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Abstract— Currently, the Internet is dominated by TCP traffic.  believed that if all users deployed TCP, networks will rarely
TCP is congestion aware, shares bandwidth with other TCP see congestion collapses and the overall utilization of the
flows, and is stable because most flows are congestion reactivenatwork will be high. However, there are definite indications

It has been shown that current AQM schemes may not be that th t of fi tive traffic | th
resistant to greedy traffic agents. Thus, it is important to study at the amount of non-congestion-reactive traffic 1s on the

mechanisms which provide incentives to greedy agents to comefise [6]. Most of this misbehaving traffic does not use TCP
to an equilibrium state in their own selfish interest. In addition, e.g. Realmedia, network games, and several other real time
we want our AQM schemes to be oblivious to the flows’ identities multimedia applications. If an agent is selfish and its sole aim

which makes them easier to scale and deploy. In this paper, e j5 15 maximize its own benefit, it is not bound to use TCP or
show that if routers used EWMA to measure the aggregate rate, '

then the best strategy for a selfish agent to minimize its losses 21 other well k_nown transport protocol for its a_pp||cat|ons_ Its
is to arrive at a constant rate. Even though the protocol space Protocol behavior may then be more aggressive, and, hence,
is arbitrary, our scheme ensures that the best greedy strategy severely degrade the performance experienced by the other,

is simple, i.e. send with CBR. Then, we show how we can usewell-behaved agents it shares resources with. Even worse, if
the results of an earlier paper to enforce simple and efficient | ysers are greedy, they might send at ever-increasing rates
protocol equilibria on selfish traffic agents. . . .
to garner a greater share of bandwidth. In fact, in an earlier

paper [3], we demonstrate that both Drop-tail and RED do
not impose Nash equilibria in the presence of greedy traffic.

Congestion control and active queue management (AQNlhus, it is increasingly important for AQM schemes to be
are two important components that lead to effective perfambust against greed.
mance in the network. An AQM scheme, such as RED [7], The problem we study is to design oblivious AQM schemes
queues, schedules, and drops or marks packets accordingotowhich a simple Protocol Equilibrium exists, i.e. there
a specific policy or algorithm. A congestion control protocols a simple protocol such that if every user follows this
such as TCP [24], operates at the end-points, and uses ghstocol, then the network behavefficiently (i.e. with high
drops or marks received from the AQM policies at routers aigk utilization and bounded drop probability), and there is
feedback signals to adaptively modify the sending rate in orde$ incentive for any user to deviate from the protocol. We
to maximize its own goodput. For example, protocols angould like the equilibrium protocol to be as simple as possible
mechanisms such as TCP [24], [9] (congestion control) angthout putting any restrictions on the protocol space of the
Drop-tail and RED [7] (AQM) respectively have been widelyagents, i.e. a user is allowed to choose arbitrarily complex
implemented and/or deployed. We classify AQM schemeggotocols but we would like to provide incentives to users so
into two groups:obliviousor stateless and stateful. Oblivioughat they choose simple protocols that lead to efficient network
AQM policies do not keep per-flow state information, andserformance.
hence, cannot perform differential dropping or scheduling we study the case of a single bottleneck link. We yige)
for different flows. In contrast, stateful schemes such as fag denote the arrival rate of an agentThe agents have full
queueing [2] offer good performance on a variety of metricgnowledge of the network conditions arfiglt) is only revealed
Oblivious schemes such as drop-tail are more scalable aftidime+. We will refer to f:(t) as a protocol. The agenti
much easier to implement and deploy. is allowed to use the entire history of the system till time

TCP [24], [23] is the dominating transport layer protocol ijeterminef;(t). A protocol equilibrium is essentially a Nash
the Internet and accounts for over 90% of the total traffic [29].
The TCP protocol is characterized by a well defined, feedbaCkA congestion control protocol typically refers to the algorithm used to
based additive increase and multiplicative decrease (AIMBgapt the sending rate in response to a feedback from the system, such as
congestion control algorithm that is well studied, quite robuggcket losses. But we assume that the users are omniscient, and, hence,
. . . . viding feedback from the network to the users is redundant. In this
in practice, and can share bandwidth equally with other TC?(IJES

e Al ) - alized setting, a protocol can be thought of merely as the sending rate
flows that have similar round trip times [20]. It is widelyof a user.

I. INTRODUCTION



equilibrium in a very large space of all possible protocols of « Now, the protocol space has been reduced to a choice of
these agents. Recall that a Nash equilibrium is an important rates. We can now invoke results from our earlier work [3]
solution concept in Game theory [19]. Like any game, our and show that there exists an oblivious AQM scheme
game has rules and players. The rules are set by the AQM which combined with EWMA leads to an efficient equi-
strategies and the players are the selfish agents each following librium. At this equilibrium, each agent sends at the same
a protocol f;(t). constant bit rate.

With stateful AQM schemes such as fair queueing, protocol Observe, that CBR is a consequence of the EWMA and
equilibrium is very easy to obtain. However, such schemes our AQM, and not a requirement. While our proofs are
may be hard to scale and deploy. In this paper, we explore quite involved, the overall motivation is quite easy to
the limits of what can be achieved using oblivious AQM  grasp. Given an EWMA, the best strategy for an agent
schemes that are stateless and easily deployable. Recall that is to arrive at uniform intervals in the discrete case and
the oblivious routers can only look at aggregate traffic and are with CBR in the continuous case. As stated earlier, this is
not allowed per-flow state. Also, we do not restrict the agents’ desirable since we want the protocol space to be arbitrary

traffic arrival pattern in any way. but the equilibrium strategy to be simple. Note that the
In our game, it would be infeasible for a router to store agents must arrive with a CBR in their own interest. They
the entire history since the sending rafe&) may vary arbi- cannot improve their performance by making arbitrarily

trarily with time. Thus, we restrict ourselves to routers which  fine-grained decisions. Also note that the router is doing
merely maintain an Exponentially Weighted Moving Average @ minuscule amount of work.

(EWMA) of the aggregate arrival ratg(t) = ; fi(t).
The router strategy can be summarized( tzy a sizn:gle (fu)nctigh Related Work

p : Rt — [0,1] where p(R(t)) denotes the fraction of The work related to protocol equilibria can be catego-
incoming traffic dropped by the AQM at the router, wheré&ized into two major groups. The systems community has
R(t) = EWMA(f(t)). We assume infinite buffers. There ignvestigated different AQM schemes that impose some degree
no simple reason to believe that such a simple strategy cnfairness on misbehaving flows. The theoretical work has
lead to a protocol equilibrium. However, in this paper, waddressed this question by constructing models for selfish user
show that this is indeed the case. We find functighshat behavior and analyzing them with tools such as Game theory.
lead to protocol equilibria. We show tht(¢) is a constant, In this section, we first present a short survey of the AQM

p is low and bounded, and link utilization is high. literature followed by a slightly longer survey of the game
theoretic approaches.
A. Our Results One can group AQM policies into stateless, stateful, and
) . . ) those in between the above two. The best examples of stateless
In this section, we summarize our main results. policies that have been widely implemented and/or deployed

« In a single player game, where a player has a finitge Drop-tail and RED [7]. At the other end of the spectrum
number of packets to send in a finite time window, routeis fair queueing [2]. In between the two are various schemes
measure rate using EWMA, and the drop probability ithat use some amount of state. For example, FRED [16]
linear in the EWMA, the best strategy for the agent tkeeps track of active flows. CSFQ [28] ensures that the
minimize its loss is to equispace its packet arrivals. bandwidth allocation in core routers is done in a stateless

« In atwo player game where each player declares its entaed an approximately max-min fair manner while the edge
arrival sequence apriori, the routers measure rate usiroyiters need to measure the rate of flows. RED-PD [17]
EWMA, and the drop probability is linear in the EWMA, detects the top few misbehaving flows, keeps track of them
if one player arrives at regular intervals with an initialising minimal state and punishes those flows. In [18], [4], the
random shift, the other player essentially plays a gana@ithors propose scalable algorithms for identifying large flows
with itself. It is now easy to show that there exists asing techniques such as sample and hold, and multistage
rate such that each player arriving at that rate (with dilters.
initial random shift) is a mixed strategy equilibrium for Game theory [19] is a very mature topic. The current
the game. Since the entire arrival sequence is definedcinallenges of game theory applied to computer networks
the beginning, we call the resultant equilibriuspriori are summarized by Papadimitrou [21]. Several papers (for
Equilibrium. It is easy show that this game does not havwexample [22], [14], [13], [27], [1], [26], [25], [15], [10],

a deterministic (pure) strategy equilibrium. [5], [15]) have applied tools from microeconomics and game

« Main Result: We show using a fluid approximation oftheory to computer networks over the last fifteen years. A
traffic and a large class of arrival functions, that arrivinghorough literature survey is beyond the scope of the paper.
with a CBR is optimal for a single user. The proof use¥/e now consider some of the most directly relevant related
a fluid model of traffic and calculus of variations. Thenwork and compare them with our approach.
we show that if allV — 1 agents arrive with CBR, the In [26], Roughgarden et. al. study the effect of degradation
best response for th&*" agent is also to arrive with a of service due to selfish routing. However, they do not study
CBR. the mechanisms to reach equilibria. We, on the other hand,



assume fixed routes and look at the strategies where the uséwis issues need to be resolved.
free to choose its arrivals. Also, our Uti”ty function is different 1) Feedback: In our version of the protoco| equi”brium,

from theirs. Korilis et. al. [13] study the existence of equilibria. agents are omniscient. But for the scheme to be practical,
However, they do not show how to get to equilibrium. In [14],  the state of the network needs to be be sent to end-point
the authors study equilibria of a routing game over parallel  agents in form of feedback. Note that we wish to send
links. Our work is different from the above papers because,  this feedback without maintaining per-flow state at the
unlike them, we present simple AQM schemes to impose routers.
protocol equilibrium on selfish agents. 2) Tragedy of the commons:lt is easy to show that a
Shenker [27] defines the Internet game from a switch  malicious agent can disrupt our scheme by sending at
scheduling perspective and proves that with Markovian arrival ~ a modestly higher rate than the equilibrium rate. The
rates, thefair share allocation scheme is the only scheme malicious agent would suffer but so would everyone else.
within a class of buffer allocation functions (called MAC) Thus, we need to weed out the malicious flows out of the
that can guarantee a Nash equilibrium (on selfish agents), system. We would like to design a low-state architecture
and is also Pareto efficient. We, on the other hand, study that can filter or dampen the non responsive malicious
equilibria imposed by oblivious AQM schemes with very flows.

general drop functions and arrival processes. In fact, ourrhe format of this paper is as follows. Section Il defines
mechanisms .do nqt fall into the class MAC. Several othgl, |nternet game, and the Nash condition from [3]. Then,
papers have investigated related problems. For example, P&ttion |11 shows that in a discrete packet arrival model, if
et. al. [22] study Nash equilibrium properties of the Q0S gamgy, agent has a finite number of packets to send in a given
However their utility functions are much different from ourg; e window, the best strategy for the agent is to equispace
due to their multilevel service model and threshold based stgp, packets. Then, Section IV-A shows that CBR is the best
functions for modeling utility. They claim that for a singlegyateqy under a fluid model. Then, we show how to determine
service level, their model boils down to that in [27]. Gibbeng,g rate of the CBR in order for the agents to reach equilibria.

et. al [8] have studied the effect of selfish users in the contqg%a”y we discuss our future directions and conclude in
of the user optimization problem defined in [12]. Their mode}qqtion V.

assumes that the selfishness arises due to the user’s disregard

for the effect of its own action on prices. They model the Il. BACKGROUND

Internet game differently using a AIMD like protocol with This section describes our assumptions, the models we use,

the congestion marks from the routers. Thus, our assumptiefiy the definition of the game we study.

and our problem is different from theirs. Note that we have

not looked at feedback signals from the network and pricifly The Internet Game

issues in our work. In our Internet game, we assume that selfish traffic agents
Very recently, Johari et.al. [11] have shown the existenoan have arbitrary arrival processes, as long as they have

and the uniqueness of Nash equilibria for a network gamaewell defined average rate. This is in contrast to earlier

with a single congested link defined as follows: each playeork [3], [27]. The rules of the game are enforced by routers,

sends its bid to a network manager and gets bandwidthdand more specifically, the queue management algorithms at

return. It maximizes its own utility which is the difference ofthe input/output queues. The router measures the aggregate

a concave function of its own bid as well the aggregate bid aadrival rate using an exponentially weighted moving average

its own bid. They show that therice of anarchyfor the above (EWMA). Then, it calculates a drop probability that is a

game is at most, i.e. the normalized utility lost becausefunction of this measured rate, and drops packets with a

of selfish users trying to game the system is at nX$¢. probability given by the function.

Their results require a statefalanageror the router while we  Each playeri has a simple utility function/; equal to

assume that routers do not keep per-flow state. Unlike theits, goodputyu;. As mentioned earlier, the AQM schemes in

we do not assume any pricing mechanism, and do not useoaters enforce the rules of the game on the selfish agents.

virtual currency. In our game, the utility is the goodput. In this work, we only consider oblivious AQM schemes. An
Akkela et. al. [1] have modeled greedy agents using TCBblivious router has a drop probabilifydue to themeasured

like AIMD algorithms. They show that RED does not have aggregate average load &f and an average service time of

Nash equilibria using empirical models and through simulamity. However, for convenience, assume for now that each

tion. Also they have a restricted notion of selfish traffic. Unlikagenti uses a constant bit rate (CBR) wily chosen upfront.

them, we considenblivious AQM techniquegonsider a wider Note that if traffic is a CBR with rate\;, then the EWMA

class of traffic arrivals and drop functions, and show how ong also A;. Now, oblivious routers may or may not impose

can reach the equilibrium state. symmetric Nash equilibrison selfish agents. A symmetric
) ] ] Nash equilibrium is one where every agent has the same
C. Practical Considerations goodput at equilibrium. We only considesymmetric Nash

We believe that a practical solution to greed is importargéquilibria in this paper and we drop the symmetric adjective
However, before our ideas can be used to build real systerttgpughout the paper.



For a Nash equilibrium to hold, we have the followinggoodput is lower bounded by; and upper bounded by.,,

conditions: andu = A(1 — p), we can write the Nash condition as
« No agent can increase its goodput unilaterally, at Nash npy dp Njty
equilibrium, by either increasing or decreasing their e S ax S 2\
throughput. This can be written down as We call this the efficient Nash condition.
oU; .
Vi, I 0. (1) B. Router Mechanisms
) o ' As mentioned in the preceeding section, rate is measured
SinceU; = pi, Vi, g5 = 0. _using an exponentially weighted moving average (EWMA)
« At Nash equnlk_mu.m-, all flows have the same utility ofyhich is defined as follows. Lef(¢) denote the aggregate
goodput. That isyi, j {; = p; and A; = A;}. arrival rate at timet. The exponentially weighted moving

» For oblivious AQM strategies and functions of routegyerage of f is defined as
states like drop probability and queue length,

t
d d ewmgt) = / f)e "t =D dyg

N dn _ ,
The above conditions can be used to derive an interesting c‘c’:vﬁ-ere nisa pa_lrameter caIIeFj_the decay co_nstant. T_h,? re1s
.. . . = “also a natural discrete analogtjfdenotes the time of thé
dition that must be true at Nash equilibrium for an oblivious

AQM. Assume there are users. The utility function for each packet arrival, ¢ he?‘ the expgcteq r(r;oy;n)g average at time
agent can be written down as denoted ewmgais given by " , e7"\*~*), Without the loss

of generality, we assumg= 1 in our proofs.

U = w = N(1—p). Each router penalizes flows at that router with a drop proba-
bility that is a function of the EWMA of the aggregate arrival
rate. Hence, we use the terms penalty and drop probability
interchangeably.

Vi,

Taking partial derivatives we get

Op; Op

v 1—p—X\ = 0.
Ai O IIl. APRIORIPROTOCOLEQUILIBRIUM FOR DISCRETE
Since we consider only oblivious AQM schemes, we have PACKET SIZES
oI dp In this section, we will study the simple case of apriori
o\, d\ equilibrium for discrete packet arrivals. While our main results
Since we consider symmetric Nash equilibria, we must algée contained in the next section, this section illustrates the
have. intuition quite well. We will restrict ourselves to linear penalty
A = é functions of the type(r) = ar+ 3 for suitably chosenv and
n (. Again, a more general protocol equilibrium is discussed in

It has been shown in our earlier work [3] that it is possiblthe next section. We will first study a simple single player-
to derive what we call théNash condition which must be game.
satisfied at Nash equilibrium:

dp_ _ ndx

A. Finite single player game

2) Now, we will show that for an agent in a single player
L=p A game has only a finite number of packets to send, and the

In order to apply the above to protocol equilibrium, we presedtop probability of the router is linear in the measured rate,

an AQM that will ensure that selfish agents use CBR. Obsertleen equispacing the packets is the best strategy.

that the above condition is applicable to both CBR as well asTheorem 3.1:Consider a single-player game where the

Poisson traffic agents. router penalty is a linear function of the EWMA of the arrival

To evaluate whether a Nash equilibrium imposed by aate. Suppose the user has to senghckets in a time window

AQM scheme is good, let us define a tersfficiency Let A. Then, the solution which minimizes the total penalty is one

the aggregate throughput, goodput, drop probability at Naalhere the packets are equispaced.

equilibrium of a system with users be denoted by;, ji; Proof:

andp; respectively. The Nash equilibria imposed by an AQM Since the penalty is linear in the measured rate, and the

is efficient, if the aggregate goodput of any selfish agent tistal number of arrivals i%:, we need to minimize the total

bounded below when the throughput (offered load) of thaenalty imposed by the router. Suppose the arrival sequence

same agent is bounded above. The conditions for efficienaf/the packets is given by

are:
N tlatQ?"'vtn;
1) Xi(1—pi) > ca. } )
2) X < 62'1 such thatt; >0, t, <A, ti1 >t; Vi,1 <i<n.

wherec;, co are some constants. Thus it is easy to see thatFor each ith arrival, the router sees a rate of =
even the drop probability at equilibrium is also bounded. Sin@:;:1 e~~t) Note that each arrival consists of 1 packet



only. Now, the router penalty; is linear inr; i.e.p; = ar;+0.
Without loss of generality, we can assume( to be unity

Hence,S2(i) = Sa2(i 4+ 1),Vi,1 < i < n — 1. Similarly, we
rewrite Equation 9 forS; and getS; (i) = S1(i + 1). Thus,

since they will not affect our results. Thus, we want tsubstituting in Equation 6, we have

minimize the following function:

— iie—(ti—ta‘)_

i=1j=1

Partially differentiating with respect ta:;, we have

Zz: —eliti 4 Z eli=ti, 3)

j=i+1
Let us define two quantmeSl and S, as follows:
i—1
i) = e*tiZetj. 4)
j=1
n
So(i) = e Z e . (5)
j=i+1

Note that decreasing; and increasing, can only help. So
we will assume that; = 0 and¢,, = A. For all otheri, we
must haveg—g = 0. We have by Equation 37 i,1 < i <
n, S1(i) = S2(4). By substitutingi + 1 for i in Equation 4,
we get
Si(i+1) = ety e
= ettt (Z; leti et
= ettt (ehi Sy (i) + ehh).
Thus, we have
Vi, 1 <i<mn, Sl(l + 1) = eli7tita (Sl(l) + 1) . (6)
By substitutingi + 1 for 4 in Equation 5, we get
Spi+1) = e Y el
— ef1+1 (Z?zHl e~ ti — e_t11+1)
= elitt (e7tiSy(i) — e i),
Thus, we have
Vi,1 <i<mn, So(i) = ettt (14 S5(i+1)). (7)
Dividing Equation 6 by Equation 7, we get
Si(i+1) 1+ 51(9) ®)
Sa (i) 14+ S2(i+1)
SinceV i,1 < i <mn, S1(i) = S2(i), from Equation 8 we
get

Sa(i+1) _ 14 55(1) )

S5(i) 1+ So(i+ 1)
Now, we solve Equation 9. Lef; (i) = z and Sz (i + 1) = v.
Then, we can simplify Equation 9 as

Vi, l<i<n-—1,

y—i—y2 = 422

Solving for z, and taking the positive root (sincg > 0), we
have:

1 1
= —= “V1i+tdy+4y? =y
x 2+2 + 4y + 4y Y

Vi,l<i<n-—1, S1(i+1) = e+ (S1(i+1)+1).
(10)
Also, from Equation 4 we get

Vi,l<i<n—2, S1(i+2) = etttz (§(i4+1)+1).

(11)
Comparing the Equations 10, 11 and noting thatl < i <
n—2, S1(i+1) = 51(i +2), we have

VZ,l <t <n-— 27t7;+2 —tit1 = tiv1 — ;.

B. Multi-player games

We now move on to multi-player games. The strategy for
useri is to specify the exact arrival times beforehand in the
following form: o; = < t;1,t0, ..., tik,... > wWheret;; >
0, tij+1 > t;;. Call it the gameG. We have the following
theorem:

Theorem 3.2:If routers use EWMA to measure rate and
use a linear drop function, the gan@ does not have a
deterministic Nash equilibrium.

We omit the proof of the above theorem. The basic intuition
is that each user wants its own packets to arrive infinitesimally
before those of another fellow to obtain the benefit of a lower
EWMA. Hence, we need to study mixed strategies to obtain
a Nash equilibrium in this setting. Next we show that in the
2-player game, we can have a mixed strategy equilibrium.
Definition: A A-uniform strategy send the first packet at a
randomly chosen time: and from then on, each packet is
sent at increments ah.

Now, we will assume that the router penalty function is
of the form «R where R is the EWMA. First we have the
following lemma.

Theorem 3.3:In a 2-player game?, if player 1 chooses
a A;-uniform strategy, then the expected penalty of plager
depends only on its own arrivals arﬁéll, for a suitably chosen
value of the initial rateR,.

Proof: Let R;(t) = >t <i €970 Intuitively, R R:(t)
is the contribution to the EWMA at time due to player:.
Also assume that time= 0, there is some initial rate due to
EWMA. Call it Ry. Then, for ak player game, we have the
following equation:

k
R(t) = Roe™" + Y Ri(t). (12)

We will assume that the playdrhas aA;-uniform strategy.
Now consider a sequence of arrivals of plageiVe will now
calculate the expected value of the penalty at tim&ince
player 1's strategy isA;-uniform, the expected number of
packet arrivals due to player 1 during an infinitesimal time



interval dt is g—tl. Hence, using linearity of expectations, we V. PROTOCOLEQUILIBRIUM WITH FLUID MODELS

have t This section generalizes the results from the previous section
E[Rl(t)] = / A—e”‘*’dm. using a fluid model for the traffic.
0 1 o N
and A. CBR Maximizes Utility

In this section, we first show that irrespective of the router
drop function, if EWMA is used by the router to measure
t aggregate arrival rates, the best strategy for a single user is to
) send traffic as a constant bit rate (CBR). We model the arrivals
0 using a fluid approximation to prove the above statement.
o <R06t + i(l et 4 R}(t)) S.uppose the arrival rate of traffip at the router at timis
Aq given by f(t). Then, the rate estimate at the router, denoted
by R(x) at timex, is given by

R(z) = /093 f(t)-et="dt. (14)

ElaR(®)] = o (ElRee™] + ElRi(1)] + ElR:(1)] )

1 -
A—e:”*tdx + Ra(t)

= a(Roet +
1

=« (H(RO - Ail) + Ail + R}(t)) .

ChooseR, = Ail. Hence, the expected penalty is
1 Let p(R(z)) denote the drop probability for the arrival rate
ElaR(t)] = « (A + RQ(t)) . R(z) and letg(R(z)) be 1 — p(R(z)). We refer tog as the
1 goodput function. Then, the total goodp@tx) till time x is
Thus, the expected penalty of playgrdepends only on its given by
own arrival pattern and player 1's average rate. Informally, "
player 2 seems to be playing a game against itself. Glz) = 0 FW)g(R(y))dy.
) . We also define a class of functions to contain those
Corollary 3.1: In a 2-player gamé, if player 1 chooses a ynctionsg such thaty(z) = 2 has countable roots for ajl.
Aj-uniform strategy, then the best strategy for plag€s t0 |t can pe shown that most realistic goodput functions belong
equispace its own packets. to U; certainly the ones that we use belong to this class. For
The proof of the corollary foIIQV\{s from the the above tWanampIe, ifg(x) is any polynomial which is not identical ®,
theorems. From Theorem 4.1, it is clear that plagemust () s in ¥ Also we will assume the functiofi to be smooth.

equispace its packets with some interval, say Now, we use the above fluid model to prove the following
Theorem 3.4:The two-player gamé-, as described above’theorem:

has a mixed strategy Nash equilibrium when each player use§heorem 4.1:1n the above fluid model and a single-player

a A-uniform strategy. game, CBR is the best strategy for the player provided the the

Proof: In the game(7, assume that player 1 has a mixeq 540t function belongs &, and the arrival functiorf and
strategy. We show that the corresponding pure strategy if%fintegral is smooth.

player 2 results in player 2 maximizing her utility. Consider the  p.gof: We want to maximize the following quantity
player 1 having a\; mixed strategy. By the above theorem, L e

we know that if player 1 has A strategy, the best strategy U = lim = fW)g(R(y))dy.

for player 2 is to arrive in an equispaced fashion. Let the e Jo
spacing of player 2 bé,. Hence, the rates of the two playerd-et us define dunctional J,(f)

are given byA;, Ao respectively with\; = Ai and )\, = Ai. a

Thus, the utility of player 2, when is sufficiently large, is Jo(f) = /0 F(W)g(R(y))dy.
given by

(15)

Our goal is to maximizeJ,(f). From the fundamentals of
Uy = Ao <1 —a ()\1 + A2 . )) . (13) calculus of variations, we need to obtain a functjf) that
1—e >z makes thdifferential of the .J, vanish. This would also mean
Partially differentiating the above with respect Xg, for the ‘ig% = 0, which is the necessary condition for the functional
above expression to have an extrema, we must have J, to have an extremum. Now, let us divide the interval from
1 0 to a into n equal parts of the lengthz. At = = x, the
Uz _ 1—a) — 2a) _ ace ”1 -0 corresponding value of the function is given by = f(xs).
Oz 1—e 2 (1—e 32)2 Now, J, can be written as
It is possible to show that the above equation is satisfied for
some); = Ay whena > 0. This can also be verified using

Tp—0T
Ju(f) = Jim ( / £ (0)9(R(y))dy

Mathematica, for example. Thus, the pure strategy of player 2 5z—0

corresponding to the mixed strategy of the player 1 maximizes + f(zr)g(R(zy))dx

player 2’s utility when both the players have the same rate, a

or the same inter-packet spacing. Thus, there exists a mixed + f(y)g(R(y))dy). (16)

strategy Nash equilibria for the gandé ]



Now, must be a constant. Using Equation 21, we fjet) to be a
0, . 0J,
—0 <« lim —0. constant. [ |
of 820 9(yxiz) The above theorem shows that if routers use EWMA, then a
When we apply the above condition on Equation 17, we sé&#gle player must arrive at a constant rate. Now, the following
that the first term of Equation 17 vanishes. But the third tergorollary generalizes this result to many players.
does not because the changeyjnaffects all they; Vi, i >k Theorem 4.2:In an n-player game, if routers measure ag-

due to the computation a@k. Also, sincey, depends ory (zy) ; :
for any k, the above equation implies that what we reall oree?r?it/ee r:;eCulel_\[\ g EWMA, the best strategy for all agents is

need to find out |57)5 Hence, the condition thaf, has )
. I . Proof: At time z, let f(x) denote the aggregate rate
an extremum iss-22e—

" 8f(w)61' = 0. Thus, we have the following and let thei'” user arrive with a rate off;(x). Now, by
condition problem, f(z) — fi(x) is a constant for somé The proof
9 (f ))oz +/ oy ) —0.(17) Of this corollary is very similar to that of Theorem 4.1. As in
A(f (w)ox) the above theorem, we need to maximize
Partially differentiating Equation 17 with respect fdx)dx / f

and using the Leibniz rule for differentiation under the integral = lim —

a—oo

sign, we obtain
Note that R(z) depends on the aggregate rgte Thus, the

a(fa(J()l(Sx / fly ) 30/ (2)07) -¢'(R(y)) - dy. functional wewnejj to maximize is given by

Now ory) ., T = [ R Ry + faa(R@)
I(f(xz)éx)

For J, to have an extrema, we must have + /I fily)g(R

afa(i;5m = g(R(z)) +/ fly)- 7Y - ¢'(R(y))-dy = 0. (18) instead of Equation 17. Now, observe that if everyone except
« user i arrives at a constant rate2- = -2. Hence,

Differentiating the above equation with respect:tave obtain a(?fg(f)l;m) — v Thus, Equaﬂc?r{ 18 is unéz:fhanged, and
’(R( )) ( ) — f(x)g' (R(z)) the rest of the proof of Theorem applies in this case?too.
Then, we getf(z) to be a constant as in the above theorem.

/ fy)- 9'(R(y)) - dy =0. 19 Now, f(z) = fi(z) + some constant. Hencg;(z) is also a

onstant. ]

Subtracting the Equation 19 from Equation 18 and simplifyin&,
we get B. Protocol Equilibria with CBR Agents

g(R(z)) — ¢ (R(z))R'(z) + f(x)g'(R(z)) = 0. (20) The previous section showed that agents should arrive with
CBR in their own interest. Since the agents must send traffic
with CBR, we can now invoke the results of our previous
paper [3], and determine the rate of the CBR. This section
R(z) + R'(z) = f(x). (21) tells us to compute the rates at which agents arriving with
CBR will lead to efficient equilibria.

Assume usef arrives at a constant rate Let A = > ;.

Observe that the dependence aenhas vanished. Now, on
differentiating R(x) using the Leibniz rule, we obtain

Thus, by applying Equation 21 to Equation 20, we have

9(R(z)) = ¢'(R(z))R'(z) — (R(z) + R'(x))g'(R(x)). AssumeR, to be the initial rate estimate of the EWMA at the
o ) router. We can write down the EWMA rate estimate at time
Simplifying, we obtain r as

9(R(x)) = —R(x)g'(R(x)).

R(z) = / A-eTFdt + Roe ™™ = A + e *(Rg— ).
On rearranging the above equation, we obtain 0

¢ (R(x)) ., R'(z) Set_ting Ry app.ropriately, we getR(z) = A. Thus, the
mR () = — R(z)’ estimated rate is alsa at all times. Hence, we can use the
. ] o ] arguments similar to [3] to design a stateless AQM to impose
On integrating and adjusting the constants, we obtain equilibria on selfish agents. In [3], we showed that at an
R(z)g(R(z)) = v, wherey is a constant efficient Nash equilibrium, the following relationship holds:
Let z = R(z). This implies,z.g(z) = 7. We assumed that the A, = 1— #

integral of f is smooth, and; € ¥; which implies thatz can
have a Count?‘ble set of values it can J_[ake- Now; R(z) is a %It is easy to see that if(z) € ¥, theng(z + \) € ¥, where) is a
smooth function, and does not have jumps. Hence, R(z) constant.
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