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Abstract— The work in this paper is motivated by the idea of
using randomly deployed, ad hoc wireless networks of miniature
smart sensors to serve as distributed instrumentation. We argue
that in such applications it is important for the semsors to
self-organise in a way that optimizes network throughput. We
then identify and discuss two main problems of optimal self-
organisation: (i) building an optimal topology, and (ii) tuning
network access parameters such as the transmission attempt
rate,. We consider a simple random access model for sensor
networks and formulate these problems as optimisation problems.
We then present centralized as well as distributed algorithms for
solving them. Results show that the performance improvement is
substantial and implementation of such optimal self-organisation
techniques may be worth the additional complexity.

I. INTRODUCTION

Advances in microclectronics technology have made it
possible to build inexpensive, low power, miniature sensing
devices. Equipped with a microprocessor, memory, radio and
hattery. such devices can now combine the functions of sens-
ing. computing, and wireless communication into miniature
SHIArE SENSOrs.

Since smart sensors need not be tethered to any infras-
tructure because of on-board radio and battery, their main
utility lies in being ad hoc. in the sense that they can be
rapidly deployed by randomly strewing them over a region
of interest. This means that the devices and the wireless links
will not be laid oul to achieve a planned topology. During
the operation, sensors would be difficult or even impossible to
access and hence their network needs to operate autonomously.
Moreover, with time it is possible that sensors fail (one reason
being battery drain} and cannot be replaced. It is. therefore,
essential that sensors learn about each other and organise inio
a network on their own. In the absence of a centralized control,
this whole process needs to be carried out in a distributed
fashion.

A smart sensor may have only modest computing power,
however, the ability to communicate allows a group of sensors
10 callaborate to execule tasks more complex than just sensing
angd forwarding the information. as in traditional sensor arrays.
Hence they may be involved in on-line processing of sensed
data in a distributed fashion so as to yield parlial or even
complete resulls to an observer, thereby facilitating control
applications, interactive computing and querying ([1], [2],
(31, [8)). It is this self-organising distributed instrumentation
aspect of sensor networks that we are interested in.
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A distributed computing approach will also be energy
efficient as compared to mere data dissemination since it
will avoid energy consumption in long haul transport of the
measured data Lo the observer; this is of particular importance
since sensors could be used in large numbers due to their
low cost yielding very high resolutions and large volumes of
sensed data. Further. by “arranging computations” among only
the neighbouring sensors the number of transmissions will be
reduced, thereby, saving transmission energy. A simple class
of distributed computing algorithms would require each sensor
to periodically exchange the results of local computation with
the neighbouring sensors. The more frequentiy such exchanges
can occur. the more rapidly will the overall computation
converge. The more rapid the progress of the computation
the faster the variations of the spatial process that can be
tracked. Thus. in this paper our goal iy 10 study optimal self-
organisation of sensor networks from the point of view of
optimizing their communication throughput.

As an example, consider a scenario where sensors are ran-
domly deploved in a geographical region to gather statistics of
a spatial process; for example. the temperature of an environ-
ment, or the level of some chemical contamination. Suppose
that the observer is interested in knowing the maximum value
of the quantity being measured. Instead of each sensor sending
its measurement to the observer, sensors can compuie the
maximum in a distributed fashion. and communicate only the
result to the observer. A simple distributed algorithm for each
sensor can be to collect measurements from its neighbours,
compare them with its local value and only forward the
maximum of these values. The communication structure most
suitable for such a computation is a spanning tree which
sensors can form in a distributed fashion. Moreover. a sensor
needs Lo transmit the local maximum {0 its parent only atter
it receives the corresponding values from its children. The
algorithm ensures that the observer ultimately receives the
maximum value in the network.

From this example, it is clear that the higher the communi-
cation throughput of sensors, the more rapidly will the compu-
tation of the maximum proceed, thereby allowing the network
to track the variations of the temperature or contamination
with time. The example also shows that the network topology
and the transmission protocol are critical factors that determine
the communication throughput. It is in these two aspects that
we study optimal seif-organisation of sensor networks. To
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this end, we propose a simple mathematical model for sensor
networks. Tnstead of limiting ourselves to a particular task, we
comsider a general distributed computation scenaric in which
sensors are continuously sampling and processing a spatio-
temporal process, We investigate the problem of building an
optimal topology and tuning to an optimal value of channel
aceess rate in our communication model. The model allows
a concrete mathematical formulation of the problem, and is
also sufficientiy general so that the analysis can be applied
or extended to other cases of interest. We then formulate the
optimisation problems and present distributed algorithms for
solving them. We also discuss the convergence and complexity
issues in the algorithms.

Presently, the algorithms are synchronous, Thus, in relation
1o our model, their performance gain is the best possible. Our
results show substantial performance improvements but at the
cost of algorithmic complexity. However, compared with the
performance gains, implementation of such self-organisation
techniques may be worth the additional complexity. In this
respect, our work should be seen as a step towards eventually
understanding algorithms for self-optimizing sensor networks.

The paper is organised as follows. In Section II we review
the previous work in this area. Section IIY discusses the model
and relevance of assumption to the real sensor networks. Sec-
tion IV molivates the optimisation problems. The problem of
optimal retwork topology is discussed in Section V and tuning
to an optimal channel access rate in Section VI. Section VII
follows with discussion and we conclude in Section VIIIL
Proofs are sketched in the Appendix.

II. PREVIOUS WORK

Previous work on self-organisation of ad hoc networks
has largely locused on topology formation by discovering
neighbours, and transmission scheduling. For example, [5]
discusses a cluster formation algorithm (LCA) and a link
activation algorithm based on the topology graph so formed.
In [6]. the DEA algorithm forms subnetworks and conflict-free
schedules simultaneously in a step by step fashion. However,
the generation of compatible schedules is a complex task;
particularly for large networks. Moreover, the graph-based
scheduling suffers in network performance as shown in [7]. [8]
deseribes the SWAN protocol in which nodes maintain wire-
less links using stringent power control thereby obviating the
need for transmission scheduling. However, it does not address
the problem of how nodes should choose their neighbours
thereby setting the topology. [9] presents a message efficient
clustering algorithm for sensor networks. [107 reports experi-
mental performance studies of a self-configuring protocol for
sensor networks. Specific protocols for self-organisation are
discussed in [11].

The existing literature has emphasized mainly on protocol
design without much attention to the performance of the
resulting network organisation. Contrary to this approach
we view performance optimisation as the objective for self-
organtisation; hence our algorithms are motivated by this goal.
Our formulations. we believe, are the first of their kind in this
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area. The mode! along with the analytical approach allows us
to study trade-offs as well as performance gains involved in
optimal self-organisation. We also substantiate our results by
simulations.

11T, A MODEL FOR SENSOR NETWORKS

Our model takes into account deployment, communication
and distributed computation issues in a sensor network. Singe
our interest is in analysing local computing and communica-
tion, we have not explicitly modelled communication between
the network and the observer. We consider a random access
communication model; we believe that sensors will not need
elaborate multiple access or transport protocols since typical
packets will be small and RTS-CTS may be too much of an
overhead. Moreover, it is not clear how much improvement
such a scheme will lead to in dense random networks. We as-
sume slot synchronization among sensors, LAA {[3]), SWAN
({8]) and SEEDEX ([12]) have also assumed a synchronized
TDMA system. Time synchronization is vital for some sensing
tasks ([13], [14]); hence our slotted time assumption may
not be very restrictive. Even in the absence of time synchro-
nization, slot synchronization can be achieved by distributed
algorithms ([15], [161). Further, it makes analysis tractable and
provides usetul insights.

Deployment: We assume that a large number (denoted by N)
of static sensor nodes are randomly and densely located in a
region. By dense we mean that the nearest neighbour distance
is much less than the transmission range, To reconstruct the
properties of a spatial process from its samples in space
with low crror, we need sufficiently close “space-samples”,
Hence the iuterest in dense sensor networks. In the results
presented we model the spatial distribution of sensors as a two-
dimensinnal Poisson point process of intensity A per m?. A is
thus a natural measure of the spatia! density of the network,
However, the model and the following analyses are applicable
to any placement of sensors,

Communication: A sensor cannot transmit and receive simul-
taneously. All sensors transmit on a common carrier frequency
using omni-directional antennas. All transmilters use the same
transmit power, and all powers are normalised to this common
value of transmit power. In fixed-position, short-path. fat
terrain outdoor wireless, the channel variation is very slow, and
there is a strong LOS path ([17]). We, therefore. consider only
the path loss with exponent #. Letiing oy denote the near field
crossover distance, the power received at a distance » from a
transmitter, Po(v) = (r/dg) ™ if » > do and Py(r) = 1 if
< dg: this model is similar to the one in [18). We say that a
transmission can be “decoded” when its signal to interference
ratio (SIR) exceeds a given threshold! 3. The transmission
range (denoted by Rg) is defined as the maximum distance
at which a receiver can decode a transmitter in the absence
of any co-channel interference. It thus tollows that a receiver
being within f; from a wransmitter does not guarantee that it

!Given a modulation and coding scheme, 3 actually governs the maximum
bit error probability. For narrow-band systems 3 > 1 and for spread spectrum
systems 3 < 1.
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Fig. 1. A traffic model for a sensor network carrving out measurements and

distributed computation.

will decode a packet; the SIR needs to be above 3 as well.
Time is slotted and channel access is random, i.€., in each slot,
sensor ¢ decides to transmit with probability «; and decides
to receive with probability (1 — «;) independent of anything
else; o is called the attempt probability of sensor i,
Computation: We consider @ continuous computing model
for sensor networks ([197). This also models the observer
initiated processing ([19])} with long enough activity peri-
ods. Figure 1 shows a traffic model for a sénsor network
engaged in distributed computation. A sensor communicates
only with certain nodes, within Ry from it, designated as
its seighbours. A local algorithm running on each sensor
uses local measurements and updates from its neighbours (o
perform certain computations. The raw measurements and/or
computational results to be sent to the neighbours are queued
up in a packet queue as shown in Figure [. The application
is such that each packet is destined to a random neighbour
uniformly chesen from the neighbours. This is not a restrictive
assumption and can be auributed to isotropy of the physical
process and uniformity of processing. Hence. if a sensor
decides to transmit. the l-hop destination of the head-of-the-
line packer is equally likely to be any of the neighbours in
the operational topology. A transmission is successful when
the sensor to which it is addressed (by actually inserting a
physical address in the packet header) is in the receive mode,
and is able to decode the transmission. If a transmission is
successtul, the corresponding packet is removed from the
queue (i.e., instantaneous acknowledgments are assumed).
Since acknowledgments can be also lost in transmissions, this
assumption gives an upper bound on the performance of sensor
networks. A successtully received packet at a sensor invokes a
new computation that sigv result in an update being sent 0 a
neighbour. We model this probabilistically. i.e.. the successful
reception of a packet generates another packet to be sent to a
neighbour with probability ».

IV. OPTIMAL SELF-ORGANISATION: MOTIVATION

When a sensor network is processing a spatio-termnporal
process, to reconstruct the process in time. each sensor has
to sample it at a specific rate (akin to a Nyquist rate). These
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Fig. 2. Satwration throughput (p'f)) variation with attempt probability ()
for A = 1 and 2 per m?. R equals 1 or 2m.

samples. along with the packets triggered by updates from
the neighbours, form an arrival process into the queue (see
Figure 1) Therefore, this ‘sampling rate’ cannot exceed the
rate at which packets are drained from the queue. More
precisely. assume that o; = o, 1 < 7 < N and that each
sensor has all the nodes within a fixed distance, say B < Ry
as its neighbours. Note that the probability of successful
transmission of a sensor decreases with distance because of
decrease in the received power. Therefore, a smaller value of
R is desirable, However, a small R also means that a sensor
communicates with only a few of the many sensors within
its wansmission range. In [20], we show that if ~ dcnotes
the arrival rate of measurements, then at a ‘typical’ sensor in
the Poisson distributed sensor field, the packet queue is stable
if v < pﬁs) — {1 — a)v where pt¥ denotes the probability
of successful transmission in a slot in saturation. i.e.. when
the head-ot-the-line packet, after its successful transmission, is
immediately replaced by another packet at each queue. pES-’ is
also called the saturatien throughput. While processing a time
varying process. most of the time each sensor will have some
local measurements -and/or partial results to communicate to
its neighbours, Therefore. in ‘such a scenario. the saturation
throughput can be a good measure of the communication
throughput. '

This work is particularly motivated by Figure 2 which
shows the variation of pis) with « (we have assumed that
o =, 1 < i< N). We use 1000 Poisson distributed points
as sensors on the plane for A = 1 and 2 per m?. We take 5 = 4,
B =10dB and R equals 1 or 2». Throughputs are averaged
over 1000 random point placements. Qbserve that, for a fixed
vatue of A, pﬁs) decreases as K increases and for a fixed value
of R. p!*) decreases as A increases. Thus, high values of P
decree small values of R, however, arbitrarily small values of
R result in a disconnected network. Note also from Figure 2
thal. for a fixed A and K, there is a value of & which maximises
pﬁs). From this preliminary analysis, we conclude that sensors
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need to form a network that is ‘optimally connected’, and
operated at an ‘optimal attempt rate’. A precise formulation
of these problems and their solutions is the objective of the
following sections.

V. OPTIMAL NETWORK TOPOLOGY: OBIECTIVES AND
ALGORITHMS

Let & denote a connected weighted graph with vertex set
V ([V] = N), edge set E and weight function W : E — Ity
The weight of an edge (z,§) € E is denoted by w(:. j). G
can be a directed or an undirected graph. If G is directed,
(z,7) denotes an edge outgoing from # to y and connectivity
refers to strong connectivity. V, denotes the set of sensors;
each element in V, is a triplet of the form (7, w;, y;) where
i€ {1,2,..., N} is the sensor index, and w=; and y; are the
x-coordinate and y-coordinate of : respectively.

Definition 5.1: The transmission graph, G g, is the sym-
metric directed graph with V, as its vertex set. and (i,j) €
Ep, if sensor j is within a distance Ry of sensor &. O
Note that. G g, is a geometric random graph since sensors are
randomly placed. If the number of sensors is assumed to be
infinite, then [21] shows that there exists a critical number
¢ for the two-dimensional Poisson sensor field such that if
ATR3 > (. Gg, would contain an infinite component with
nonzero probability. An infinite component does not imply
that atl the sensors are connected. However, N and the area of
deployment both are large but finite; hence it is reasonable to
expect that most of the sensors belong to the giant component.
‘This has been found to be true in practice (see [22] for details).
With these considerations, henceforth we take Gg, to be a
connected graph.

Denote by a the vector of e;'s, o = (o, a9, ..., ax).
Let & be fixed and let for (i,f) € Er,, pi;(c) denote the
probability of successtul transmission from sensor i to j under
. Recall that, we are assuming that all sensors have packets
to send. Therefore, according to our model

(z ’ ﬁ) v
L;érj (l)

The last term in (1} is P(T";; > ) where I';; denotes the SIR
of a transmission from ¢ to j. di; is the distance between &
and j, y is the near-field crossover distance, Np is thermal
noise power, and Yy is 1 if & transmits. O otherwise. Since
Pi; () depends on the geometry of interferers of sensor j,
py:{e) need not equal pi;{a) in a random network,

pijla) = ai(l — o) P
it ( ’ )Y+ Ny

A, The MAWSS Topology

Let G’ := (V' E’) denote a subgraph of a given connected
graph G. For ¢ € V', let d; (") denote the out-degree of node
iin G, Forall i € V7, let

1
yaCea] Z wii, §) 2)

g e

'(7[.'1:((;’) =
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if d:(G") = O otherwise ¢;(G’) = 0. Define a function ¥ on
' as

G =) ()

eV’
and let

id

C'Hé%:; PG

= arg
where, G, is the set of all connected spanning subgraphs of
G. . 1s nonempty since G € G;. ¢ maximises the measure
4fr over all connected spanning subgraphs of &. We call G the
nmaximum average-weighted spanning subgraph (MAWSS) of
G. We will usc the term MAWSS to also denote an algorithm
for determining an MAWSS.

Each subgraph of Gg, specifies a network topology, i.e.,
a set of neighbours tor each sensor, Let NV, (G') (respectively
1;(G")) denote the set of neighbours (respectively the number
of neighbours) of ¢ in topology G'. Now for each i define,

1
(G Z pij{e)

JENH{GT)

MG, 0) =

(3)

Thus, M;{G'. o) equals the time average throughput of sensor
i. We have used our assumption that in transmit mode a sensor
transmiis a packet to one of its neighbours with probability
— (c') Let M (G, &) denote the network throughput, i.e.. the
sum of individual sensor throughputs with topology specified
by &', Now it all sensors always have packets to send then
W is the average saturation throughput of the network.
The discussion in Section IV, therefore, motivates the problem
ot choosing a network topology G’ so that M(G' a) is
maximised,

Note that, the “out-degree” of a sensor in G’ is simply
the mumber of its neighbours, »;{(G"). Tt. thus. follows by
comparing (2) and (3) that for a fixed o if G’ is a subgraph
of GRO, and if for all (l,_}) € ERO, w(i,j) equals 'p;j(g_),
then ¥(G"} is AF(G’, @). Since a sensor nerwork needs © be
connected. it {ollows that. the optimal topology of a sensor
network is the MAWSS of its Gg,.

Proposition 5.1: MAWSS for directed and undirected
graphs is NP-complete,

Proofs are presented in the Appendix.

1) A Centralized MAWSS Algorithmi: In the tollowing, we
discuss directed graphs in particular, and propose a heuristic
algorithm for obtaining an approximation to the MAWSS.
Some notation is in order. For node i, ¢;(k} denotes the k%"
heaviest outgoing edge and w;(k) denotes its weight. Ties
are resolved arbitrarily. E,(G) := {e;(1)]4 € G}, is the set
of maximum weight cutgoing edges of all the nodes in G.
The basic idea is the tollowing. It is clear that the MAWSS
contains £ (G). Hence if (V, E1{G}) is strongly connected,
we are done. If not, we convert the “maximum average weight”
problem (o the “minimum sum of weights” problem by a
suitable transformation of w(i, j} 0 @(¢, §). We consider the
transtormation (4, j) = w; (1) —w(i,j) and and denoie this
weight function by W. We, then, construct minimum weight
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1 if (V, E((7)) is strongly connected then

r G =(V.E{(G)

3 else

4 Forall (.j) € E, w(.7) = w;(1) —w(i, 7) and set

G=(V,E, W
s Foralli eV, find G, = (V.E,
weight out-branching of & rooted at /

6 G = (l/: UiE'l’Ezi;-ut)

), the minimum

Algoriihm 1: Algorithm for finding an approximation G 1o
the MAWSS of a directed Graph &

out-branching (directed tree or arborescence) using @(7, J)
rooted at cach i. Recall that, any out-branching rooted at a
given node contains one and only one edge incoming to every
other node. The minimum weight branchings pick out edges
with small «(7, 7) which are the edges with large w(i, 7). The
resuliing graph is taken as an approximation to the MAWSS,
An optimal algorithm for constructing optimal branchings is
presented in ([23]).

Proposition 5.2: The output G of Algorithm 1, i$ a strongly
connected spanning subgraph of G. )

2) A Distributed MAWSS Algoritiun: At the time of de-
ployment. neither g, nor p,;() is known to sensors. Over
time. sensors “discover” each other by advertising their ids
which can be simply their indices. Let a and the locations of
the sensors be fixed. At time 0, the sensors start broadcasting
their ids. Let Gy, = (V,,, E;,) denote the subgraph of G,
discovered until time », ie, V,, = V; and (i.3) € E, if
there exists a time slot m < » in which sensor J successtully
received a transmission from ¢ for the first ime. G = (Vj, ¢).
Note that &, is a random graph. In addition to noting ids of
its neighbours, a sensor also counts the number of tines it
received a particular id; the larger this number. the higher is
the probability of successful transmission from that node to
¢, To make il precise, lel 5;;(r) denote the number of times
sensor 7 successtully received ¢ till time ». Then the following
holds.

Proposition 5.3 Let 0 < o < 1 for each 1. Then G, —
Gg, and b—’% — pyy(a) with probability 1.

The convergence of the discovery process is in itself an
interesting problem since how fast &, converges o Gg,
will depend on «. Practically, sensors will carry out the
discovery process for either a pre-programmed number of
slots, or during the discovery phase they will detect when
the graph is connected and then stop. For this discussion we
will assume that either G'g, or a connected subgraph of it has
been discovered and sensor ¢ has an estimate of p;;(a) For each
{#,7) discavered; j counts the number of times it received the
id from i and sends back the number to i; ¢ divides it by the
number of slots to form an estimate. A disuibuted version
of Algorithm 1 is presented in [24]. The algorithm works
by formation of node clusters, detection of cycles. selection
of minimum weight cluster incoming edge in a distributed
tashion. We omit the details.
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B. Resulis

The sep is as explained in Section TV, 1000 sensors form
a Poisson field on the plane with A = 1, In this set of results,
we use the same value of attempt probability for each sensor.
Further, two “types” of «’s need to be distinguished. The first,
denoted by oy, is the attempl probability sensors use while
discovering the topology {subscript “d’ denotes discovery). We
use oy = 0.01 or 0.05. For ag = 0.05, the discovered graph
is connected at 500 slots and for ey = .01 it is connected at
1000 slots. Figure 3 shows (oo (recall that &, denotes the
discovered graph at slot ») and Figure 4 shows the MAWSS
constructed from it for ag = .05, MAWSS here reters to the
graph cbtained {rom Algorithm 1.

Once the topology tormation is complete, sensors switch to
an “operational value™ of the attempt probability. Figure 5
shows the wvariation of average saturaiion throughput of a
sensor with the operational values of «: for network topologies
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given by Gsop. Ggoo, MAWSS constructed using aq = 0.05
and Giogon, MAWSS for az = 0.01. Recall that, tor a given
topology &' and a. M (', o) denotes the network throughput,
The average saturation throughput whichk we plot in Figure 5
is simply MG 2) Note that for o = 0.05. throughput of
Glogo 18 lower than Cggp since it includes more edges of
low probability of success discovered during additional 500
slots. A tower value of oy tends to discover longer edges too
which reduce the throughput; hence for (ipan, performance
with g = 0.01 is worse than with «y = 0.05. MAWSS, on
the other hand, eliminates edges with low probability of suc-
cess while maintaining the connectivity; hence, the maximum
throughput achieved by MAWSS (for both the values of ag)
is almost five times of the corresponding discovered graphs.
Note from (1) and (3) that for any connected topology the
average saturation throughput at « cannot exceed ol — a),
e.g., tor e = 0.25 the throughput can be no more than 0.1875,

V1. OPTIMAL ATTEMPT PROBABILITIES: OBJECTIVES
AND ALGORITHMS

Apart from the observation that MAWSS gives significant
throughput improvement, a crucial observation from Figure 5
is that the throughput is maximised at a different value of
« than oy, For example, for the MAWSS constructed with
az = 0.05, the throughput is maximised at « = 0.25. At this
«, the throughput is almost five times of Gsgp and an order
of magnitude more than that of Gpoe with oy = 0.01. Thus,
if is essential 1o actually operate the network at a throughput-
maximising value of o

One way to solve this problem is the following. From the
number of sensors to be used and the approximate area of re-
gion to be monitored. estimate the density. Using this estimate,
fix an initial value of & which will lead to fast discovery and
MAWSS formation. After the topology is formed. let sensors

- switch to a pre-programmed « which maximises throughput
for that density. Though feasible and simple this approach
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has some problems. The « maximising the throughput can
be known for specific point placements (or averages thereof).
In the feld, sensors will fali as one particular sample path and
then it is not clear whether that value of o will maximise the
throughput. A more powertul approach is to et the sensors
learn the value of « over time. We do not insist that all
the sensors use the same value. First because maintaining the
same value of e at every sensor at every step of the iearning
process is difficult. More importantly, different sensors may
need different values of « to counter the local inhomogeneities
in the node placement. This “learning” approach will also help
sensors to reconfigure themselves if and when some sensors
fail,

Definition 6.1 Por a given topology. an independent set
is a set of wansmitter-receiver pairs which do not interfere
with each others’ transmission, i.e., if only the sensors chosen
as transmirters in this set are allowed to tfransmit to the
respective receivers, then their transmissions are successful
with probability 1. O

Proposition 6.1; Let Ay, denote the largest independent
set in a given topology. Then ¢, which maximises the network
throughput, is the ong with a; = 1 for all transmitters { &€
Amag and a; =0 for the rest,

It is clear from Proposition 6.1 that if sensors are allowed to
use difterent values of o;$ then the maximisation of average
saturation throughput leads to a degenerate assignment. In
addition, the “maximum calculaton” example in Section I
suggests that the overall progress of the computation will be
really limited by the lowest sensor throughput in the network.
This motivates the problem ol maximising the minimum of
sensor throughputs.

A. The MAXMIN Throughput

For a given network topology G, consider the following
optimisation problem.

max = min M;(G 4

X Sl (G, a) )

In order to get some insight into the throughput functions,

MG, a). recall that N;(G) (respectively »;(G)) denote the

set of neighbours {(respectively number of neighbours) of .

Let a'Y denote the vecior g with entries o; and o, omitied.

Proposition 6.2: For a fixed topology G, nand 3, M, (G, o)
has the following form.

o (1 — o) g5 ()

For each j € N;(G), gi5{(.) cither equals 1 or there exists
a set I; © Vi\{{,j} such that ¢;;{.) is a decreasing and
affine tunction of o, k € I;; and does not depend upon
ap, k& I;. Moreover, gg;(1) =0 and ¢,;;(0) = 1. ]
It is clear from Proposition 6.2 that M;(G,.), 1 < i <
N are continuous functions of o, and so is min; M;(G, ).
Therefore, an optimum exists for the MAXMIN problem (4)
by Weierstrass Theorem. Since topology & is fixed, henceforth
we suppress it from the notation. It is, however, assumed that
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¢ is connected. Let a* denote an optimum of MAXMIN
and M* denote min; M (a*), We will call o, the MAXMIN
throughput attempt probabilitiex (MMTAP).

Definition 6.2: Let the sensor locations be fixed. Then for
fixed 3 and 7, § is called an imterferer of ¢ if M,(G,a)
is decreasing in e;. j is called a primary interferer of i if
whenever § transmits. 7 either decodes it or decodes none, O

Proposition 6.3: 1f every sensor is a primary interferer of
at least one sensor. then 0 < o* < 1.

Consider first N collocated sensors; by collocated we mean
that in any slot at most one transmission can be successtul.
Then Mi{a) = o HJ.?&?(]. —(‘!j): 1 <4< N and (Jf:-l = %
which is an intuitive and desirable operating point for sensors
in this scenario. Secondly, even when sensors are spatially
distributed, a™ equalises the throughputs, ie.,

Proposition 6.4: 0 < of < 1 = M(a*) =

Lj< N,
The throughput equalizing propertv makes the MMTAP par-
ticularly important; with MMTAP, sensors operate at equal
processing rates which is desirable in applications where
computations are iterative,

Mi(a*), 1 <

B. An MMTAP Algorithm
Consider Algorithm 2, an iterative scheme (o wme o 1o

~ the MMTAP. II denotes projection on [0, 1] and |U/(k)] the
a;(0) € [0,1, j=1,2,.. N
u(k) = 12115%"“'1@( k), k20
Uk) = {1l i< N, M(alk)) =u(k)}
o _ _ a; (k) a0 (o(k)
aj{k+1) = T1{e,(k)+ iG] Z Do
ieU (k)
j=1,2...,N

Algorithm 2: An MMTAP algorithm using generalised gradi-
€ni ascent.

cardinality of set U(k). aj(k) is the step size in the 5™
iteration at sensor F. Algorithm 2 is a “generalised gradient
ascent” algorithm; W_Zlcua E’L‘ﬂ.ﬁ]ﬁ being a gener-
alised gradient of min; M;{a(k)) at (k) ([25]). Informally
the iterations can be explained as follows. /(&) denotes the set
of sensors whose throughput is the minimum under operating
point ae{ k). I 5 & U(k). then c; is reduced in the next iteration
since %@ < 0, i # j (see Proposition 6.2). This leads to
an increase in the throughput of + € U(k). If § € U/{k), then
oy 18 increased or decreased based on how it affects others
and how others aftect its throughput. Thus the algorithm tries
to equalize as well as maximise the sensor throughputs.

1) A Syachronous Distributed  Stochastic  Algorithm:
Though fixed in form for a given placement of nodes, Af;(.)
is not known at sensor i and being a steady-state average,
only noisv measurements of M.} are available for Algo-
rithm 2. An unbiased estimator of AL;(.), denoted by AL (L),

0-7803-8355-9/04/$20.00 ©2004 IEEE.

is - 2,41 Xi(7) where X;(5) = 1 if J wransmits successtully
in slot g oterwwe 0. 7 is the number of estimation slots.
Sensors also need to estimate the gradient of A(.) in order
10 use Algorithm 2. Since we need a distributed algorithm and
since IPA and LR-SF ([26]) cannot be applied in this case,
an appropriate method for gradient estimation is simultaneous
perturbation (SP. [27]). Instead of perturbing one component.
i.e.. o at atime to obtain the estimates of partial derivatives. in
SP all o;s can be perturbed simultaneously given that perturba-
tions for each «; are zero mean independent random variables
with some additional conditions ([27]). This way, by choosing
the perturbation amount locally, sensors can simultaneously
estimate the derivatives, In the k** iteration, let A(k) denote a

vector of NV independent Bernoulli random variables such that
{A(E)} is an independent sequence with A(k} independent of

a{0),a(1),...,a(k). Then the “central-difTerence estimator”
of ‘Md(;)( k) g Malak)re(k )A)(ck)h))j;lf(,’(sx(a) ARAE) pece

elk)is a ‘scalar. SP requires c(k) — 0 sa that the estimator is
asymptotically unbiased.

Proposition 6.5 Let in Algorithm 2, the partial derivatives
of M;{.), 1 <7 < N be replaced by their estimates (biased
or unbiased). Let a;(k) = al(k}, 1 < j < N, k > 0 and
a(k) satisfy 370 a(k) = oo and Y ;- a(k)’ < occ. Then
the generated sequence {afk), k& > 1} converges as. to the
MMTAP.

For a complete distributed implementation we now only
need a way of obtaining an estimate of M for each
¢ € Uk} at every sensor 7 in ueraaon L First note
from the form of the derivative estimator that sensor j
does not require such individual estimates to calculate the
sum of the partiat derivative in Algorithm 2: it §(k) :
Z,EU( A (a(h}+c(k}$(k)) J‘\)‘lf (k)= c(k)._\(k\) s made known
to it, it can directly oh[am the required sum sunply by dividing
3(k) by 2¢(k)A;(k). 6{k) can be obtained at each sensor by
first collecting it at a node designated as the “root” using the
distributed compuration approach as in the “maximum calcula-
tion” example discussed in Section I. and then letting the root
distribute this value to all the sensors. The same approach will
work since we have a “minimum calculation” problem at hand,
w(k) being the minimum value of sensor throwghputs. Recall
that MAWSS is built using trees. Therefore, the computation
will proceed efficiently using the underlying tree structure.
We assume that such a “computational tree”™ with a root
has been built; we denote by C; the children of sensor @
in the tree. The distributed MMTAP algorithm proceeds in
synchronized rounds; in every round % all sensors use the
same values of (k) and «(k). The number of siots used for
esttmating AL () is denoted by 7. Algorithm 3 describes in
detail the procedure to be executed at each sensor in a round.
By the computation at a sensor we mean initialising w;(k),
(k) and 0;{k). updating them and forwarding them to the
parent (see Algorithm 3); updation commences only after the
corresponding values are obtained from every child. Then the
key step is to note that, at the end of the computation at sensor
i, u;(k) is the minimum sensor throughput known to sensor
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1: operate with a; (k) for next 7 slots and obtain M, (a(k))
by counting the number of times ransmission is successful
and dividing it by =

2: randomly choose A;{k) € {11}

RE operale with o (k) +e(k)A (k) for next 7 slots and obtain

Mi(a(k) + o(K)A(K)

4 operate wnh o (k) —
Mi(a(k) — e(k)A(k

5 sel g (A) = Mok
My(ce(k) — o k) A(k

6 receive wi(k). d;(k). rj(k) from each ¢hild 7 € C;

set Ui(k) = {5 7 € € U {i}ug
min(x;(k), u;(k), J € Ci)}

8 update »;(k) = 3 ., k) ri(k), os(k) =
and w;{k) = min{u; (k), v (k). je )

9: if root then

1. o(k) = “:“")

1 set (k1) = 0g(k) + alk) sriiatry

122 forward 6(k) to each j € C;

13 else

14: forward w;(%), d:{k), r;(#) to the parent in the tree

15:  upon receiving 4(k) from the parent set (k4 1) =
o (k) + (k) gorisaegy and forward 5(k) to each j € C;

kYA (%) for next 7 slots and obtain

&(h) = Mi(a(k) +
and (k) =1

)
S
)
e c(RAk)) -
Y

(k) =

sevian %(k)

Algorithm 3: Algorithmic procedure to be executed at each
sensor 7 in round & > C.

¢ in round &, i, the minimum among those sensors which
form a subtree of the computational tree rooted at . If U7 (k)
denotes the set of sensors in the subtree rooted at i having
the minimum throughput known to ¢ then ri(k) = |U7 (k)|
and (k) = Zjeuf(k)(ﬂ!j(g(k:) + c(R)AkR)) — My{alk) —
c(k)A(K))). Itthus follows that if ¢ is the root then w; (k) is the
global minimum throughput and in Algorithm 3, 3(k) equais
Ean(a—) M.:(g(k)+c(k)é(k)&—£m(Q(ch(k)é(k))_ Therefore. a

every Sensor j,
the details.

A, cry 1S the required estimate. We omit

-

C. Results

In this section, we study the performance of Algorithm 3
on two example sensor networks. The networks are simple
enough so that AM;{.)s can be deduced easily (hence the
optimum) and insight into the algorithm c¢an be cbiained.

4 3 4 3

im

1 m 1 2

Fig. 8. 4 node network. Ry = 1m, 3 = 2. n = 4; on left is G, and on
right is the operational topology
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The first example, as shown in Figure 8, is a network
of 4 sensors symmetrically placed and operaling with one
neighbour each. = 4,8 = 2, Ky = 1m so that, Vi
.Mi(ai, Gy, 3, O,};) = a,;(I - CEH_])(]_ — 49 ), addition in the
subscript being modulo 4. Note that sensor 3 is an interferer
of the pair (1,2). It is also a primary interferer of sensor 2
and an interterer of 1 since Ay{.) is decreasing in ax. It is
2asy to see that o+ = (1/3,1/3,1/3,1/3) and M* = 0.148.
(recall that M* denotes min; M, (a*)).

Figure 6. and 7 show the variation of <8 and min; A;(a)
with the number of iterations in Algorithm 3. Recall that each
iteration consists of three estimation intervals (7). We have
used T = 1000 slots. Adjacent point averaging has been done
o show the trend in min; M,;(.). We choose a(k) = %392
and (k) = %5- Observe that within few iterations, the
improvement in the performance is substantial.

5

11m 5

Fig. 9. 9 node network. Rp = lm. 8 = 2. n = 4; on left is G'r, and on
right is the operational topology

The second example, shown in Figure 9 is that of an
asymmetric network. 5 = 4, 3 = 2, Ry — 1m. The operational
topology is such that

Mile) = or(l1 —a9)(l —ea3)(l —ag)

(1 —agas(l = (1 - a7)(l —as)(1 — as)})
Ma(a) = ool —ag)(l — ay)
Mi(a) = oy[(1-as)(l —as) +(1 - ag)(l —a2)

(1 —ag)(l—as)

(1 —{asaica(l —ar) + agagar(l —ag) +
asazar(l — a1) + agopor (1 —as) +
ff¥3010¢705))]/2

From Figure 9 is can be seen that. Afs(.}, AM5(.), AMd7(.) and
Mg( .} are similar in form to AJy{.) whereas A5 and Afg are
similar in form to My, Note the interferers from Af;(.)s, e.g.,
sensor 3 is a primary interferer for sensor 2, so is 9. Sensors
4 and 8 do not disrupt a ransmission from 1 to 2 individually
but together along with at least one¢ sensor from 5, 6 and 7
do. Thus, by Definition 6.2. 4, 5, 6, 7 and 8 are interferers of
sensor 1.

Table I shows the comparison of performance of Algo-
rithm 3 (indicated by SPSA) with the deterministic Algo-
rithm 2 (indicated by SDA); in SDA the exact gradients
obtained prliLiLly from the form ot' M;(.)s are used. We
choose a(k) = ,‘)- and (k) = A.ld For each of the two
sets of «(0}, the first column indicates «(0), and second and
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[ | set 1 set 2
{0} SPSA SDA [{)] SPSA SDA
o1 0494 | 0334 Q.281 0916 | 0.570 0.281
¥n 0.129 1 0218 | 0206 | 0.219 | 0.223 0.204
3 0228 | 0.305 0287 | 0.387 | 0.335 0.286
vy 0074 | 0257 | 0.237 | 0.699 | 0.342 | 0.237
A T8 0.255 0.295 0.271 0.294 | 0.380 0.274
g 0.609 | 0.313 0.192 | 0520 | 0.305 0.192
o 0.396 | 0.217 0.278 | 0616 | 0464 0.276
g 0.021 0.217 0.1 [ 0270 | 0.278 0.19%
g 0.377 0.297 0.289 | 0467 | 0.346 0.789
(i 370 [ 0008 | 0.091 | 0.10 | 0013 | 0.078 [ 0.109

TABLE 1

COMPARISON OF PERFORMANCE OF THE ALGORITHM USING GRADIENT
ESTIMATES (SPSA) AND EXACT GRADIENTS (SDA) FOR 2 SETS OF

INITIAL a(0) WITH 20000 [TERATIONS.

third column indicate «(20000) obtained by SPSA and SDA
respectively Note that, for set L. min; M;(q(0)) is only 0.8
. whereas with SDA min; M, (o{20000)) = 0.109 and with
SPSA itis 0.091. Similar observations holtd for set 2. Figure 10
shows the trends in min; M;(.) with the number of iterations

. 0-7803-8355-9/04/$20.00 ©2004 IEEE.
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VII. DISCUSSION

it is essential that atter their deployment, sensors organise
into an optimal petwork as fast as possible, This is particularly
true of the network topology. Our approximation algorithm for
MAWSS uses branchings whose time complexity is known to
be O{N?) for dense networks ([23]). The time (and message)
complexity of the distributed algorithm discussed in Section V-
A2 which finds N branchings also equals O(N?) ([24]). This
cosL appears 0 be imperative for forming an optimal topology.
In return, as already seen, the performance gain is substantial
(Figure 5). Algorithm V-A.2 also constructs directed trees
rooted at each sensor. which can be used in computational
algorithms and for control information propagation; recall that,
our MMTAP algorithm makes use of this fact. Our approach
can be extended directly to a A-connected or a symmetric
topology (if i has a link to j, 7 has to have the reverse link).
Note that, symmetric topology problem is also NP-complete
since MAWSS for undirected graphs is a special case of it.
An algorithm for this problem can be found in [28]. Learning
an optimal ¢ is an important but much harder problem. Our
algorithm is simple and makes use of measurements made
locally. Tts major complexity is in obtaining the estimates of
partial derivatives of throughputs at each sensor. Stochastic
algorithms are constrained by the “bias-variance dilemma”
([29]), therefore, their convergence properties can be improved
by caretul selection of the parameters. In our examples, the
starting points were chosen arbitrarily. Practically, a sensor can
guess its primary interterers from the estimates of probability
of successtul transmission obtained during the discovery phase
so that it is possible to find a good starting point for the
algorithm to improve its convergence to the optimum. The
most important point, however, is that the improvement within
a few iterations is significant. So the network after achieving
certain improvement or a target rate may stop executing the
algorithm.

Interestingly. such algorithms can also be seen as a tool
by which the network slowl and continuously keeps on
improving itself, This aspect is particularly important because
even if some sensors fail over time, the remaining sensors
can reconfigure themselves with such an algorithm. Note that,
our algorithms are measurement based hence it is be possible
o extend our approach to other access schemes tco. The
other important advantage of stochastic algorithm is that the
throughputs will be measured using the real transmissions,
no special packet transmissions are required. Hence, there is
no extra energy consumption. Further, they will work even in
the presence of any energy saving techniques such as random
sleep time and can account for energy constraints directly, for
example, by upper bounding the aitempt probabilities,

We designed algorithms so as to achieve optimal perfor-
mance and found correspondingly higher algorithmic com-
plexity. Our future work, therefore, is to develop asynchronous
algorithms with strictly local information exchange for scal-
ability. This paper lends support to any such effort since
it shows a way to compute the global optimal performance
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against which the performance of other algorithms can be
compared.

VIII. CONCLUSION

We viewed performance optimisation as the objective for
self-organisation in sensor networks and argued that the rate
at which a sensor network can process data in a distributed
fashion is governed by its communication throughput; hence
the self-organisation should be Hrronghput oprimal. Using a
simple model. we showed that the network topology and
optimal transmission attempt rate are the critical factors which
determine the throughput,

We obtained the optimal topology by MAWSS formulation
and discussed a distributed algorithm for it. This algorithm
uses connectivity and probability of successtul transmission
information which can be obtained locally. It was seen in
an example that such a topology gave almost five times the
throughput of the original topology. The overall progress of
iterative computations in a sensor network is limited by the
minimum of the sensor throughputs. Therefore, maximisa-
tion of minimum throughput is an important problem. We
characterised the optimum attempt probabilities, MMTAP for
this problem. The MMTAP were found to have an important
throughput-equalizing property. We presented a synchronous
distributed stochastic algorithm for driving a sensor network
to the MMTAP. The algorithm uses local threughput measure-
ments and yields substantial performance improvement even
within few iterations.

The performance improvement is at the price of algorithmic
complexity. However, this work shows that the performance
cains from optimal self-organisation can be substantial and
such techniques need to be considered during the protocol
design.
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APPENDIX

In this section, we sketeh the proofs of some propositions
in the paper. -
Proof of Proposition 5.1: The proof for undirected graphs is
by transtormation to 3DM (3-dimensional matching, [307).
MAWSS instance: Strongly coanected directed graph G =
(V, E, W), and a positive integer B.
Question: Is there a set Gy € G, such that M(G,) < B?
3DM instance: Aset ST W x X xV, where W, X, and YV
are disjoint set having the same number g of elements.
Question: Does S contain a matching, ie., a subsel ' C S
such that |5'| = g and no two elements of S’ agree in any
co-ordinate.

We construct the following gadget; R, and X denoie sets
of ¢ points such that there is an edge between points of R,
and X as shown in Figure 11 of weight . Each point of
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Fig. 11.  Gadget for proving NP-completeness of undirected MAWSS

X has an additional edge of weight 0. Similarly for R, Y,
R, and W. A is a set of p points (p > ¢). B is a single
node which has p edges from set A with weights | each,
Additional edges of set X can only be connected to A. Claim:
A matching exists if and only if a connected spanning graph
with M = {1+ 3q) + é,_,ﬂ +(p— %‘1) can be constructed.

Note that points in K, have weight 1 each and points in X
have 1/2 each. Thus total {average) weight of points in R,
X.R,. Y, R, and W is 3g 4 21, R has average weight 1.
These are unchanging weights in the graph. Weights of points
‘in 4 change based on how X. ¥ and W connect

If a matching exists, then out of p, g points in A have 3
edges each of weight O (from X, Y and W), 1 edge to R and
rest p — ¢ points have only | edge (connected to R). Thus
weight of set Ais p—g+gXx 1/4d =p—3q/4. The resulting
graph is connected with A = {1 + 3q) + 37" + (p— 37").

Lesma 1.1; Let

fik)

and consider the problem

1 LS
T R O Y |

max (k) _
subjto 0< &k <3 1<i<p
By Fkod-...+kp = 3q

Then, the max f{k) = p — 3¢/4 and is achieved when in k. ¢
k;s equal 3 and the rest p — g are 0. _

Lemma 1.1 implies that if a connected graph with A =
(1 +3q) + -3—21 + (p— 3—4‘1) exists. then out of p points in 4. g
have 3 edges connected to X, Y and W, 1 edge to R while
the rest have only 1 edge to R, This implies that the matching

- exists (4 points with edges from X. ¥, W is the required
maltching).

" NP-completeness of MAWSS for directed graphs is estab-
lished by noting that STA (strong connectivity augmentation,
{31}) is its special case. m|
Proof of Propaosition 5.2: Follows from noting that Algorithm
| constructs a route from every node to every other node, O
Proof of Proposition 53: Since 0 < «; < 1 for each
i Pif((GRe.) > O for each (i,4) € Fgr,. Therefore, the
probability that (i, ) is discovered in finite time s 1. Since
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N is finite, G, — G'r, in finite time with probability 1. The
second limit follows from the strong law of large aumbers, O
Proof of Propesition 6.1: The network throughput is upper
bounded by the maximum number of successtul fransmissions
in a slot. The upper bound is achieved by assigning oy = 1
for transmitter i € Ay, .. and o; = 0 £o the rest. &
Proof of Proposition 6.2: Let the sensor locations be fixed.
Recall Equation ! and Equation 3. Note that, g;;(a¥) is
P(Ty; > ) with dy; fixed; recall that T';; denotes the SIR

GG " > 4

. Zk;ﬁiAj(-H‘%\L)iq_,—N') T
#i;{a*?) = 1. If not, lel # denote an N-dimensional vector
whose each component is either 0 or 1. Let,

(F)
V= {£| o =4 }
Ek;‘e;,j(d—;) Moy + Ny

Then, P(FTJ > ﬁ) ZUEV Hk?ﬁ_‘jﬂzk(l — O:;‘t)(lﬁuk)
Let v_, denote a vector with m** entry omitted and let
{€_p,Um ) Tepresent . It there exists an / such that for every
(e, 1} e V. (v_,, 00 € V. P(Ty; > ) does not depend on /.
Let I;; be the set of sensors for which the previous condition
fails. That g;;(a’7) is decreasing and affine in oy, k € I
follows from the form of P(I";; > 7).

Proof of Proposition 6.3: If «f = 0 for some : then clearly
Mi{o*) = 0. If o} = 1 for some i then Mia*) =0, i ¢
FP; where P; are the primary interferers of 7. Proposition 6.2
implies that it o € (0,1) for all 7, M;(G,0) >0, 1 <i < N.
Hence, 0 < o* < 1. 0
Proof of Propesition 6.4: Note that the MAXMIN problem
is equivalent o the following problem.

of a transmissien from i to 7. If

max a
subj.to Mi(a) > =z 1<i<N
xz = 0
o € [L1,1<i<N

Since M;(e) < 1. < 1. The KKT conditions for the problem
imply that at it o* is regular, then there exists 45 > 0 such
that following holds.

N

AL (et
E)Gmh@)=0 )

Ba-j

N
Lo
i=1
i =00 Mi{e') > M*

Recall Definition 6.2. Let B; = {{jj € N;(G)} and S; =
{lj € £i}; I; denotes the set of interferers of i. Let puf =0
for some j, Then Equation 5 corresponding to j implies that
Zi:i;éj N?(H\g—i,—g) = 0.

Lenma 1.2; Q0 < o* < ] then
if i ¢ R;US,.
R; U S; = ¢ means that no sensor transmils to 7 and j
is not interferer of any sensors. j is thus an isolated sensor

i=1

GM{a*) _ e
Ba, 0 if and only
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and cannot belong o a connected network. Thus Equation 5

Milo* )
reduces 0 3, icp s, jt-:%;_t) = 0. For each such i,

2Msta’) < 0 (Proposition 6.2 and Lemma 1.2) and 4if 2 0.
follows that for all i € R; U S5;. ;o;a“é"—(&g*) = () and therefore
pf = 0. Continuing the argument for each such i and further,
let A denote the final set {i|pf = 0}, Let B = {k|k ¢ A}
Then any such % does not transmit to any node in A and
no sensor in A is an interferer of k. Since G s a connecled
topology. this implies that for all & € B, k ¢ G. Thus, for all
i € G, pf = 0 which implies that A (G, o*) > M*. However.
this is a contradiction since N is finite and the minimum is
achieved. This proves that pf > 0,1 < i < N and therefore
the proposition.

Remark 1.1: The crucial condition for throughput equality
is that G is connected. Connectedness imposes interference
since if j receives from ¢, it is an interferer of ¢ by Defini-
ion 6.2 and Proposition 6.2, Therefore, even il sensor ¢ and j
are not mutually interfering or ransmitting to each other, their
throughputs are coupled via intermediate sensors. If there are
two disconnected clusters of sensor which are non-interfering,
it is clear that their throughputs need not be equal. O

Proofs of Proposition 6.5: is based on the concept of
generalised gradients of generalised differentiable functions.
See [28], [25] for details.
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