivity, and the number of nodes with lower
connectivity increases exponentially as the connectivity
decreases.

B. Experimental Results

In our experiments, we compared the costs of the restoration
restoration topology computed by Algorithm RT with the cost
of the restoration path computed by Algorithm DP for different
values of the delay constraint . Fig. 10 depicts the experimental
results for (a) Waxman and (b) Barabasi–Albert models in a net-
work of 7000 nodes. In this figure, the axis depicts the delay
ratio , where is the minimum delay of an -path;
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Fig. 10. Effect of delay ratio on the algorithm performance.

while the axis depicts the relative improvement
achieved by Algorithm RT over Algorithm DP. Here, and

are the provisioning costs of the solutions computed by Al-
gorithms RT and DP, respectively. In addition, we present the
values of the delay constraint for which the algorithms fail, i.e.,
cannot identify a restoration path or topology that satisfies the
constraint. The following observations can be made from the
simulation results.

• In many of the cases in which Algorithm DP fails to find a
pair of disjoint paths, Algorithm RT still computes a (fea-
sible) primary path and restoration topology solution with
a low cost. For example, for the Barabasi–Albert model,
for values between 1.24 and 1.36, Algorithm DP
fails while Algorithm RT still provides a feasible solu-
tion of low cost. The same occurs for in
the Waxman model. This clearly demonstrates the advan-
tage of the restoration topology strategy over the tradi-
tional disjoint-paths approach.

• Algorithm RT always exhibits superior performance (i.e.,
finds paths of lower cost) over Algorithm DP.

• The cost benefits due to Algorithm RT are particularly sig-
nificant (around 15%) when the delay constraint is tight,
i.e., closer to the minimum delay of an -path.

VIII. CONCLUSION

In this paper, we investigated the problem of provisioning
QoS paths with restoration. Specifically, we developed algo-
rithms that compute a primary QoS path and a restoration
topology comprising of a set of bridges, each of which protects
a different part of the primary QoS path.

A major contribution of this paper is the concept of ad-
justed delays, which allows existing path algorithms (e.g.,
Bellman–Ford [3], Hassin’s [7]) to be adapted in order to iden-
tify suitable restoration topologies. This enabled us to devise
efficient approximation algorithms with proven performance
guarantees. Specifically, we presented an
approximation algorithm (Algorithm P+RT) that provides

-approximate solutions for link failures. We
extended the algorithm for directed networks and achieved
a -approximate solution. We emphasize that,
in our algorithms, the delay violation may occur only in the
restoration paths, while the primary path always satisfies the
QoS constraint.

There are several interesting topics for future research, which
we proceed to describe. A challenging direction is to devise ap-
proximation algorithms for all problems considered in this study
that yield better approximation ratios (i.e., lower delay violation
and lower cost). In addition, the case of multiple link failures
needs to be addressed. Such multiple failures could be handled
by protecting each link by multiple bridges, which are mutu-
ally link-disjoint. This problem is very difficult and poses major
challenges even if the number of simultaneous link failures is
limited to just 2. Yet another important research topic is to devise
efficient algorithms for concurrently computing primary paths
and the corresponding restoration topologies for multiple con-
nections, such that each connection has a different source-desti-
nation pair and delay requirement. Clearly, an efficient solution
for this problem must use the network resources (such as link
bandwidth) in a network-wide efficient manner. We believe that
the concepts and techniques presented in this paper would be
useful in the investigation of these problems.
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