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Abstract— We consider the problem of correlated data gath-
ering by a network with a sink node and a tree communication
structure, where the goal is to minimize the total transmission
cost of transporting the information collected by the nodes, to
the sink node. Two coding strategies are analyzed: a Slepian-
Wolf model where optimal coding is complex and transmission
optimization is simple, and a joint entropy coding model with
explicit communication where coding is simple and transmission
optimization is difficult. This problem requires a joint optimiza-
tion of the rate allocation at the nodes and of the transmission
structure. For the Slepian-Wolf setting, we derive a closed form
solution and an efficient distributed approximation algorithm
with a good performance. For the explicit communication case,
we prove that building an optimal data gathering tree is NP-
complete and we propose various distributed approximation
algorithms.

KEYWORDS: Graph Theory, Combinatorics, Information The-
ory, Mathematical programming/optimization, Simulations.

I. INTRODUCTION
A. The probilem and its motivation

Consider a number of distributed data sources with a certain
correlation structure among the sources. A number of links
connects sources to e¢ach other, establishing a graph where
sources are nodes and links are edges. The task is to send
all the data to a particular node of the graph, and we refer
to this set up as the correlated data gathering tree on a
graph problem. The goal is 10 achieve the data gathering while
minimizing a cost functional (e.g. power on links or distance
accumulated), possibly under constrainis (e.g. some maximal
capacities on links). This is of course an instance of a network
flow problem, but with an original twist: because the data
is correlated, standard solutions may not be optimal, leading
to original rate allocation problems and original tree building
problems, depending on the scurce coding model that will be
used.

An example is shown in Fig.1, where we have N nodes with
sources Xi,...,Xn, a sink S, and a number of edges that
connect the scurces. Nodes are supplied amounts of measured
data which need to be transmitted to end sites, called sinks or
base stations. Intermediate nodes can be also used as relays
in addition to measuring data. They aggregate their own data
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Fig. 1.  An example of a network. Nodes transmit their data to the base
stations. A rate supply R; is allocated to each node X;. In solid lines, a
chosen tree structure is shown. In dashed lines, the other possible links are
shown.

with the data received from other nodes. A very important
task in this scenario is to find a transmission structure on the
network graph that minimizes a cost of interest (e.g. flow cost
[data size] x {link weight], distance, etc.). In the case of a
single sink, the optimal structure is usually a tree. This feads
to the question of how to construct efficient data gathering
trees.

When the data measured at nodes are statistically indepen-
dent, the problem separates: the rate allocation becomes trivial,
as each node codes its data independently; then next, well
developed algorithms can be used to solve various network
problems (minimum and shortest path spanning tree, minimum
cost flow etc.),

However, in many sitiations, data at nodes are not in-
dependent. Due to the correlation present, it is expected
that approaches that take into account this correlation, will
outperform traditional approaches, for various cost functions
(metrics). Moreover, jointly exploiting the data structure and
optimizing the transmission topology (structure) in the net-
work can provide substantial further improvements. Therefore,
it is worth studying the interaction between the correlation of
the data measured at nodes and the transmission structure that
is used to wansport these data.
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A practical instance can be found in sensor networks [1],
[2], [3]: a number of sensors acquire measurements which are
typically correlated to each other, and these measurements are
sent to a base station for evaluation or decision purposes. Col-
lecting images from various sources into a common repository
on the internet is another example of correlaied data gathering.

In particular, let us consider the case of a network of
sensors taking measurements from the environment. Let X =
(X4,..., Xn) be the vector formed by the random variables
measured at the nodes 1,...,N. We assume that the random
variables are continuous and that there is a quantizer in
each sensor (with the same resolution for all sensors). A
rate allocation (Ry,..., Ry) (bits) has to be assigned at the
nodes so that the quantized measured information samples are
described losslessiyl. That information has to be transmitted
through the links of the network to the designated base station
(see Fig. 1). We assume contention is solved by the MAC
layer. We abstract the wireless case as a graph with point-
to-point links, mainly because the full wireless multi-point
case is an open problem, and practical schemes transform the
problem into a graph with nearest neighbor connectivity. A
meaningful metric to minimize is the energy consumption,
which is essentially given by the sum of products [data size] x
[link weight}, for all the links used in the transmission, Here
the weight of the link between two nodes is a function of the
distance d of the two nodes (e.g. kd @ or kexp(ad), with &,
a constants that depend on the medium properties).

We will consider two complementary approaches that may
be used in this problem. The first approach is to allow nodes
to use joint coding of correlated data without explicit com-
munication (this is possible with random binning arguments,

" that is using Slepian-Wolf coding [4], [5], [6], {7]}. With this
approach, finding a good routing structure turns out to be
easy, because routing and coding are separated (decoupled);
however data coding becomes complex and global network
knowledge is needed for an optimal solution,

In the second approach, nodes can exploit the data corre-
lation only by receiving explicit side information from other
nodes (for example, when other nodes use a node as relay,
their data is locally available at that relaying node). Thus, the
correlation structure is exploited through communication and
joint aggregate coding/decoding locally at each node. In this
case data coding is easy and relies only on locally available
data as side information. However, now optimizing the routing
structure becomes complex.

Summarizing, the main tradeoff between these two settings
is

o If nodes are assumed to know the correlation structure

(or equivalently, the dependence on the distance), then
they can employ Slepian-Wotlf coding, In this case, source
coding is complex while the transmission structure can
be found with classical pelynomial time network flow
algorithms. '

'The use of a distributed lossy coding setting (distributed quantization) in
our problem is a subject of our future research.
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o If the correlation structure is not known a-priori, then
side information is needed to reduce the entropy. In other
words, the correlation structure is learned (explicitly)in a
distributed manner through explicit communication. This
Ieads to a simple source coding, but the transmission
structure optimization is hard.

In this work, we show how the rate allocation is dependent
on the chosen setting. In the Slepian-Wolf case, optimal coding
altlocates most of the load to nodes close to the sink and small
rates to nodes at the extremity of the network. In the explicit
communication model, data compression is done only when
side data is available, and thus large rates are allocated to
nodes far from the sink, and much smaller rates at nodes
close to the sink. It is therefore expected that a combined third
approach will provide not only a complexity tradeoff between
the source coding and the transmission structure strategy, but
will also distribute more evenly the rate load throughout the
network. One possible approach is to consider a combination
of Slepian-Wolf coding for clusters of nodes, and explicit
communication among clusters, and this is a topic for further
research.

B. Related work

The problem of data gathering has been considered in the
context of sensor networks. Let us briefly review some of the
algorithms proposed so far, '

In [8], the authors introduce the cluster based LEACH
algorithm. In their model, the cluster head nodes compress
data arriving from nodes that belong to the respective cluster,
and send an aggregated packet to the base station. The work in
[} introduces the PEGASIS algorithm, that uses the energy x
delay metric over the routing tree; their algorithms find chains
of nodes instead of clusters.

The work which is most related to the problem we consider
in this paper is the one involving the concept of directed
diffusion and data aggregation [10]. In that model, sensors
measure events, creating gradients of information in their
respective neighborhoods. The base station requests data by
broadcasting interests. When interests fit gradients, paths of
information flow are formed and then, the best paths are
reinforced. In order to reduce communication costs, data is
aggregated on the way. The goal is to find a good aggregation
tree which gets the data from some of the nodes to the
base station. Similar work can be found in [11] and [12]. In
[12], the authors address the problem of data gathering and
compression at relay nodes by using the theory of concave
costs applied to single source aggregation. The authors develop
an glegant atgorithm that finds good trees that simultaneously
maximize several concave cost functions of interest, Their
model is significantly different from ours in the sense that
their setting assumes information sources supply a constant
amount of information. Moreover, their model does not take
into account possible collaborations among nodes. In our case,
due to the correlation structure, the amount of aggregated
information sent down the tree to the base station from a
particular node depends on the structure of the subtree whose
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parent is that node. In addition, we consider the case of
collaboration between nodes through Slepian-Wolf coding.

C. Main contributions

In our work, the case where Slepian-Wolf coding is em-
ployed is fully solved. We prove that in the case where a giobal
Slepian-Wolf coding is performed, the optimat choice of the
ransmission structure is completely separated from the rate
allocation optimization; however the optimail rate allocation
does depend in general on the distances between nodes. We
find the optimal rate allocation in closed form and propose
a distributed approximation algorithm which provides a rate
allocation that is very close to the optimal one, Then, we study
a simplified coding case where Slepian-Wolf is performed
locally only on clusters of nodes, thus avoiding the use of
global Slepian-Wolf coding. However, we conjecture that in
this case separating optimally the nodes into clusters becomes
NP-complete.

Second, we study the case when joint coding of correlated
data is performed explicitly, that is, the reduction in rate
by entropy coding due to the correlation is possible only
when side information is explicitly available (as relayed data).
We prove that this makes the problem NP-complete and
propose distributed approximation algorithms with a good
performance.

The paper is structured as follows: [n Section II, we state
the formal definition of the optimization problem we address
in this work. Section HI is concerned with the treatment of the
Slepian-Wolf case. We consider in Section IV a particular case
of the mixed approach, where Slepian-Wolf coding on clusters
is used. In Section V we treat the explicit communication case.
We illustrate our ideas using an example based on an ergodic
Gaussian random field as moedel of correlation. Finally, we
conclude and present directions of future work in Section VL

II. PROBLEM FORMULATION

Let G = (V, E) be a weighted graph with |[V]| = N+1. We
denote by S the particular (N +1)th node called the sink node.
Each edge e = (4, 4) € E has a weight w.. Every node < has (0
transmit a rate (or supply} R; through the network to the sink.
The rate R; might be negative because of the rate reduction by
joint entropy coding at each node. Let f(z, w) be an arbitrary
cost function of the flow z through a particular edge and the
edge weight w. Then the minimum cost data gathering tree
problem is defined as follows. Find the spanning tree ST of
the graph G and the rate allocations R;’s that minimize the

cost function:
Z f(me:we)l
ec ST

(n
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where we denote by ¢ — ¢ the set of edges entering node
i, and by ¢ — e the edge from node i to its parent in the
tree. We restrict our discussion to separable functions f, and
without loss of generality we assume f(x,w) = x x w. This
corresponds to many practical settings (e.g. many cases of
sensor networks). Then the expression (1) to be minimized
can be rewritten as:

> Ridsr(5,9) (2)
ieV
where dgr(4,5) is the total weight of the path connecting
node # to § on the ST tree.
There is an important generalization that makes the problem
we consider in this work different from classical network flow
theory: the rate R; at node ¢ depends on (a) the incoming

-flow 3., xz. entering that node, and (b) on the particular

structure chosen to transmit information from the nodes that
supply the incoming flow, that is, the links that form the
subtree rooted at nede 1. In gemeral, R; is a decreasing
function of the amount of incoming flow because joint coding
always reduces information rates. This implies that the rate at
each node depends in general on the particular transmission
tree structure used, hence the rate ailocation and the tree
construction must be addressed together, rather than separately.
Because of this important generalization, we call this the
minimum cost network correlated data gathering tree problem.

We now particularize the optimization problem (2) to the
two coding settings we introduced in Section I-A.

A, Slepian-Wolf coding

Consider (see Fig. 1) the case of two random sources X
and X that are correlated. Intuitively each of the sources can
code their data at a rate equal to at least their corresponding
entropies, Ky = H(X,), Ry = H(Xg), respectively. If they
are able to communicate, then they could coordinate their
coding and use together a total rate of By + Ry = H{( X1, Xa).
Slepian and Wolf {4] showed that two correlated sources can
be coded with a total rate equal to the joint entropy H( X1, X2)
even if they are not able to communicate with each other,
as long as their individual rates are at least equal to the
conditional entropies, H(X1[X2) and H(X3|X ) respectively;
this easily generalizes to the N-dimensional case.

Assume now that in the example given by Fig. 1, the
nodes know in advance the correlation structure (which we
assume depends only on the distance among the nodes for
a given medium). Then nodes 1,2,3,..., N, can code their
data jointly, without communicating with each other, with
arate H(Xy, Xa,..., Xn), as long as their individual rates
obey conslraints related to the different conditional entropies
[4], [5]. We show in Section III that, when optimizing (2),
the shortest path tree is optimal for any rate allocation and
thus the whole optimization problem can be separated into a
spanning tree optimization and the rate allocation optimization.
Then the minimization problem in (2) becomes a problem of
rate allocation that can be posed as a linear programming
(LP) problem under linear constraints. In general, if the
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cost function is separable but nonlinear, then (2) becomes
a non-linear programming problem that can be solved using
Lagrange multipliers. For the sake of clarity, we will restrict
ourselves in this paper to separable linear functions,

B. Explicit communication

In classical network transport theory, the amount of supply
at a node is fixed and independent of the communication links
that are chosen to transport the various supplies. In particular,
the supply provided by the th node is independent of the
nodes that are connected to the :th node through the chosen
links. The novelty of our problem formulation stems from the
fact that we consider a class of problems where the supply
at a given node depends on the incoming flow from other
nodes that use that node as relay, and also on the transmission
structure for these nodes.

Consider again the example in Fig. i, where nodes have to
communicate their correlated data to one base station. If we
consider node X3, then the quantity it has to supply depends
on whether

1) neither node X; nor node X5 use node X3 as relay, or

2) node X uses node X as relay, and node X5 transmits
its aggregate further to node X5 (this case is shown in
solid line in Fig. 1), or

3) both node X and node X use node X3 as relay.

In the first case, no side information is available at node X5
from other nodes. Node X3 sends its entire amount of data on
& path to the sink.

In the second case, node X3 does have side information
available from node X5. The information at these two nodes
is not independent. Therefore node X3 can reduce correspond-
ingly the amount of data it sends further, It jointly codes its
data with the data from node X, and sends the resulting coded
data further.

In the third case, the amount of side information available
is even larger at node X3j, since two nodes use it as relay.
Thus, the data amount reduction at node X is larger as well
because the joint coding involves more sources.

This network setting occurs frequently, for example in
sensor networks measuring correlated data.

It is clear that in either of these three cases the optimal
transmission structure might not be the shortest path tree. We
show in Section V how this joint treatment of source coding
and transmissidon structure optimization actually makes the

" problem NP-complete.

Finally, the two approaches of Slepian-Wolf coding and
explicit communication can be combined in a third mixed
approach, where some clusters of nodes code data jointly
with a Slepian-Wolf procedure, while the rest of the nodes
use explicit communication. For instance, since nodes that
are close o the base station relay data from the rest of
the network, they will have an important amount of side
information available and thus, they do not need to employ
Slepian-Wolf coding, reducing the complexity in terms of
coding.

0-7803-8355-9/04/520.00 ©2004 [EEE.

III. SLEPIAN-WOLF CODING

A. Slepian-Wolf constraints

With Slepian-Wolf coding, sources do not need (0 commu-
nicate explicidy in order to code their data at a rate equal to
the joint entropy. By using random binning based codes, it can
be shown that a rate allocation (Ry, ..., Ry) can be achieved
if and only if it satisfies

> Ry > H(Y|Y®)

€Y

for any of the 2V — 1 sub-vectors’ Y C X (see Fig. 8 for the
rate region of two sources).

Proposition 1: — Sepdration of source coding and tree
building:

When there is a single sink and Slepian-Wolf coding is used,
the shortest path tree (SPT) is optimal, in terms of minimizing
(2), for any rate allocation,

Proof: Once the rate allocation is fixed, the best way
to transport any amount of data from any node to the sink
is to use the shortest path. Minimizing the sum of costs
in (2) becomes equivalent to minimizing the part of cost
corresponding to each node in part. Since the shortest path
tree is a superposition of all individual shortest paths, then it
is optimal for any rate allocaiion that does not depend on the
transmission structure, which is the case here. |

Therefore, global Slepian-Wolf coding separates in fact
rate allocation from how the transmission structure is chosen.
Corretated data is encoded at nodes with a rate given by the
joint entropy and without explicit internode communication.
However, the distances among nodes are needed implicitly in
expressing the constraints (conditional entropies) in (3), as the
correlation model is usually distance dependent.

In Section IHI-B, we derive the closed form solution for
minimizing (2) under the constraints (3). This is however not
enough from a practical point of view, for example for deriving
a distributed solution. Global Slepian-Wolf coding involves a
large complexity. Because of this, in Section III-C we present
an approximation algorithm that provides a rate allocation
close to optimum, for a large class of networks in which
the correlation between the nodes decreases with the distance.
Moreover, our algerithm is fully disttibuted and relies only
on local information. In Section III-D we particularize our
solution for the case of a Gaussian random field, and show
numerical simulations.

(3)

B. Solution of the LP problem

We have seen that for any fixed rate allocation R;, SPT is
the optimal gathering tree. We now present the algorithm for
finding the optimal rate allocation:

Algorithm 1: Qptimal Slepian-Wolf rate allocation:

« Find the SPT of the initial connected graph G.

2Note that Y denotes both the vector of random variables, and the node set
where those random variables are measured.
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¢ Solve the constrained LP:
(B,....Ry) = orgmin > Ridspr(i, ),

under constraints:
DRz
icY
where dgpr(i,S) is the total length of the path in the
SPT from node i to S, and (R7Y,..., Ry ) is the optimal
rate allocation.
Note that in order to express the rate constraints, centralized
knowledge of the correlation structure among all nodes in the
network is needed.

@)
HY[Y®), (MY CX

Suppose without loss of generality that nodes are numbered.

in increasing order of their distance to the sink on the SPT:
(XI,XQ, caey XN) with dSPT(Xlw S) < dSPT(X27 S) <
- < dgpr(Xpn,S). That is, node X, is the closest node
to the sink and node X is the furthest one from the sink on
the SPT.
Theorem I (LP solution): The solution of the optimization
problem in (4) is:

RY = H(Xy),

Ry = H(XafXi),

(5)
Ry = HAXwXn_1,Xw_2,...,X1).

In words, the closest node to the sink is coded with a rate
equal to its unconditioned entropy. Each of the other nodes is
coded with a rate equal to its respective entropy conditioned
on all other nodes which are closer to the sink than itseif.

The proof is shown in Appendix A.

C. Approximation algorithm

In the previous section, we have found the optimal solution
of the linear programming rat¢ assignment under Slepian-
Wolf constraints. We consider now the problem of designing
a distributed algorithm. Even if we can provide the solution in
a closed form as (5), the nodes still need local knowledge of
the overall structure of the network (distances between nodes
and distances to the sink). This local knowledge is needed for:

1) Ordering the distances on the SPT from the nodes to the
sink: each node needs its index in the ordered sequence
of nodes $0 as to determine on which other nodes
to condition when computing its rate assignment, For
instance, it may happen that the distance on the graph
between nodes X and X n—; is large. Thus, closeness
in the ordering does not mean necessarily closeness in
distance,

2y Computation of the rate assignment:

Ri = H(XiIX’i'—]J"'?Xl)
= H(Xi,...,X:)—H(Xy,... . Xis1)

Note that 2l distances among nodes (Xi,...,X;) are
needed locally at node X; for computing this rate
assignment.

0-7803-8355-9/04/$20.00 ©2004 IEEE.

Such global knowledge might not be available. Thus, we
propose a fully distributed approximation algorithm, which
avoids the need for a node to have global knowledge of
the network, and which provides solutions very close to the
optimum.

Suppose each node ¢ has complete information (distances
between nodes and distances to the sink) only about a local
vicinity AF(?) formed by its closest neighbors. This informa-
tion can be computed by running for example a distributed
algorithm for finding the SPT (e.g. Bellman-Ford). The ap-
proximation algorithm we propose is based on the observation
that nodes that are outside this neighborhood count very little,
in terms of rate, in the local entropy conditioning, under the
assumption that the correlation decreases with the distance
between nodes, which is a natural assumption.

Algorithm 2! Approximated Slepian-Wolf coding:

« Find the SPT.

« For each node &

- Find in the neighborhood A (i) the set C; of nodes
that are closer to the sink, on the SPT, than node 3.
- Transmit at rate RE = H(X;|C;).

This means that data are coded locally at the node with a
rate equal to the conditional entropy, where the conditioning
is performed only on the subset formed by the neighbor nodes
which are closer to the sink than the respective node.

The proposed algorithm needs only local information, so
it is completely distributed. Siill, it will give a solution very
close to the optimum since the neglected conditioning is small
in terms of rate for a correlation function that is sufficientdy
decaying with distance (see next subsection and Fig. 2).

The Slepian-Wolf setting, as well as the closed-form solu-
tion and approximation algorithm, can be easily extended to
the case of multiple sinks.

D. Example: Gaussian random field

A model frequently encountered in practice is the Gaus-
sian random field. This also has the nice property that the
dependence in data at different nodes is fully expressed by the
covariance matrix, which makes it more suitable for analysis.
Thus, we assume a jointly Gaussian model for the spatial data
X measured at nodes, with an N-dimensional multivariate
norrmal distribution Gar(u, K):

f(X)

_ 1 o (3 TK X w)

V2r det(K)1/?
where K is the covariance matrix (positive definite) of
X, and g the mean vector. The diagonal elements of K
are the variances K;; = o?. The rest of K;; depead on
the distance between the corresponding nodes (e.g. Ky =
o?exp(—ad? ;). Then, for any index combination [ =
{ig, .yt € {l,...,NLES N W = (Xq,...,Xs)
is k-dimensional normal distributed. Its covariance matrix is
the submatrix K'[I] selected from X, with rows and columns
cotrespending to {i1, ..., %}

We use here without loss of generality differential entropy
instead of entropy, since we assume that data at all nodes
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Fig. 2. Average value of the ratio between the optimal and the approximated:
solution, in terms of total cost, vs. the peighborhood range, The network
instances have 50 nodes uniformly distributed on a square area of size 100 x

100, and the cotrelation exponent varies from a = 0.001 (high correlation)
to ¢ = 0.01 (low correlation).

is quantized with the same quantization step, and differential
entropy differs from entropy by a constant for uniformly
quantized variables [5]. The entropy of a k-dimensional mul-
tivariate norma! disiribution Gy (e, K) is:

WGlp, K)) = % log(2me)* det K.
The Slepian-Wolf constraints can readily be expressed as:
R(Y|YY) R(Y,YC) - h(YY)
% log ((Z'He)N_'Ycl

det K
det K[YC]

where K[Y“] is the selected matrix out of K, with indices
corresponding to Y© elements respectively.

This natural correlation model is useful for us because our
approximation algorithm can be easily tested. Consider for
example the case where the correlation decays exponentially
with the distance. Then, the performance of our approximation
algorithm will be close to optimal even for small neighbor-
hoods A(¢). Fig. 2 presents the average ratio between the
approxirmated solution and the optimal one, for a correlation
model Ki; = exp(—adZ;), for varying neighborhood range
radius and varying correlation exponent e. The weight of
an edge (4,7) is w;; = d?; and the total cost is given by
expression (2).

IV. CLUSTERED SLEPIAN-WOLF

Performing Slepian-Wolf coding of the data jointly at all
nodes in the network is difficult as it involves a large number
of bins and global knowledge of the network. In this section we
consider the case where Slepian-Wolf coding is done locally,

_on clusters of nodes, This simplifies significantly the coding
task, since only knowledge of the local network structure is
needed. However, as we will see, the actual task of optimal
clustering becomes also complex, thus, showing the inherent
complexity that is present in our problem.

0-7803-8355-9/04/$20.00 ©2004 [EEE.

A. Disjoint clusters

Suppose first that a node is part of two clusters. It can
use the same random codes, but it needs to use different
binning for the two clusters since lwo independent Slepian-
Wolf codings have Lo be performed. Then, it has to transmit the
maximum rate allowable by its local cluster rate allocations.
In order to solve the optimizations, the node needs to locally
express the inequalities in (3). But this means it knows all
the weights involved in these constraints, so clearly, the rate
allocation can be improved by using the union of the two
clusters. This is the reason why we consider only the case of
disjoint Slepian-Wolf clusters for the rest of this section.

B. Gaussian random field

q

a)

3
T

o
T

'»
T

bit allocation ratio

" L L

15 2 25 3

distance

02 L . L )
[ 35 4 45 5

Fig. 3. Three possible clustering modes for a network of 6 jointly Gaussian
nodes (up). The ratio between the optimal bit allocations between the examples
in (a),(b) and {(c) respectively, as fuaction of the distance d (down).

For a Gaussian random field, the optimization problem can
be posed in a closed form. We allow a maximum cluster size of
B. Then the problem is to find an optimal clustering of V' that
minimizes the weighted sum of rates 3, Ridgpr(i, S) (see
Fig. 3, for B = 2). Consider first the particular case when
the distances on the SPT are all unity (e.g. nodes placed on
an arc of circle). We show that even in this simple case, the
problem of optimal clustering becomes complex for 3 < B <
N. Denote by Iy, ..., I the disjoint sets of indices such that
UL ={1,...,N}, with C < N the (unknown) total number
of clusters, and each cluster can be encoded with H{X,) bits
using Slepian-Wolf in that cluster. The optimization problem
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is then to minimize over C, {L}%

3 hlG11 (0, KILD) = 3 3 log(2me}l! det K1)

i

So finally, we need to solve

= argC {mn 6)

R A
with |I}| < B,i=1,...,C.

1) Case B = 1: Trivial, data are coded separately.

2) Case B = 2; If B = 2, the problem (2) is equivalent
to finding a minimum weighted perfect maiching, and it can
be solved in polynomial time with the Edmonds ‘blossom’
perfect matching algorithm [13]:

Algorithm 3: Rate allocation for B = 2:

e For each edge (¢, 7):

- assign (R;, R;) under local constraints:
* if dSPT(ia S) < d’SPT(j: S)
+ then (R;, R;) = (H(X;), H(X;|X;)),
* else (B, R;) = (H(XilX;), H(X;))
(see Section III-B).
- let d'(4,j) = Ridspr(i,S) + Rydspr(3, 5).
e Run Edmonds algorithm for €'(s, 7).
3) Case B = N: If B = N, the optimal cluster division
is the cluster formed by the whole set of nodes (1,..., N},
which follows from the fact that K is positive definite, and
applying Fischer’s inequality [14].
4) Case 3 < B <« N: We show how this becomes very
complex, being a particular case of an NP-complete problem,
minimum 3-dimensional {3-D) matching. We conjecture the
optimization of (6) is also NP-complete.
Definition I: Minimum 3-D matching.
e Instance: Three sets X, Y, and W and a cost function
c: XxYxW = N.

o Question: An assignment A, i..,asubset A C X xY xW
such that every element of X UY UW belongs to exactly
one triple in A.

o Measyre;. The cost of
Z(z,y,w)eA C(I7 Y, w)'

The minimum 3-D matching problem is NP-compiete, and
this extends to the B-dimensional problem. The sets X, Y, W
are replaced by V' in the above problem definition, and the
cost ¢f-) is replaced by the joint entropy of the correspornding
nodes,

Suppose there exists a polynomial time algorithm to solve
the B-dimensional problem, for 3 < B < N. Then (2) could
be solved in polynomial time similarly to the 2-dimensional
matching case. Unformnately, such a polynomial time algo-
rithm is unlikely to exist.

(H det K[I;] )

the assignment, ie,

V. EXPLICIT COMMUNICATIGN

We consider now the case where Slepian-Wolf coding is
not used, either due to its complexity, or to the lack of global
knowledge of the network. We address the second approach
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introduced in Section [-A, where the reduction in entropy at
a node is due to explicit communication. Thus, the reduction
in data size at a node is due to the direct availability of side
information locally at the node.

For the Slepian-Wolf case, we have seen thai the problems
of rate allocation and pathering tree construction separate,
when optimizing the [data size] x [link weight] metric. This is
not any longer true for the case of the explicit communication
model. The reason is that with this model, the amount of data
supplied at nodes does depend on the transmission structure.

For the sake of simplicity and clarity in our arguments, and
without loss of generality, we use in this section a simple
model for the data correlation, which allows a clearer analysis
of complexity, and for which we develop good approximation
algorithms. This model still completely preserves the original
complexity of the problem. Namely, in our model, data at
each node are entropy coded with H(X,;) = R bits if
no side information is available from other nodes; but only
H(X:|X;,...) =r < R bits are needed if the node has side
information available coming from at least another ncde, that
uses node ¢ as relay (thus, our simplification is that  does not
depend on the number of conditional nodes). We denote by
p=1—r/R the correlation coefficient.

A. The SPT/ TSP tradeoff

In the case of uncorrelated data, if the cost for transmitting
over an edge was proportional (by a fixed constant) to the
length of that edge, then the problem is trivial and the optimal
communication structure is the straight line from the node to
the base station. However, for an arbitrary weight function
on the edge, transmitting via relays may be better than direct
transmission. In the case of correlated data, things become
even more interesting, even for very simple networks (Fig. 4).
If data were independent, the shortest path tree (SPT) would
be optimal. However, in Fig. 4(a), as soon as p > 1/2, the
SPT is no longer optimal. In Fig. 4(b), the ratio of total costs
is My —co E22 = (1 — piv) (gp +1). Since pyv — 1 when
N — o0, a traveling salesman path (75P) is arbitrarily more
cost efficient than direct transmission (SPT).

From these simple ¢xamples, it can be seen that the carre-
lated data gathering problem with explicit communication is
actually a hard optimization problem, in general, Formally, we
can formulate the minimization of {2) for the case of explicit
communication as follows:

« Find: the spanning tree ST = {T, L, F'} with:

— T non-terminal nodes, L leaves, TUL =V,
~ Such that:

ST =argmin | RY dsr({,S)+r dsr(t, S
g m }( ZS’T D dsrl ))

te’l

In terms of the correlation coefficient, p =1 — v/R:

lrp)ZdST(z S)

ST = argmm (pZdST LS+
iEV
(7

el
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4R+r
(a) All edge weights are 1.

s
SPT

(b) SPT vs. TSP

Fig. 4. Simple network examples.

Let us first look at the (wo extreme cases, that is o — 0
and p — 1. When p — O (independent data), the optimal
tree is the SPT (which is known to be solvable in polynomial
time by e.g. a distributed Bellman-Ford algorithm). At the
other extreme, when p — 1 (data maximally correlated), the
optimal solution is a spanning tree for which the sum of
paths from the leaves to the base station is minimum, For
this, the core information is taken from the leaf nodes, and
passing through all the in-tree nodes only adds infinitesimally
small new information, as data is strongly correlated. It is
straightforward to show that solving this problem is eguivalent
to solving the multiple traveling salesman problem [15], which
is known to be NP-hard.

To the best of our knowledge, (7) is an original spanning tree
optimization problem on a graph. In Section V-B we show that
this problem is NP-complete for the general case 0 < p < 1
as well. However, we propose good approximation algorithms
in Section V-C,

B. NP-completeness

In order 1o prove the NP-completeness of the optimization
problem given in (7), we prove that the decision version
problem is NP-hard. The decision version of our optimization
problem is:

Definition 2: Network data gathering tree cost problem.

o Instance: A undirected graph &' = (V, E} with weights

d; ; assigned to the edges (4,7) € E, a positive integer
M, and a particular node S € V.

0-7803-8355-9/04/320.00 ©2004 IEEE.

o Question: Does the graph admit a spanning tree ST such
that, when assigning supplies F; = R to the leaf nodes
and R; = r < R 1o the in-tree nodes in the spanning tree
ST, the total cost of ST given by (7) is at most M?

Theorem 2 (NP-completeness): There is no polynomial
time algorithm that solves the network data gathering tree cost
problem, unless P=NP,

The proof, which is based on a non-trivial reduction from
set cover, is shown in Appendix B.

Since this particular problem is NP-complete, then the
general version of problem (2) is also NP-complete:

Corollary 1: Minimizing (2) with R; = f(3___,; z.) for an
arbitrary monotonic function f(-), is NP-compiete.

Note also that, in general, node i has information from
all the nedes in the subtree st{i) rooted at node i. Our
simplified model is a particular case of this general entropy
coding problem, where H(X;|X,.;)) is approximated with
H(X;]X;). with j being child of i. Then the NP-complexity
of our simplified example extends also to this general case by
means of a trivial further reduction,

C. Approximation algorithms

We propose and compare the following five algorithms:

1) Shortest path tree: SPT is computed by using the
distributed Bellman-Ford algorithm for simultaneously deter-
mining the shortest paths from all nodes to the root. If the
data is independent, this is the optimum solation, but it is far
from optimal if there are high correlations.

2} Greedy algorithm: We start from an initial subtree
composed only of the root node. Then, successively, we add,
Lo the existing subtree, the node whose addition results in the
minimum power increment.

3) Leaves deletion approximation: This algorithm is based
on the observation that good cost improvements may be
obtained mainly by making the leaf nodes change their parent
node to some other leaf node in their neighborhood. This
operation is done only if it reduces the total cost of the whole
ree.

Algorithm 4. Leaves deletion algorithmn:

o Initialize with the SP7T. Each node maintains its parent,
number of children, and total distance on the current
spanning tree to the base station dgr(i,.5). Let par(s)
denote the parent node of node 4.

o While there is a cost improvement:

— For each i leaf node (with no children): Find the
leaf node § € A(:) that maximizes R(dgr(s, S) +
dst(3,5)) — (Rldij + dsyp(5,5)) + rdsr(5,5)) -
I(i), where I(i} is an adjustment term that indicates
the cost lost by transforming single parent nodes
into leaves. If the maximizing quantity is positive,
par(i) — 7 and the corresponding distances on the
tree and number of children are updated, for all the
three nodes involved (¢, former par(%), and 7).

o Endwhile,

This algorithm involves at most 3 — 4 supplementary itera-
tions after SPT is computed, and is fully distributed.

2578



4) Balanced SPT/ TSP tree: We propose an approximation
based on a combination between the SPT and multiple trav-
eling salesman paths (7SP). It builds the SPT subtree up to a
radius ¢(p) away from the root. It then builds paths for the
remaining nodes starting from the leaves of the SPT subtree,
in their respective subregions (see Fig. 6(b)).

Algorithm 5: SPT/TSP balanced tree:

« Build the SPT for the nodes that are in a radius g(p) from

the root. The radius g{p) decreases with the increase of
the correlation coefiicient p.

o From the rest of the nodes, successively add the node ¢
that minimizes d(i,{) + dsp(!,S), | € L being one of
leaves of the current obtained subtree. This is actually a
suboptimal nearest neighbor approximation to the multi-
ple TSP, which is easily implementable.

This algorithm was inspired from the insights of our ex-
periments using simulated annealing, a computationally hard
method known to provide results close to optimal for large
combinatorial problems similar to ours (e.g. TSP).

5) Simulated annealing: The fitness landscape formulation
[16] of our problem is as follows: (a) the configuration space is
the set of all spanning trees (completely defined by the parent
relationship), (b) the move set is: one node changes its parent,
(c) the fitness function is g(ST) = RY ., ds7(l,8) +
T3 et As7(t, §). Our goal is to minimize the fimess over
the spanning trees set.

Algorithm 6: Simulated annealing:

o Take a cooling schedule T[k],k=1,...,K.

o Initialize with por(i) =8S,i=1,...,N - 1.

o Whilek < K

- k++, 1 =g(ST);

- choose 3, j € M(i) at random such that deleting edge
(1, par{1)}), and adding edge (4, §) 10 the ree does not
form a cycle; let I = g(.ST"), the fitness of the new
generated spanning tree STV,

-~ make the change par{i} — 4,87 — ST’ with

N 1, it i<t
probability p = { exp(—%—l‘ﬁ), i U1

+ Endwhile

With a correctly chosen cooling schedule and if the atgo-
rithm runs for a sufficient number of steps, it can be proved
to converge to the optimal spanning tree ST'.

D. Numerical simulations

Our simulations were done in MATLAB for a network of up
o N = 500 nodes randomly distributed on a 100 x 100 square
grid. We use an approximated correlation model in which the
correlation coefficient decreases with the number of nodes,
that follows in a straightforward manner from the exponential
correlation models introduced in Section III-D. We assume a
uniform distribution of the nodes across space on a fixed area.

SPT was found with the distributed Bellman-Ford algo-
rithm, that runs in O(N}E|) steps. Qur extensive experiments
show important improvements of the leaves deletion and the
balanced SPZ/TSP approximation algerithms over SPT, tor
randomly distributed nodes (Fig. 5, 6).
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Rate allocation
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L

Fig. 7. Typical rate allocation for a network instance of 50 nodes, and
correlation exponent ¢ = (0.0005. On the x-axis, nodes are numbered in
order as the distance from S increases, on the corresponding spanning tree.
Total costs for this instance: SPT with optimal Slepian-Wolf: 0.84e + 5;
SPT with approximated Slepian-Wolf:  1.30e + 05; SPT/TSP with explicit
communication {with conditioning on first order children): 1.94e + 5; SPT
with independently coded data: 2.24e + 5.

In Fig. 7 we show a comparison of the rate allocations
with our different approaches for rate allocation, as a function
of the distances from the nodes to the sink. For the explicit
communication approach, we used a first-order correlation
model, in which in-tree nodes condition only on the closest
child, and the value of p is computed a-pricri as an average.
Qur experiments have shown that either full conditioning on all
children, or use of a distance dependent correlation coefficient
between pairs of nodes, do not improve much on the total cost
(2). The main reason for which the approximated Slepian-Wolf
approach outperforms the explicit communication approach is
that Slepian-Wolf approaches allocate much smaller values of
rates for nodes far from the sink. However, this is achieved
with the cost of increased network knowledge.

VI. CONCLUSIONS AND FUTURE WORK

We presenied two complementary approaches for solving
the compiex problem of joint rate allocation and transmission
structure optimization for network correlated data gathering,
and good approximation algorithms for this task. We showed
how the rate allocation depends on the chosen approach,
and assessed the complexity of implementing each of these
approaches. Directions of future work include the combination
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APPENDIX A
PROOF OF Theorem 1

Proof: First, we prove that (5) is indeed a feasible solution
for (4), that is, it satisfies all the constraints given by (3).
Consider any constraint from (3), for some subset Y € X.
Denote by Q@ = |Y| the number of eclements in Y. Order the
indices of X; € Y as iy, 49,13, ..4¢, with ¢y closest and ig
furthest from the sink on the SPT.
We rewrite the left-hand-side in terms of the solutions we
give in the theorem:

SR -

€Y

H(Xinx,;Q_l, ceey X]_) +

H(X‘iqfllxiq—l“h N
e
H(X, | X1, X1)

LX)+
(&)

and expand the right-hand-side terms with the chain law for
conditional entropies:

of the two approaches for further cost improvements, and the c c
ppr ) P H(YIYY) = H(Xig|Y"Uu{Y - {Xig}}) +
case of general traffic matrices. p
H(X"A'le |Y U {Y - {X‘ig ] X'iQ—l}}) +
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Fig. 8. A simple example with two nodes. The total weights from
sources X1, X3 to the sinks, are respectively dgpr(X1, 5}, dspr(X2,5),
dspr(Xi, S} < dspr(Xa, S), in this particular case. In order to achieve
the minimization, the cost line Ridgpr(X1,S)+ Radspr(X2,8) has to
be tangent to the most interior point of the Slepian-Wolf rate region, given
by (Ry, R2) = (H(X1), H(X3[X1))-

Consider the terms on the right-hand-side in expressions (8)
and (9). It is clear that for any ¢, € Y, the term corresponding
to X;, in (9) is at most equal to its counterpart in (8). This
is because the set of nodes on which the entropy conditioning
is done for each term in (8), is a subset of its counterpart in
(9). Since the choice of Y was arbitrary, then any constraint
in (3) is satisfied by the assignment (5).

On the other hand, note also that the rate allocation in (5)
satisfies with equality the constraint on the total sum of rates:

> R 2 H(Xy,...,Xn).

i€eX

(10)

So we have proven that (5) is a valid rate allocation. We have
to prove now that the assignment in (5) makes the expression
to be minimized in (4) smaller thas any other valid assignment.
In Fig. & we illustrate with an example involving only two
nodes how the cost function is indeed minimized with such a
rate allocation. The assignment (5) corresponds in this case to
the point (R1, By) = (H(X1|X2), H{X2)).

We prove this by recursion. Note first that the rate
allocation to node /N is minimal. That is, we cannot
allocate to Xy less than H(Xn|Xwy-1, Xnoo,...,X1)
bits, due to the Slepian-Wolf constraint corresponding to
Y = {Xn} Assume now that a solution that assigns
H(XNIXNﬁhXN*Q, N .,Xl) bits to Xy is not optimal,
and Xy is assigned H{X y{Xn_1,...,X1) + b bits. Due to
(10), at most b bits in total can be extracted from the rates
assigned to some of the other nodes. But since dspr(Xn, S)
is the largest coefficient in the optimization problem (4),
it is straightforward to see that any such change in rate
aliocation increases the cost function in (4). Thus assigning
Ry =H(XnIXn_1,...,X1) bits to X is indeed optimal.

Consider now the rate assigned to Xy_;. From the rate

0-7803-8355-9/04/520.00 ©2004 [EEE.

constraint corresponding to Y = {Xn_y, Xn}, it follows
that:

Ry + Ry

%

H(Xn, Xv-1|Xn-z, ..., Xs)
HXnXN-1,XN_2,..., X1)+
+H{(Xn 1| Xn_2,...,X1)

Since for optimality Ry must be given by Ey
H(XNlXN—l,XN—‘Z, . ,Xl), it follows that Ry—:
H(Xwn-1|Xn-2,...,X1). Pollowing a similar argument
for X, we can show in the same way that the optimal solution
allocates Ry_1 = H(Xn_1]Xpy—2,...,X1). The rest of the
proof follows similarly by considering in order the constraints
corresponding (o the subsets Y = {X;, X;11, ..., X}, with
i=N-2,N-3,...1. [ |

{

=2
as

APPENDIX B
PROOF OF Theorem 2

Procf: First, the decision version of our problem is in
NP: a nondeterministic algorithm needs to guess the parent
relatonship (that is, specify the parent node for each of the
nodes), and then find in polynomial time the nodes that are
not parent nodes, assign to all nodes the number of bits
corresponding to either leaf or in-tree node, and test that its
total cost is less than the given value M.

Next, to prove the NP-hardness, we perform a reduction
from the set cover problem [17], whose decision version is
defined as follows:

Definition 3: Set cover.

« Instance: A collection C of subsets of a finite set P and

an integer 0 < K < |C|, with |C| the cardinality of C.

o Question: Does C contain a subset €’ C C with [C'] <

K, such that every element of .P belongs to at least one
of the subsets in C’ (this is called a set cover for P)?

For any instance of the set cover problem we build an
instance of our decision problem. Fig. 9 illustrates the con-
struction of the graph instance for our problem. The resulting
graph is formed of three layers: a root node S, a layer corre-
sponding to the subsets C; € C, and a layer corresponding to
the elements {p;} of the set P. For each element C; € C we
build a structure formed by 4 nodes =1, xs, x3, T4, as in Fig. 10
(there are four different nodes for each subset C;, but we drop
the superscript ; of the nodes x for the sake of simplicity).
The node x5 is linked to the root S, node x4 is connected only
to node x1, and x1, 9, x3 are all interconnected. Furthermore,
we connect each structure C; € C (namely the node z; from
that structure) to only the nodes in the P layer that correspond
to elements contained in C; (example: in the instance in Fig.
9, subset Cy = {p1,p2,p2},C2 = {p2.p3, P pj-1} etc) All
the edges connecting the P layer to the C' layer have a weight
d > O; for all C;, the edges of type (z1,z3) and (@2, x3) have
weight a > 1; the rest of the edges shown in Fig. 9 have all
weight 1. All other edges are assumed of infinite weight and
are not plotted. Without loss of generality, we consider that
in-tree nodes use » = 1 bits for coding their data, while leaf
nodes use R > 1 bits.
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Fig. 8. A graph instance.

P layer

root 8

Fig. 10. Imner structure of each subset Cj.

The goal is to find a spanning tree for this graph, for which
the cost in (7) is at most M. We now show that if M =
|Pl{(d+a+1)R+ K(2aR+3R+a+2)+(|C| - K)(aR +
3R+ 2a+4), for the positive integer K < |C|, then finding a
spanning tree with cost at most M is equivalent to finding a
set cover of cardinality K or less for the set P. Notice that the
construction of our graph instance from the set cover instance
can be performed in polynomial time.

With a large enough value chosen for d (i.e. d > |C|(2aR+
3R+a+2)/R), a tree with cost at most M will contain exactly
{P| links between the layers P and . That means that no
p; node is used as relay, so all p; € P are necessarily leaf
nodes. If some p; node was used as relay, then the cost of
the tree would contain R bits passing through more than }P|
such links, which would result in a cost larger than M. This
also implies that the only way the C; structures can connect
to the root 5 is via their corresponding z3 nede, so all z3’s
must be in-tree nodes. Furthermore, all z4’s nodes need to be
connected to their corresponding x; node in order to belong
to the tree, so necessarily all z4-s are leaf nodes and all x{’s
nodes are in-tree nodes. The only degrees of freedom are the
choices of two out of the three edges interconnecting the nodes
xy,Z0, Ty, for each structure C;.

The key idea of our proof is that, for properly chosen
values for d and a, finding a tree with cost at most M means
connecting the nodes in layer P to at most K nodes of layer
C. If the tree needs to connect the layer P to more than K
nodes in layer C, then the cost of the tree will necessarily be

0-7803-8355-9/04/520.00 ©2004 IEEE.
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Fig. 11. The three possible gathering patterns for the substructure ;.

higher than M. The intuition is that "detours’ via the (x4, x2)
edges are worthy from the point of view of cost reduction only
if the flow that goes through node z; comes exclusively from
node x4 and no flow from the P layer goes through x;. If
some flow from the P layer joins as well, then the optimal
path would use the edge (x1,23) instead. In this latter case,
we see now that for optimality, the edge (x4, 22) should not
be used.

We choose a value of a > 1 such that (a +2)/a < R <
(a + 2)/(a — 1). Note that, for a given R > 1, it is always
possible to choose a value for a that fulfills this condition.

With the given weights on the edges, if 10 p; node is
connected to a C; structure, then since B > (a + 2)/a, the
optimal pattern (pattern 1, see Fig. 11) for this structure con-
tains the links (z4, 1), (z1,23), (x2, 23), (za, S}, with cost
{a+3)R+ (a4 2)+ (e + 1) + 1. The other possible struc-
tures contain either links (z4,x), (z1, x3), (22, z3), (23, )
(pattern 2) with cost (a+2)R+ (a+ )R+ (a-+ 1)+ 1, or
links (I4, ﬂ:l), (Il, $3), (.’Eg, I1), (3, 5) (pattern 3} with cost
{a+2)R+{a+2)R+(a+ 1)+ 1. They both are sub-optimal
if R > (a+2)/a (since pattern 2 is always better than pattern
3, we will consider only pattern 2 for the rest of our proof).

However, when m > 1 nodes {p;}7L, from the P layer
connect to x3, for any of Cj’s, the pattern 1 is no longer
optimal, because it has a cost m{d+a+2)R+(a+ 3)R +
(a+2)+ {a+ 1)+ 1. The alternative structure {pattern 2) has
cost m(d+a+ DR+ {a+2)R+{a+1}R+({a+1)+1,
which is more efficient it m > 1, and R < (a+2)/{a—1). We
notice that in an optimal tree the cost to transmit data from
each p; to the root 5 is the same for all p;’s nodes (and equal
to (d + a+ 1) R). Therefore the goal is to keep minimal the
part of the total cost corresponding to the rest of the nodes
(i.e. nodes in layer C).

‘That means that to find a tree with cost less or equal to
|[Pl{d+ e+ )R+ K(2aRB+ 3R+a+2)+(|C] - K)(aR+
3R + 2a + 4) is equivalent to finding a set of K elements or
less from the C layer to which all nodes in the set P connect.
This is actually achieved by having at most K nodes of type
x1 used to connect to the p;’s nodes, which turhs out to be
equivalent to finding a set cover for the set P of size K or
less, that is to solving the set cover problem.

Thus our decision problem is NP-hard and our optimization
problem NP-complete. |
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