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Abstract— Currently, the Internet is dominated by TCP traffic.
TCP is congestion aware, shares bandwidth with other TCP
flows, and is stable because most flows are congestion reactive.
It has been shown that current AQM schemes may not be
resistant to greedy traffic agents. Thus, it is important to study
mechanisms which provide incentives to greedy agents to come
to an equilibrium state in their own selfish interest. In addition,
we want our AQM schemes to be oblivious to the flows’ identities
which makes them easier to scale and deploy. In this paper, we
show that if routers used EWMA to measure the aggregate rate,
then the best strategy for a selfish agent to minimize its losses
is to arrive at a constant rate. Even though the protocol space
is arbitrary, our scheme ensures that the best greedy strategy
is simple, i.e. send with CBR. Then, we show how we can use
the results of an earlier paper to enforce simple and efficient
protocol equilibria on selfish traffic agents.

I. I NTRODUCTION

Congestion control and active queue management (AQM)
are two important components that lead to effective perfor-
mance in the network. An AQM scheme, such as RED [7],
queues, schedules, and drops or marks packets according to
a specific policy or algorithm. A congestion control protocol,
such as TCP [24], operates at the end-points, and uses the
drops or marks received from the AQM policies at routers as
feedback signals to adaptively modify the sending rate in order
to maximize its own goodput. For example, protocols and
mechanisms such as TCP [24], [9] (congestion control) and
Drop-tail and RED [7] (AQM) respectively have been widely
implemented and/or deployed. We classify AQM schemes
into two groups:obliviousor stateless and stateful. Oblivious
AQM policies do not keep per-flow state information, and,
hence, cannot perform differential dropping or scheduling
for different flows. In contrast, stateful schemes such as fair
queueing [2] offer good performance on a variety of metrics.
Oblivious schemes such as drop-tail are more scalable and
much easier to implement and deploy.

TCP [24], [23] is the dominating transport layer protocol in
the Internet and accounts for over 90% of the total traffic [29].
The TCP protocol is characterized by a well defined, feedback
based additive increase and multiplicative decrease (AIMD)
congestion control algorithm that is well studied, quite robust
in practice, and can share bandwidth equally with other TCP
flows that have similar round trip times [20]. It is widely

believed that if all users deployed TCP, networks will rarely
see congestion collapses and the overall utilization of the
network will be high. However, there are definite indications
that the amount of non-congestion-reactive traffic is on the
rise [6]. Most of this misbehaving traffic does not use TCP
e.g. Realmedia, network games, and several other real time
multimedia applications. If an agent is selfish and its sole aim
is to maximize its own benefit, it is not bound to use TCP or
any other well known transport protocol for its applications. Its
protocol behavior may then be more aggressive, and, hence,
severely degrade the performance experienced by the other,
well-behaved agents it shares resources with. Even worse, if
all users are greedy, they might send at ever-increasing rates
to garner a greater share of bandwidth. In fact, in an earlier
paper [3], we demonstrate that both Drop-tail and RED do
not impose Nash equilibria in the presence of greedy traffic.
Thus, it is increasingly important for AQM schemes to be
robust against greed.

The problem we study is to design oblivious AQM schemes
for which a simpleProtocol Equilibrium exists, i.e. there
is a simple protocol such that if every user follows this
protocol, then the network behavesefficiently (i.e. with high
link utilization and bounded drop probability), and there is
no incentive for any user to deviate from the protocol. We
would like the equilibrium protocol to be as simple as possible
without putting any restrictions on the protocol space of the
agents, i.e. a user is allowed to choose arbitrarily complex
protocols but we would like to provide incentives to users so
that they choose simple protocols that lead to efficient network
performance.

We study the case of a single bottleneck link. We usefi(t)
to denote the arrival rate of an agenti. The agents have full
knowledge of the network conditions andfi(t) is only revealed
at time t. We will refer to fi(t) as a protocol1. The agenti
is allowed to use the entire history of the system till timet to
determinefi(t). A protocol equilibrium is essentially a Nash

1A congestion control protocol typically refers to the algorithm used to
adapt the sending rate in response to a feedback from the system, such as
packet losses. But we assume that the users are omniscient, and, hence,
providing feedback from the network to the users is redundant. In this
idealized setting, a protocol can be thought of merely as the sending rate
of a user.



equilibrium in a very large space of all possible protocols of
these agents. Recall that a Nash equilibrium is an important
solution concept in Game theory [19]. Like any game, our
game has rules and players. The rules are set by the AQM
strategies and the players are the selfish agents each following
a protocolfi(t).

With stateful AQM schemes such as fair queueing, protocol
equilibrium is very easy to obtain. However, such schemes
may be hard to scale and deploy. In this paper, we explore
the limits of what can be achieved using oblivious AQM
schemes that are stateless and easily deployable. Recall that
the oblivious routers can only look at aggregate traffic and are
not allowed per-flow state. Also, we do not restrict the agents’
traffic arrival pattern in any way.

In our game, it would be infeasible for a router to store
the entire history since the sending ratesfi(t) may vary arbi-
trarily with time. Thus, we restrict ourselves to routers which
merely maintain an Exponentially Weighted Moving Average
(EWMA) of the aggregate arrival ratef(t) =

∑
i fi(t).

The router strategy can be summarized by a single function
p : R+ → [0, 1] where p(R(t)) denotes the fraction of
incoming traffic dropped by the AQM at the router, where
R(t) = EWMA(f(t)). We assume infinite buffers. There is
no simple reason to believe that such a simple strategy can
lead to a protocol equilibrium. However, in this paper, we
show that this is indeed the case. We find functionsf that
lead to protocol equilibria. We show thatfi(t) is a constant,
p is low and bounded, and link utilization is high.

A. Our Results

In this section, we summarize our main results.

• In a single player game, where a player has a finite
number of packets to send in a finite time window, routers
measure rate using EWMA, and the drop probability is
linear in the EWMA, the best strategy for the agent to
minimize its loss is to equispace its packet arrivals.

• In a two player game where each player declares its entire
arrival sequence apriori, the routers measure rate using
EWMA, and the drop probability is linear in the EWMA,
if one player arrives at regular intervals with an initial
random shift, the other player essentially plays a game
with itself. It is now easy to show that there exists a
rate such that each player arriving at that rate (with an
initial random shift) is a mixed strategy equilibrium for
the game. Since the entire arrival sequence is defined in
the beginning, we call the resultant equilibriumApriori
Equilibrium. It is easy show that this game does not have
a deterministic (pure) strategy equilibrium.

• Main Result: We show using a fluid approximation of
traffic and a large class of arrival functions, that arriving
with a CBR is optimal for a single user. The proof uses
a fluid model of traffic and calculus of variations. Then,
we show that if allN − 1 agents arrive with CBR, the
best response for theN th agent is also to arrive with a
CBR.

• Now, the protocol space has been reduced to a choice of
rates. We can now invoke results from our earlier work [3]
and show that there exists an oblivious AQM scheme
which combined with EWMA leads to an efficient equi-
librium. At this equilibrium, each agent sends at the same
constant bit rate.
Observe, that CBR is a consequence of the EWMA and
our AQM, and not a requirement. While our proofs are
quite involved, the overall motivation is quite easy to
grasp. Given an EWMA, the best strategy for an agent
is to arrive at uniform intervals in the discrete case and
with CBR in the continuous case. As stated earlier, this is
desirable since we want the protocol space to be arbitrary
but the equilibrium strategy to be simple. Note that the
agents must arrive with a CBR in their own interest. They
cannot improve their performance by making arbitrarily
fine-grained decisions. Also note that the router is doing
a minuscule amount of work.

B. Related Work

The work related to protocol equilibria can be catego-
rized into two major groups. The systems community has
investigated different AQM schemes that impose some degree
of fairness on misbehaving flows. The theoretical work has
addressed this question by constructing models for selfish user
behavior and analyzing them with tools such as Game theory.
In this section, we first present a short survey of the AQM
literature followed by a slightly longer survey of the game
theoretic approaches.

One can group AQM policies into stateless, stateful, and
those in between the above two. The best examples of stateless
policies that have been widely implemented and/or deployed
are Drop-tail and RED [7]. At the other end of the spectrum
is fair queueing [2]. In between the two are various schemes
that use some amount of state. For example, FRED [16]
keeps track of active flows. CSFQ [28] ensures that the
bandwidth allocation in core routers is done in a stateless
and an approximately max-min fair manner while the edge
routers need to measure the rate of flows. RED-PD [17]
detects the top few misbehaving flows, keeps track of them
using minimal state and punishes those flows. In [18], [4], the
authors propose scalable algorithms for identifying large flows
using techniques such as sample and hold, and multistage
filters.

Game theory [19] is a very mature topic. The current
challenges of game theory applied to computer networks
are summarized by Papadimitrou [21]. Several papers (for
example [22], [14], [13], [27], [1], [26], [25], [15], [10],
[5], [15]) have applied tools from microeconomics and game
theory to computer networks over the last fifteen years. A
thorough literature survey is beyond the scope of the paper.
We now consider some of the most directly relevant related
work and compare them with our approach.

In [26], Roughgarden et. al. study the effect of degradation
of service due to selfish routing. However, they do not study
the mechanisms to reach equilibria. We, on the other hand,



assume fixed routes and look at the strategies where the user is
free to choose its arrivals. Also, our utility function is different
from theirs. Korilis et. al. [13] study the existence of equilibria.
However, they do not show how to get to equilibrium. In [14],
the authors study equilibria of a routing game over parallel
links. Our work is different from the above papers because,
unlike them, we present simple AQM schemes to impose
protocol equilibrium on selfish agents.

Shenker [27] defines the Internet game from a switch
scheduling perspective and proves that with Markovian arrival
rates, thefair share allocation scheme is the only scheme
within a class of buffer allocation functions (called MAC)
that can guarantee a Nash equilibrium (on selfish agents),
and is also Pareto efficient. We, on the other hand, study
equilibria imposed by oblivious AQM schemes with very
general drop functions and arrival processes. In fact, our
mechanisms do not fall into the class MAC. Several other
papers have investigated related problems. For example, Park
et. al. [22] study Nash equilibrium properties of the QoS game.
However their utility functions are much different from ours
due to their multilevel service model and threshold based step
functions for modeling utility. They claim that for a single
service level, their model boils down to that in [27]. Gibbens
et. al [8] have studied the effect of selfish users in the context
of the user optimization problem defined in [12]. Their model
assumes that the selfishness arises due to the user’s disregard
for the effect of its own action on prices. They model the
Internet game differently using a AIMD like protocol with
the congestion marks from the routers. Thus, our assumptions
and our problem is different from theirs. Note that we have
not looked at feedback signals from the network and pricing
issues in our work.

Very recently, Johari et.al. [11] have shown the existence
and the uniqueness of Nash equilibria for a network game
with a single congested link defined as follows: each player
sends its bid to a network manager and gets bandwidth in
return. It maximizes its own utility which is the difference of
a concave function of its own bid as well the aggregate bid and
its own bid. They show that theprice of anarchyfor the above
game is at most14 , i.e. the normalized utility lost because
of selfish users trying to game the system is at most25%.
Their results require a statefulmanageror the router while we
assume that routers do not keep per-flow state. Unlike them,
we do not assume any pricing mechanism, and do not use a
virtual currency. In our game, the utility is the goodput.

Akkela et. al. [1] have modeled greedy agents using TCP-
like AIMD algorithms. They show that RED does not have a
Nash equilibria using empirical models and through simula-
tion. Also they have a restricted notion of selfish traffic. Unlike
them, we consideroblivious AQM techniques, consider a wider
class of traffic arrivals and drop functions, and show how one
can reach the equilibrium state.

C. Practical Considerations

We believe that a practical solution to greed is important.
However, before our ideas can be used to build real systems,

two issues need to be resolved.

1) Feedback: In our version of the protocol equilibrium,
agents are omniscient. But for the scheme to be practical,
the state of the network needs to be be sent to end-point
agents in form of feedback. Note that we wish to send
this feedback without maintaining per-flow state at the
routers.

2) Tragedy of the commons: It is easy to show that a
malicious agent can disrupt our scheme by sending at
a modestly higher rate than the equilibrium rate. The
malicious agent would suffer but so would everyone else.
Thus, we need to weed out the malicious flows out of the
system. We would like to design a low-state architecture
that can filter or dampen the non responsive malicious
flows.

The format of this paper is as follows. Section II defines
our Internet game, and the Nash condition from [3]. Then,
Section III shows that in a discrete packet arrival model, if
an agent has a finite number of packets to send in a given
time window, the best strategy for the agent is to equispace
the packets. Then, Section IV-A shows that CBR is the best
strategy under a fluid model. Then, we show how to determine
the rate of the CBR in order for the agents to reach equilibria.
Finally we discuss our future directions and conclude in
Section V.

II. BACKGROUND

This section describes our assumptions, the models we use,
and the definition of the game we study.

A. The Internet Game

In our Internet game, we assume that selfish traffic agents
can have arbitrary arrival processes, as long as they have
a well defined average rate. This is in contrast to earlier
work [3], [27]. The rules of the game are enforced by routers,
and more specifically, the queue management algorithms at
the input/output queues. The router measures the aggregate
arrival rate using an exponentially weighted moving average
(EWMA). Then, it calculates a drop probability that is a
function of this measured rate, and drops packets with a
probability given by the function.

Each playeri has a simple utility functionUi equal to
its goodputµi. As mentioned earlier, the AQM schemes in
routers enforce the rules of the game on the selfish agents.
In this work, we only consider oblivious AQM schemes. An
oblivious router has a drop probabilityp due to themeasured
aggregate average load ofλ, and an average service time of
unity. However, for convenience, assume for now that each
agenti uses a constant bit rate (CBR) withλi chosen upfront.
Note that if traffic is a CBR with rateλi, then the EWMA
is also λi. Now, oblivious routers may or may not impose
symmetric Nash equilibriaon selfish agents. A symmetric
Nash equilibrium is one where every agent has the same
goodput at equilibrium. We only considersymmetric Nash
equilibria in this paper and we drop the symmetric adjective
throughout the paper.



For a Nash equilibrium to hold, we have the following
conditions:
• No agent can increase its goodput unilaterally, at Nash

equilibrium, by either increasing or decreasing their
throughput. This can be written down as

∀ i,
∂Ui

∂λi
= 0. (1)

SinceUi = µi, ∀i, ∂µi

∂λi
= 0.

• At Nash equilibrium, all flows have the same utility or
goodput. That is,∀i, j {µi = µj and λi = λj}.

• For oblivious AQM strategies and functions of router
states like drop probability and queue length,

∀i, ∂

∂λi
=

d

dλ
.

The above conditions can be used to derive an interesting con-
dition that must be true at Nash equilibrium for an oblivious
AQM. Assume there aren users. The utility function for each
agent can be written down as

Ui = µi = λi(1− p).

Taking partial derivatives we get

∂µi

∂λi
= 1− p− λi

∂p

∂λi
= 0.

Since we consider only oblivious AQM schemes, we have

∂p

∂λi
=

dp

dλ
.

Since we consider symmetric Nash equilibria, we must also
have.

λi =
λ

n
.

It has been shown in our earlier work [3] that it is possible
to derive what we call theNash condition which must be
satisfied at Nash equilibrium:

dp

1− p
=

ndλ

λ
. (2)

In order to apply the above to protocol equilibrium, we present
an AQM that will ensure that selfish agents use CBR. Observe
that the above condition is applicable to both CBR as well as
Poisson traffic agents.

To evaluate whether a Nash equilibrium imposed by an
AQM scheme is good, let us define a term,efficiency. Let
the aggregate throughput, goodput, drop probability at Nash
equilibrium of a system withi users be denoted bỹλi, µ̃i

and p̃i respectively. The Nash equilibria imposed by an AQM
is efficient, if the aggregate goodput of any selfish agent is
bounded below when the throughput (offered load) of that
same agent is bounded above. The conditions for efficiency
are:

1) λ̃i(1− p̃i) ≥ c1.
2) λ̃i ≤ c2.

wherec1, c2 are some constants. Thus it is easy to see that
even the drop probability at equilibrium is also bounded. Since

goodput is lower bounded byµl and upper bounded byµu,
andµ = λ(1− p), we can write the Nash condition as

nµl

λ2
≤ dp

dλ
≤ nµu

λ2
.

We call this the efficient Nash condition.

B. Router Mechanisms

As mentioned in the preceeding section, rate is measured
using an exponentially weighted moving average (EWMA)
which is defined as follows. Letf(t) denote the aggregate
arrival rate at timet. The exponentially weighted moving
average of f is defined as

ewma(t) =
∫ t

x=−∞
f(t)e−η(t−x)dx

where η is a parameter called the decay constant. There is
also a natural discrete analog: ifti denotes the time of theith

packet arrival, then the expected moving average at timetk,
denoted ewmak is given by

∑k
i=1 e−η(tk−ti). Without the loss

of generality, we assumeη = 1 in our proofs.
Each router penalizes flows at that router with a drop proba-

bility that is a function of the EWMA of the aggregate arrival
rate. Hence, we use the terms penalty and drop probability
interchangeably.

III. A PRIORI PROTOCOLEQUILIBRIUM FOR DISCRETE

PACKET SIZES

In this section, we will study the simple case of apriori
equilibrium for discrete packet arrivals. While our main results
are contained in the next section, this section illustrates the
intuition quite well. We will restrict ourselves to linear penalty
functions of the typeg(r) = αr+β for suitably chosenα and
β. Again, a more general protocol equilibrium is discussed in
the next section. We will first study a simple single player-
game.

A. Finite single player game

Now, we will show that for an agent in a single player
game has only a finite number of packets to send, and the
drop probability of the router is linear in the measured rate,
then equispacing the packets is the best strategy.

Theorem 3.1:Consider a single-player game where the
router penalty is a linear function of the EWMA of the arrival
rate. Suppose the user has to sendn packets in a time window
∆. Then, the solution which minimizes the total penalty is one
where the packets are equispaced.

Proof:
Since the penalty is linear in the measured rate, and the

total number of arrivals isn, we need to minimize the total
penalty imposed by the router. Suppose the arrival sequence
of the packets is given by

t1, t2, . . . , tn;
such that t1 ≥ 0, tn ≤ ∆, ti+1 ≥ ti ∀i, 1 < i < n.

For each ith arrival, the router sees a rate ofri =∑i
j=1 e−(ti−tj). Note that each arrival consists of 1 packet



only. Now, the router penaltypi is linear inri i.e.pi = αri+β.
Without loss of generality, we can assumeα, β to be unity
since they will not affect our results. Thus, we want to
minimize the following function:

U =
n∑

i=1

i∑
j=1

e−(ti−tj).

Partially differentiatingU with respect toti, we have

∂U

∂ti
=

i−1∑
j=1

−etj−ti +
n∑

j=i+1

eti−tj . (3)

Let us define two quantitiesS1 andS2 as follows:

S1(i) = e−ti

i−1∑
j=1

etj . (4)

S2(i) = eti

n∑
j=i+1

e−tj . (5)

Note that decreasingt1 and increasingtn can only help. So
we will assume thatt1 = 0 and tn = ∆. For all otheri, we
must have∂U

∂ti
= 0. We have by Equation 3,∀ i, 1 < i <

n, S1(i) = S2(i). By substitutingi + 1 for i in Equation 4,
we get

S1(i + 1) = e−ti+1
∑i

j=1 etj

= e−ti+1

(∑i−1
j=1 etj + eti

)
= e−ti+1 (etiS1(i) + eti) .

Thus, we have

∀i, 1 ≤ i < n, S1(i + 1) = eti−ti+1 (S1(i) + 1) . (6)

By substitutingi + 1 for i in Equation 5, we get

S2(i + 1) = eti+1
∑n

j=i+1 e−tj

= eti+1

(∑n
j=i+1 e−tj − e−ti+1

)
= eti+1 (e−tiS2(i)− e−ti+1) .

Thus, we have

∀i, 1 ≤ i < n, S2(i) = eti−ti+1 (1 + S2(i + 1)) . (7)

Dividing Equation 6 by Equation 7, we get

S1(i + 1)
S2(i)

=
1 + S1(i)

1 + S2(i + 1)
. (8)

Since∀ i, 1 < i < n, S1(i) = S2(i), from Equation 8 we
get

∀i, 1 ≤ i < n− 1,
S2(i + 1)

S2(i)
=

1 + S2(i)
1 + S2(i + 1)

. (9)

Now, we solve Equation 9. LetS2(i) = x andS2(i + 1) = y.
Then, we can simplify Equation 9 as

y + y2 = x + x2.

Solving forx, and taking the positive root (sinceS2 ≥ 0), we
have:

x = −1
2

+
1
2

√
1 + 4y + 4y2 = y.

Hence,S2(i) = S2(i + 1),∀i, 1 < i < n − 1. Similarly, we
rewrite Equation 9 forS1 and getS1(i) = S1(i + 1). Thus,
substituting in Equation 6, we have

∀i, 1 ≤ i < n− 1, S1(i + 1) = eti−ti+1 (S1(i + 1) + 1) .
(10)

Also, from Equation 4 we get

∀i, 1 ≤ i < n− 2, S1(i + 2) = eti+1−ti+2 (S1(i + 1) + 1) .
(11)

Comparing the Equations 10, 11 and noting that∀i, 1 ≤ i <
n− 2, S1(i + 1) = S1(i + 2), we have

∀i, 1 < i < n− 2, ti+2 − ti+1 = ti+1 − ti.

B. Multi-player games

We now move on to multi-player games. The strategy for
user i is to specify the exact arrival times beforehand in the
following form: σi = < ti1, ti2, . . . , tik, . . . > where ti1 ≥
0, ti,j+1 ≥ tij . Call it the gameG. We have the following
theorem:

Theorem 3.2:If routers use EWMA to measure rate and
use a linear drop function, the gameG does not have a
deterministic Nash equilibrium.

We omit the proof of the above theorem. The basic intuition
is that each user wants its own packets to arrive infinitesimally
before those of another fellow to obtain the benefit of a lower
EWMA. Hence, we need to study mixed strategies to obtain
a Nash equilibrium in this setting. Next we show that in the
2-player gameG, we can have a mixed strategy equilibrium.
Definition: A ∆-uniform strategy send the first packet at a
randomly chosen timex and from then on, each packet is
sent at increments of∆.

Now, we will assume that the router penalty function is
of the form αR̃ where R̃ is the EWMA. First we have the
following lemma.

Theorem 3.3:In a 2-player gameG, if player 1 chooses
a ∆1-uniform strategy, then the expected penalty of player2
depends only on its own arrivals and1∆1

, for a suitably chosen
value of the initial rateR0.

Proof: Let R̃i(t) =
∑

j:tij≤t etij−t. Intuitively, R̃i(t)
is the contribution to the EWMA at timet due to playeri.
Also assume that timet = 0, there is some initial rate due to
EWMA. Call it R0. Then, for ak player game, we have the
following equation:

R̃(t) = R0e
−t +

k∑
i=1

R̃i(t). (12)

We will assume that the player1 has a∆1-uniform strategy.
Now consider a sequence of arrivals of player2. We will now
calculate the expected value of the penalty at timet. Since
player 1’s strategy is∆1-uniform, the expected number of
packet arrivals due to player 1 during an infinitesimal time



interval dt is dt
∆1

. Hence, using linearity of expectations, we
have

E[R̃1(t)] =
∫ t

0

1
∆1

ex−tdx.

and

E[αR(t)] = α
(
E[R0e

−t] + E[R̃1(t)] + E[R̃2(t)]
)

= α

(
R0e

−t +
∫ t

0

1
∆1

ex−tdx + R̃2(t)
)

= α

(
R0e

−t +
1

∆1
(1− e−t) + R̃2(t)

)
= α

(
e−t(R0 −

1
∆1

) +
1

∆1
+ R̃2(t)

)
.

ChooseR0 = 1
∆1

. Hence, the expected penalty is

E[αR(t)] = α

(
1

∆1
+ R̃2(t)

)
.

Thus, the expected penalty of player2 depends only on its
own arrival pattern and player 1’s average rate. Informally,
player 2 seems to be playing a game against itself.

Corollary 3.1: In a 2-player gameG, if player 1 chooses a
∆1-uniform strategy, then the best strategy for player2 is to
equispace its own packets.

The proof of the corollary follows from the the above two
theorems. From Theorem 4.1, it is clear that player2 must
equispace its packets with some interval, say∆2.

Theorem 3.4:The two-player gameG, as described above,
has a mixed strategy Nash equilibrium when each player uses
a ∆-uniform strategy.

Proof: In the gameG, assume that player 1 has a mixed
strategy. We show that the corresponding pure strategy of
player 2 results in player 2 maximizing her utility. Consider the
player 1 having a∆1 mixed strategy. By the above theorem,
we know that if player 1 has a∆1 strategy, the best strategy
for player 2 is to arrive in an equispaced fashion. Let the
spacing of player 2 be∆2. Hence, the rates of the two players
are given byλ1, λ2 respectively withλ1 = 1

∆1
andλ2 = 1

∆2
.

Thus, the utility of player 2, whent is sufficiently large, is
given by

U2 = λ2

(
1− α

(
λ1 +

λ2

1− e−
1

λ2

))
. (13)

Partially differentiating the above with respect toλ2, for the
above expression to have an extrema, we must have

∂U2

∂λ2
= 1− αλ1 −

2αλ2

1− e−
1

λ2

− αe−
1

λ2

(1− e−
1

λ2 )2
= 0.

It is possible to show that the above equation is satisfied for
someλ1 = λ2 when α > 0. This can also be verified using
Mathematica, for example. Thus, the pure strategy of player 2
corresponding to the mixed strategy of the player 1 maximizes
player 2’s utility when both the players have the same rate,
or the same inter-packet spacing. Thus, there exists a mixed
strategy Nash equilibria for the gameG.

IV. PROTOCOLEQUILIBRIUM WITH FLUID MODELS

This section generalizes the results from the previous section
using a fluid model for the traffic.

A. CBR Maximizes Utility

In this section, we first show that irrespective of the router
drop function, if EWMA is used by the router to measure
aggregate arrival rates, the best strategy for a single user is to
send traffic as a constant bit rate (CBR). We model the arrivals
using a fluid approximation to prove the above statement.
Suppose the arrival rate of traffic at the router at timet is
given by f(t). Then, the rate estimate at the router, denoted
by R(x) at timex, is given by

R(x) =
∫ x

0

f(t) · et−xdt. (14)

Let p(R(x)) denote the drop probability for the arrival rate
R(x) and letg(R(x)) be 1 − p(R(x)). We refer tog as the
goodput function. Then, the total goodputG(x) till time x is
given by

G(x) =
∫ x

0

f(y)g(R(y))dy. (15)

We also define a class of functionsΨ to contain those
functionsg such thatg(x) = γ

x has countable roots for allγ.
It can be shown that most realistic goodput functions belong
to Ψ; certainly the ones that we use belong to this class. For
example, ifg(x) is any polynomial which is not identical toγx ,
g(x) is in Ψ. Also we will assume the functionf to be smooth.
Now, we use the above fluid model to prove the following
theorem:

Theorem 4.1:In the above fluid model and a single-player
game, CBR is the best strategy for the player provided the the
goodput function belongs toΨ, and the arrival functionf and
its integral is smooth.

Proof: We want to maximize the following quantity

U = lim
a→∞

1
a

∫ a

0

f(y)g(R(y))dy.

Let us define afunctionalJa(f) to be

Ja(f) =
∫ a

0

f(y)g(R(y))dy.

Our goal is to maximizeJa(f). From the fundamentals of
calculus of variations, we need to obtain a functionf(x) that
makes thedifferentialof theJa vanish. This would also mean
δJa

δf = 0, which is the necessary condition for the functional
Ja to have an extremum. Now, let us divide the interval from
0 to a into n equal parts of the lengthδx. At x = xk, the
corresponding value of the function is given byyk = f(xk).
Now, Ja can be written as

Ja(f) = lim
δx→0

(
∫ xk−δx

0

f(y)g(R(y))dy

+ f(xk)g(R(xk))δx

+
∫ a

xk

f(y)g(R(y))dy). (16)



Now,
δJa

δf
= 0 ⇐⇒ lim

δx→0

∂Ja

∂(ykδx)
= 0.

When we apply the above condition on Equation 17, we see
that the first term of Equation 17 vanishes. But the third term
does not because the change inyk affects all theyi ∀i, i ≥ k
due to the computation ofR. Also, sinceyk depends onf(xk)
for any k, the above equation implies that what we really
need to find out is ∂Ja

∂f(x)δx . Hence, the condition thatJa has

an extremum is ∂Ja

∂f(x)δx = 0. Thus, we have the following
condition

∂

∂(f(x)δx)

(
f(x)g(R(x))δx +

∫ a

x

f(y)g(R(y))dy

)
= 0.(17)

Partially differentiating Equation 17 with respect tof(x)δx
and using the Leibniz rule for differentiation under the integral
sign, we obtain

∂Ja

∂(f(x)δx)
= g(R(x))+

∫ a

x

f(y) · ∂R(y)
∂(f(x)δx)

· g′(R(y)) · dy.

Now,
∂R(y)

∂(f(x)δx)
= ex−y.

For Ja to have an extrema, we must have

∂Ja

∂f(x)δx
= g(R(x)) +

∫ a

x

f(y) · ex−y · g′(R(y)) · dy = 0. (18)

Differentiating the above equation with respect tox, we obtain

g′(R(x))R′(x) − f(x)g′(R(x))

+
∫ a

x

f(y) · ex−y · g′(R(y)) · dy = 0. (19)

Subtracting the Equation 19 from Equation 18 and simplifying,
we get

g(R(x))− g′(R(x))R′(x) + f(x)g′(R(x)) = 0. (20)

Observe that the dependence ona has vanished. Now, on
differentiatingR(x) using the Leibniz rule, we obtain

R(x) + R′(x) = f(x). (21)

Thus, by applying Equation 21 to Equation 20, we have

g(R(x)) = g′(R(x))R′(x)− (R(x) + R′(x))g′(R(x)).

Simplifying, we obtain

g(R(x)) = −R(x)g′(R(x)).

On rearranging the above equation, we obtain

g′(R(x))
g(R(x))

R′(x) = −R′(x)
R(x)

.

On integrating and adjusting the constants, we obtain

R(x)g(R(x)) = γ, whereγ is a constant.

Let z = R(x). This implies,z.g(z) = γ. We assumed that the
integral off is smooth, andg ∈ Ψ; which implies thatz can
have a countable set of values it can take. Now,z = R(x) is a
smooth function, and does not have jumps. Hence,z = R(x)

must be a constant. Using Equation 21, we getf(x) to be a
constant.

The above theorem shows that if routers use EWMA, then a
single player must arrive at a constant rate. Now, the following
corollary generalizes this result to many players.

Theorem 4.2:In an n-player game, if routers measure ag-
gregate rate using EWMA, the best strategy for all agents is
to arrive as CBR.

Proof: At time x, let f(x) denote the aggregate rate
and let theith user arrive with a rate offi(x). Now, by
problem,f(x) − fi(x) is a constant for somei. The proof
of this corollary is very similar to that of Theorem 4.1. As in
the above theorem, we need to maximize

U = lim
a→∞

1
a

∫ a

0

fi(x)g(R(x))dy.

Note thatR(x) depends on the aggregate ratef . Thus, the
functional we need to maximize is given by

Ja(f) =
∫ xk−δx

0

fi(y)g(R(y))dy + fi(xk)g(R(xk))δx

+
∫ a

xk

fi(y)g(R(y))dy.

instead of Equation 17. Now, observe that if everyone except
user i arrives at a constant rate,∂∂fi

= ∂
∂f . Hence,

∂R(y)
∂(fi(x)δx) = ex−y. Thus, Equation 18 is unchanged, and
the rest of the proof of Theorem applies in this case too.2

Then, we getf(x) to be a constant as in the above theorem.
Now, f(x) = fi(x) + some constant. Hence,fi(x) is also a
constant.

B. Protocol Equilibria with CBR Agents

The previous section showed that agents should arrive with
CBR in their own interest. Since the agents must send traffic
with CBR, we can now invoke the results of our previous
paper [3], and determine the rate of the CBR. This section
tells us to compute the rates at which agents arriving with
CBR will lead to efficient equilibria.

Assume useri arrives at a constant rateλ. Let λ =
∑

i λi.
AssumeR0 to be the initial rate estimate of the EWMA at the
router. We can write down the EWMA rate estimate at time
x as

R(x) =
∫ x

0

λ · et−xdt + R0e
−x = λ + e−x(R0 − λ).

Setting R0 appropriately, we getR(x) = λ. Thus, the
estimated rate is alsoλ at all times. Hence, we can use the
arguments similar to [3] to design a stateless AQM to impose
equilibria on selfish agents. In [3], we showed that at an
efficient Nash equilibrium, the following relationship holds:

λ̃n = 1− 1
4n2

.

2It is easy to see that ifg(x) ∈ Ψ, then g(x + λ) ∈ Ψ, whereλ is a
constant.



where λ̃n is the estimated offered load at equilibrium byn
selfish agents. Then, using the Nash condition (Equation 2),
we have

dp

1− p
=

dλ

2λ
√

1− λ
.

As in [3], we can solve the above equation and get

p = 1 − 1√
3

√
1 +

√
1− λ

1−
√

1− λ
.

Note that the above analysis is exactly as in [3] because the
estimated rate of an equispaced arrival at the router using
EWMA is same as the rate itself.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a simple mechanism to ensure
that selfish agents send at CBR. We showed that under
reasonable assumptions of router drop functions, if EWMA is
used to estimate the aggregate arrival rate, the greedy agents
must arrive with CBR to minimize losses. For a discrete arrival
process and a router drop probability function that is linear
in the EWMA, we showed that if a single agent wants to
send a finite number of packets within a time window, it must
equispace the packets arrivals. Then, we showed that for a two
player game where the players choose their arrival sequences
apriori, if one agent arrives in an equispaced fashion with a
random shift, the other player essentially plays a game against
itself, and, hence, must arrive in an equispaced fashion. We
then presented our main result which is to show that for a
single player game, under the assumptions of a fluid model,
EWMA for aggregate rate estimation, and for a large class
of drop functions, the best strategy for the agent is to arrive
with a CBR. Then, we show that if in an n-player game, if
n − 1 agents arrive with CBR, then the best strategy for the
nth player is also to do the same. Finally, we apply the results
from our earlier paper [3] to determine the rates of the agents
that will lead to efficient equilibria.

There are several directions that deserve further exploration.
We feel that this paper is the first attempt to achieve protocol
equilibria. The first interesting problem is to study the effects
of buffering. In this paper, we have assumed the goodput to be
our utility. It would be interesting to revisit the problem with
respect to different utilility functions such as average delay
and jitter. As we have pointed out in Section 1, a malicious
user can easily bring down a scheme that takes of care of
greed alone. We need to design low state filters to weed out
the unresponsive malicious flows from the system. Finally, an
open problem is to design a scheme in practice that is insulated
against both greed and malice, and requires very little state
to be maintained while providing close to maximum network
utilization.
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