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Abstract— In this paper, we propose a novel general technique,
based on renewal theory, for analyzing mobility models in ad
hoc networks. Our technique enables an accurate derivation
of the steady state distribution functions for node movement
parameters such as distance and speed. We first apply our
technique to the random waypoint model and provide alternative
proofs for previous claims about the discrepancy between the
steady state average speed and the average speed associated with
the simulated distribution [1]. Our main contribution is a new
methodology for simulating mobility which guarantees steady
state for node movement distributions from the start of the
simulation. Our methodology enables the correct and efficient
simulation of a desired steady state distribution, and can be
implemented in a manner transparent to the user. We support
our claims through both formal proofs as well as extensive
simulations.

I. INTRODUCTION

The defining characteristics of mobile ad hoc networks
include the lack of a fixed communication infrastructure,
limited resources for computation and energy, and the mobility
of the network nodes. Consequently, ad hoc network protocols
need to be decentralized, need to use limited computational
and energy power, and should be robust to the movement of
the nodes. While the notions of “decentralized” protocols, and
energy- and computational-efficiency can be formalized and
indeed has been done in previous studies (e.g., see [2], [3],
[4]), the notion of robustness to mobility is still vague. One
of the main hurdles in making this notion precise is the lack
of analytical models for capturing mobility.

Simulations provide a valuable means to compare different
protocols and study their performance in terms of efficiency
and robustness. Indeed, network simulation environments such
as ns-2 [5], GloMoSim [6], Qualnet [7], or Opnet [8] are the
most commonly used tool to evaluate and compare the perfor-
mance of mobile ad hoc networks (MANET) protocols. Since
mobility models are inherently probabilistic, the assumption is
that averaging over sufficiently many runs will lead to a good
estimate. One of the problems with existing simulations of
the underlying mobility models is that the simulation may not
capture the steady state behavior since the convergence time
may exceed the length of the simulation. This was noted in a
recent study of the random waypoint model that established
that even though the speed of a mobile station is chosen
uniformly at random from a given interval, the speed of a node
in steady state is not necessarily from the same distribution;
indeed, it was argued that the two may significantly differ [1].

The random waypoint model, which is widely used in
simulating protocols designed for mobile ad hoc networks [9],
[10], [11], is defined as follows. Each node picks a random
destination uniformly within an underlying physical space, and
travels with a speed � whose value is uniformly chosen in the
interval �����	��
����� . ��
���� is some parameter that can be set to
reflect the degree of mobility. Upon reaching the destination,
the node pauses for a time period � , and the process repeats
itself afterwards. Several variants of the random waypoint
model have also been studied [12], [13], [14], [15].
Our results. In this paper, we present a new framework for
analyzing random waypoint-like models and show how the
framework can be used for providing accurate simulations of
the steady state behavior. Our contributions are twofold:

� Analytical: We present the random waypoint model as a
renewal process and derive an accurate characterization
of the steady-state distributions of speed and residual dis-
tance, given arbitrary distributions for speed and distance
of individual node movements. Our analysis provides
a derivation of the steady state average speed for the
random waypoint model and confirms previous claims
that there may be significant discrepancies between the
steady state average and the average specified by the
user [1].� Methodological: A useful property of our analysis is that
we are able to quantitatively characterize the steady state
distributions rather than specific parameters thereof, such
as the expectation or particular moments. We exploit this
generality to provide a novel methodology for simulating
mobility with arbitrary steady state distributions. Impor-
tantly, our methodology guarantees steady state for node
movement distributions from the start of the simulation,
thus enabling the efficient simulation of large-scale ad
hoc networks (see Theorem 3 and Corollary 3.1). Fur-
thermore, it can be implemented in a manner transparent
to the user.
We support our claims through both formal proofs as
well as extensive simulations. Finally, we illustrate the
generality of our analysis and methodology by applying
them to the random waypoint model with arbitrary pause
time distributions.

Related work. As discussed above, simulation and experi-
mental studies often model the motion of a node as a mobility
vector, that gives the direction and speed of the node. Each



node independently chooses a mobility vector that defines its
motion for a period of time (“movement epoch”), after which
a new random mobility vector is assigned (e.g., see [16],
[17]). Recently, a mobility model that allows for varying
speeds during a movement epoch has also been proposed [18].
Models for group movement, whereby a group of nodes may
move in the same general direction have also been recently
studied [19], [16]. Idealized models of mobility have been
studied in [20] where the effect of mobility on the capacity of
ad hoc networks was analyzed.

The random waypoint is the most commonly used mobility
model for simulation purpose. Recently several studies of this
model have revealed various flaws or unexpected properties.
In [1], it has been shown that the average speed of mobile
nodes decays with time. This is due to the fact that low
speed nodes spend more time traveling to their destination
than high speed nodes. Other mobility models such as the
one proposed in [21] have been shown to suffer from the
same speed decay phenomenon. In [22], it has been shown
through simulation that the random waypoint model does not
lead to a uniform distribution of nodes location. This result
has been analytically confirmed in [23], where it was shown
that the nodes distribution is higher within the center of the
simulation area. It was shown that the variation in density
depends on the nodes average speed and pause time, and that
higher speeds lead to a more uniform distribution. It was also
shown that increasing the nodes speed results in an increased
network connectivity. Recently, stochastic properties of certain
characteristics of the random waypoint model, including the
length, duration, and the direction of a movement epoch, have
been analyzed [24], [25].

Recent theoretical studies of ad hoc networks have measured
mobility in terms of the changes in the underlying transmission
graph. For instance, we can analyze the robustness of an ad
hoc network routing protocol by considering the amount of
work needed to be done when an elementary change in the
transmission graph occurs; that is, when an edge is removed
or added or the neighborhood of a node changes [26], [27].
Another interesting model for capturing node mobility is the
recently proposed adversarial network model [28], in which an
adversary may alter the underlying graph in an unpredictable
manner. Arbitrary node movements can be represented by
adversarial changes in topology.
Outline of the paper. In Section II, we consider a slightly
modified random waypoint model with zero pause time. We
derive the steady state distribution functions for the nodes
speed and residual travel distance. In Section III, we propose
a technique to simulate nodes mobility such that, from the
beginning of the simulation, the nodes’ observed speed is
uniformly distributed within the interval � � 
 ��� � � 
��� � . In
Section IV, we show through simulation that our technique
addresses the drawbacks associated with previous simulations
of the random waypoint model, and confirms our theoretical
results. In Section V, we extend our results to the case
where the pause time is specified by a probability distribution
functions. In Section VI, we discuss the general applicability

of our approach and results, and conclude in Section VII.

II. CHARACTERISTICS OF NODES’ MOVEMENT AT STEADY

STATE

We start with the definition of a simple mobility model.
Mobility Model S1A: Each node’s movement is charac-

terized by nonoverlapping time periods ��� ���
	 ������ . During
each period � � , the node travels with some random speed � �
for some random distance � � . The distribution functions (dfs,
in short) of distance � and speed � are user-specified, and
denoted by ��� ��� �

and ��� ��� �
1. Within each period, � � and

� � are selected independently. � � ’s are mutually independent,
so are � � . Hence, the random variables � � , defined as ���� � , are
also mutually independent. The df for time period � , denoted
as ��� ��� � , is determined by ��� and ��� and will be discussed
again later. Due to its frequent usage, we denote the mean of� as ������� � � .

In model S1A, the random variable � � ’s are independently
and identically distributed (i.i.d.) with common distribution
function ��� � � �

. Thus,
� � � � is a renewal process (see, e.g.,

[29], chap XI). The connection of such mobility models to
renewal processes was also observed by [23]. We also note
that the random waypoint model with zero pause time can be
regarded as a special case of S1A if the underlying physical
space is assumed to be a homogeneous metric space (for
example, a two-dimensional torus, or the surface of a sphere).
In this case, we can specify the speed distribution � � ��� � as a
uniform one. Many studies on ad hoc networks adopt a random
waypoint model in which the underlying space is a rectangle.
Such a space is not homogeneous and hence is not covered
by model S1A. We discuss this case in Section IV.

A. Speed distribution at steady state

Denote by �"! the speed of the node at time instant #%$ � ,
and let �&!� ��� � and '(!� �)� � be its corresponding cumulative
distribution function (cdf, in short) and probability distribution
function (pdf, in short). We are interested in the analytic
expressions of these functions, especially as #+*-, . We have
the following result.

Theorem 1: In Model S1A, �.! has the following limit
probability functions (cdf and pdf):

/10�2! 3"4 � !� �65 � � �7� � ��7� � � � 89 :<;��= � � � � �
(1)

/10�2! 3"4 ' !� � 5 � � �7� � ���� � � � ;5 '>��� 5 �
(2)

where �7� � � and �7� � � are the means of distance � and
renewal period � , respectively.

Proof: The proof is a standard renewal argument fol-
lowed by application of the Renewal Theorem. (see, e.g., [29],
p363).

1Unless explicitly specified, all random variables considered in this article
are continuous and nonnegative.



Write � 8 � # � ����� � � ! $ 5�� , conditioning on the time � � �� of the first renewal,

��� � � ! $ 5�� �7� ��� �� � ��� � � � $ 5�� ���%� � � if #
	 �� 8 ��#�� � �
if �	 ��� #

Then by the law of total probability,

� 8 ��# � � 49 : ��� � � ! $ 5�� � � � � � = ��� � � �
� ��� � � � $ 5������ $ #	�

� !9 : � 8 � #�� � � = � � � � �
(3)

Now,

��� � � � $ 5������ $ #	�
� 49

8 ��� � �7� $ #�� � � ��� � = � � ��� �
� 49

8 ��� � �(��� ��� $ #���� �(� ��� � = � � ��� �
� 49

8 ��� � �
� $ #���� � � ��� � = � � ��� �
� 49

8 ��� � �
� $ #�� � = � � ��� �
� 49

8 � ; � � � ��#�� � � = � � ��� �
(4)

Hence we have the renewal equation

� 8 ��# � � 49
8 � ; � � � ��#�� � � = � � ��� � � !9 : � 8 � #�� � � = � � � � �

Assume � ���7� � ��	 , , according to renewal theorem,/10�2! 3"4 � 8 � # �
� ��� � 49 : 49

8 � ; � � � ��#�� � � = ��� ��� � = #
� ��� � 49

8
49 : � ; � � � ��#�� � � = # = ��� ��� �

� ��� � 49
8

;
�

49 : � ; � � � ��#�� � � = � #�� � = � � ��� �
� ��� � 49

8
;
� � �7� � � = � � ��� �

� �7� � ���� � � � 49
8

;
� = � � ��� �

Equation 2 follows directly from Equation 1 and this
completes the proof.

For convenience, we also write
/�012! 3"4 �&!� � 5 �

as �"4� � 5 �
and/10�2! 3"4 '(!� � 5 �

as ' 4� �65 �
. It is not hard to see that ' 4� �65 �

is a

proper probability density function, with � 4: ' 4� �65 � � ;
(e.g.,

consider the derivation of �7� � � in terms of � and � ).
Corollary 1.1: The mean of the speed at time , is

�7� � 4 � � 49 : 5 ' 4� � 5 � � 5 � �7� � ��7� � � (5)

From the remarks following Theorem
;
, as well as Corol-

lary 1.1, one can immediately see that the distribution of
speed �"! as #�* , is solely determined by the provided
speed distribution ��� ��� � , and independent of the distance or
traveling time. It may help to consider the fact that, in Model
S1A, for each renewal period � � , the nodes select � � and � �
independently according to their own dfs.

More importantly, Equation 2 tells us qualitatively that' 4� � 5 �
is proportional to '>� � 5 �"! 5 , i.e., after the simulation

runs for a while, the speeds of the inspected nodes are biased
toward smaller values. This phenomenon was first pointed out
by [1]. Intuitively, nodes with higher speeds tend to finish
the corresponding renewal period more quickly, while lower
speeds tend to stay on. Hence, the speeds �.! we inspect at
large time # are biased toward smaller values.

We now apply Theorem 1 to the random waypoint model
to gain some insights. For illustration purpose, we use the
slightly modified random waypoint used in the analysis of [1].
Let’s call it Model RW1, where the destination is chosen uni-
formly within a disk of radius # 
���� centering at the picking
node (implicit assumption: boundless region). The speed is
uniformly chosen from � � 
 ��� �	� 
���� � with � 
���� $ � 
 �1� $ � .
And it was derived in [1] that ��� � � � 	$ # 
���� � �7� � � �	"%'&�(")$�* � &�(+) � � & �-,/. /10 � � &�(+)� & �1, �

and ' � � � � � �� &�(+) � � & �1, .
According to Corollary 1.1,

�7� � 4 � � � 
����2� ��
 �1�/10 � � &�(+)� & �1, � �

And it is easy to see that as � 
 ��� * � , �7� �.4 � * � , this
is rather different from the normally expected mean speed of� &�(+)	 . We mention that the above average is equal to the time
average speed

/10�23 3"4 �3 � 3
:
� ! � # given in [1].

Considering the uniform speed distribution in Model RW1,
we have

Corollary 1.2: Under model RW1, we have:' 44 �65 � �655 �6587 � � 
 ��� � � 
��� � � (6)

where the constant 5 � ; ! /10 � &�(+)� & �1, .
Hence, as the simulation progresses, the distribution of the

speed deviates far away from originally expected (uniform).



Our experimental results, described in Section IV, agree
with the analytical results obtained here. In Section III, we
address the problem of distribution deviation. But first, we
use our approach based on renewal theory to analyze the
distribution of the residual distance.

B. Residual distance and residual time at steady state

Other than the speed �.! , another characteristic of nodes’
movement at a given time # is the remaining distance to travel
during the period � � that contains # . We call this quantity
residual distance and denote it by � ! . For example, suppose
renewal period � � starts at time #

:
and ends at time # � , then

�(!�� � � � and �
� ��� ���� � � �	 . We have the following result,

whose proof is similar to that of Theorem 1, and provided in
the Appendix.

Theorem 2: In Model S1A, residual distance � ! has the
following limit probability functions (cdf and pdf):/�012! 3"4 � !	 � 5 � � ;��� � � � 89 : � ; � � � ��� � � = � (7)

/�012! 3.4 ' !	 �65 � � ;�7� � � �>� ; � � � �65 � � (8)

Observe that the distance limit distribution is also solely de-
termined by the provided distance df � � �)� � . For convenience,
we also write

/10�2! 3"4 �&!	 �65 �
as �.4	 � 5 �

and
/10�2! 3"4 '(!	 � 5 �

as ' 4	 � 5 �
.

It can be easily verified that ' 4	 � 5 �
is a proper probability

density function.
Similar to the definition of residual distance, let residual

waiting time 
 ! be the remaining traveling time from instant# to the end of � � for # 7 � � . It is known that 
 ! has the
following distribution function [29], [30]. (This can also be
derived directly using the technique demonstrated in the proof
of Theorem 1):

� ��� � � /�012! 3.4 ��� � 
 ! � � � � ��� � �9 : � ; � ��� ��� � � = � (9)

recall that � � ��� �
stands for the cdf of renewal period � .

III. SIMULATION WITH STABLE SPEED DISTRIBUTION

As observed in Section II-A, as the simulation progresses,
the expected speed of the nodes decreases. This phenomenon
is quantitatively characterized in Equations 1 and 2. In what
follows, we address this problem and propose a solution based
on the concept of stationary renewal process [29], [30].

If the simulation began indefinitely far in the past ( � , ),
then at #+� � , the node would have �.! with a limit distribution
given by Theorem 1. And to the user, it appears that the
simulation has a stable speed distribution immediately from
the start. This gives her the advantage of saving time originally
necessary for the moving process to converge to some stable
speed distribution. This is especially useful for simulating
large mobile networks and thus makes the simulation pro-
cess more scalable. In contrast, the experimental results in
Section IV as well as those of [1] indicate that for commonly-
used input parameters the convergence time of the original

random waypoint model may exceed hundreds of simulation
seconds, which is a significant fraction of the length of typical
simulations [10].

The natural question now is, how can we let our simulation
begin indefinitely in the past? Notice that the (movement) state
of a node at time # * , is completely characterized by
� !	���(! and 
 ! , whose distributions are already obtained by our
previous discussion. For the first period �

:
, we pick distance�

:
according to �.4	 � 5 �

and speed �

:
according to �.4� � 5 �

,
and let �

:
� � �� � . As for the following periods � � � �
	 ������ , we

use Model S1A ( �+� �)� � and ��� �)� � ). We thus obtain a renewal
moving process which effectively started indefinitely far in
the past. In the following, we rigorously justify the preceding
intuition.

Mobility Model S1B: For the first period �
:

(start from#�� � ), the traveling speed, distance (hence traveling time) are
random chosen according to � 4� � 5 �

and �"4	 �65 �
as described

above, and the remaining periods are exactly the same as in
Model 1A, using distributions � � �)� � and � � �)� � .

We proceed to prove that the given process in Model S1B
is stationary, i.e., �

:
has the distribution function given by

�� �
, the limit cdf of residual time 
 ! .

First, given the definition of �-� � � , where � and � are
independent, it is not hard to see that

� � ��# � � ��� � � � #	� � 49 : � � ��# � � = � � � � �
(10)

Lemma 3.1: Model S1B is stationary, that is, �
:

has the
cdf given by �� �

.
Proof:

��� � �
:

� #	� ����� � �
:

�

:
� #	�

� 49 : � 4	 ��# � � = � 44 � � �
� 49 : ! �9 : = � 4	 ��� � = � 44 ��� �
� 49 : ! �9 : ; � � � ��� ���� � � = � �7� � ��7� � �

;��= � � ��� �
� � � � 49 : ;� ! �9 : � ; � � � ��� � � = � = � � ��� �

� change of variable: 5.��� ! � �
� � � � 49 : !9 : � ; � ��� ���(5 � � = 5 = �+� ��� �
� � � � !9 : 49 : � ; � ��� ���(5 � � = �+� ��� � = 5



� ��� � !9 :��� � ; � 49 : � � ��� 5 � = � � ��� ��� �� = 5
� � � � !9 : � ; � � � � 5 � � = 5

We have proved that the process
� � � � �	� � ��� ; ��
�
�
 � in

Model S1B is stationary. For this process, we denote the speed
at time # as ��! , and we have the following main result, whose
proof is provided in the Appendix:

Theorem 3: At any time # $ � , ��! of Model S1B has the
limit distribution of �"! in the original Model S1A.

��� � � ! � � � � �7� � ��7� � � � �9 : ;
� = �+� ��� �

(11)

Similarly for ��! , at any time # $ � :

��� � � ! � � � � ;��� � � � �9 : � ; � � � ��� � � = � (12)

We stress that the identities are valid for any time #.$ � .
This is quite different from Theorems 1 and 2, which are only
for large time # .

Theorem 3 provides a methodology for simulating mobility
with arbitrary steady state distributions for speed (or residual
distance). If one wants to achieve a target (stable) distribution
function of speed ��� � ��! � � � , then all she has to do is to
derive an appropriate df ��� ��� �

by solving Equation 11, and
then apply Model S1B. As an illustration for this methodology,
we consider the interesting case in which the desired steady
state distribution for speed is uniform. We invoke Theorem 3
to obtain the following result.

Corollary 3.1: For Model S1B, if ' ����� � � � � �"� 7� � 
 ��� �	� 
���� � ��� � 	� �& (+) � � �& �-, , the speed ��! is uniformly
distributed within � � 
 �1� �	� 
���� � at any time # $ � .

Proof: By the definition of '>� ��� �
, we have = �+� ��� � �� � � � . Plugging this term into Equation 11, replacing � by the

value specified, and calculating the integral yields the desired
claim.

IV. SIMULATION RESULTS

In this section, we present some Monte Carlo simulation re-
sults. One may need to simulate according to some prescribed
distribution function � ��� �

. One way of doing this is by the
inverse transformation method, which is described briefly as
follows. Suppose the given � � � �

is strictly increasing2, and �
is some uniform random variable in ����� ; � . Then the random
variable � � � � � ��� �

has cdf � � � �
because:

��� � � � � � � ��� � � � � �	� � � � �� ��� � � � � � � ��� � � � � � � � �� ��� � ��� � ��� � �&� � � � �
2All dfs in this paper satisfy this property.

A. Random Waypoint with Specified Distance Distribution
Function

For the sake of testing the theoretical results developed
in the previous sections, Monte Carlo simulations were per-
formed under two scenarios, where # 
���� � ; � � ��� and
��
 �1� � � � ��
���.��� ��� !��

:
� Original: (cf. Model S1A) During each renewal period,

the node � picks distance � according to � � �	� � �� �% �& (+) . (This corresponds to the model used in [1], where
destination is uniformly picked from a disk centered at� with radius # 
���� ). The speed distribution is uniform
within � � 
 ��� �	� 
���� �� Modified: (cf. Model S1B) For the first period �

:
, pick

distance �
:

according to �
:
 ��� � � $	 % &�(+) �	� � �"!$ % �&�(+) �

.
Pick �

:
uniformly from � � 
 �1� � � 
���� � . For the following

periods � � �#� $ � , pick � according to ��� �	� � � � �% �& (+)
and speed according to � � ��� � � � � � � �& �-,� �&�(") � � �& �-, .
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Fig. 1. Average speed of simplified random waypoint. ( $#%&%&% nodes)

Figure 1 gives the average speed decay over time. It is clear
that the average speed in Model S1B is stable right from the
start of simulation, while that in Model S1A, which is close
to the original random waypoint, keeps decreasing over time.
In particular, within � � � seconds, the average speed in Model
S1A drops about ' �)( from the expected

; �*� !��
.

In fact, the evolvement of the speed �.! distribution behaves
as predicted. Figure 2 shows the �.! pdf (from histogram plot)
of Model S1A at the start of the simulation ( # � ;

) as well
as at # �,+-' � . We find that at # �,+-' � seconds the pdf of
the speed �"! already converges reasonably close to the limit
distribution predicted by Corollary 1.2.

On the other hand, �"! ’s pdf in Model S1B is stable and
uniform all along within a simulation of length

; � � � seconds.
For illustration, Figure 3 shows the plots at two time instants
� and +.' � . And this agrees with what Corollary 3.1 predicted.

B. Random Waypoint Model with uniform and stable speeds

In this section, we discuss the simulation of the random
waypoint model to obtain a stable speed distribution within
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Fig. 2. Speed density histogram (pdf) (original, $#%&%�� %&%&% sample points)
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Fig. 3. Speed density histogram (pdf) (modified, $#%&%�� %&%&% sample points)

the entire simulation window. We consider the model when the
nodes move within a rectangle area of � � � (typical values of
� are

; � � � m or
; ' � � m, say). Strictly speaking, the distance� � in each period � � is not independent. For example, for

nodes at the corner of the rectangle, the next distance is biased
toward larger average values than nodes at the center of the
region, because the destination is selected uniformly within
the entire region. Hence, the random waypoint model over a
non-homogeneous space (such as a rectangle) is not a renewal
process as discussed and analyzed previously.

The formal analysis of the random waypoint within a
bounded rectangle is trickier due to the so-called “edge-
effects”. Fortunately, the dependence among distance � � is
weak, and it is expected that the process can still be reason-
ably approximated by the renewal process we developed. To
confirm this, we appeal to simulation with the following setup
(rectangle:

; ' � ��� � ; ' � ��� and ��
 �1� � � � ��
��� � � �*� !��
):

� Original: This is the unmodified random waypoint. Pick
destination uniformly within the simulation region. Pick
speed uniformly from ��� 
 ��� � � 
��� � .� Modified: Pick destination uniformly within the simu-
lation region. Pick first period’ speed uniformly from

� � 
 �1� � ��
���� � , pick the following periods’ speeds accord-
ing to � � � � � � � � � � �& �1,� �&�(+) � � �& �1, .

Figure 4 gives the average speed decay. The modified
random waypoint has a very stable average speed, while the
average speed in the unmodified model decreases steadily.

Figures 5, 6 show the speed density function at two time
instants ( #%� ;

sec and #%� +.' � sec). It can be seen that the
� ! in the original random waypoint again converges to some
pdf like 5

! � , while that of the modified model is close to some
uniform distribution with only slight bias toward smaller value.
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Fig. 5. Speed density histogram (pdf) (original, $#%&%�� %&%&% sample points)

V. MOBILITY MODELS WITH NONZERO PAUSE TIME

In the previous sections, we analyze the random waypoint
model with zero pause time. In this section, we extend our
analysis and methodology to the random waypoint model with
nonzero pause time.

Extended Mobility Model E2A: This is an extended model
of S1A, where each node pauses for a random � unit time after
each move. The mobile intervals are determined in exactly the
same way as in model S1A. The pause time � is independent
of � � � (hence � ) with distribution function � 8 �)� � .
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Fig. 6. Speed density histogram (pdf) (modified, $#%&%�� %&%&% sample points)

If we see each combined period of � � and � � as a new
variable

� � , it is evident that
� � � � is also a renewal process.

Hence the results we developed previously carry over with
only slight modification.

Let � �7� �7� � � , � 	 � �7� ��� , and ��� ��� � �%� � � � � 	 .
Then,

/�012 ! 3"4 ��� � # falls within some � � � ���
�
�

(see, e.g.,
[30]), which we denote by � . The quantities speed �.! , residual
distance � ! and residual time 
 ! are defined as in Model S1A,
relative to process

� � � � .
Parallel to Theorems 1, 2, we have
Theorem 4: The process

� � � � associated with Model E2A
has the following limit distributions:/�012! 3.4 ��� � � ! � 5 �

� � � �7� � ��7� � � � 89 : ;��= � � ��� � � � ; ��� �
(13)/�012! 3.4 ��� � � ! � 5 �

� � � ;�7� � � � 89 : � ; � � � � � � � = � � � ; ��� �
(14)/�012! 3.4 ��� � 
 ! � 5 �

� ��� � 89 : � ; � ��� ��� � � � � (15)

where ��� ��� �
is the cdf of

� � � � � � �
, which has the

following identity in terms of ��� �)� � and ��� �)� � :��� � # � � ��� � � � � � #	� � ���
	 ��� � # � (16)

Here, 	 is the convolution between dfs ��� and ��� : ����	� � ��# � � � !: � � ��#�� � �+� � � ��� �
.

The proof of the above theorem is technically similar to
those of Theorems 1 and 2 (a standard renewal argument to
build a renewal equation, followed by application of Renewal
Theorem) and hence omitted. Here, we provide an intuitive
argument to interpret the results. Let’s consider Equation 13.
The first term of the right hand side is the probability of #

falling within some mobile interval � � times the quantity given
by Equation 1, and the second term is the probability of #
falling within some pause interval � � when the speed is � .
A moment of reflection will tell that the sum is exactly the
probability ��� � �"! � 5 � . The interpretation for the other two
equations is similar.

We now propose Model E2B, with the motivation that the
distribution of speed would be stable immediately from the
start of the simulation using the model.

Extended Mobility Model E2B: The first period
�

:
is

determined as follows. With probability � , determine a period�
:

as in model S1B, which is followed by some random
pause time �

:
with df � 8 ��� � . With probability � ; ��� �

,
�

:
consists solely of the residual time of 
 !8 with distribution� � �	 � !: � ; � � 8 ��� � � � � . The remaining

� � �	� $ � � is determined
with � � the same as in Model S1B and � � randomly selected
according to distribution � 8 ��� � .

To analyze the properties of Model E2B, we prove first that
Model E2B is stationary.

Lemma 5.1: The renewal process associated with� �
:
� � �������� � is stationary, i.e.,

�

:
has the distribution

function of residual time 
 !� given by � ; ' � .
Proof:

��� � �
:

� #	�� ��� ��� � �
:
� � � #	� � � ; ��� � � ��� � 
 4� � #	�

� ��� � 	 ��� � # � � � ; �
� � � � � �	 !9 : � ; � ��� ��� � � � �
(
�

as in �  �
, the cdf for �

:
)

� ����� � �� !9 : � � ��� � � ; � � � ��#�� � � � � �
� � ; �
� � ����� �	 !9 : � ; � � � ��� � � � �

� � � � !9 : � ; � � � � � � � � � #�� � � � � �
The first two equalities follow from the definition of Model
E2B, the third equality follows from easy manipulation of 	
and the fourth from the fact that � � � �� ��� � �� � � ; ��� � � � � �	 .

Comparing to Equation 15, we only need to show that9 !: � � 	 � � ��� � � � � 9 !: � � � � � � � ��#�� � �+� �
Let the left term be � ��# � and the right one be # ��# � . We have
� ��� � � # ��� � � � . It is obvious that ������# � � � ��	 ��� � # � .
Straightforward computation gives

# � ��# � � /1012
� 3

:
# ��# ��� � � # ��# �

�

� 9 !: � � � � � ' � � # � � �+� � ��� � � # �
This completes the proof.



Given that the renewal process associated with Model E2B
is a stationary one, we are in a position to state the following
result, whose proof is identical to that of Theorem 3, hence
omitted:

Theorem 5: For Model E2B, the speed � ! at time # and
the residual distance � ! have the following identities ( �(# $ � ):

��� � � ! � 5 � � ��� �7� � ���� � � � 89 : ;� = ��� ��� �
� � ; �
� �

(17)

��� � � ! � 5 � � ��� ;��� � � � 89 : � ; � � � ��� � � = �
� � ; �
� �

(18)

VI. DISCUSSION

In this paper, renewal theory proved to be a powerful tool to
analyze and solve the problem of speed decay in the random
waypoint model. It allowed us to derive the steady state
distribution functions for the speed and residual distance. We
remark that our analytical approach applies to a larger class
of models than the random waypoint-like models that we have
focused on in this paper. In fact, any mobility model that is
reasonably captured by a renewal process will be amenable to
our analysis. For example, a mobility model where after each
pause period the node chooses a random speed value, speed
direction and travel time (instead of a random destination as
in the random waypoint model) can be easily shown to have
a uniformly distributed speed.

Another interesting result of our approach is that we are now
able to generate mobility patterns for which we control the
steady state distribution. We can choose the target speed steady
state distribution, then using Theorem 3, we can derive the
probability distribution functions needed for models S1B and
E2B. It is reasonable to believe that different mobility patterns,
e.g., speed distribution, will have impacts on the performance
of routing protocols. Armed with our results, one is now able
to study these kinds of effects, which may not be so easy
previously, and hopefully, get a better understanding of the
protocols.

More generally, mobility impacts the whole network perfor-
mance in various ways. In [20], it has been shown that mobility
can significantly increase capacity. In [23], it has been shown
that mobility has an impact on network connectivity. For future
work we plan to investigate the use of the renewal argument
in analyzing other multihop ad hoc networks characteristics
such as their connectivity.

VII. CONCLUSION

In this paper, we have analyzed the steady state distribution
functions of the random waypoint model. In addition to con-
firming the drawbacks of previous simulations of the random
waypoint model, our analysis technique allowed us to derive a
theoretically sound solution to the speed decay problem. Our
solution has several advantages. First, the simulation reaches

the steady state from the start and therefore the mobile nodes
speed is from the beginning as expected by the user which
is not the case of previous approaches. Second, our technique
is transparent to the user. Finally, our approach provides a
general framework for analyzing other mobility models. In
addition to the theoretical proofs, we have also simulated our
techniques and verified our claims.
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APPENDIX

A. PROOF OF THEOREM 2

Write � 8 � # � ����� � � !�$ 5�� , conditioning on the time � � �� of the first renewal,

��� � � ! $ 5 � ���%� � �� � ��� � �7� � � � ��# $ 5�� ��� � � � if #
	 �
� 8 ��#�� � �

if � 	 � � #
Then by the law of total probability,

� 8 ��# � � 49 : ��� � � ! $ 5�� � � � � � = ��� � � �
� ��� � �7� � �(� # $ 5 � ��� $ #	�

� !9 :
� 8 ��#�� � � = � � ��� �

(19)

For 5�� � ,

��� � � � � � � # $ 5���� � $ #	�� ��� � �
� � � � # $ 5 �
� 49 : ��� � �7� � � � # $ 5 � �(�%��� � = � � ��� �
� 49 : ��� � �7� $ 5 � # � � = � � ��� �
� 49 : � ; � ��� � 5 � # � � � � = �+� � � �

Hence we have the renewal equation,

� 8 ��# � � 49 : � ; � � � �65 � # � � � � = �+� ��� � � !9 :
� 8 ��# � � � = ��� ��� �

Invoking renewal theorem again,/1012! 3"4 � 8 ��# �
� � � � 49 : 49 : � ; � ��� � 5 � # � � ��� = ��� ��� � = #
� � � � 49 : 49 : � ; � � � � 5 � # � � ��� = # = � � ��� �

� change of variable: � ��5 � # � �
� � � � 49 : ;� 49

8 � ; � ��� ��� � � � = � = �+� � � �
� � � � 49 : ;� = ��� ��� � � 49

8 � ; � ��� ��� � ��� = �

� ;�7� � � � 49
8 � ; � � � ��� � � � = �

� ; � ;�7� � � � 89 : � ; � ��� ��� � ��� = �

B. PROOF OF THEOREM 3

The following proof follows the lines of arguments given
in [30], pp 199-200.

Write �*8 � # � �6��� � ��! $ 5 � and � 8 ��# � � ��� � � ! $ 5 � .
The standard renewal argument gives us

� 8 � # � ����� � �
:

$ 5 � �
:

$ #	� � !9 : � 8 ��#�� � � = � ��� �
or writing in the following form:

� 8 � # � ����� � �
:

$ 5 � �
:

$ #	� � �
	�� 8 � # �

Where 	 is the convolution of
�

and � 8 � # � . 	 is commutative
and associative.

Previously, ��� � gives

� 8 ��# � ����� � � $ 5 � � $ #	� � ���
	�� 8 � # �
which has the unique solution in the form of

� 8 � # � ��� 8 ��# � ��� 		� 8 � # �
where � 8 � # � � ��� � � $ 5���� $ #	� . � ��# � is the renewal
function associated with the ordinary renewal process

� � 4
��� � � ��
with � �  ��� � ��� �

and � * ��� �+.  � � ��
	 � � ��� �

.



If we write � 8 ��# � � ��� � �
:

$ 5����
:

$ #	� , we get

� 8 � # � � � 8 ��# � � �
	 � � 8 ��# � ��� 	 � 8 ��# � �� � 8 ��# � � � � � �

	 � �
	 � 8 ��# �� � 8 ��# � � �  	 � 8 ��# �� � 8 ��# � � !9 :

� 8 ��#�� � � = �  ��� �
(20)

�  is the renewal function for the delayed (in our case,
stationary) renewal process, and

�  ��# � � � ��# � � �
	 � ��# � .

Thanks to the property of being stationary renewal process
(Lemma 3.1),

�  ��# � � # ! � (see, e.g., [30] p199).

� 8 � # � � 49
8 � ; � � 4	 � #�� � � = � 44 ��� �

� � ; � � 44 � 5 � � � 49
8 � 4	 � #�� � = � 44 ��� �

� � ; � � 44 � 5 � �
�%��� � 49

8
!9 : � ; � � � ��� � � � = � = � � � � �

(21)

And, !9 :
� 8 � #�� � � = �  ��� �

� ��� � !9 :
� 8 ��#�� � � = �

� � � � !9 :
� 8 ��� � = �

� � � � !9 : 49
8 � ; � � � ��� � � � = � � ��� � = �

� ��� � 49
8

!9 : � ; � � � ��� � � � = � = � � ��� �
(22)

Substituting � � ; � and � �.� � into � � � � , we get the result to be
shown.

The proof for ��! is almost identical, hence omitted.


