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Abstract—We propose a new architecture for efficient network a domain without requiring major changes in the infrastruc-
monitoring and measurements in a traditional IP network. This tyre of IP Networks, and addresses some of the limitations
new architecture enables establishment of multiple paths (tunnels) of basic shortest path schemes mentioned earlier. This new

between source-destination pairs without having to modify the - i,
underlying routing protocol(s). Based on the proposed architecture architecture does not need the traditional IP routers to be

we propose a measurement-based multi-path routing algorithm replaced or modified. Rather it requires simple devices (such
derived from simultaneous perturbation stochastic approximation. as PCs or network processors) to be carefully placed inside the

The proposed algorithm does not assume that the gradient of jntra-domain network, creating overlay paths between source-
analytical cost function is known to the algorithm, but rather  yagtination (SD) pairs. Furthermore, the architecture allows
relies on noisy estimates from measurements. Using the analytical - . e
model presented in the paper we prove the convergence of the gradual deploymenbf _SUCh devu_:es, resulting in 'mPrO"ed_
algorithm to the optimal solution. Simulation results are presented Network performance with the addition of each new device. This
to demonstrate the advantages of the proposed algorithm under a provides ISPs with an alternative solution to achieve desired
variety of network scenarios. A comparative study with an existing |evel of performance at potentially much lower costs. We will
optimal routing algorithm, MATE, is also provided. , give a brief description of this architecture in Section IV.
tiorlfseywords— Mathematical programming/optimization, Simula- However, the details of this architecture are not the subject
of this paper. For more details on the architecture refer to [7].
|. INTRODUCTION Here,_we will assume thqt the overlla_y. archite(;ture providgs the
following traffic engineering capabilities required for optimal
Rapid growth of the Internet and the emergence of newuting: establishment ahultiple pathsbetween SD pairs and
demanding services have sparked interests in the Internet traffigicient distribution of local network state information to the
engineering. As defined in [1], traffic engineering deals with th&purce nodes.
issue of performance evaluation and performance optimizationThe focus of this paper is theaffic mapping(load bal-
of operational IP networks and encompassesnieasurement ancing) problem; that is the assignment of traffic load onto
characterization modelingand control of the Internet traffic.  pre-established paths to meet certain requirements [1]. In this
Due to the evolution of the Internet from ARPANET, trapaper, we propose an asynchronous distributed optimal routing
ditional routing algorithms for IP networks are mostly basegigorithm based on stochastic approximation theory, using local
on shortest path routing. However, methods relying on a singletwork state information. The model is similar to that in [4],
path between a source-destination pair cannot efficiently utiliggth the following differences. In [4], although the authors have
network resources and offer limited control capabilities for trafmentioned that theost derivativescannot be computed and
fic engineering [1]. Various solutions derived from shortest paghould be estimated by measurements, the mathematical analy-
routing algorithms have been suggested, mainly by modifyirgs given in the paper does not consider this fact and implicitly
link metrics in accordance with the network dynamics (Sesssumes that the analytical gradient function is available to the
[2], [3]). However, these approaches have several shortcomirggorithm. In addition, the details of the process of estimating
that have not been addressed effectively. First, they tendtke cost gradient are not given, and the method described in [8]
have network-wide effect and can result in undesirable aa@pears to be a variant of well-knovinite differencesnethod
unanticipated traffic shifts [1]. Second, these schemes can(f9l, [10]). However, this issue is not clearly or explicitly stated
distribute the load among the paths of different cost. Third, th@y the aforementioned references. This point is crucial in the
do not consider the traffic/policy constraints, such as avoidisgnse that theonvergenceof the optimal routing algorithm
certain links for particular source-destination pairs [4]. strongly depends on the conditions defining this estimation
MultiProtocol Label Switching (MPLS) technology has ofprocess as described in the stochastic approximation literature
fered new traffic engineering capabilities that can help ovgiSee [10], [11], [12]).
come these limitations [5], [6]. Many schemes have been pro-In this study we consider the same problem while relaxing
posed based on MPLS technology [4]. However, these methabls assumption that the analytical gradient function is available.
require that the existing IP infrastructure be replaced witthe proposedmeasurement based algorithis derived from
MPLS capable devices, and therefore raises a major investmigigt idea of simultaneous perturbation stochastic approxima-
guestion for the Internet Service Providers (ISPs). tion (SPSA). This allows us to greatly reduce the number
In a recent study presented in [7] we have proposed a nefvmeasurements required for estimating the gradient, while
architecture that provides traffic engineering capabilities withat the same time we have approximately the same level of



accuracy as the classical finite differences method at eamintinuously differentiable. The objective is to minimize the
iteration. By reducing theumber of measurementse obtain total costC(z) = 3", C;(«!) by optimally mapping the traffic
a better overall convergence rate due to the fact that eamhpaths inP:

measurement requires a non-negligible amount of time in a

networking environment. We will discuss these issues in more min Clz) = m;nzcl(x’> (3)
detail in the following sections. As presented in Section V, !
a simulation based study also demonstrates that the proposed s. t. Z Tsp =715, VS ES (4)
algorithm outperforms the algorithm proposed in [4]. pePs

From a broader point of view, a special case of the proposed Tsp > €, VpE P, sES, (5)

algorithm provides an optimal solution to more general pro@\iheree is an arbitrarily small positive constant. For instance,

lems _that have as_lmplex cons_tralnt sel_(Spemﬁcally, WE ar€ some of the control packets may be routed along different paths
referring to the single SD pair scenarios as the special casg dilable between an SD pair

Although applications of SPSA to the constrained optimization We can use the well known gradient projection algorithm

problems have generated a certain level of interest in t&? solve this constrained optimization problem, where the

literature, the simplex cor!strgint set' problems have not. be(%hstraint se® is defined by (4) and (5). Each iteration of
handled properly as we will discuss in the following sectlon.the algorithm takes the form:

The rest of the paper is organized as follows. In Section Il we

define the optimization problem, and give a brief overview on z(k+1)=1p [x(k:) — a(k:)VC(k)] (6)
stocha;tlc approximation for readers w_ho are not famlllar W'Where VC(k) is the gradient vector whosés, p)t element
the topic. Section Il presents the optimal routing algorithm : o . i

A . L . 7 IS the first derivative length of path € P, at iteration k
and proves its stability and optimality. Section IV discusses t : .
. ST ; ; . C(k)]sp = 0C/0xsp ), a(k) > 0is the step size, arlde [V]
implementation issues. Section V describes the experime L : !

IS"the projection of a vecta# onto the feasible set with respect

setup used to study the performance of the proposed algoritl Mine Euclidean norm.

and presents the simulation results. We conclude the paper & he above iteration can be carried out in a distributed manner

discuss possible topics of future work in Section V1. by each pairs without the need to coordinate with other pairs
Il. THE OPTIMIZATION PROBLEM in an asynchronous fashion [13], [14]:

A. The Routing Model zs(k+1) =T, [x5(k) — as(k)VCy(k)] (7

In this section, we define the optimization problem of inwhere VC, (k) = (9C/dx,,(x(k)),p € P;) is the vector of
terest, describe the network model used for the analysis, gidt derivative lengths of paths P, and IIg_ denotes a
list basic assumptions we make. We will C|OSE|y follow th@rojection onto the feasible set of SD pair
formulation in [4] due to the similarity of the problem. One problem with directly implementing (7) is that
The network is modeled by a sét of unidirectional links. dC )0z, the first derivative length of a path, may not be
Let S ={1,2,---, S} denote the set of SD pairs. An SD palilavailable in practice and can only be estimated empirically
s has a setP, C 2" of paths available to it, andV; = |Ps|, through noisy measurements of the cost function. This is
i.e., N5 is the number of paths available for SD pairWith @ mainly due to the fact that the link capacities typically fluc-
little abuse of notation we lePs = {1,2,---, N}, and define tuate randomly [4] and the traffic patterns in the Internet are
the set of all paths® = UsesPs = {1,2,--- , N}, whereN = dynamic in nature. Therefore, it is necessary to use a gradient
> ses Ns- While by definition, none of the paths can be usegpproximation method in the optimization problem. Clearly,
by more than one SD pair, the paths of two distinct SD paiggochastic approximation methods are reasonable solutions to

can share a link. such pr0b|ems_
The total input traffic rate of an SD pairis r; and it routes
x5, amount of traffic on patlp € P, such that B. Stochastic Approximation
Stochastic Approximation (SA) is a recursive procedure
; Tsp =15, foralls @ for finding the root(s) of equations in the presence of noisy
pels

measurements, and is particularly useful for finding extrema of
Let zs = (z4p, p € Ps) be the rate vector of SD pai, and functions [11] €.9.,[15] and [16]).

let x = (z5p, p € Ps, s € S) be the vector of all rates. Then, The general constrained SA has the same form as (6) with

the flow on a linkl € L has a rate that is the sum of sourcehe gradient vectoW C (k) replaced by its approximatiofi(k).

rates on all paths that traverse liftk The approximation is typically obtained through measurements
1 5 of C(x) aroundz(k). Under appropriate conditions, one can
= Z Z Lap @ show thatz (k) converges to the solution of (3) denoted by,

s€5 lep,peh, A critical issue in SA is the approximation of gradient

For each linkl, C;(z!) represents the cost as a function ofector. The standard approach motivated from the definition of
the link flow z!. We assume that, for al|l C;(.) is convex and gradient is theFinite Differenceg FD) method, in which each



component of:(k) is perturbed one at a time and correspondingDSA and improve the overall network performance.
measurementg(.) are obtained. Typically, theth component  In [11], Spall gives a formal proof of convergence of SPSA
of (k) (¢ =1,2,...,m) for FD approximation is given by  algorithm for the “unconstrained” case. Convergence of SPSA
algorithm under inequality constraints are presented in [17]
gi(k) = yla(k) + clk)e:) — y(x(k) = c(k)es) as well as [12]. However, these results do not consider the
2c(k) case wherex(k) £+ c(k)A(k) ¢ ©, which may be the case
wherec(k) is some positive nhumbeg; denotes a unit vector in the optimal routing problem. Particularly, in [17] Sadegh
with one in thei-th position and zeros elsewhere, apf) suggests to projeck(k) to a pointz (k) € © such that
denotes the measured cost function with measurement noise.(k) + c¢(k)A(k) € ©. If 2’ (k) — (k) — 0 ask — oo,

An alternative method to estimate the gradient is called t§@nvergence can still be established. However, whers a
Simultaneous Perturbatio(SP). In this method, all elementsSimplex, if c(k)>_; A;(k) # 0 thena (k) £ c(k)A(k) ¢ ©
of x(k) are randomly perturbed together to obtain two meder all = (k). Under these conditions, there is no existing proof
surementgy(.). Thei-th component ofj(k) is computed by  on the convergence of an SPSA algorithm that we can directly
apply to our problem. (In [12], although authors claim that
gi(k) = y(e(k) + c(k)Ak)) — y(z(k) = c(k)A(K)) they have proved the convergence for the case of a network of
2¢(k)Aq (k) gueues with similar constraints, they do not consider the issue
where A(k) = (A1(k), Aa(k), ..., A (k)), the vector of the mentioned above in the proofs.)
random perturbations for SP, needs to satisfy certain conditiongn the next section, we will resolve this technical issue by
as will be discussed in the following section. a simple method and present a formal proof of the SPSA
#lgorithm under these constraints.

Both of the above approximations have a “two-side
form in the sense that they use the measurements 1. OPTIMAL ROUTING USING SPSA
y(z(k) £ perturbation). On the other hand, one-sided graa The Optimal Routing Algorithm
dient approximations involve measurementsydfc(k)) and

y (z(k) + perturbation). Although it is known that the stan- ) - o .
dard two-sided form gives more accurate estimates compare(?'iB\le its stability and optimality. We know from [13] that if

one-sided forms, for real-time applications one-sided gradie‘?ﬂCh SD pair runs (7) independently and asyn_chrondtﬁlg,
approximation may be preferred when the underlying syste eraII.aIgonthm converges. Let us now consider the use of
dynamics change too rapidly to get an accurate gradient e ESA. in place of (.7)' . :

mate with two successive measurements [9]. In this paper weAt time %, SD pairs updates its rate according o

assume that the one-sided form is utilized for the approximation zi(k+1) = e, [zs(k) — as(k)js(k)] (8)

process for both methods unless stated otherwise. ) o )
SA algorithms using one of the gradient approximatio whereg, (k) is the approximation to the gradient vectwc’s (k)
en by the SPSA algorithm and is given b
above are referred to as FDSA or SPSA. One should note t a\t/, 4 gor 'S gV y

in an SPSA algorithm the gradient approximation uses only ; .y, Ns  ys(@(k) + c(k)A(K)) — ys(2(k)) )

In this section we propose an optimal routing algorithm and

two cost-function measurements, independent of the numbef " N, —1 cs(k)Agi(k)
of parameters being optimized. Standard (two-sided) finite- Ny (Ct(k)+ pt (k) — (C (k) — ps (k)
difference approximation requireédn measurements to esti- N1 cs(k) Ay (k) '

mate the gradient. In [11] it is shown that under reasonably , )

general conditions, SPSA and FDSA achieve the same leVdiere C™ (k) = C(a(k)), C™ (k) is the cost withz(k) plus

of statistical accuracy for a given number of iterations evefrturbation terms angi; (k) and g (k) are measurement
though SPSA uses: times fewer function evaluations thannoise terms. Note that the noise terms observed by each SD

FDSA. This theoretical result has been confirmed in mamir i allowed to be different. In addition, while(k) is a
numerical studies, even in cases wheteis on the order of POSitive scalar as in standard SA, we redefiffe) as alV x N
several hundreds or thousands [9]. This is certainly an import&liggonal matrix whosg-th diagonal entry is equal toy; (s;

property especially if the measurements are costly and/or tifAg/nd the SD pair associated with tjéh component of(k)).

consuming. Clearly, this is the case for the optimal routingiS definition allows the possibility to have different(k)
s for different SD pairs. In addition, we have an extra

problem at hand as measurements require resources and mardies for N

be collected and reported in a timely manner. In other wordgultiplicative factor == in (9) compared to the standard
SPSA suggests a potential for better statistical accuracy un This is due to the projection of;(k) + c,(k)As(k)

the same period of “time” due to a much shorter requirdd ©s for all s € S using L, projection while calculating
measurement period, even though the two methods have $hF)- This is explained in the Appendix in details. Finally,
same statistical accuracy with the same number of “iterationd 1. [#s (k) +¢s (k) As (k)] = z,(k), the SD pair draws a new
This result can be promising in the sense that the algoritl“ﬁ}f(k) until (k) # e, [z (k) + cs (k) As ()]

_based on SPSA will be able to track and feSD‘?”d to Ch"’mgej:‘!-lere asynchronism refers to the fact that the updates by different SD pairs
in the network much faster than another algorithm based @#inot need to take place at the same time.




Note that SD pairs may have different step sizegk) for Proposition 3.2: Under Assumptions Al - A6, the sequence
a given iteration. This brings about a level of asynchronism(k) = (z(k),s € S) generated by the algorithm defined by
between SD pairs in the sense that SD pairs can independe(Blyconverges ta:* with probability 1, regardless of the initial
respond to the dynamics of the netwotkdowever, we assume vector (z5(0), s € S).
that SD pairs update their rates once every iteration after they Proof: The proof of the Proposition 3.2 is given in
start running the algorithm. This assumption makes sense sidggpendix. ]
at each iteration SD pairs should make use of the monitoringNote that in our model each SD pair runs the algorithm
information that is already available. This is, however, not tedependently in a distributed fashion.
say that the updates take place simultaneously. The error (&Je

. o . . Measurement process
to this asychronism is assumed to be absorbed into the erfor = _ P ) )
+ . In this section, we provide the details of the measurement
termsu; (k) in (9).

S\ ) process and its effect on the overall performance of the pro-
For the optimality of the new algorithm, we need to ShoW,geq aigorithm. We will also point out benefits of SPSA based
(8) converges to the same poitit as (7) for all SD pairs. For algorithms over the FDSA alternatives.

this, we use the following result of [18] for the standard SA ‘Ag e mentioned earlier, the Simultaneous Perturbation idea

algorithm: . allows us to estimate a: x 1 gradient vector by only two
Proposition 3.1: Suppose) ., a(k) = oo. If measurements while the Finite Differences method requires
o C(z(k)) is differentiable for each:(k) € ©, and either m+1 for one-sided andm for two-sided measurements. When
convex or unimodal, we consider the routing problem, this result suggests that an
e b(k) = 0w. p. 1, and SD pair can simultaneously perturb all of its paths if an SPSA
o > oo BlE(k)TE(R)]a? (k) < cow. p. 1; based algorithm is employed. However, by definition, an FDSA
then z(k) — «* with probability 1, whereb(k) and £(k) are based optimal a]gorithm requires an SD pair to perturb these
defined as paths one at a time.
For the same reason, FDSA based algorithms necessitate that
b(k)=E[g(k)|z(k)] — VC(x(k)) (10) each SD pair should start doing measuremeings, perturb its
E(k)=g(k) — Elg(k)|z(k)] . (11) paths) at different times. As mentioned in [4], this requires a
For the convergence of the algorithm we assume that thieecial coordination protocol and limits the independence of
following conditions are true: actions made by SD pairs. Besides, it creates an additional

traffic load (.e., overhead) to the network. On the other hand,
once again the theory of SPSA enables simultaneous operation
of SD pairs due to the following reason. Since the perturbations
ch(k)As(k)) made by SD pairs are all zero mean, the effect
of SD pairs to each other can effectively be modeled as a
zero mean noise. In other words, when different SD pairs
that are sharing common links do measurements simultane-
ously, they will create an additional noise term to each other.
However, from Proposition 3.1 and Proposition 3.2, we know
that the convergence of the overall algorithm is valid under

Al. C (z (k)) is differentiable for each:(k) € ©, and either
convex or unimodal.

A2. A, (k) are (i) mutually independent with zero mea
for all s € S andi € P, (i) uniformly bounded by
some finite constant, and (iii) independent ofx((1), ! =
0,1,--- ,k). E[(As,i(k))~?] are bounded for alk.

A3. E[ugi)z(k)] are  bounded and E[uf(k) -
wy (K)|Ak), F] = 0 a. s. for all k, where
Fr = {x(0),z(1),--- ,2(k)} or the o-field generated

by {x(oz"” yz(k)}- 5 these conditions. Due to this reason, we have the important
Ad. S ‘5283 < oo and(f:/((';))) =0O(1)foralls,s’" € S. flexibility to allow SD pairs to operate in a totally independent
A5. There exists a positive constahf such that fashion so that each SD pair can freely perturb its paths. As
1 as(k) a consequence, a potentla_l ove_:rh_ead that would be caused by
— <= <M the coordination protocols is eliminated. Furthermore, we can
M = ag(k) significantly reduce the time spent on the measurement process
for all s, s’ € S and for all k. by simply overlapping these measurements. So, we can achieve
A6. Let a(k) = maxgecgsas(k). Then, for alls € S a much faster convergence with respect to an FDSA alternative,
o since we effectively reduce the time between iterations by
Z(d(k) —as(k)) < o0, overlapping measurements while the accuracy of each iteration
1 remains approximately the same as discussed earlier.

Here we would like to note that even though the simultaneous

and i o .
i operation of SD pairs is beneficial to the convergence process,
lim af( ) =1 forallse S . on a given sample path that the algorithm follows it may
k—oo a(k) increase the magnitude of the overall error term observed during

the measurements. In that case, it may actually slow down the

2For instance, this formulation covers the case where SD pairs start runnfFiglVergence temporarily ESPGCI_a”y when the sign of one or
the algorithm at different times. more component of the gradient is inverted due to high amount



of noise. However, since the additional noise term due to tipsoposed algorithm is required before drawing any definitive
simultaneous operation is zero mean, on the average theredaclusions about the behavior of the algorithm, simulation
no effect on the convergence process. results presented in Section V show that the optimal routing
Moreover, one can still improve the performance observegheme clearly outperforms the algorithm suggested in [4].
on a given sample path by making simple modifications to Another issue regarding the measurement process is the
the base algorithm as we explain below. Let us first give @ffects of asynchronous operation of SD pairs. It is proved in
example to illustrate how the sign of the gradient can Hd] that, with increasing asynchronism, the convergence process
inverted by simultaneous operation of SD pairs. Suppose @gts slower. In other words, this result suggests that the larger
SD pair s has a path passing through a bottleneck Ik the value oft, gets, the slower will be the convergence, where
which is also shared by some two other SD pairs. Suppdseis defined to be maximum time lag between the iterate
also that s increases the amount of load it is sending paint (z(t)) and time when the measurements are takén-{
this path as a result of a random perturbation made by thg). On the other hand, in the SPSA case as asynchronism
gradient estimation process. At the same time, it is possifietween the SD pairs increases, the magnitude of the error
that the other two SD pairs decrease their corresponding ptgfm in measurements gets smaller since the time that the
rates and ultimately the overall effect may be a decreasenieasurements overlap with each other gets shorter and this
the cost of the bottleneck link. Under these conditions, Sihay cause a marginal performance increase on the overall
pair s will possibly observe a decrease in the overall cosystem with increased asynchronism. Considering these two
although it increases its rate over the bottleneck link. Thiffects of asynchronism, we can say that there exists a trade-off
may result in an erroneous decision in the next iteration ahétween the benefits gained by overlapping the measurements
slows the convergence process as a result. However, with simfel benefits of having relatively less noisy measurements. As
modifications using problem specific information that is alreadye will see in Section V, up to a certain level of asynchronism
available at the source nodes, the adverse effects of this ndisgh effects mainly cancel each other and the performance
term can be eliminated. Specifically, by taking the current staaé the algorithm does not change. When the asynchronism
of the paths into consideration, a source node can double chiukeases further, it turns out thag is dominant over the
the decisions made at the current iteration using the informatibanefits of less noisy measurements and the convergence starts
it already has and avoid taking erroneous actions like the oiteget slower.
given in the example above. Particularly, the existence of theWhen we look to the FDSA case, it is hard to discuss
following conditions are checked by the source nodes at es@$ynchronism since we need a certain level of coordination
iteration: between SD pairs so that each SD pair does measurements

« An SD pairs tries to increase the load of a path that i% i.e., perturb its paths) at different times. However, the time
already realizing drops ag between the iterate point(¢)) and time when the earliest

« An SD pairs tries to increase/decrease the utilization of qeasurement is takeqt(@—t())) can.b_e. ass“”_‘ed as a source of
path, which is already the highest/lowest utilization patH’;}synchromsm according to the definitiontgfgiven in [4]. This

« An SD pair s tries to increase/decrease the load of ' because a Igrgeb can force source nodes to use outdated
path, whose utilization level is closer to highest/loweépeasurement information considering the dynamic nature of

utilization path than to the lowest/highest utilization patmetwork_s. Consequently, this means the convergence should be
slower in the FDSA case when compared to SPSA not only

~ Whenever such a situation is detectettie algorithm simply poca;se the time between iterate points is longer than SPSA, but
ignores the calculated iterate values and continues to use gid, it forces the system to use more outdated information. (A
rates (., zi(k + 1) = w,,(k)). As a result, we limit the criicq) issue is that there is no formal guarantee of convergence
possible adverse effects of the simultaneous perturbation whefie, . the measurements made in EDSA overlap in time and

the sign of an entry in the gradient vector is estimated wronglgerefore it is not possible to minimize the sizet@by partially
On the other hand, when the sign of the entries of the estima rlapping measurements in time.)

gradient vector does not change, the projection algorithm will .
still be working in the negative derivative direction. ConseC- COst Function
quently, we still get closer to the neighborhood of the optimal The requirements on the cost function are stated in Proposi-
operating point though it may be with a slower rate undéion 3.1. Selecting the link cost function in the following form
certain cases compared to the noiseless case. is sufficient to satisfy these conditions:

Considering these facts, we can intuitively say that the 9
performance of the algorithm improves with this modification. Cult) = di(t) + w(t) (12)
Although a formal treatment of the convergence rate of thghere,d;(t) is the number of packets dropped on linluring

the (t, t+1) period andy(t) is the link utilization level at the

3We assume that a bottleneck link has an arrival rate that tends to be greg@me time period_
thin its departure rate. _ _ o The arrival process at a source node is an aggregate process

Some of the conditions given above are valid specifically for networks N L
having links with equal capacities and paths with equal path lengths. Howe\@f',many individual flows. We assume that each individual flow
similar conditions can easily be defined for more general network settings.generates packets according to an equilibrium renewal process,



i.e., interarrival times of packets from a flow have a fixed dis-
tribution, and these equilibrium renewal processes are mutually
independent. Then, by the Palm-Khintchine theorem [19], the
superposition of these independent renewal processes can be
approximated by a Poisson process, where interarrival times of
packets are exponentially distributed.

In addition, according to the work presented in [20], there
exists two peaks at 500 and 1500 bytes in the packet size
distribution of Internet traffic. Using this result, we can roughly
model the packet size distribution as a Bernoulli random
variable with values at 500 and 1500 bytes.

Under the conditions above, we can ap_proxir_nate the Iin_ksk_i;é employed in an MPLS based network, where the overlay
the network as\//G//1/K queues. Following this assumptionpaths are replaced with LSPs (Label Switched Paths). The
we can justify the assumption on convexity of the cost functiqgse of overlaying architecture actually gives us the additional

as follows. One can check that in the regime of interesd.( opportunity to use the proposed algorithm in the traditional IP-
with utilization level being less than 150 percent), the link cogjased networks.

function is convex in the case a¥//M/1/K queue. In the
case ofM/G/1/K queue one can show that the approximatioB- Traffic Monitoring
functions for blocking probability of am\//G/1/K queue,  Traffic monitoring is also handled by the overlay architecture.
(e.g.,Gelenbe’s formula [21] and two-moment approximation iEach link in the network is mapped to the closest overlay node
[22]), are indeed convex in the regime of interest under variougth a certain tie-breaking rule that gives a unique mapping
parameter settings. [7]. Overlay nodes periodically poll the links that they are
responsible for, process the data and forward necessary local
state information to the SD pairs utilizing the corresponding
In this section, we present a new overlay architecture f@ks in a coordinated way. (Note that this way the links are
provide traffic engineering capabilities. Here, we will give &ot required to be probed by each SD pair.) While sending the
brief overview of the architecture. The details of the overlapjformation to a source node of a specific SD pair, the overlay
architecture can be found in [7]. nodes also aggregate the information gathered from different
A. Path Establishment links as much as possible. For instance, the cost information

) ) ) obtained from the links that are on a particular path of an SD
Alternative paths between SD pairs are created using OVBLjr ¢ are aggregated by the overlay nodes, using the fact that

lay nodes. The overlay nodes are located at all the sourggs cost structure is additive according to the definition given in

destination nodes as well as at some core nodes. The igdea g 5 consequence, the overhead caused by the distribution
is similar to the ones presented in [23] and [24], with thg ihe |ink state information is minimized.

difference that the overlaying is done intra-domain as opposed
to inter-domain. When a packet is sent along the shortest pdh, Traffic Filtering

it will be forwarded in the same way as the traditional IP For QoS purposes, Specia| care should be given while Sp”t-
networks. On the other hand, if the packet is to be sent througiy the traffic at the source nodes. Specifically, one should
an alternative path, it will be processed at the source overlgyoid the well-known reordering problems especially for the

node and an additional IP header will be attached to the packetp traffic. The optimal routing algorithm proposed in this

This way the packet can be forwarded to a carefully placgfhper does not require and specify how a particular packet
overlay node that is lying along the particular alternative patBhould be routed along the network. Instead, it calculates
As soon as this overlay node gets the packet, it removes the rates at which the traffic should be distributed along the
outer IP header and forwards the packet to the final deStinat@ﬂgrnative paths between SD pairs. Therefore, any existing
(or possibly to another overlay node). By this methodology, ofigtering scheme that minimizes the reordering problem can be
can utilize as many alternative paths as needed. Note that usigeid for this purpose. A possible solution is presented in [4]

this architecture, we can still employ the simple shortest pa#iat depends on the use of hash-functions.
routing inside the network. This allows us to use the existing

traditional routers without any modification. The overlaying V- EXPERIMENTAL SETUP AND SIMULATION RESULTS
capabilities can be realized by attaching a simple dedae,& The purpose of this section is to identify the characteristics
PC or a network processor) to the existing routers. This deviokthe proposed routing algorithm and evaluate its performance
simply processes the packets, adds or removes IP headerder various networking conditions. Using simulations, we
before the basic forwarding operation is made at the routersvould like to verify that the algorithm is stable and robust in

As a final remark, we would like to emphasize the point thauch a way that it minimizes congestion and quickly balances
the proposed optimal routing algorithm does not necessitdle load among multiple-paths between SD pairs in a reasonable
the use of the overlaying architecture. For instance, it can alseriod of time.

Fig. 1. Network Topology 1

IV. IMPLEMENTATION ISSUES
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In all simulations, the period of link state measurements &€ selected such that L2 is along the default shortest path
selected as one second. As a consequence, SD pairs can ugfafel-D1, while the default shortest paths of S2-D2 and S3-
their rates at best approximately every two seconds since R both traverse L3. Each SD pair generates a 19.8 Mbps
require two measurements for estimating the gradient vecféprresponding to 0.44 link utilization) Poisson traffic on the
according to the SPSA. average. In addition, L1, L2 and L3 carry uncontrolled cross

Experiments are simulated under two network topologiekaffic. The cross traffic dynamics is given in Table I. This setup
The first topology, which is borrowed from [4] is given iniS effectively the same as the one given in [4]. (See [25] for the
Figure 1. This topology allows us to obtain insights abo€tails of this setup.) A random delay is introduced before each
the fundamental behavior of the proposed algorithm due & Pair starts running the optimal routing algorithm to guaran-
simplicity. In addition, it serves us as a base setup so that ¥@& that the SD pairs are not synchronized. (The maximum value
can make a comparison with the MATE algorithm presentéd this random delay is defined as offset.) As shown in Figures
in [4]. We have three SD pairs (S1-D1, S2-D2 and S3-D3 and 3, the algorithm quickly eliminates the congestion and
and each pair has two distinct paths. Note that this create§ugcessfully balances the traffic in a short time. Moreover, these
considerable amount of interaction between these SD pairs/esults show that the proposed algorithm clearly outperforms

The network consists of identical links with a bandwidth of'€ MATE algorithm. While MATE requires around 400-500

45 Mbps. Packet size is given as 257 bytes. Each pair initiall
P 9 y P y5Since simulation code and packet size distributions for the MATE algorithm

u§es Only the default shortest (minimum hOp dis’_tance) pawproprietary, it was not possible to simulate MATE. Therefore, we base our
Since all paths have equal length, the default min-hop pattinparison on the results presented in [4].



TABLE |
THE CROSS TRAFFIC DYNAMICS

Load Distribution in time (sec)

Link
[0 — 1000)|[1000 — 2500)[[2500 — 3600
] o7 0.44 0.44
L2 033 0.33 0.67
L3| 033 0.33 0.33

seconds to converge, it takes around 200 secomdthe case
of the proposed algorithm. Besides, the proposed algorithm
quickly (around 50 seconds) clears out the packet drops unlike
MATE. (See Figures 10 and 11 presented in [4].)

Figures 4 and 5 illustrates the effect of increased asynchro-

nism between SD pairs. We increase the asynchronism betwee
180

Fig. 6. Network Topology 2

Aggregate Offered Load Levels on Selected Links

SD pairs by simply increasing the offset value. From both
graphs we can conclude that the algorithm is still able to
converge in a short time. As we see from Figures 2 and 4, the
performance is almost the same for offset values 50 ms ant i}
200 ms. However, when we increase the offset to 500 ms, we
see that the convergence of the proposed algorithm gets slightl 12r
slower. Thus, these results validate the earlier discussion mad,
in Section III-B. ;‘jmo
Figure 6 represents the second topology we consider in this§ .
paper. This topology is also used in [26], [27] and considered

160

to be typical of a large ISP’s network. (This topology closely  eof,

resembles the MCI Internet topology [28].) Using this topology,
we intend to analyze the performance of the proposed algorithn
under more realistic networking conditions.

Nodes 1, 5, 6, 14 and 18 are both source and destinatiol

nodes. This gives us a total of 20 SD pairs. Each pair has a o
least two paths to reach to destination. A total of 78 paths
are created between these 20 SD pairs using overlaying archi-
tecture. Overlay capability is available at all source/destination
nodes as well as the nodes 2, 10 and 13. In this experiment,
the offset is set to 0.1 sec. The dashed links have a capacity
of 50 Mbps, while solid links have 20 Mbps. The packet size

1 1
500 1000 1500 2000 2500

Time(sec)

Fig. 7. Offered Load on Network Topology 2

for this scenario is selected as 500 bytes. All SD pairs initially s

use only the shortest paths. Each SD pair generates traffic witl asoof
a rate of 11.5 Mbps. In addition, the cross traffic traverses the oo}
network on link (3-12) starting at simulation time 1600 SeC. sl
The cross traffic rate is 18 Mbps and cannot be shifted to anyE |

alternative paths as before.

In Figure 7, we illustrate how the load is distributed after the
algorithm starts. The links that we have plotted are selected ir£
such a way that each of them is located on a different alternative
path that can divert the traffic sent through link (3-12). The **
only exception is link (12-16), which demonstrates how the
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N
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traffic load is migrated away from the paths that were traversing %"

link (3-12). In addition, Figure 8 shows the total number of

6This performance result is verified under several sample paths created by
different random seeds.
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Fig. 8. Total packet drops on Network Topology 2



packets dropped in the entire network. We observe from bgtla] M. Fu and S. D. Hill, “Optimization of discrete event systems via
figures that the algorithm can rapidly eliminate congestion and simultaneous perturbation stochastic approximatidrghsactions of the

T : Institute of Industrial Engineersvol. 29, no. 3, pp. 223-243, 1997.
distribute the load among the multlple paths between the ] J. N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous optimal

pairs. This result is encouraging in the sense that the proposed routing in data networksJEEE Trans. Automat. Confwol. AC-31, no. 4,
algorithm converges in reasonable time scales even under the PP-B325—3k32' Apé- é986-” N ‘s Prentice-Hall Inc.. 2nd
cases where many SD pairs have independent and asynchrofttis;, Bertsekas and R. Gallagdata Networks - Prentice-Hall Inc., 2n

. edition, 1992.
operation. [15] J. Kiefer and J. Wolfowitz, “Stochastic estimation of a regression func-

tion,” Ann. Math. Staf.vol. 23, pp. 462-466, 1952.

J. R. Blum, “Multidimensional stochastic approximation methodsh.
Math. Stat, vol. 25, pp. 737-744, 1954.

P. Sadegh, “Constraint optimization via stochastic approximation with a
simultaneous perturbation gradient approximatigkjtomatica vol. 33,

no. 5, pp. 889-892, 1997.

P. L'Ecuyer and P. W. Glynn, “Stochastic optimization by simulation:
convergence proofs of the GI/G/1 queue in steady-stdfiahagement
Sciencevol. 40, no. 11, pp. 1562-1578, 1994.

D. P. Heyman and M. J. Sob&tochastic Models in Operations Research

VI. CONCLUSION [16]
In this paper, we have focused on the optimal multi-path?]
routing problem where the link cost derivatives can only be
estimated but cannot be calculated analytically. We mathemgg;
ically proved the optimality and stability of the proposed algo-
rithm. We have applied the technique of SPSA, which offe
significant benefits over traditional finite-difference methodL. ] McGraw-Hill, 1982.
This way we obtained much shorter measurement times white] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Recent

estimating the gradient and as a result achieved a faster conver- tEfafgC lmessu‘fgments from eln interne: backlzone,lNEd'l(; ézia/ls 2
A . . . Gelenpe, N approximate computer system mo vol. ,
gence. Simulation results show that the proposed algorithm daH no. 2, pp. 261-269, 1975.

swiftly and effectively minimize the congestion and distribut@2] J. Smith and F. Cruz. The buffer allocation problem for general

traffic load efficiently under dynamic network conditions. Fi- E?tite” buffer queueing dﬂ;éM()/][kS- ItU/nPU_RI]ifhed- [Online]. Available:
. . JIwww.ecs.umass.edu/mie/tacu smi

nally, we have presgnted a new archltecturg to effectively ap}f%] A.pcomns, “The detour framewo?/k for packet rerouting,” Ph.D.

traffic engineering in IP Networks. A possible future work is ~ dissertation, Univ. of Washington, 1998. [Online]. Available:

the integration of the proposed algorithm with the Differentiated  http://iwww.cs.washington.edu/homes/acollins/quals/quals.ps

Services environment where there exist several traffic clas&&8
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s. t.¢Tu =r,

5 given by

(14)



whereu = [1,1,---,1]7. Obviously, if ; > 0 for all 4, this using the independence @ff (k) and A,(k), we can bound
solution is equivalent to thé, projection. Here for the purposethe second moment df; (k) as follows:
of temporary perturbation we replace (5) with a non-negativity Bllen (k)2 17
constraint. Thus, the projection af, (k) + ¢, (k)A,(k) can be [(9s,:(k))"] ) 17)
calculated using (14) if (C*( ) — C~ (k) + pt (k) — u;(k:))
cs(k)A, ( )
(

S (Agy(k))

xs,i (k) + cs(k) (ASJ(kJ) - N

> >0. (15)
—E

Recall thatA ;(k) is bounded by from Assumption A2.

Hence, (15) holds if Following a similar argument used above one can show
. that the first term in (17) i0(1) and the second term is
cal) < i Ts g (K)} (16) Olcs(k)™2), using the bounds o[(A,(k))], E[(A,(k))~2],
2a and B[(u (k))?].

From (5) we knowminj{;is,j(’f)} > . Since,cs(k) — 0, Now as shown in [29], the convergence of the algorithm can
there exists finitek; such thate, (k) < = forall k > K;. be proved by adapting the proof of Theorem 5.3.1 of [30] under
Therefore, (14) can be used to compute the projection b assumptions A1-A6.

xs(k) + cs(k)As(k) for sufficiently largek > K.

Let us first define the notation to be used in the proof.
Let A, (k) be an N x 1 vector, where values of entries
corresponding to those of SD pair are A, ;(k) and zero
otherwise. Hencezses s(k) = (Asiys € S0 € Ps).
Similarly, us is an N x 1 vector, where the values of entries
corresponding to those of SD paiare one and zero otherwise.
Following the proof in [12] and using Taylor's theorem, for
k> K; ands € S we have

E[gs,i(k)|z(k)]
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Therefore, one can see thdt) — 0 with probability one.
From the assumption thab[u} (k) — u; (k)|Fx] = 0 and

Ao (k) = Ay (k) -



