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Abstract— In wireless networks, it is often assumed that nodes cooperate to relay packets
for one another. Although this is a plausible model for military or mission based networks,
it is unrealistic for commercial networks and future pervasive computing environments. We
address the issue of noncooperation between nodes in the context of content distribution in
mobile infostation networks. We assume all nodes have common interest in all files cached
in the fixed infostations. In addition to downloading files from the fixed infostations, nodes
act as mobile infostations and exchange files when they are inproximity. We stipulate a so-
cial contract such that an exchange takes place only when each node can obtain something it
wants from the exchange. Our social contract opportunistically aligns the individual node’s
interest with that of the whole distribution network and hence enables much higher system
efficiency compared to downloading only from fixed infostations while not requiring true co-
operation among nodes. We show by analysis and simulations that network performance de-
pends on the node density, mobility and the number of files that are being disseminated. Our
results point to the existence of data diversity for mobile infostation networks. The achiev-
able throughput increases as the number of files of interest to all users increases. We have
also extended the common interest model to the case where nodes have dissimilar interests.
Our simulation results show that as mobile nodes change fromhaving identical interests to
mutually exclusive interests, the network performance degrades dramatically. We propose
an alternate user strategy when nodes have partially overlapping interests and show that the
network throughput can be significantly improved by exploiting multiuser diversity inherent
in mobile infostation networks. We conclude that data diversity and multiuser diversity exist
in noncooperative mobile infostation networks and can be exploited.
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1 Introduction

In generic mobile ad hoc networks, nodes communicate with each other through multihop
routing. However, the achievable capacity in these networks is low as demonstrated by
simulation studies [1, 2]. Although rate adaptation [10] orpower control [20] techniques
can improve network capacity, it is unlikely that these measures will increase capacity
further by several orders of magnitude. Indeed, [8] showed that the asymptotic per-node
capacity of a wireless multihop network goes to zero as the number of nodes tends to
infinity, even under the optimistic assumption of perfect scheduling and power control.

Recently, a new ad hoc network paradigm known as mobile infostation networks [7]
has been proposed. In a mobile infostation network, any pairof nodes communicates only
when they are in proximity and have a very good radio channel.Under this transmis-
sion constraint, any pair of nodes is intermittently connected as mobility shuffles the node
locations. The network capacity of mobile infostation networks compares favorably to
conventional multihop ad hoc networks. Using a two-hop relay strategy, Grossglauser and
Tse [7] showed that the per-node throughput of a mobile infostation network isO(1), inde-
pendent of the number of nodes. This capacity improvement comes from the exploitation
of node mobility to physically carry the packets around the network, and is independent of
the underlying mobility model, as long as the mobility process is ergodic.

Nevertheless, the order of magnitude improvement in network capacity comes at a cost.
End-to-end transmissions incur a random delay that is at thesame time scale of the mobility
process. Thus, a mobile infostation network is applicable to delay tolerant applications with
a heavy bandwidth requirement, say, in a content distribution application where all nodes
are subscribers to a movie or news content provider. In this type of applications, a user is not
concerned and aware of the movie download schedules. The application typically runs in
the background for a few hours or even a few days as a user commutes to different places in
his daily routine. This is consistent with the plethora of software applications in ubiquitous
computing environments [27], where computing systems become invisible and fade into
the background and work for the users. In this case, we can draw a parallel ofubiquitous
networking environmentssince users are not aware of the background networking in the
mobile infostation communication paradigm.

Motivated by the dramatic capacity improvement of mobile infostation networks, there
is substantial literature that address exploitation of node mobility to improve data dissemi-
nation. While [3,7,16,17,25] provide theoretic analyses of capacity and delay, many other
papers focus on performance evaluation of protocols and applications. The potential spec-
trum of applications ranges from biological information acquisition systems used in habitat
monitoring of endangered wildlife species [12,22,23] on one hand, to mundane movie and
news downloading in a content distribution network [30] andlocation specific information
services [19] on the other hand. Node mobility can also be exploited in conventional ad hoc
networks that use multihop forwarding [9, 15, 26, 32]. Instead of dropping packets when a
network is partitioned, packets are buffered and handed over to another node when a node
is reconnected to the network. This promotes robust networkperformance when network
connectivity is intermittent. Finally, similar networking problems are also being considered

2



under the banner of delay tolerant networking [4,9].

Most of the above work relies on some sort of node cooperationin the underlying net-
work model. For some applications such as habitat monitoring of wildlife species, sensor
nodes are deployed from a single organization and the cooperation assumption is valid. On
the other hand, in commercial applications each node in the network is autonomous and
may act selfishly. A node usually has disincentives to relay other people’s packets since it
is expending its own bandwidth and energy resources in a transmission. The cooperation
assumption is thus unrealistic.

In this paper we address the issue of noncooperation in the context of a mobile infos-
tation network for movie downloading. All nodes are subscribers to a movie content dis-
tribution network. A movie is divided intoK files which are then cached in a network of
fixed infostations, access points providing pockets of high-speed short-range coverage [5].
When a node comes close to an infostation, files can be downloaded. In an entirely nonco-
operative network, this would be the only mechanism for file dissemination. It only uses the
high-speed channel between an infostation and a node near it, while wasting all the equally
excellent channels between closely located nodes. A more efficient system would have any
two nodes in proximity to act as mobile infostations to exchange copies of their files. With
sufficient node density, a node obtains most of the files from node-to-node file exchanges.
Data dissemination is thus distributed to all nodes and all locations in the network.

It is possible to allow file exchanges among mobile nodes while keeping the network
essentially noncooperative by stipulating the followingsocial contractfor all nodes in the
network. When two nodes meet, they inspect the file contents of each other. If each node
identifies a file that it wants, a bilateral file exchange takesplace. Conversely, if either node
cannot find a file it wants, no file exchange takes place since that node has no immediate
incentive to transmit a file to the other. This social contract opportunistically aligns the
interests of individual nodes with the collective interestof the content distribution network.

We have shown by analysis and simulations that the networking performance of this
file exchange mechanism depends on node mobility and density. More importantly, we
find that both fairness and throughput of the network improveas the number of files in the
network increases. We identify this phenomenon as a new formof diversity. Traditional
communication diversity techniques exploit the variations of signal strength over temporal,
spatial and frequency domains.Data diversity, on the other hand, arises when the number
of files interested by an individual increases. It is a consequence of noncooperation among
nodes.

We have also extended the common interest model to the case where each node has
dissimilar interest. This is applicable to the contexts in which multiple movies or TV shows
are cached in the infostations. When nodes have mutually exclusive or partially overlapping
interests, network performance degrades drastically. We have identified two user strategies
for the dissimilar interest model. Our simulation results show that network throughput can
be significantly improved by exploiting multiuser diversity inherent in mobile infostation
networks.
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Figure 1: Illustration of the network model.

The rest of the paper is organized as follows. In section 2, wedescribe the system
model. Section 3 is devoted to performance analysis, and theresults are verified by simu-
lations in section 4. We describe a new form of diversity - data diversity in section 5. In
section 6, we extend our common interest model to the case where nodes have partially
overlapping interests. Simulation results of two user strategies are discussed. The results
are interpreted further as a form of multiuser diversity in section 7. Finally, conclusions are
drawn in section 9.

2 System Model

This work is largely motivated by [7] which employed a signalto interference ratio (SIR)
based link quality model to demonstrate the thatN nodes in a region could maintainO(N)
simultaneous transmissions with acceptable SIR. However,in this work, we look to employ
a simpler communication model in order to demonstrate the effect of the social contract on
content distribution. As shown in Figure 1, the geography consists ofL discrete locations
in a square grid with an infostation at the center of the grid.The infostation cache holds the
K files of a movie. We assume the geography wraps around at each boundary, effectively
creating a toroidal grid. We refer to thisL node wraparound grid with one infostation and
L− 1 regular locationsas ablock. A block is intended to mimic a typical multi-infostation
network in which an infinite grid of infostations populate aninfinite plane. The number
of locationsL relative to the single infostation serves to characterize the density of fixed
infostations over the terrain.

TheL location grid is populated withN nodes with independent mobility processes.
In our simulation experiments, we assume that time is discretized such that at each unit
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of time, each node randomly and independently moves in one ofthe four directions with
equal probabilityq = 0.25. When two or more nodes are at the same location at the same
time, we say those nodes areneighbors.

In our communication model, each node either downloads filesfrom an infostation or
exchanges files with a neighbor. At the infostation, only filedownloading is allowed. At
any other locations, file exchanges between mobile nodes arepermitted. Given a particular
radio bandwidth, the size of a file is chosen such that the timea node occupies a location
allows for either a bilateral file exchange between neighbors at a regular location or for two
files to be downloaded from the infostation.

There are two factors that impact data dissemination. Firstthere is atransmission con-
currency constraintat each location. If there is more than one node at the infostation,
contention is resolved by randomly picking one node for downloading. Similarly, when
there are more than two neighbors at a location, two of the neighbors are randomly picked
to perform a file exchange. The random picking of nodes for a wireless transmission is con-
sistent to the node non-cooperation assumption. When nodesare non-cooperative, there is
no co-ordination between transmissions of different nodes. Since each node wants to mini-
mize its own downloading time, it attempts to seize the channel at every time slot. In actual
implementation, each node may just simply broadcast a tone after a small random time at
the beginning of a time slot to reserve it. The first two nodes that transmit a tone at a time
slot seize the channel and are given the opportunity to negotiate for a file exchange. and
may proceed to a file exchange eventually.

The second factor that affects data dissemination is captured by the probability of file
exchange. This is in turn dictated by theuser strategywhich consists of two parts. The user
strategy must determine first whether to exchange files according to asocial contract. A
social contract is observed by all nodes and governs whethera file exchange takes place or
not. Specifically, a node may want to exchange for a file because it is genuinely interested
in that file. In this case, a file exchange is warranted when both nodes find something that
they are genuinely interested from each other. Alternatively, a node may want to exchange
for a popular file, which is then used to facilitate future fileexchanges. Thus even if a node
cannot obtain a file of genuine interest, it may exchange for afile that it does not have. The
above are two instantiations of social contract and will be discussed in this paper. In the
first part of this paper, however, there is no distinction between the two social contracts.
When all nodes have common interest in downloading the files of a popular movie, each
node is genuinely interested in every file it does not have. Insection 6, we extend the
common interest model to the case where nodes have dissimilar interests that are partially
overlapping. In that case, network performance is dependent on the choice of the social
contract.

After two nodes have reached an agreement for a file exchange,a node must decide
which file to download according to the user strategy. Two strategies are examined in this
paper. For the random strategy, a node randomly selects a fileit does not have from the
neighbor node. Similarly, at the infostation, a node randomly selects to download two files
that he does not have. For comparison, we also consider a greedy strategy which assumes
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that each node has full knowledge of the circulation of each file within the network. For an
infostation download or a neighbor exchange, a node picks the file that is the least circulated
among all files it does not have. This strategy is greedy sinceit maximizes the probability
of exchangePE between two arbitrary nodes in a static snapshot.

We note that the selection of two arbitrary nodes for file exchange is suboptimal. Two
nodes that seize the channel successfully may not perform a file exchange due to the social
contract. This efficiency can be avoided by scheduling transmissions only to the node pair
with an exchange agreement. However, scheduling solicits implicit co-operation between
nodes. Nodes that are eager to transmit may be asked to refrain from transmitting. The
decoupling of channel contention and user strategy for file exchange is thus consistent to
the non-cooperative assumption. Each node would make everyattempt to seize the channel
at every time slot regardless of the likeliness of a file exchange. Incidentally, the modeling
of node contention as random node selection greatly simplifies the performance analysis
and provides a lower performance bound to an ideal scheduling scheme when nodes are
cooperative.

On the other hand, the social contract implicitly assumes there are no misbehaving
nodes. Each node makes no false claim on the files it possessesand ensures the integrity
of all its disseminated files. The social contract provides aframework for studying non-
cooperation between nodes. In a practical file exchange protocol, additional security mech-
anisms may be added to ensure the integrity of the files being exchanged. Apart from files
authentication, reputation management algorithms [13] can also be used to dissuade nodes
from misbehavior.

The proposed content distribution network admits a number of performance metrics to
describe how quickly files are disseminated. We defineT1 as the time when 80% of the
nodes get all of the files. A network operator is interested inthis quantity, which is related
to the networking efficiency and the revenue generated from the network. We defineT2 as
the time when all nodes get 80% of the files. A network subscriber, on the other hand, will
be interested inT2, which is related to fairness and perhaps will influence his willingness
to pay. We also defineT3 as the time for all nodes to get all the files. FinallyT4 is defined
as the time for an arbitrary node to obtain all files. An analytical expression forE[T4] is
obtained in the next section.

We also evaluate the network performance in terms ofthroughputCi, which character-
izes the average rate of file downloading per node. This is defined in terms of the network-
ing timeTi and is given byCi , K/E[Ti], for i = 1, 2, 3, 4. The units ofCi are files per
node per unit time. Note that we can view the distribution to aparticular node of movies
over time as a renewal process in which the renewal period equalsT4, the time required for
the node to obtain one movie. Since the node obtains a reward of K files in each renewal
period, renewal-reward theory assures that the expected rate at which the node obtains files
is preciselyC4 [21].
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3 Performance Analysis

When two or more mobile nodes are at the same location, a two-step process determines
whether a file exchange takes place. First, the nodes at that location follow a radio access
protocol to determine which pair of nodes will attempt a file exchange. We use the term
accessto refer to the event that a node gets to be one of a pair of nodesthat examines
the files carried by the other. Under some simplifying assumptions, we will see that at a
regular location theaccess probabilityis given by a constantβ, that depends on the number
of nodesN and locationsL in the block. For a pair of nodes chosen in the access phase,
theexchange probabilityPE denotes the probability that the two nodes can exchange files
under the terms of the social contract. The exchange probability will depend on the file
contents in each node, which in turn depends on the user strategy.

In this section we provide a simple approximate analysis ofβ andPE. We then develop
a simple Markov chain model to obtain the expected networking timeE[T4] and the corre-
sponding throughputC4 for each node. For the analysis, we make the following simplifying
assumptions:

• Memoryless Uniform Mobility In each time unit, each node is randomly and inde-
pendently at any of theL locations with probabilityp = 1/L.

• Independent Uniform Content Distribution Given that nodei has obtainedli files,
all combinations ofli out of K files are equiprobable, independent of the files held
by all other nodes.

It is not hard to see that these assumptions are inconsistentwith the system model of sec-
tion 2. In particular, when the number of locations is small and mobility is limited, nodes
are likely to be neighbors frequently and have highly correlated content. Nevertheless,
our simulation results agree closely with the analytical results, indicating that these as-
sumptions work well in systems with moderately large number(K = 500) of files and
reasonable mobilityq = 0.25.

Due to the transmission concurrency constraint, the maximum number of simultaneous
transmissions in the block equalsL, the number of locations. For a given number of lo-
cations, it should be apparent that there is an optimum number of nodesN such that the
access probability is maximized. If the number of nodes in the network is small, the spatial
transmission concurrency is not fully utilized. Similarly, if there are too many nodes in the
block, only a fraction of nodes could schedule transmissions in theL possible locations.

Given a particular node at a given location, memoryless mobility implies that the num-
ber of other neighbors at that location is a random variableJ with the binomial distribution

P [J = j] =

(

N − 1

j

)

pj(1 − p)N−1−j j = 0, . . . , N − 1 (1)

When a given mobile is at the infostation withJ = j neighbors, the probabilityβ ′ that the
given node is chosen for the infostation download is1/(j + 1). Averaged over allJ , the
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probability the given node is chosen for the download is

β ′ =

N−1
∑

j=0

1

j + 1
P [J = j] =

1 − (1 − p)N

Np
(2)

Similarly, when a node is at a regular location withJ = j ≥ 1 other neighbors present, 2
out of j + 1 nodes are randomly chosen. The conditional access probability that a given
node is one of the two chosen nodes is2/(j + 1). Thus,

β =

N−1
∑

j=1

2

j + 1
P [J = j] (3)

=
2[1 − (1 − p)N − Np(1 − p)N−1]

Np
(4)

Based on (4), the optimalN is around2L. Below, in equation (12), a more careful op-
timization of β(N) in the limit of largeN andL with fixed densityρ , N/L, reveals
thatρopt ' 1.8. One can use this result to determine the optimal spatial density of fixed
infostations based on the anticipated spatial density of mobile subscribers.

When nodesi andj have the opportunity to exchange files, the probability of exchange
PE depends on the files each node is holding. Suppose nodesi andj haveli andlj files in
their caches. An exchange between the nodes will occurunlessone node has a collection
of files that is subset of the other’s collection. Assuming, without loss of generality, that
li ≤ lj , an exchange failure occurs if nodei chooses its subset ofli files out of thelj files
of nodej. Since there are

(

K

li

)

total ways for nodei to choose its files, the probability of
exchange is

PE(li, lj) = 1 −

(

lj
li

)

(

K

li

) 0 ≤ li ≤ lj ≤ K (5)

From (5), we can derive a tight upper bound for the probability PEc , 1−PE of no file
exchange between neighbor nodes withli andlj files such thataK ≤ li ≤ lj ≤ (1 − a)K
and0 < a < 1/2. WhenK is large such thataK, (1 − a)K, and(1 − 2a)K are all
much greater than 1, an asymptotic upper boundP̃Ec for PEc coincides with Stirling’s
approximation forPEc and is given by

ln P̃Ec =
[

ln
(1 − a)2

1 − 2a
+ 2a ln

1 − 2a

1 − a

]

K (6)

As the multiplier ofK is negative for0 < a < 1/2, we deduce that when0 < a < 1/2,

lim
K→∞

PE(li, lj) = 1, aK ≤ li ≤ lj ≤ (1 − a) K (7)

That is, if each node has a non-vanishing fraction of allK files, a file exchange almost
certainly will occur when the number of files in the system is large.
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Figure 2: Illustration of the Markov chain model. The shown values denote the state tran-
sition rates. Note that the depiction of self transitions isomitted.

To find an upper bound forPEc that is valid for most values ofli andlj , we observe that
the smallx approximationln(1 + x) ' x implies

ln P̃Ec ' −2a2K, (8)

implying thatPEc can be made arbitrarily close to zero by choosinga > O
(

1/
√

K
)

.

When the number of files in the system is large, file exchange almost always happens
among neighbors during most of the file dissemination process. In practice, we can regard
PE = 1 whenK ≥ 1000. We will come back to this point when we discuss our simulation
results in Figure 3.

In the following, we derive the expected networking timeE[T4] for a node to obtain
all files and the associated throughputC4. We assume thatK is large such that (7) holds
and we model the dynamics of movie downloading by the discrete time Markov chain
illustrated in Figure 2. Denote the state as the number of files remaining to be downloaded
to a node. Initially a node is at stateK. Since the first two files must be obtained from an
infostation, the next state isK − 2. Subsequently, in statesk ∈ {1, . . . , K − 2}, each unit
of time allows the following possibilities:

• With probabilityp, the node encounters the infostation and then with probability β ′

downloads two files. The state goes fromk to k − 2 with probabilityµ = pβ ′.

• With probability1 − p, the node is at a regular location and then with probability
β participates in a file exchange. The state goes fromk to k − 1 with probability
λ = (1 − p)β.

• With probability1 − λ − µ, no new files are obtained and the state stays the same.

Denote the expected first passage time from statei to state 0 asgi, where(2 ≤ i ≤
K − 2). Conditioning on the next state transition and rearrangingyields the difference
equation,

gi =
1

λ + µ
+

λ

λ + µ
gi−1 +

µ

λ + µ
gi−2 (9)

where the boundary conditions are given byg0 = 0 andg1 = 1/(λ+µ). Using z-transforms,
we solve (9) to obtain

gi =
i(λ + 2µ) +

(

1 −
(

−µ

λ+µ

)i)

µ

(λ + 2µ)2
(10)
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It follows that E[T4] = 1/µ + gK−2, where1/µ is the expected time until a node first
encounters the infostation and obtains the first two files.

For a network with a single infostation supportingN nodes overL locations, we con-
sider the large-system and many-files regime in whichN, L, K � 1 while the spatial
density of nodesρ , N/L is held constant. In this regime,J , the number of other nodes
seen in a location, becomes a Poisson random variable withE [J ] = ρ. From (2) and (4),
the infostation download probability and the conditional access probability converge to

β ′(ρ) =
1 − e−ρ

ρ
(11)

β(ρ) =
2

ρ

(

1 − (ρ + 1)e−ρ
)

(12)

Coincidentally, [17] also provides a similar analysis on a grid network model, which agrees
to (12) we obtained. Furthermore,λ = β (ρ) andµ = β ′ (ρ) /L and the asymptote of the
expected time for an arbitrary node to collect allK files is

E[T4] ≈
K

β(ρ)
+

L

β ′(ρ)
(13)

Here, the second term is equal to1/µ to account for the time for a node to fetch the first two
files in an infostation encounter. The first term is an approximation togK−2 by assuming
all remaining files are obtained from node to node file exchanges when infostation density
is low, i.e. L � 1. If we further allowK to grow large relative to bothN andL, the
corresponding throughputC4 of a node is

C4 =
K

E[T4]
∼ β(ρ),

K

N
,
K

L
→ ∞ (14)

We observe that the node densityρ that maximizesβ also minimizes the expected network-
ing timeE[T4] and maximizes the throughputC4.

To appreciate the extent to which social contract improves the rate of file dissemination
of a completely noncooperative network, in which the only mechanism for file distribution
is direct downloading from fixed infostations, we consider the Markov chain model for the
latter. The corresponding difference equation for the firstpassage time from statei to 0 is
gi = 1/µ + gi−2 for i ≤ K − 2, yieldingE[T4]

info = gK = KL/2β ′ and

Cinfo
4 =

2β ′(ρ)

L
(15)

Hence, the social contract provides anO(L), or equivalentlyO(N) sinceL and N are
of the same order, improvement to the individual file collection rate. The key ingredient
in this improvement is the increase fromO(1) file deliveries per unit time made by an
infostation toO(N) peer-to-peer file exchanges per unit time. With more complexmodels
for radio communication and user mobility, in particular those employed in [7], the ability
to supportO(N) communication links in a population ofN mobile nodes will yield similar
order-of-magnitude provements.
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The social contract also leads to a similar improvement in the dissemination rate con-
sidered in our simulations, defined as the rate at which files are collected by nodes through
either downloading from fixed infostations or file exchanges. Since the individual file col-
lection rateC4 is β, the file dissemination rate under the social contract isNβ during most
of the dissemination process. On the other hand, the file downloading rate at an infostation
is 2 if a node is present there, thus file dissemination rate without social contract is slightly
less than 2. Therefore, the improvement offered by the social contract is of the orderN .

4 Simulation Results

In this section, we examine the impact of the number of nodesN and number of filesK in
the system on the network performance, evaluated in terms ofthe expected networking time
E[Ti] and throughputCi. In our simulations, the network size is kept constant atL = 25
nodes. A node moves to one of the neighbor locations w.p.q = 0.2 at each unit time. The
performance metrics are obtained from ensemble averaging over 100 simulations.

For performance evaluation, we define thedissemination rateas the total number of
files obtained, either by download from the infostation or byfile exchange, per unit time
over all mobile nodes. Figure 3 shows the dissemination rateaveraged over 100 simulations
runs. The number of nodes is held constant atN = 50 and the number of files is varied
(K = 50, 100, 500, 1000). In all cases, the differences between the random and the greedy
strategies were found to be very small. Thus, the random strategy is a good alternative to
the greedy strategy for practical implementation.

From Figure 3, they-intercept is slightly less than 2. Since the node density ishigh,
it is probable to find at least a node at an infostation location and download 2 files at
t = 0. The file dissemination process has three distinct phases. In the first phase, the
infostation seeds the mobile nodes with files and the dissemination rate increases rapidly
as nodes obtain the ability to exchange files. Once most nodeshave visited the infostation,
PE ' 1 and the dissemination rate remains steady at a peak rate thatis a function of the
access probabilityβ(ρ). In particular, each node will exchange one file with probability
PEβ(ρ) ' β(ρ). Over allN nodes, the dissemination rate isNβ(ρ). Once a node has
acquired allK files, the social contract dictates that the node refrain from file exchanges.
As the number of nodes with allK files becomes significant, we enter the third phase in
which the dissemination rate declines to zero as time evolves. The remaining nodes must
download their files directly from an infostation, prolonging the time to download the entire
movie. For all values ofK, our simulations exhibit a significant tail associated withthis
final phase of dissemination.

As mentioned in the last section, in the absence of node-to-node file exchanges, the rate
of file downloading shown in Figure 3 would have been constantly the y-intercept value of
about 2, as opposed toNβ(ρ) most of the time. The simulation results are consistent with
the analysis in the last section. AsPE ' 1 for largeK, in each unit of time, each node will
obtain one file with probabilityβ(ρ). With N nodes in total, the average dissemination rate
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Figure 3: Average number of files obtained at each unit time over 100 simulations. (a)
K=50, (b) K=100, (c) K=500, (d) K=1000.

in the middle phase isNβ(ρ). In Figure 3,N = 50, L = 25, yieldsρ = N/L = 2 and
the middle phase dissemination rate is very close toNβ(2) ' 30 files per unit time. The
ratio of this rate to that of the completely noncooperative network is about 15—a dramatic
improvement. Incidentally, we can interpret Figure 3 as a scaled version ofPE as a function
of t. Whent → 0, most nodes have nothing in their caches, thusPE(t) ' 0. Similarly,
PE(t) ' 0 whent is large since most of the nodes have finished downloading everything.

Lastly, for a finite population of nodes, we can mark the boundaries of the middle phase
by the times about which all nodes havem files,

√
K ≤ m ≤ K −

√
K , based on the

discussion of the upper bound ofPEc after (8). We hence observe that the first and third
phases requireO(L

√
K) time, roughly on the order of the time required for each node to

acquire
√

K files solely by visiting the infostation. On the other hand, in the middle phase,
the system must deliverO(NK) files in total at a dissemination rate ofNβ(ρ) files per unit
time, and this requiresO(K) time. AsK increases (withN, L fixed although not small),
this middle phase comes to dominate the total disseminationtime. Hence, for largeK,
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Figure 4: Average networking time vs. the number of nodesN . (a)E[T1] when 80% of all
nodes obtain all files, (b)E[T2] when all nodes obtain 80% of all files, (c)E[T3] when all
nodes obtain all files.

the average dissemination rate is effectively the same as the peak dissemination rate of the
middle phase. In short, asK → ∞, the curve of Figure 3 converges to a rectangle with a
constant file dissemination rate ofNβ(ρ) files per unit time for a duration ofK/β(ρ) time
units. This conclusion is consistent with the observation that the peak dissemination rate
Nβ(ρ) is simplyN times the average per node throughputC4. We note that asK → ∞, the
transmission of each channel is only limited by contention,indicating the noncooperation
strategy achieves almost optimum resource utilization.

In Figure 4, the networking timesTi, i = 1, 2, 3, are plotted against the number of nodes
N . The number of files is kept constant atK = 200. From (2), it is easily verified thatβ(ρ)
is maximized atβ = 1.7933 users/location, orNopt = 45 users overL = 25 locations.
This agrees with our observation in Figure 4(a), confirming thatN ' 45 also minimizes
E[T1]. WhenN increases pastNopt, E[T1] increases due to the increased contention at
each location; however, the increase is partially offset bythe increased opportunity for
exchanges; hence,E[T1] is fairly insensitive toN whenN ≥ Nopt. WhenN < Nopt,
E[T1] increases quickly for decreasingN . WhenN is small and node density is low, the
system performance is hampered by the limited availabilityof file exchanges. In this case,
E[T1] is very sensitive toN since a small increase inN significantly increases the rate of
file exchange.

In Figure 4(b), and 4(c), the optimum number of nodes that minimizes the networking
timeT2 andT3 are respectivelyNopt = 20 andNopt = 10 nodes, rather thanN = 45 nodes.
This disparity arises from the observation in Figure 3(a),(b) that whenK is not large, the
total download time depends strongly on the duration of phase three which has a long tail.
The tail length depends largely on the rate at which mobile nodes can download from the
infostation. The tail decreases asN decreases because fewer nodes results in each node
having better access to the infostation. On the other hand,T1 is unaffected by the long
tail. A plausible reason is that networking is unfair to the last few nodes who have yet
to complete their downloading; 80% of the nodes finish downloading all files well before
hitting the long tail regime.
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Figure 5: Average networking time vs. the number of cached filesK. (a)E[T1] when 80%
of all nodes obtain all files, (b)E[T2] when all nodes obtain 80% of all files, (c)E[T3] when
all nodes obtain all files. The dashed lines denote the 1 standard deviation upper and lower
bounds from the mean value.

With reference to Figure 5, the networking timesti are plotted against the number of
files K cached in an infostation. It is obvious that the networking time T1 can be fitted
by a straight line for largeK. The variance forE[T1] is also small, indicating that the
networking effect due to node mobility is largely deterministic. The slope of the asymptote
is found to be around 1.63, which is equal to1/β(N). On the other hand,T2 and T3

exhibit larger variances. The slope of the asymptotes forE [T2] andE [T3] are 1.1 and 1.6.
WhenK ≤ 500, we observe thatE[T2] is larger thanE[T1]. BeyondK = 500, E[T2]
is smaller thanE[T1]. This demonstrates that asK increases, the networking between the
nodes is more fair. That is, all nodes have approximately thesame file downloading time.
A plausible reason is thatPE → 1 asK increases. The downloading rate is no longer
influenced by individual file content, but depends primarilyon mobility and contention.
For largeK ≥ 500, the downloading time is long compared with the time scale ofmobility
ergodicity. Each node therefore has a downloading time thatis almost the same, such that
E[T1] > E[T2].

5 Data Diversity

In Figure 5, we showed that the networking timeE[Ti], i = 1, 2, 3 can be fitted nicely
to an asymptote asK increases. The corresponding throughputs are plotted in Figure 6
versusK. We observe that the throughput is an increasing function ofK. It is instructive
to find the asymptotic value of throughputC∞

i asK → ∞. To do this, we use the intuition
captured in (13) and approximate the asymptote ofTi by

T∞

i = miK + ci (16)
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Figure 6: Throughput vs. the number of cached filesK. (a) C1 when 80% of all nodes
obtain all files, (b)C2 when all nodes obtain 80% of all files, (c)C3 when all nodes obtain
all files. The dashed lines denote the 1 standard deviation upper and lower bounds from the
mean value.

wheremi is the slope andci is the vertical intercept. Since the asymptoteT∞

i approaches
E[Ti] arbitrarily close whenK → ∞, we compute the asymptotic throughput as

C∞

i = lim
k→∞

K

Ti

= lim
k→∞

K

T∞

i

=
1

mi

(17)

Recall thatm3 = 1.63 as read from Figure 5(c). ThusC3 = 0.613 files per node per
unit time, or30.65 files per unit time in our network whereN = 50. This agrees with our
result in Figure 3(d). WhenPE ' 1, the rate for data dissemination is around30 files per
unit time. Incidentally, we observe that

lim
K→∞

C3 = lim
K→∞

C4 (18)

WhenK → ∞, networking is fair and each node has the same asymptotic throughput.
Thus, our simulation results are consistent with our simplified analysis.

The apparent increase in throughput can be understood usingthe concept ofdata di-
versity. In wireless communications, diversity refers to the exploitation of variations in
signal strength due to multipath fading. Since multipath fading exhibits signal variations
over spatial, time and frequency domains, diversity techniques can be applied to select the
strongest signal component over the respective domains. Diversity can also be exploited in
a more general sense. In multiuser diversity, for instance,a receiver exploits the variability
of received signal strength over different mobile nodes, and selects the node with the best
channel for transmission.

Whereas the above techniques belong to the category of communication diversity, we
argue that a new form of diversity, coineddata diversity, is exhibited in noncooperative
content distribution. When nodes are not cooperating, eachnode effectively has a prefer-
ence list of files that evolves with time. If the number of disseminated files is large, there
are more selections from a node’s perspective. Here, a node opportunistically chooses an-
other node with large selection to exchange files with. Equations (5), (7) and (8) dictate that
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file dissemination under the social contract is more efficient when there are more selections
available for each node. We have shown that data diversity isrelevant to noncooperative
data dissemination, which is gaining more attention in the networking community. Data
diversity may also have implications to other peer to peer networks other than mobile info-
station networks such as content distribution on the wired Internet.

Consider the possibility that several content providers use the mobile infostation infras-
tructure to disseminate their content (that are not highly overlapping) to a common group
of subscribers. If a subscriber has files from content provider A and it encounters another
subscriber with files from content provider B, these files generally would not be inter-
exchangeable since they originated from different contentproviders. However, our results
point out that content distribution for each provider wouldbe more efficient, in terms of
both throughput and fairness, if there were mutual agreements between content providers
such that all files are inter-exchangeable, effectively increasing the content sizeK.

On the other hand, even if content providers do not collaborate in data dissemination,
data diversity can still be useful, say, in the dissemination of a single movie of a movie
distribution network. Consider the scenario when a DVD quality movie is disseminated in
a highway infostation network populated with fast vehicular subscribers. A typical drive-
through infostation has a coverage radius of 20m [6]. A vehicle at a speed20 m/s (45 mi/hr)
therefore has a connection time of 2 seconds when it is in the coverage area of an infos-
tation. Similarly, for two vehicles moving in opposite direction, the connection time is
only 1 second. Suppose the infostation radios operate at a modest data rate of 160Mbit/s
(which still substantially outperform the state of the art 54Mbit/s 802.11a access points
available today). In order to facilitate the file exchange oftwo data files in the worst case of
a head-on mobile to mobile encounter, the file size should be no more than 10MByte. On
the other hand, the typical size of a DVD quality movie is roughly 5GByte. Thus, a movie
should be split intoK = 500 files and cached in fixed infostations for dissemination. Our
simulation results in Figure 6(c) have shown that with a modest content size ofK = 500
files, the achievable per node throughputC3 is 80% of the theoretical per node throughput
limK→∞ C4 for asymptotically largeK. Thus, without even relying on the cooperation be-
tween the content providers, we can enjoy the benefits of datadiversity in the dissemination
of a single movie.

6 Dissimilar Interests

In our basic model, we assume all nodes have a common interestin K files. In this section,
we extend the common interest model to the case where each node has interest in only
a subset of theK files cached in the infostation. Depending on the type of content, the
interests of the nodes can bemutually exclusiveor partially overlapping. For instance,
suppose multiple movies, say1/α movies are cached in the infostations, where0 < α ≤ 1.
Each movie has the same length and is divided intoαK files. If each node is interested
in one movie only, then any two nodes will have interests thatare either exactly the same
or mutually exclusive. More generally, the interests of allnodes are partially overlapping.
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Consider the case where multiple TV shows are cached in the infostations. Without loss of
generality we assume each TV show is stored as one file. Each node is interested inαK
TV shows or files that is randomly selected from allK cached files. We redefineTi as the
downloading time for all files that a node is interested, i.e.αK files. The corresponding
throughput is redefined asCi , αK/E[Ti].

Recall in section 2 that a user strategy consists of two parts. Suppose two nodes seize
the local channel successfully. First the two nodes must determine whether to exchange
files. Second, upon an agreement of performing a file exchange, each node determines
what to exchange as specified by therandomor greedystrategy. In the common interest
model, each node is interested in every file cached in the infostations. A node therefore
is genuinely interested in every file that it does not have. Inthe dissimilar interest model,
however, the above assumption is no longer valid. We can differentiate two user strategies
in which neighbor nodes determine whether to exchange files.In user strategy I, neighbor
nodesA andB perform a file exchange only if both nodes discover a file of genuine interest
on inspection of each other’s caches. Inuser strategy II, nodesA andB are obliged to
exchange files if each node has a file that the other node does not have, whether or not those
files are of genuine interest.

Once the nodes agree on a file exchange, either therandomorgreedydownloading strat-
egy can be used in both user strategies. Nevertheless, we have demonstrated through analy-
sis and simulations in earlier sections that the random and greedy downloading algorithms
have almost identical performance. Hereafter, we consideronly the random download-
ing strategy when we compare the performance of user strategy I and II in the simulation
studies.

We have performed simulations to study the network performance for both the multiple
movies model and the TV show model. For the multiple movies model, each node is
interested in exactly one movie consisting ofαK files. The interest of each node is fixed in
all simulations. For the TV show model, a node is interested in each file with probability
α. Thus each node is interested inαK files on average. Individual node interests are
varied across simulations. The network performance is evaluated in terms ofα, which
characterizes the extent of overlapping interest with other nodes. Whenα is very small,
each node is interested in a small fraction of all files. The interests of any two nodes are
likely to be mutually exclusive. Asα increases, more nodes are interested in the same files.
It is therefore more probable for a node to run into another node that has the same interest.
Whenα = 1, all nodes are interested in allK files and our model reduces to the common
interest model.

We assume a system withN = 40 nodes in each infostation block andK = 1000
files. We consider the multiple movies model with1, 2, 4, 5, 10, 20, 40 movies distributed
at the infostations, corresponding toα = 1, 0.5, 0.25, 0.2, 0.1, 0.05, 0.025. In the case of 40
movies, each node is interested in different movies and havemutually exclusive interest.
The number of nodes having the same interest increases withα. Whenα = 1, all nodes
have a common interest for the same movie. DenoteE[T α,j

i ], i = 1, 2, 3 as the expected
networking time of user strategyj, wherej = 1, 2. We are interested in finding the ex-
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Figure 7: Average networking time vs. the fraction of interested filesα for multiple movies
model. (a)E[T1] when 80% of all nodes obtain all files, (b)E[T2] when all nodes obtain
80% of all files, (c)E[T3] when all nodes obtain all files. The dashed lines denote the 1
standard deviation upper and lower bounds from the mean value.

pected networking time for both user strategies. In the TV show model, we consider 1000
TV shows are being distributed on the infostation networks.Each node is interested in a
show with probabilityα, whereα takes the values of1, 0.75, 0.5, 0.2, 0.1, 0.05, 0.025. In
each simulation trial, the interest of each node is changed.Both the multiple movies and
the TV show model have similar performance, which is not surprising. For illustration pur-
poses, we focus on the multiple movies model below and will revisit the results for the TV
show model in the end of the next section.

Referring to Figure 7, the networking time of both user strategies is plotted versus
α. We observe that even whenα is very small, the downloading time of user strategy I
is quite large. In particular, whenα = 0.025, the number of files wanted by each node
is only αK = 25. The corresponding expected networking timeE[T α

i ], i = 1, 2, 3 for
both user strategies is approximately 700, 750, and 850 units. At α = 0.025, each file
is desired by one node. This is easily seen since by symmetry,each file is desired by
αN = (0.025)(40) = 1 node. Suppose all nodes observe user strategy I. It is obvious
there is no file exchange between nodes since each node keeps only files that is wanted by
that particular node only. On the other hand, when user strategy II is used, file exchanges
between nodes are allowed. Nevertheless, a node never fetches a file and benefits from
a file exchange since all nodes have mutually exclusive interest. For both user strategies,
each node has to download every desired file directly from an infostation. The absence of
concurrent file exchanges in conjunction to infostation downloading explains the long and
identical networking time.

Referring to Figure 7 again, it is obvious thatE[T α,1
i ] andE[T α,2

i ] are increasing withα
for i = 1, 3. This is plausible since in general, more time is needed for afraction of nodes
to finish file downloading as the number of desired files increases. An interesting (although
not statistically significant) exception is observed forE[T α,1

2 ], and might be explained by
the following. When the number of filesαK to be downloaded is small, a node usually
runs into other nodes that have mutually exclusive interests. The node therefore has to
download most of the files directly from the infostations, unable to enjoy the benefit of
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spatially concurrent file exchanges. As a result, these nodes have a large networking time.
As α increases further, most, if not all, of the nodes participate in beneficial file exchanges
due to the presence of nodes with the same interests. SinceE[T α,1

2 ] is dominated by the
nodes without file exchanges whenα is small, this explains the peak atα = 0.2.

In order to explain the increasing trend of networking time with α, and to characterize
the performance difference for both user strategies, we examine the mechanism of the data
dissemination in the following. Asα increases fromα = 0.025, there are more nodes with
the same interests. Each file is desired byαN users on average. Consider user strategy I.
ApproximatelyαN nodes are willing to act as thenetworking agentsfor each file and
possibly carry the file in their cache as these nodes roams around the network. Whenα gets
larger, the number of networking agents for each file increases. Since the circulation of a
particular file is constrained by the number of networking agents for that file, increasing
α effectively promotes the circulation of each file. This impacts the number of node-to-
node file exchanges favorably, allowing more simultaneous file exchanges to take place.
Consequently, the networking timeE[T α,1

1 ] andE[T α,1
3 ] flatten quickly asα is increased.

For user strategy II, the networking time is consistently smaller than that of user strat-
egy I asα increases from 0.025. Although nodes have little overlap ofcommon interests
whenα is small, user strategy II dictates that a file exchange ensues whenever each node
can retrieve a file that it does not have on inspection of the cache of the other node. Thus,
all N nodes are willing to act as the networking agents for all files. The circulation of
each file is not constrained by the particular interests of each node. Since nodes are more
admissible and willing to carry files in user strategy II, thenetworking time is consistently
smaller.

In the caseα = 1, our dissimilar interest model reduces back to the common interest
model. Both user strategies I and II have identical networking timeE[T α

i ], i = 1, 2, 3,
that agrees to the corresponding valuesE[Ti], i = 1, 2, 3 for the common interest network
model. WhenK is reasonably large (in our caseK = 1000), data diversity dictates that
PE → 1 and the networking time is then only constrained by the contention probabilityβ
given by (13).

7 Multiuser Diversity

In Figure 7, we showed that the networking timeE[T α
i ], i = 1, 2, 3 for user strategy II is

always less than that of user strategy I. The corresponding network throughput is plotted
versusα in Figure 8. Again,x-axis denotes the fractionα of files that each node is inter-
ested in, whereα takes the values of 0.025, 0.05, 0.1, 0.2, 0.25, 0.5,1. We observe that for
both user strategies, the network throughputCα

i , i = 1, 2, 3 is strictly increasing withα.
The throughput of user strategy II is consistently larger than that of user strategy I when
nodes have dissimilar interests( 1

N
< α < 1). The throughput of both strategies coincide

whenα ≤ 1

N
andα = 1. Whenα ≤ 1

N
, all nodes have mutually exclusive interests. Even

though user strategy II allows node-to-node file exchanges,there is no corresponding gain
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Figure 8: Throughput vs. the fraction of interested filesα for multiple movies model. (a)
C1 when 80% of all nodes obtain all files, (b)C2 when all nodes obtain 80% of all files, (c)
C3 when all nodes obtain all files. The dashed lines denote the 1 standard deviation upper
and lower bounds from the mean value.

in network throughput. Similarly, whenα = 1, our model reduces back to the common
interest model. Thus both user strategies I and II have almost identical capacities.

The increasing trend of network throughput withα can be understood using the concept
of multiuser diversityinherent to mobile infostation networks. The efficiency of dissemi-
nation of this file is dependent on the willingness of the mobile nodes to carry it across the
network. If a node is willing to carry a particular file, then the node is effectively acting as
a networking agentfor that file. For user strategy I, each file is wanted by approximately
αN nodes, who are willing to act as the networking agents for thefile. For strategy II, each
node is obliged to carry every file even if the file is not wantedby the node. The number of
networking agents is then equal to the number of nodesN irrespective ofα. We argue that
the performance improvement of user strategy II is an exploitation of multiuser diversity,
where the number of nodes willing to act as networking agentsfor each file is increased.
Since the circulation of a particular file is equal or less than the number of networking
agents for that file, the actual circulation of each file improves as the number of network-
ing agents increases. As a consequence of improved file circulation, the efficiency of file
exchanges improves as stipulated by data diversity, allowing multiple spatially concurrent
file exchanges to take place.

From the above argument, we expect the two user strategies have the greatest perfor-
mance disparity whenα is small. Figure 8, however, shows that the percentage performance
disparity is maximum whenα is about 0.5. We note that the increase of the number of net-
working agents indeed leads to a proportional increase in the number of files in circulation.
However, whenα is small, each file is of genuine interest to only a few nodes and most
file exchanges involve files that are of no interest to either node. Thus even if the circula-
tion of all files is increased significantly, the corresponding increase in the number of file
exchanges is not beneficial.

There are two opposing factors that impact the performance of user strategy II. For
smallα, the number of networking agents for user strategy II is increased dramatically by
a factor of1/α. However, most of the file exchanges are not beneficial since node interests
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are largely non-overlapping. For largeα, there is only a nominal increase in the number of
networking agents. However, since most nodes have very similar interests, each node gets
many desired files and benefits from file exchanges. Our simulation results show that for
α = 0.5, we achieve an attractive, and perhaps optimum, tradeoff interms of throughput
gain. The corresponding throughputCα,2

i , i = 1, 2, 3 improvement of user strategy II over
user strategy I is above 66% for all three cases.

Consider a movie distribution network in which 20 movies arecached in the infosta-
tions, making a total ofK = 1000 cached files. Suppose each node is interested in only
one movie of 50 files. This is equivalent to our multiple movies model withα = 0.05. If all
nodes observe user strategy I, the networking timeE[T α,1

i ] is respectively1100, 1200 and
1300 units. On the other hand, if all nodes observe user strategy II, the networking time
E[T α,2

i ] is 825, 825 and1000 units, roughly 70% of the original time. In content distribu-
tion, usually each node wants to minimize the networking time for files of genuine interest.
Our simulation results point out that if a node acts as a networking agent for files he is not
interested in, it actually expedites the file downloading process, reducing the networking
time while enjoying a throughput gain as warranted by multiuser diversity. This is an inter-
esting result because it demonstrates that each node has an incentive to act as a networking
agent and assist in data dissemination without having an explicit node cooperation model.

Although the exploitation of multiuser diversity in user strategy II yields better network
throughput, it comes at a cost of increased energy consumption due to more frequent file
exchanges. Thus there is a tradeoff between energy consumption and network throughput.
We note that in mobile infostation networks, the transmit range is typically much smaller
than that in multihop networks. In fact, [29] shows that a node should see around one node
on average at the optimum transmit range. Classical resultson multihop networks [14,18],
however, point out that a transmit range that sees 6 to 8 neighbors is optimum. If the
network nodes have plentiful energy reserves, say infostations on vehicles, they should
adopt user strategy II to tradeoff energy consumption for better throughput. On the other
hand, nodes with very limited energy supplies can reduce their energy consumption by
sacrificing some throughput. Moreover, nodes do not need to adopt the same user strategy
in a network. Each node can independently decide what user strategy to adopt based on its
current level of residual energy.

We note that in user strategy II, there is implicit cooperation between nodes. Each
node is obliged to act as the networking agent for files that itis not interested in, That
is, each node caches and disseminates personally uninterested files for other nodes as it
roams the network. The performance gain of user strategy II over strategy I agrees with
the intuition that more cooperation usually leads to bettersystem performance. Although
user strategy II requires implicit cooperation between nodes, there is no corresponding
control overhead due to user cooperation. We do not assume the exchange of files of
genuine interest to neighbor nodes takes priority over other types of file exchanges. In
our implementation, when there are multiple neighbor nodesat the same location, the first
two nodes that broadcast control messages to request a file exchange seize the channel.
This rule is equivalent to randomly picking two nodes from all neighbor nodes with no
signaling overhead and is completely determined by contention. Note that giving priority
to exchanges of files of genuine interest may improve overallsystem performance if one
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Figure 9: Average networking time vs. the fraction of interested filesα for the TV show
model. (a)E[T1] when 80% of all nodes obtain all files, (b)E[T2] when all nodes obtain
80% of all files, (c)E[T3] when all nodes obtain all files. The dashed lines denote the 1
standard deviation upper and lower bounds from the mean value.
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Figure 10: Throughput vs. the fraction of interested filesα for the TV show model. (a)C1

when 80% of all nodes obtain all files, (b)C2 when all nodes obtain 80% of all files, (c)C3

when all nodes obtain all files. The dashed lines denote the 1 standard deviation upper and
lower bounds from the mean value.

can develop an efficient protocol between multiple neighbornodes to determine the optimal
node pair to exchange files.

For the TV show model, the networking times and capacities ofuser strategies I and II
are plotted in Figure 9 and 10. The TV show model shares a lot ofsimilar characteristics
with the multiple movies model. Instead of having the same interest onαK files in every
simulation, a node has different interests in each simulation, and interested inαK on aver-
age in each realization. Refer to Figure 9 and 10, user strategy II is consistently superior
to user strategy I in terms of downloading time and throughput. The multiuser diversity
argument continues to hold in the TV model. Under user strategy II, every node is willing
to be the networking agent of any file and carry it for further dissemination inside the net-
work. The diversity of multiple copies of the same file at multiple locations dramatically
shortens the downloading time relative to that of user strategy I. Refer to Figure 9, the
downloading time curves for both user strategies meet at both ends. Again, whenα = 1,
the problem degenerates to the common interest problem. There is no differentiation be-
tween User Strategy I and II. On the other hand, it is likely that each file will be of interest
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to only one node whenα <= 1/N . Thus, an exploitation of multiuser diversity does not
yield performance improvement. We note, however, that there is a small discrepancy of
downloading time for User Strategy I and II. Due to the randominterest of individuals,
some files are desired by more than one node. In this case, UserStrategy II can leverage
on multiuser diversity to slightly decrease the downloading time. We also observe that the
downloading time for User Strategy IE[T α,1

2 ] andE[T α12
3 ] are not increasing withα. A a

similar observation was noted in the multiple movie model inthe previous section for the
case of downloading timeT2. Again, whenα is small, a node has to download most of the
files from the infostations. Asα increases further, most nodes can participate in benefi-
cial file exchanges due to the presence of nodes with the same interests. Thus, even when
the total number of downloaded files are larger, the downloading time actually goes down.
The above effect is more remarkable for the TV show model. Since the number of files a
node is interested is random rather than deterministic, there may exists instances when few
nodes are interested in a file even for reasonably large valueof α. This leads to exception-
ally large downloading timesE[T α,1

2 ] andE[T α,1
3 ] even whenα is non-negligible. Refer

to Figure 10, we observe that the discrepancy of the two user strategies is maximum when
α = 0.5. Again, similar observation is made for the multiple moviesmodel. Although
the ratio of networking agents diverges whenα decreases, multiuser diversity does not im-
prove network performance a lot. Whenα is small, most of the extraneous file exchange
opportunities are futile due to incompatible node interests.

8 Discussions

It is apparent that the social contract defined in this paper describes one out of many pos-
sibilities to describe non-cooperation between nodes. We can modify the social contract in
many different ways, say, allowing different number of file exchanges in a single transac-
tion. If the circulation of a particular file is very small, a nodei is more eager to get this
particular file in a rendezvous with nodej. Knowing that the file is not widely circulated
in the network, nodej infers nodei is willing to trade in the file for several files in return.
The characterization of the number of files a node is willing to trade for is somewhat arbi-
trary and is related to the behavioral patterns of network users, and the knowledge of the
file’s circulation status and demand. This information willmost likely not be available in
individual nodes. It is not very meaningful to derive strategies to leverage on the number of
files exchanges in a single transaction based on incomplete information on node behavioral
patterns and the demand and supply of files. On the other hand,one-to-one file exchange
is the appropriate exchange strategy when the circulation status of each file is unavailable
to individual nodes. It is also intuitive that it is fair and most nodes would be obliged to
follow the strategy.

In section 5, we observe that the attainable throughput of anindividual node improves
as the number of files being disseminated increases. In orderto further improve the net-
work performance of our system, a naive approach will be justsimply dividing up a movie
files into a large number of small files to leverage on the improved efficiency for a file
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exchange at largeK. That is, instead of transmitting one file in each direction at the du-
ration of one node encounter, many small files are being exchanged in each direction to
fully utilize the available bandwidth. Nevertheless, the amount of overhead also increases
with the use of small files. A fixed amount of bits must be set aside in each file for the
purposed for synchronization and error detection. As illustrated in in section 5, for state
of the art infostation structure, the file size should not be no more than 10MByte in a file
transmission. This corresponds to the dissemination ofK = 500 files for a DVD quality
movie, a reasonably large number of files. Thus, we can reap the benefits of data diversity
without further dividing up a 10MByte file into smaller chunks. This result is consistent to
our initial assumption on the bandwidth constraint. Nodes can exchange one file in each
direction in a node to node encounter.

It is plausible that downloading time of each node will decrease when nodes have some
kind of implicit cooperation. For instance, a nodek that happens to be in the proximity of
nodesi andj having a file exchange may simply eavesdrop the transmissionand get two
files from i andj. Since file eavesdropping does not incur extraneous overhead to nodei
andj, all network users will benefit if they implicitly approve offiles eavesdropping. The
legitimization of file eavesdropping, however, will dissuade nodes from actively participat-
ing in file exchanges. Instead of participating in file exchanges, a node may simply wait for
opportunities to eavesdrop files. In the extreme case when all nodes revert to eavesdropping
at all time, no data dissemination is possible. The determination of an optimal eavesdrop
probability in a non-cooperative environment is thus an interesting question and should be
studied further under a game-theoretic framework.

Throughout this paper, we have used the term ”non-cooperation” loosely. We go straight
ahead to describe our social contract in the beginning, and abstain from providing defini-
tions of node non-cooperation and cooperation. The line between cooperation and non-
cooperation is vague. In particular, User Strategy II may beviewed as a relaxation of User
Strategy I, and therefore misconstrued as a cooperative gesture between network nodes.
Cooperation comes into the picture when nodes implicitly agree to carry files without in-
trinsic interest. Nevertheless, we note that in true non-cooperation, all network nodes are
selfish and they only care about their performance. If a non-cooperative network node can
reap performance gain through a unilateral change of his strategy, it will. As such, we claim
there is no cooperation involved for user to adopt User Strategy II. There is nothing to gain
for a node to unilaterally revoke to User Strategy I. Each node has incentive to employ user
strategy II, to expedite file downloading of its own interest. There is no need for policing
to ensure nodes enforcing User Strategy II.

9 Conclusion and Related Work

We have addressed the issue of noncooperation among nodes inthe context of content
distribution in mobile infostation networks. In the first part, we assume all nodes have a
common interest ofK files cached in the infostations. We have shown that it is possible
to drastically increase the rate of file dissemination of a completely noncooperative net-
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work by requiring the absolute minimal cooperation among users in the form of a social
contract. A random and a greedy file downloading algorithms are examined and shown to
have similar performance. We show that there exists some optimal node density in these
networks such that the access probability of a node is maximized and the networking time
is minimized. More importantly, we show that the total number of files cached in the in-
fostations impacts the networking fairness and throughput. We identify this phenomenon
as data diversity that is distinct from conventional communication diversity. When nodes
are noncooperative and have individual preferences for data, the network exhibits data di-
versity and the throughput of each node increases with increasing content variety. In the
second part, we extend the common interest model to the case where nodes have partially
overlapping but dissimilar interests. Two user strategiesare considered for this model. We
show in our simulations that a file exchange strategy that takes better advantage of the mul-
tiuser diversity inherent in mobile infostations results in enhanced network performance.
We conclude that both data diversity and multiuser diversity can be exploited in the mobile
infostation architecture even if nodes are noncooperative.

In the present work, simple mobility and interference models are used to facilitate anal-
ysis. This approach has been fruitful, leading to the observations of two diversity phenom-
ena in noncooperative content distribution. Nevertheless, a thorough examination of the
implications of mobility and interference to the network performance of mobile infosta-
tions is called for. As a first step, the issue of interferencemodeling is addressed in a recent
paper [28]. The effect of transmit range on network throughput is examined. We found out
a stipulated transmit range improves the throughput of a mobile infostation network further.
An optimal number of neighbors exists for mobile infostation networks that is distinct from
the well known 6-8 magic number [11, 14, 24] for multihop ad hoc networks. Moreover,
network throughput is linearly increasing with node density. Thus mobile infostation is an
attractive alternative to multihop networking in future pervasive computing environments,
where high node density dooms the throughput of multihop networks. On the other hand,
the effect of mobility on mobile infostations is reported in[31]. Previous research assumes
that the connection time in each node encounter is constant and is independent of node
mobility. However, the connection time and thus the data rate of an observer node depends
on node mobility and needs to be quantified. To this end a sophisticated mobility model
has been proposed for highway networks that allows for performance analyses based on
renewal theory.
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