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Abstract-The rork in this paper is motivated hy the idea of 
using randomly deplnyed, ad hoc wireless networks of miniaturr 
smart sensors to serve ns distributed instrumentation. We argue 
that in such applicatinns it is important for the sensnn to 
seIS-nrganL~e in a way that optimizes network throughput. We 
then identify and discuss two main prnhlems of optimal self- 
organisation: ( i )  huilding an optimal topology, and (ii) tuning 
network access parameters such as the transmission attempt 
rate. We consider a simple random access model Sur sensor 
networks and formulate these prohlems as optimisation prohlenis. 
We then present centralized as well as distributed algorithms for 
solving them. Results shnw that the performance improvement is 
suhstantial and iniplenientation of such optimal self-organisation 
techniques may he rnrth the additional complexity. 

1. INTRODUCTION 

Advances in microelectronics technology have made it 
possible to build inexpensive, low power. miniature sensing 
devices. Equipped with a microprocessor. memory. radio and 
battery. such devices can now combine the functions of sens- 
ing. computing. and wireless communication into miniature 
sinart sensors. 

Since smart sensors need not he tethered to any infras- 
mct tue because of on-board radio and battery. their main 
utility lies in being ad hoc. in the sense that they can be 
rapidly deployed hy randomly strewing them over a region 
of interest. This means that the devices and the wireless links 
will not be laid out to achieve a planned topology. During 
the operation. sensors would be difficult or even impossible to 
access and hence their network needs to operate autonomously. 
Moreover. with time it is possible that sensors fail (one reason 
being battery drain) and cannot be replaced. It is. therefore. 
essential that sensors leain aboia each other and organise into 
a nehrork on their own. In the absence of a centralized control. 
this whole process needs to be carried oul in a distributed 
fashion. 

A smart sensor may have only mnlest computing power. 
however. the ability to communicate allows a group of sensors 
to collaborate to execute ta more complex than just sensing 
and forwarding the information. as in traditional sensor arrays. 
Hence they may be involved in on-line processing of sensed 
data in a distributed fashion so as to yield partial or even 
complete results to an observer. thereby facilitating control 
applications. interactive computing and querying (U], [21. 
[3], (41). It is this selforganising distribiited insrritmenturion 
aspect of sensor networks that we are interested in. 

A distributed computing approach will also be energy 
efficient as compared to mere data dissemination since it 
will avoid energy consumption in long haul transport of the 
measured data to the observer: this is of particular imponance 
since sensors could be used in large numbers due to their 
low cost yielding very high resolutions and large volumes of 
sensed data. Further. by “arranging computations” among only 
the neighbouring sensors the number of transmissions will be 
reduced, thereby. saving transmission energy. A simple class 
of distributed computing algorithms would require each sensor 
to periodically exchange the results of local computation with 
the neighbouring sensors. The more frequently such exchanges 
can occur. the more rapidly will the overall computation 
converge. The more rapid the progress of the computation 
the faster the variations of the spatial process that can be 
tracked. 77ius. in this paper our goal 1s to stii@ optimal ser-  
organisation of sensor netuorks from the point of v i m  of 
optimizing their corririiitnication tliroiighpiprrt. 

As an example. consider a scenario where sensors are ran- 
domly deployed in a geographical region to gather statistics of 
a spatial process; for example. the temperature of an environ- 
ment. or the level of some chemical contamination. Suppose 
that the observer is interested in knowing the maximum value 
of the quantity being measured. Instead of each sensor sending 
its measurement to the observer, sensors can compute the 
maximum in a distributed fashion. and communicate only the 
result to the observer. A simple distributed algorithm for each 
sensor can be to collect measurements from its neighbours. 
compare them with its local value and only forward the 
maximum of these values. The communication structure most 
suitable for such a computation is a spanning tree which 
sensors can form in a distributed fashion. Moreover. a sensor 
needs to transmit the local maximum to its parent only after 
it receives the corresponding values from its children. The 
algorithm ensures that the observer ultimately receives the 
maximum value in the network. 

From this example. i t  is clear that the higher the communi- 
cation throughput ofsensors, the more rapidly will the compu- 
tation of the maximum proceed. thereby allowing the network 
to track the variations of  the temperature or contamination 
with time. The example also shows that the network topology 
and the transmission protocol are critical factors that determine 
the communication throughput. It is in these two aspects that 
we study optimal self-organisation of sensor networks. To 
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this end. we propose a simple mathematical model for sensor 
networks. Instead of limiting ourselves to a particular task. we 
consider a general distributed computation scenario in which 
sensnrs are continuously sampling and processing a spatio- 
temporal process. We investigate the problem of building an 
uptiiiial topolugx and tuning to an opriirial vaohre of channel 
access rate in our communication model. The model allows 
a concrete mathematical formulation of the problem, and is 
also sufficiently general so that the analysis can be applied 
or extended to other cases of interest. We then formulate the 
optimisation problems and present distributed algorithms for 
solving them. We also discuss the convergence and complexity 
issues in the algorithms. 

Presently. the algorithms are synchronous. Thus. in  relation 
to our model, their performance gain is the hest possible. Our 
results show substantial performance improvements hut at the 
cost of algorithmic complexity. However. compared with the 
performance gains, implementation of such self-organisation 
techniques may be worth the additional complexity. In this 
respect. our work should be seen as a step towards eventually 
understanding algorithms for self-optimizing sensor networks. 

The paper is organised as follows. In Section I1 we review 
the previnus work in this area. Section 111 discusses the model 
and relevance of assumption to the real sensor networks. Sec- 
tion IV motivates the optimisation problems. The problem of 
optimal network topology is discussed in Section V and tuning 
to an optimal channel access rate in Section VI. Section VI1 
follows with discussion and we conclude in Section VIII. 
Proofs are sketched in the Appendix. 

11. PREVIOUS WORK 
Previous work on self-organisation of ad hoc networks 

has largely focused on topology formation hy discovering 
neighbours, and transmission scheduling. For example, [ 5 ]  
discusses a cluster formation algorithm (LCA) and a link 
activation algorithm based on the topology graph so formed. 
In [61. the DEA algorithm forms subnetworks and conflict-free 
schedules simultaneously in a step by step fashion. However. 
the generation of compatible schedules is a complex task 
particularly for large networks. Moreover. the graph-based 
scheduling suffers in  network performance as shown in [7]. [SI 
dcscriks the SWAN protocol in which nodes maintain wire- 
less links usin:! stringent power control thereby obviating the 
need for transmission scheduling. However, it does not address 
the problem of how nodes should choose their neighbours 
thereby setting the topology. [9] presents a message efficient 
clustering algorithm for sensor networks. [IO] reports experi- 
mental performance studies of a self-configuring protocol for 
sensor networks. Specific protocols for self-organisation are 
discussed in [ l l ] .  

The existing literature has emphasized mainly on protocol 
design without much attention to the performance of the 
resulting network organisation. Contrary to this approach 
we view peij’brinanrx optiiuisation as the objecri1.e for self 
organisorion; hence our algorithms are motivated by this goal. 
Ow formulations. we believe, are the first of their kind in this 

area. The model along with the analytical approach allows us 
to study trade-offs as well as performance gains involved in 
optimal self-organisation. We also suhstantiate our results by 
simulations. 

111. A MODEL FOR SENSOR NETWORKS 
Our model takes into account deployment. communication 

and distributed computation issues in a sensor network. Since 
our interest is in  analysing local computing and communica- 
tion. we have not explicitly modelled communication between 
thc network and the observer. We consider a random access 
communication model; we helieve that sensors will not need 
elaborate multiple access or uansport protocols since typical 
packets will be small and RTS-CTS may he too much of an 
overhead. Moreover. il is not clear how much imprnvement 
such a scheme will lead to in dense random networks. We as- 
sume slot synchronization among sensors. L A A  l[.51), SWAN 
([81) and SEEDEX l[12]) have also assumed a synchronized 
‘TDMA system. ‘Time synchronization is vital for some sensing 
tasks (1131, [141); hence our slotted time assumption may 
not be very restrictive. Even in the absence of time synchro- 
nization. slot synchronization c m  be achieved by distribuicd 
algorithms (1151. [16]). Further, it makes analysis tractable and 
provides useful insights. 
Dephiyment: We assume that a large number (denoted by N )  
of static sensor nodes are randomly and densely located in a 
region. By dense we mean that the nearest neighhour distance 
is much less than the transmission range. To reconstruct the 
properties of a spatial process from its samples in space 
with low error. we need sufficiently close “space-samples”. 
Hence thc interest in  dense sensor networks. In the results 
presented we model the spatial distribution of sensors as a two- 
dimensional Poisson point process of intensity > per m2. > is 
thus a natural measure of the spalial flensip oi  the network. 
However. the model and the following analyses are applicable 
to any placement of sensors. 
Communication: A sensor cannot lransmit and receive simul- 
taneously. N I  sensors uansmit on a common carrier frequency 
using omni-directional antennas. All transmitters use the same 
wansmit power, and all powers are normalised to this common 
value of transmit power. In fixed-position, short-path. Rat 
terrain outdoor wireless. the channel variation is very slow. and 
there is a strong LOS path ([171). We, therefore. consider only 
!he path loss with exponent ‘1 .  Letting d o  denote the near field 
crossover distance, the power received at a distance ‘I’ from a 
transmitter. PS(.r)  = ( I ’ / ~ o ) - ’ ]  if ‘11 > do and P3(r)  = 1 if 
I’ 5 do: this model is similar to the one in [Is]. We say that a 
transmission can be “decoded” when its signal to interference 
ratio (SIR) exceeds a given threshold1 0. The transmission 
range (denoted by Ro)  is defined as the maximum distance 
at which a receiver can decode a transmitter in the absence 
of any co-channel interference. It thus follows that a receiver 
being within RO from a transmitter does not guarantee that it 

‘Giwn a modulation and codinp schzm. ,9 actually governs !he maximum 
hit crrur prohahilit). Fur narrow-hand sgstcms L? > I and for spread E P C C ~ ~ U ~ I I  

system A? < 1. 
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Fig. 1. 
dislrihuicd computation. 

A traffic modcl for a scosor network c a v i n g  ou1 mcmsuren~cnts and 

Fig. 2. Saturation throughput (p i" ' )  vxiulion with attzmpt prohahilily (el 
will decode a packet: the SIR needs to be above 19 as well. 
Time is slotted and channel access is random. i.e.. in each slot. 
sensor i decides to transmit with probability ai and decides 

for A ~ 1 and 2 pc' ,,jz. 1 oI 2m. 

to receive with probability (1 - (.t i)  independent of anything 
else: ai is called the (ifrempr pmbuhilip o f  sensor i .  
Computation: We consider a continuous computing model 
for sensor networks ([191). This also models the observer 
initiated processing ([Ig]) with long enough activity peri- 
ods. Figure l shows a traffic model for a sensor network 
engaged in distributed computation. A sensor communicates 
only with certain nodes; within R,] from it: designated as 
its neizhborrrs. A local algorithm running on each sensor 
uses local measurements and updates from its neighbours to 
perform certain computations. The raw measurements and/or 
computational results to he sent to the neighbours are queued 
up in a packet queue as shown in Figure 1. The application 
is such that each packet is destined to a random neighbour 
uniformly chosen from the neighbours. This is n o t  a restrictive 
assumption and can be attributed to isotropy of the physical 
process and uniformity of processing. Hence. if a sensor 
decides to transmit. the I-hop destination of the head-of-the- 
line packet is equally likely to be any o f  the neighbours in 
the operational topology. A transmission is successful when 
the sensor to which it is addressed (by actually inserting a 
physical address in the packet header) is in the receive mode. 
and is able to decode the transmission. If a transmission is 
successful. the correspondmg packet is removed from the 
queue (i.e., instantaneous acknowledgments are assumed). 
Since acknowledgments can be also lost in  transmissions. this 
assumption gives an upper hound on the performance of sensor 
networks. A successfully received packet at a sensor invokes a 
new computation that iiiu: result in  an update being sent to a 
neighbour. We model this probabilistically. i.e.. the successful 
reception of a packet generates another packet to be sent to a 
neighbour with probability U. 

IV. OPTIMAL SELF-ORGANISATION: MOTIVATION 

samples. along with the packets triggered by updates from 
the neighbours, form an arrival process into the queue (see 
Figure I) .  Therefore. this 'sampling rate' cannot exceed the 
rate at which packets are drained from the queue. More 
precisely. assume that ai = a: 1 5 i 5 N and that each 
sensor has all the nodes within a fixed distance. say R _< RO 
as its neighbours. Note that the probability of successful 
transmission of a sensor decreases with distance because of 
decrease in the received power. Therefore. a smaller value of 
R is desirable. However. a small R also means that a sensor 
communicates with only a few of the many sensors within 
its transmission range. In [?0]. we show that i f  7 denotes 
the arrival rate of measurements. then at a 'typical' sensor in 
the Poisson distributed sensor tield. the packet queue is stable 
i f  < p y )  - (1 - a)u where p?) denotes the probability 
of successful transmission in a slot in  saturation. i.e.. when 
the head-of-the-line packet. after its successiul uansmission. is 
immediately replaced by another packet at each queue. p:" is 
also called the saturation throughput. While processing a time 
varying process. most of lhe time each sensor will have some 
local measurements -and/or partial results to communicate to 
its neighbours. Therefore. in .such a scenario. the saturation 
throughput can be a good measure of the communication 
throughput. 

This work is particularly motivated by Figure 2 which 
shows the variation o f  pi"' with a (we have assumed that 
ai. = a: 1 5 i 5 N ) .  We use 1000 Poisson distributed points 
as sensors on the plane for X = 1 and P per .m*. We take 11 = 4. 
9 = 10 dB and R equals 1 or 2 r n .  Throughputs are averaged 
over 1000 random point placements. Observe that for a fixed 
value of A. pp' decreases as R increases and for a fixed value 
o f  H.  decreases as X increases. Thus, high values of# '  
decree small values of H .  however. arbitrarily small values of 

When a sensor network is processing a spatio-temporal 
process. to reconstruct the process in time. each sensor has 
to sample it at a specific rate (akin to a Nyquist rate). These 

R result i n  a disconnected network. Note also from Figure 2 
that. for a fixed X and R. there is a value of U which maximises 
pl". From this preliminary analysis. we conclude that sensors 
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need to  form a network that is ‘optimally connected‘. and 
operated at an ‘optimal attempt rate’. A precise formulation 
of these problems and their solutions is the objective of the 
following sections. 

v. OPTIMAL NETWORK TOPOLOGY: OBJECTIVES A U U  

ALGORITHMS 

Let (7 denote a connected weighted graph with vertex set 
V (IVI = N ) .  edge set E and weight function IY : E - R,. 
The weight of an edge ( i :  j )  E E is denoted by , w ( i , j ) .  G 
can be a directed or an undirected graph. If G is directed, 
( i : j )  denotes an edge outgoing tiom i to j and connectivity 
refers to strong connectivity. V, denotes the set of sensors: 
each element in V, is a triplet of the form ( i ,  
i E {l> 2.. . . , N }  is the sensor index. and 2; and y i  are the 
x-coordinate and yi‘oordinate of i respectively. 

Dejinitioii 5.1: The transmission graph. G R ~ ,  is the sym- 
metric directed graph with V, as its vertex set. and ( L j )  E 

0 

Note that. GR,, is a geometric random graph since sensors are 
randomly placed. If the number of sensors is assumed to be 
infinite. then [?1] shows that there exists a critical number 
C for the two-dimensional Poisson sensor field such that if 
XTR; > i. GR” would conuin an infinite component with 
nonzero probability. An infinite component does not imply 
that all the sensors are connected. However, N and the area of 
deployment both are large but finite; hence it is reasonable to 
expect that most nf the sensors belong to the giant component. 
This has been found to be true in practice (see [22 ]  for details). 
With these considerations, henceforth we take GRn to be a 
connected grdph. 

Denote by 
Let he fixed and let for ( i : j )  E ER“. p j (a)  denote the 
probability of successful transmission from sensor i to j under 
- CY. Recall that. we are assuming that all sensors have packets 
to send. Therefore. according to our model 

ER+ if sensor j is within a distance Ro of sensor i .  

the vector of LY 

The last term in ( I )  is P ( r ,  2 8) where rij denotes the SIR 
of a transmission lrom i to j .  d h j  is the dktdnce bctween k 
and j .  cl0 is the near-held crossover distance. N o  is thermal 
noise power. and Yk is 1 if I; transmits. 0 otherwise. Since 
pi,(&) depends on the geometry of interferers of sensor j ,  
p j i ( o ( )  need not equal pi.j(n) in  a random network. 

A. 77ie M A W S  Topologv 

Let G“ := (V’> E’) denote a subgraph of a given connected 
graph G. For i E V‘. let di(G’) denote the out-degree of node 
i in G’. For all i E 1’’. let 

if ,/;(G‘) > 0 otherwise <bi(G’) = 0. Detine a function ib nn 
G’ as 

, E V  

and let 

G = arg niax $(G’) 
G’EC:,, 

where. G,, is the set of all connected spanning subgraphs of 
G‘. Gcs is nonempty since G E Gcs. maximises the measure 
$ over all connected spanning subgraphs of 6. We call G the 
nia.Wiiriin awrage-ueighted spanning sribgraph (MAWSS) of 
C. We will use the term MAWSS to also denote an algorithm 
for determining an MAWSS. 

Each subgraph of G R ~  specifies a network topology, i.e.: 
a ser of neighborirs for each sensor. Let &(G’) (respectively 
ii;(G’)) denote the set of neighbours (respectively the number 
of neighbours) of i in topology GI. Now for each i define. 

Thus. hl,(G‘; (1) eqirals f / ie  fiiiie average thro~ighpnf of sensor 
i .  We have used our assumption that in transmit mode a sensor 
transmits a packet tn one of its neighbours with probability 

q z q  ’ Let M(G’,a) denote the network throughput. i.e.; the 
sum of individual sensor throughputs with topology specified 
by G’. Now if all sensors always have packets to send then 
nr(c’.e) . is the average saturation throughput of the network. 
The discussion in Section IV. therefore. motivates the problem 
of choosing a network topology G‘ so that Al(G’:a) is 
maximised. 

Note that. the “out-degree” of a sensor in 6‘ is simply 
the number of its neighbours, i?<(G’). It. thus. follows by 
comparing (2) and (3) that for a fixed g if  G’ is a subgraph 
of GR,. and if for all ( i , j )  E E.qor w ( i > j )  equals p i j (n ) .  
then ib(C’) is M(G’.,y). Since a sensor network needs to be 
connected. it iollows that. /he optimal ropologx of II SenSor 
nmhvork is the M A W S  of its GR,,. 

Proposition 5.1: MAWSS ior directed and undirected 
graphs is NP-complete. 
Proofs are presented in  the Appendix. 

I )  A Cenlralized M A W S  AIgorifhm: In the iollowing. we 
discuss directed graphs in particular. and propose a heuristic 
algorithm for ohmining an approximation to the MAWSS. 
Some novation is in order. For node i. e i ( k )  denotes the kth 
heaviest outgoing edge and , iu i (k )  denotes io: weight. Ties 
are resolved arbitrarily. E1(G) := {ei(l)li E G}. is the set 
of maximum weight outgoing edges of all the nodes in G. 
The hasic idea is the following. It is clear that the MAWSS 
contains El(G). Hence if (V. E1(G)) is strongly connected. 
we are done. If not. we convert the ”maximum average weight” 
problem to the “minimum sum of weights” problem by a 
suitable transformation of w ( i : j )  to ‘ v ( i , j ) .  We consider the 
transformation 73( i , j )  = ,tuc(1) - w ( i , j )  and and denote this 
weight function by 1.V. We. then. construct minimum weight 
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I: if (V. E , ( C ) )  is strongly connected then 
.. >. 
3: else 
k 

5: 

c = (1)~. E, (G) )  

G = (V. E> TI;) 
For all ( i .  j )  E E: G ( i .  j )  := t c : i ( l )  - ? U ( ; ,  j )  and set 

For all i t V. find Ci,,, = (V:EAut), the minimum 
weight out-branching of rooted at i 

6: = (I/-: U j ~ i ~ ~ ~ , , ~ )  

Algorithm 1: Algorithm for finding an approximation 
the MAWSS of a directed Graph G‘ 

to 

out-branching (directed tree or arborescence) using ciJ( i :  j )  
rooted at each i .  Recall that, any out-branching rooted at a 
given node contains one and only one edge incoming to every 
other node. The minimum weight branchings pick out edges 
with small ,i3(i: j )  which are the cdges with large , i c ( , i > j ) .  The 
resulting graph is taken as an approximation to the MAWSS. 
An optimal algorithm for conslructing optimal branchings is 
presented in ( [?3 ] ) .  

Proposition 5.2: The output (2 of Algorithm I .  is a strongly 
connected spanning subgraph of G. 

2) A Distribirfed M A W S  Algor-ifliin: At the time of de- 
ployment. neither GRn nor pa(%) is known to sensors. Over 
time. sensors ”discover” each other by advertising their ids 
which can be simply their indices. Let r and the locations of 
the sensors be fixed. At time 0. the sensors start broadcasting 
their ids. Let G‘, = ( K I 3 E r z )  denote the subgraph of GR,] 
discovered until time 11,. i.e.. Vn = 1,: and ( i . j )  E E, if 
there exists a time slot 171 5 17 in which sensor j successfully 
received a transmission from i for the first time. Go = (V?, 4). 
Note that C,z is a random graph. In addition to noting ids of 
its neighbours. a sensor also coiiiits tlre nrriiiher of tiriies if 
received o yarlicirlur id; the larger this number. the higher is 
the probability of successful uansmission from that node to 
i .  To make i t  precise. let Sij(71) denote the number of times 
sensor j successfully received i till time n .  Then the following 
holds. 

Proposition 5.3: Let 0 < C Y ~  < 1 for each i .  Then G,, - 
GR,? and e - p i j ( 2 )  with probability I .  

The convergence of the discovery process is in itself an 
interesting problem since how fast G,, converges to GR“ 
will depend on a. Practically, sensors will carry out the 
discovery process for either a pre-programmed number of 
slots. or during the discovery phase they will detect when 
the graph is connected and then stnp. For this discussion we 
will assume that either GR,, or a connected subgraph of i t  has 
been discovered and sensor i has an estimate o f p i i ( ~ )  for each 
( i :  j )  discovered; j counts the number of times i t  received the 
id from i and sends back the number to i ;  i divides i t  by the 
number of slots to form an estimate. A distributed version 
of Algorithm I is presented in [24]. The algorithm works 
by formation of node clusters. detection of cycles. selection 
of minimum weight cluster incoming edge in a distributed 
fashion. We omit the details. 

PiS. 1. 
X = 1 ~r m’ and a = 0.05. z and y axis scale i s  distance in m. 

Topdo~y disrovcrcd [ill 500 ~ l d s  (Gsoo) by 1000 sensors with 

2 0 ,  

Fix. 4. MAWSS conslmcled from the discovered lopology G j o o  of 1000 
ssmors with X = 1 per m2 and o = 0.05. :E and y SIXXIS scale is dislvncr in 
m. 

B. Resrrlls 

The setup is as explained in Section IV. 1000 sensors form 
a Poisson field on the plane with X = 1. In this set of results. 
we use the same value i l l  atteinpt probability for each sensor. 
Further. two “types” of a’s  need to be distinguished. ’The first; 
denoted by o:d, is the attempt probability sensors use while 
di$covering the topolop (subscript ‘d’ denotes discovery). We 

is connected at 500 slots and for ad = 0.01 it is connected at 
1000 slots. Figure 3 shows G,oo (recall that G ,  denotes the 
discovered graph at slot t i )  and Figure 4 shows the MAWSS 
constructed from it for ct$  = 0.05; MAWSS here refers 10 the 
graph obtained lrom Algorithm I .  

Once the topology formation is complete. sensors switch to 
an “operational value” of the attempt probability. Figure 5 
shows the variation of average saturation throughput of a 
sensor with the operational values of a f ix  network topologies 

USC ad = 0.01 01 0.05. For ( l d  = 0.0.5. the discovered graph 
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Fig. 5 .  Saturation Throughput variation with vttcnlpt probahilily (U) for 
different Lopologicr: Gsoo. Giooo. M A W S  comtrurtsd using m,j = 0.05 
and Glaoo. MAWSS using c u  = 0.01. 

given hy G~no. Glooo, MAWSS constructed using = 0.05 
and Glooo, MAWSS for ad = 0.01. Recall that, Cor a given 
topology G‘ and c?. M(G’: p.) denotes the network throughput. 
The average saturation throughput which we plot in Figure 5 
is simply -.---w---... Note that for a = 0.05. throughput of 
Glnao is lower than GSO” since it includes more edges of 
low prohahility of success discovered during additional 500 
slots. A lower value of c i d  tends to discover longer edges too 
which reduce the throughput; hence for Gl~oo.  performance 
with ad = 0.01 is worse than with a d  = 0.05. MAWSS, on 
the other hand. eliminates edges with low prohahilily of suc- 
cess while maintaining the connectivity; hence. the maximum 
throughput achieved hy MAWSS (for both the values of a d )  

is almost five times of the corresponding discovered graphs. 
Note from (1) and ( 3 )  that for any connected topology the 
average saturation throughput at a cannot exceed ~ ( 1  - a); 
e.g., for oi = 0.25 thc throughput can be no more than 0.1875, 

>ll(G’.n) 

VI. OPTIMAL ATTEMPT PROBABILITIES: OBJECTIVES 
AND ALGORITHMS 

Apart from the observation that MAWSS gives significant 
throughput improvement. a crucial observation from Figure 5 
is that the throughput is maximised at a different value 01 
a than ad. For example. for the MAWSS constructed with 
ad = 0.05. the throughput is maximised at (Y = 0.25.  At this 
CI. the throughput is almost five times of Gson and an order 
of magnitude more than that of Glooo with orci = 0.01. nirrs. 
it is essenrial 10 ocriiull~ uperare rhe iiehwrk at a rtirotrglipiit- 
niasiiaising iolrre of CY. 

One way to solve this problem is the following. From the 
numher of sensors to he used and the approximate area of re- 
gion to he monitored. estimate the density. Using this estimate. 
lix an initial value of CY which will lead to fast discovery and 
MAWSS formation. After Ihe topology is formcd. let sensors 
switch to a pre-programmed a which maximises throughput 
for that density. Though feasible nnd simple this approach 

has some prohlems. The N maximising the throughput can 
he known for specific point placements (or averages thereof). 
In the field. sensors will fall as one particular sample path and 
then it is not clear whether that value of oi will maximise the 
throughput. A more poweriul approach is to let the sensors 
learn the value of N over rime. We do not  insist that all 
the Sensors use the Same value. First hecause maintaining the 
same value of LX at every sensnr at every step of the learning 
process is difhcult. More importantly. different sensors may 
need different values of a to counter the local inhomogeneities 
in the node placement. This “learning” approach will also help 
sensnrs to recontigure themselves if  and when some sensors 
iail. 

Definition 6.1: For a given topology. an iiirlepen(1mt ser 
is a set of transmitter-receiver pairs which do not interfere 
with each others’ transmission, i.e.. if only the sensors chosen 
as transmitters in  this set a e  allowed to transmit to the 
respective receivers. then their transmissions are successful 
with probability I .  0 

Proposition 6.1: Let A,,,, denote the largest independent 
set in  a given topology. Then which maximises the network 
throughput, is the one with cyi = 1 fnr all transmitters i E 
A,,,, and a; = 0 Sir the rest. 

It is clear from Proposition 6.1 that il  sensors are allowed to 
use different values of ais then the maximisation of average 
saturation throughput leads to a degenerate assignment. In 
addition. the “maximum calculation” example in Section I 
suggests that the overall progress of thc computation will he 
really limited by the lowest sensor throughput in the network. 
This motivates the problem of niaxiiiiising the iniiiiiiiiiin of 
sensor rhruirglipitls. 

A .  T7ie MAXMIN i7ii-oiigfipet 

optimisation problem. 
For a given network topology G. consider the following 

(4) 

In order to get some insight into the throughput functions, 
AIi(G>g). recall that N;(G) (respectively nc(G)) denote the 
set of neighbours (respectively number of neighbours) of r .  
Let $ denote the vector p with enUies a; and 

Proposilion 6.2: Fnr a fixed topology G. 71 and 0. A&(G: g )  
has the following form. 

omitted. 

For each j t N, (C) ,  w j ( . )  either equals 1 or there exists 
a set f i j  2 K \ { i , j }  such that g i j ( . )  is a decreasing and 
affine hnction of a k :  6 E I;j and does not depend upon 

It is clear from Proposition 6.2 that Af.,(G, .), 1 5 i 5 
N are continuous functions of 2, and so is iniui A l , ( G ,  .). 
Therefore, an optimum exists for the MAXMIN problem (4) 
by Weiersuass Theorem. Since topology G is fixed, henceforth 
we suppress it from the notation. It is. however. assumed that 

al.: k 6 r j j .  Moreover. gij(j.) = 0 and gjj(p) = 1. 0 
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G is connected. Let c* denote an optimum of MAXMIN 
and I\/* denote iiiiii( Mi(&*). We will call a’. the MAXMIN 
rhruugli~~~rr arreiripr probaDililies (MMTAP). 

D?Jnirion 6.2: Let the sensor locations he fixed. Then for 
fixed 13 and 77, j is called an interferer of i if Mi(G>&) 
is decreasing in ai. j is called a primary interferer of i if 
whenever j transmits. i either decodes it or decodes none. 0 

Pruposi~iuii 6.3: If every sensor is a primary interferer of 
at least one sensor. then C! < n* < 1. 

Consider tirst N collocated sensors: by collocated we mean 
that in any slot at most one transmission can be successful. 
Then ill,(&) = ai n+(l - q)> 1 5 i 5 iv and nf = + 
which is an intuitive and desirable operating point for sensors 
in this scenario. Secondly, even when sensors are spatially 
distributed, a* equalises the throughputs. i.e.. 

Proposirion 6.4: 0 < &* < 1 + Mi(&*) =  mi(^*), 1 5 
i . j  5 :v. 
The rhroiqhpr Pqirulizifig proper? makes the MMTAP par- 
ticularly important; with MMTAP. sensors operate at equal 
processing rates which is desirable in applications where 
computations are iterative. 

E. An MMTAP Algurirliii? 
to 

the MMrAP. n denotes projection on [01 I] and lU(k)I the 
Consider Algorithm 2. an iterative scheme to tune 

Nj(0) E [O> 11: j = l3 2 : .  . . ~ AT 

lSiS’V 
u ( k )  = min A%(g(k) ) ,  t > O  

U ( / ; )  = {il l  5 i 5 NIAli(g(k)) = ~ ( k ) }  

q ( k +  1)  = n “ j ( k ) i k - -  n . ( k )  2 
IWk)I iE(i(k) ilrr, 1 DAf;(g(k)) [ 

j = l ; I , .  . . , IV 

is $E:=, Si(j) where Si(j) = 1 if i transmits successfully 
in slot j. otherwise 0. T is the numhcr of estimation slots. 
Sensors also need to estiiiiare rlie grarlieiir of Mi(.) in order 
to use Alporithm 2 .  Since we need a distributed algorithm and 
since IPA and LR-SF ( [ X I )  cannot be applied in this case. 
an appropriate method for gradient estimation is simultaneous 
perturbation (SP> 1271). Instead of perturbing one component. 
i.e.. ai at a time to obtain the estimates of partial derivatives. in 
SP all a i s  can he perturbed simultaneously given that perturba- 
tions for each ai are zero mean independent random variables 
with some additional conditions ([27]). This way. b y  chousing 
rlie perrrrrhation airiuiiiir locall\: ,xnsors can siiiiirlraneoirslv 
rsrhriare rlir f1eriwrive.s. In the Lt” iteration. let n(k) denote a 
vector of IV independent Bernoulli random variables such that 
{n(k)} is an independent sequence wilh n(k) independent of 
- a(O),n(l), . . . ,&($). Then the “cenual-diiference estimator” 

where 
c ( k )  is a scalar. SF requires c ( k )  - 0 so that the estimator is 
asymptotically unbiased. 

Pruposirioii 6.5: Let in Algorithm 2 .  the partial derivatives 
of M i ( . ) >  1 5 i 5 N be replaced by their estimates (biased 
or unbiased). Let a 7 ( h )  = a ( k ) ,  1 5 j 5 N: L 2 0 and 
, r (k)  satisfy CEl n ( k )  = x, and ET==, n(k) ’  < m. Then 
the generated sequence { & ( k ) .  k 2 1) converges a s .  to the 
MMTAP. 

snr , (e) (n)  is , l l . ( ~ ( ( l . ) + c ( c ) ~ ( k ) ) - - l l f , ( ~ ( h ) ~ c ( C ) ~ ( i ~ ) )  
an, 2 C ( h ) A ,  (1: )  

For a complete distributed implementation we now only 
for each need a way of ohtaining an estimate of 

i E U ( k )  at every sensor j in iteration I;. First note 
from the form of the derivative estimator that sensor j 
does not require such individual estimates to calculate the 
sum of the partial derivative in Algorithm 2;  if b ( k )  := 

,\ii(n(l;)+C(b)L\(h))~liii(Cl(h!--C(ii)a(h)) 1s made known 

to it, i t  can directly obtain the required sum simply hy dividing 
b ( k )  by Ic(k)A, ( .k) .  d ( k )  can he obtained at each sensor by 
first collecting it at a node designated as the “root“ using the 

a‘lfj(g(k)) 

C i i U ( k !  IU(k)l 

ent ascent. 

cardinality of set L r ( k ) .  n j ( k )  is the step size in the I;”‘ 
iteration at sensor j .  Algorithm 2 is a “oeneralised gradient 
ascent” algorithm; CiEU(h) L)aj being a gener- 
alised gradient of mini Al,(a(k)) at g ( k )  ([25]). Informally 
the iterations can be explained as follows. M ( L )  denotes the set 
of sensors whose throughput is the minimum under operating 
point&(k). If j $f M ( k ) .  then aj is reduced in the next iteration 
since 5 0: i # j (see Proposition 6.2). This leads to 
an increase in the throughput of i E L / ( k ) .  I f j  E U ( L ) ,  then 
a j  is increased or decreased based on how it affects others 
and how others affect its throughput. Thus the algorithm tries 
to equalize as well a.. maximise the sensor throughputs. 

1 )  A Syichronolrs DisrriDiirerl Slucliasric Algor-irhni: 
Though fixed in form for a given placement of nodes. M i ( . )  

is not known at sensor i and heing a steady-state average. 
only rioiJ:v riieusiirmiienis of Mj(.) are available for Alpo- 
rithm 2 .  An unbiased estimator of Mi(.), denoted by l\li(.). 

aaii (gTh))  

al l  (0) 

distributed computation approach as in the “maximum calcula- 
tion” example discussed in Section I. and then letting the root 
distribute this value to  all the sensors. The same approach will 
work since we have a “minimum calculation” problem at hand. 
rr(k) being the minimum value of Sensor throughputs. Recall 
that MAWSS is built using trees. Therefore. the computation 
will proceed efficiently using the underlying tree structure. 
We assume that such a “computational tree” with a root 
has been built; we denote by C:% the children of sensor i 
in the tree. The distributed MMTAP algorithm proceeds in 
synchronized rounds; in every round L all sensors use the 
same values of c ( k )  and a ( k ) .  The number of slots used for 
estimating Mi( . )  is denoted by T .  Algorithm 3 describes in 
detail the procedure to be executed at each sensor in a round. 
By the computation at a sensor we mean initialising u i ( k ) ,  
q ( k )  and bi.(L). updating them and forwarding them to the 
parent (see Algorithm 3); updation commences only after the 
corresponding values are obtained from every child. Then the 
key step is to note that. at the end of the computation at sensor 
i .  u i ( k )  is the minimum sensor throughput kiioun ro sensor 
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I :  operate with c y ~ ( k )  for next T slots and oblain $ f i ( n ( k ) )  
by counting the number of times uansmission is successful 
and dividing it by T 

2: randomly choose & ( k )  E 1-1; 1) 
1: operate with a i . ( k ) + c ( k ) A , ( k )  for next T slots and obtain 

4:  operate with ai (X-) -c (k)A?(k)  for next T slots and obtain 
A & ( g ( k )  + C(k)A(k) )  

A ' f i ( g ( k )  - c ( k ) / l ( k ) )  

Mi.(g(k) - c(k)A(k)) and r . i (k )  = 1 
5:  syt t i . i(k) = A?,(n(k)). & ( A , )  = A l i ( ~ ( k )  + c(!s)A(k)) - 

6 receive i t . j ( k ) .  6 j ( k ) .  ~ j ( k )  from each child j t (7, 
7: set Uj(k) = { j  : j t C:, U { i } ,  ~ t . ~ ( k )  = 

8: update rc(6) = CjtCi(k) r j ( k ) ,  6,(L.) = CJF(Ir(k) cS?(k) 

Y: if root then 

min(rri(k), u I ( k ) ,  j E Ci)}  

and q ( k )  = nrin(ui(k), uj(k). j E Cj) 

,o 6(k) ~ U 
T . ( k )  

Tne first example. as shown i n  Figure 8- is a network 
of 4 sensors symmeuically placed and operating with one 
neighbour each. 11 = 4: = 2> Ro = l m  so that. V i 
Alt(a1:a2:a3,a4) = a i ( ]  -ni+,)(l-ni+y). addition in the 
subscript being modulo 4. Note that sensor :I is an interferer 
of the pair ( l1 '2). It is also a primary interferer of Sensor '2 
and an interferer of 1 since A l l ( . )  is decreasing in n3. It is 
easy to see that = (1/:3,1/:3: 1/3: 1 / 3 )  and A{* = 0.148. 
(recall that A t '  denotes mini A'l.i(n*)). 

Figure 6. and 7 show the variation of a . ; ~  and mini A&(n) 
with the number of iterations in Algorithm 3. Recall that each 
iteration consists of three estimation intervals (7) .  We have 
used T = 1000 slots. Adjacent point averaging has been done 
to show the trend in mint Mi(.). We choose ( ~ ( k )  = $-% 
and c ( k )  = +. Observe that within few iterations. the 
improvement in the performance is substantial. 

7 6 5  7 6 5  

forward t ~ , ( k ) ,  & ( k ) .  r i ( k )  to the parent in the tree 
upon receiving b ( k )  from the parent set a i ( k  + 1) = 
ai(k)+n(k)& and forward J(k)  to e a c h j  E CJ 

Algorithm 3: Algorithmic procedure to be executed at each 1 1 m 2  3 1 2 3  
.~ 

Fig. 9. 
risht is the operational tupology 

9 node netwurk. Ro = lm. /3 = 2. ?j  = 4 :  on lefl is GR,, and on sensor i in round 6 2 0. 

1 in  round k.  i.e.. the minimum among those sensors which 
form a subtree of the computational tree rooted at i .  If C / , ' ( k )  
denotes the set of sensors in  the subtree rooted at i having 
the minimum throughpur known to i then ~ ( k )  lUF(k)l 
and 6 , ( k )  = &o.:,h,(Afj(n(k) -kc(k)A(k)) - A.l j (&(k) - 
c ( k ) A ( k ) ) ) .  Itthus followsthatili istherootthen iii(k) isthe 
global minimum throughput and in Algorithm 3. S(k) equals 

. nerefore.  at 
every sensor j .  is the required estimate. We omit 
the details. 

' ~ l ~ ( ~ ( k ) + ~ ( k ) ~ ( k ) ) - , ; ~ ~ ( ~ ( k ~ ~ ~ ( ~ ) ~ ( k l )  
C i i D . ( k )  IU(h)l 

C. Resdf s  a s q a , ( l  - al) + *3a~n,(l -as )  + 
In this section, we study the performance of Algorithm 3 

sensor 3 is a primary interferer for sensor 2, so is 9. Sensors 
4 and 8 do not disrupt a transmission from 1 to 2 individually 
but together along with at least m e  sensor from 5. 6 and 7 
do. Thus. by Definition 6.2. 4. 5. 6 .  i and 8 are interferers of 
sensor 1. 

Table I shows the comparison of performance of Algo- 
rithm 3 (indicated by SPSA) with the deterministic Algo- 
rithm 2 (indicated by SDA); in  SDA the exnct gradients 
obtained explicitly from the form of Ati(.)s are used. We 

sets of n(O), the first column indicates &(0), and second and 

F 

l ' m 2 1  2 

Fig. 8. 4 node network. Ro = Im. /3 = 2. 9 j  = 4: on lzft is G R ~  and on choose ( z ( k )  = i$& and C ( k )  = &. For each Of the tWO 
right 1s lhc operational topdog 
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TABLE I 
COMP.x?ISON OF PERFORMANCE OF T H E  ALGORITHM USING GRADIENT 

ESTIMATES (SPSA) .AHD LYACTCRADIENTS (SDAI FOR 2 SETS O F  

I N I T L L  g ( 0 )  WITH 20000 ITERATIONS. 

third column indicate n(.)CJOcJO) obtained by SPSA and SDA 
respectively Note that. for set I .  mini Afi(c(0)) is only 0.008 

. whereas with SDA mini M;(Q(?OOOO))  = 0.109 and with 
SPSA i t  is 0.091. Similar observations hold for set 2 .  Figure 10 
shows the trends in mini MI( . )  with the number of iterations 

m I- ,Mi _m 
It*,.,""* 

Fig. 10. 9 scmor example: variation of mini Mi(.) with the num- 
hsr of ifdrillion for set 1 %io) in Table I. The horizontal linz indicates 
mini Af~(g(20000)) = 0.109 obtained with 2xact g r d i c n e  (SDA). 

for the set 1 shown in Table I. Observe that. within a few 
iterations. the performance gains are significant. 
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VII.  DISCUSSION 

I t  is essential that after their deployment. sensors organise 
into an optimal network as fast as possible. This is particularly 
true of the network topology. Our approximation algorithm for 
MAWSS uses branchings whose time complexity is known to 
be O(N’)  for dense networks ([231). The time (and message) 
complexity of the distributed algorithm discussed in Section V- 
A.2 which finds N branchings also equals O ( N 2 )  ([?41). This 
cost appears to be imperative for forming an optimal topology. 
In return. as already seen. the performance gain is substantial 
(Figure 5 ) .  Algorithm V-A.2 also constructs directed trees 
rooted at each sensor. which can be used in computational 
algorithms and for control information propagation; recall that, 
our MMTAP algorithm makes use of this fact. Our approach 
can be extended directly to a h-connected or a symmetric 
topology ( i f  i has a link to j .  j has to have the reverse link). 
Note that. symmetric topology problem is also NP-complete 
since MAWSS for undirected graphs is a special case of it. 
An algorithm for this problem can be found in [28]. Learning 
an optimal is an important but much harder problem. Our 
algorithm is simple and makes use of measurements made 
locally. Its major complexity is in obtaining the estimates of 
partial derivatives of throughputs at each sensor. Stochastic 
algorithms are consuained by the “bias-variance dilemma” 
([29]). therefore. their convergence properties can be improved 
by careful selection of the parameters. In our examples. the 
starting points were chosen arbitrarily. Practically, a sensor can 
guess its primary interferers from the estimates of probability 
of successful transmission obtained during the discovery phase 
so that it is possible to find a good starting point for the 
algorithm to improve its convergence to the optimum. The 
most important point. however, is that the improvement within 
a few iterations is significant. So the network after achieving 
certain improvement or a target rate may stop executing the 
algorithm. 

Interestingly. such algorithms can also he seen as a tool 
by which the l1eM~or.k slowly and continrroeslv keeps on 
irnprnving ifself .  This aspect is particularly important because 
even if some sensors fail over time. Ihe remaining sensors 
can reconfigure themselves with such an algorithm. Note that, 
our algorithms arc measurement based hence it is be possible 
to extend our approach to other access schemes too. The 
other important advantage of stochastic algorithm is that the 
throughputs will be measured using the real Iransmissions. 
no special packet transmissions are required. Hence. there is 
no extra energy consumption. Further. they will work even in 
the presence of any energy saving techniques such as random 
sleep time and can account for energy constraints directly. for 
example. by upper hounding the attempt probabilities. 

We designed algorithms so as to achieve optimal perfor- 
mance and found correspondingly higher algorithmic com- 
plexity. Our future work therefore. is to develop asynchronous 
algorithms with strictly local information exchange fur scal- 
ability. This paper lends support to any such effort since 
it shows a way to compute the global optimal performance 

against which the performance of other algorithms can be 
compared. 

VIII. CONCLLlSlON 

We viewed performance optimisation as the objective for 
self-organisation in sensor networks and argued that the rate 
at which a sensor network can process data in a distributed 
fashion is governed by its communication throughput; hence 
the self-organisation should be rl~ruirgliprrt uptinml. Using a 
simple model. we showed that the network topology and 
optimal uansmission attempt rate are the critical factors which 
determine the throughput. 

We obtained the optimal topology by MAWSS formulation 
and discussed a distributed algorithm for it. This algorithm 
uses connectivity and probability of successful transmission 
information which can be obtained locally. It was seen in 
an example that such a topology gave almost five times the 
throughput of Ihe original topology. The overall progress of 
iterative computations in a sensor network is limited by the 
minimum of the sensor throughputs. Therefore. maximisa- 
tion of minimum throughput is an important problem. We 
characterised the optimum attempt probabilities, MMTAP for 
this problem. The MMTAP were found to have an important 
throughput-equalizing property. We presented a synchronous 
distributed stochastic algorithm for driving a sensor network 
to the MMTAP. The algorithm uses local throughput measure- 
ments and yields substantial performance improvement even 
within few iterations. 

The performance improvement is at the price o l  algorithmic 
complexity. Itowever. this work shows thaL the performance 
gains from optimal self-organisation can be substantial and 
such techniques need to be considered during the protocol 
design. 
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APPENDIX 

In this section. we sketch the proofs of some propositions 
in the paper. 
Proof of Proposition 5.1: The proof for undirected graphs is 
by transformation to 3DM (3-dimensional matching. 1301). 
MAWSS instance: Strongly connected directed graph G = 
(1’; E: 1V). and a positive integer B. 
Question: Is there a set G I  E C,, such that Al(G1) 5 BI! 
3DM instance: A set S C 1.V x S x I’, where l,V, S. and Y 
are disjoint set having the same number q of elements. 
Question: Does 5’ contain a matching, i.e.. a subset 5” S 
such that /S‘I = q and no two elements of S‘ agree in any 
co-ordinate. 

We construct the following gadget: H ,  and S denote sets 
OS q points such that there is an edge between points of R,c 
and S as shown in Figure 11 of weight 1. Each point of 



P w R -  

Fig. I I. Gad$3 for proving NP-complzlmess of undirsctsd M A W S  

S has an additional edge of weight 0. Similarly for R,. Y. 
R, and 1.1'. 4 is a set of p points ( p  > (2). R is a single 
node which has 11 edges from set A with weights I each. 
Additional edges of set S can only he connected to A .  Claim: 
A matching exists if and only if  a connected spanning graph 
with A I  = (1 + :&I) + 3 + ( 1 1  - f) can be consuucted. 

Note that points in R., have weight 1 each and points in S 
. have 1/2 each. Thus total (average) weight of points in R,r, 
S. R,. Y. H ,  and 14' is :3y + 2. R has average weieht 1. 
These are unchanging weights in the graph. Weights of points 
in ..I change based on how S. Y and 1 V  connect. 

If a matching exists. then out of p ,  y points in A have 3 
edpes each of weight 0 (from S. 1' and 1.y). 1 edge to R and 
rest p - q points have only I edge (connected to R). Thus 
weight of set A is p - q + y X 1/4 = p - :3q/4. The resulting 
graph is connected with 11r = (1 + :5p) + 2 + ( p  - 2). 

Lernriia 1.1: Let 

and consider the problem 

iiiax f(&) 
srihj.to 0 5 ki 5 :3 I 5 i 5 p 

Li +k.2 + . .  . + kp = :iq 

Then. the max f ( k )  = 11 - 3q/4 and is achieved when in k. q 
kis equal 3 and the rest 11 - y are 0. 

Lemma 1.1 implies that if a connected graph with AI = 
(1  + : j q )  + 2 + ( p  - 3) exists.. then out of p points in A. y 
have 3 edges connected to S. Y and 1.V. I edge to R while 
the rest have only I edge to R. This implies that the matching 
exists (11 points with edges from S. Y. TI' is the required 

N is linite. G,, - GR, i n  finite time with probability 1 .  The 
second'limit follows from the strong law of largc numbers. 
Prcxif of Proposition 6.1: The network throughput is upper 
bounded by the maximum number of successful transmissions 
in a slot. The upper bound is achieved by assigning ai = 1 
for transmitter i E A,,,,,, and ai = 0 to the rest. 0 
Proof of Proposition 6.2 Let the sensor locations be fixed. 
Recall Quation 1 and Equation 3 .  Note that. g i i ( y i j )  is 
P('Cii 2 8 )  with d k i  tixed; recall that rii denotes the SIR 

( a z , , - ,  

Ek#j,j(2$-W,, 2 8. of a transmission from i to j .  If a;. 

gi+(&)  = 1. If  not. let 0 denote an N-dimensional vector - 
whose each component is either 0 or 1 .  Let. 

.men. P(r+, 2 9) = CUEv I I ~ + ~ . ~ O ; ; C ( ~  - ~ > ~ ) ( l - ~ k )  

Let II-,,, denote a vector with ntth entry omitted and let 
(g-nL> u n 2 )  represent 2. If there exists an I such that for every 
( L ~ ;  1) E V .  ( ~ ~ : 0 )  E V. P ( r y  2 ,O) does not depend on 1. 
Let Iij he the set of sensors for which the previous condition 
fails. That gi j (&)  is decreasing and affine in ah, I; E 1, 
follows from the form of P(rSj 2 p). 
Proof of Propition 6.3: If a: = 0 for some i then clearly 
11.1~(&*) = 0. If a; = 1 for some i then = 0; i E 
Pj where Pj are the primary interferers of j .  Proposition 6.2 
impliesthatifa,E(0:1)foralli.Ali(6:y)>0: l < i < N .  
Hence. 0 < y' < 1. 0 
Prcwf of Proposition 6.4: Note that the MAXMIN problem 
is equivalent to the following problem. 

Illax 3: 

snbj.to Afi (c t )  2 z: I 5 i 5 N 
.?: 2 0 

ai E [I): I];  1 5 i 5 N 
Since Mi(y) 5 1. :I: 5 1. The KKT conditions for the problem 
imply that at if g* is rcgular. then there exists LL* 2 0 such 
that following holds. 

- 

matching). 
NP-completeness of MAWSS for directed graphs is estab- 

lished by noting that sTA (strong connectivity augmentation. 
[311) is its special case. 0 -  - ; ) h r . i m * j  - 

Recall Definition 6.2. Let R. ~ { i i j  E iVi(G)} and Sj = 
3 T. 

{ilJ E Ii); l i  denotes the set ot Interferers of i .  Let p; = 0 
for some j .  Then Equation 5 corresponding to j implies that 

Procif of PropHition 5.2: Follows from noting that Algorithm ) - l : j , + j p ; T  = 0. 

I consvucts a route from every node to every other node. 0 
Proof of Proposition 5.3: Since 0 < oi < 1 for each if i $ Rj U S,. 
i .  P , ~ ( G ~ < ; ~ )  > 0 for each ( i 3 j )  E  ER^, Therefore. the 
probability that ( i : j )  is discovered in finite time is 1. Since 

Lerurr!n 1.2: If Q < ry' < 1 then duj anr,(n*! - ~ IJ  i f  and only 

Rj U S j  = 4 means that no sensor transmits to j and j 
is not interferer of any sensors. j is thus an isolated sensor 
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and cannot helong to a connected network. Thus Fquation 5 
0. For each such i. reduces to Ci:.itRjC,S, pi iia, 

< 0 (Proposition 6.2 and Lemma 1.2) and p: 2 0. It 

follows that for all i E K j  U Sj. = 0 and therefore 
p: = 0. Continuing the argument for each such i and further, 
let A denote the tins1 set {ilp; = 0). Let R = { k l k  $ A}. 
Then any such k does not transmit to any node in .4 and 
no sensor in 4 is an interferer of k .  Since C is a connected 
topology. this implies that for all I; E B, k $ C. Thus. for all 
i E G. jL: = 0 which implies that Afi(Gl (it) > AI*. However. 
this is a contradiction since N is tinite and the minimum is 
achieved. This proves that AL.; > 0: 1 5 i 5 W and therelore 
the proposition. 

Reinurk 1.1: The crucial condition for throughput equality 
is that G is connected. Connectedness imposes interference 
since if  j receives from i, i t  is an interferer o i  i by Detini- 
tion 6.2 and Proposition 6.2.  Therefore. even if  sensor i and j 
are not mutually interfering o r  transmitting to each other, their 
throughputs are coupled via intermediate sensors. If there are 
two disconnected clusters of sensor which are non-interfering. 
it is clear that their throughputs need not he equal. 0 

hnnfs of Proptsition 6.5: is based on the concept of 
generalised gradients of generalised differentiable functions. 
See [?SI, 1251 for details. 

* B d l . ( ~ f )  = 
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