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Abstract-We consider the problem of correlated data gath- 
ering by a network with a sink node and a tree communication 
s t ~ c t u ~ ,  where the goal is to minimize the total transmission 
cost of transporting the information collected by the nodes, to 
the sink node. Two coding strategies are analyzed a Slepian- 
Wolf model where optimal d i n g  is complex and transmission 
optimization is simple, and a joint entropy coding model with 
explicit communication where coding is simple and transmission 
optimization is difficult. Thi problem requires a joint optimiza- 
tion of the rate allocation at the nodes and of the transmission 
structure. For the Slepian-Wolf setting, we derive a closed form 
solution and an efficient distributed approximation algorithm 
with a good performance. For the explicit communication case, 
we prove that building an optimal data gathering tree is NP- 
complete and we pmpose variow distributed approximation 
algorithms. 
KEYWORDS: Graph Theory, Combinatorics, Information The- 
ory, Mathematical programminghptimization, Simulations. 

I. INTRODUCTION 

A. The problem and ifs motivation 
Consider a number of distributed data sources with a certain 

correlation structure among the sources. A number of links 
connects sources to each other, establishing a graph where 
sources are nodes and links are edges. The task is to send 
all the data to a particular node of the graph, and we refer 
to this set up as the correlated data gathering tree on a 
graph problem. The goal is to achieve the data gathering while 
minimizing a cost functional (e.g. power on links or distance 
accumulated), possibly under constraints (e.g. some maximal 
capacities on links). This is of course an instance of a network 
flow problem, but with an original twist: because the data 
is correlated, standard solutions may not be optimal, leading 
to original rate allocation problems and original tree building 
problems, depending on the source coding model that will be 
used. 

An example is shown in Fig.1, where we have N nodes with 
sources XI,. . . , XN, a sink S, and a number of edges that 
connect the sources. Nodes are supplied amounts of measured 
data which need to be transmitted to end sites, called sinks or 
base stations. Intermediate nodes can be also used as relays 
in addition to measuring data. They aggregate their own data 

The work presented in this paper was supported (in pan) by the National 
Competence Center in Research on Mobile Information and Communications 
System (NCCR-MICS), a e n t e r  suppied  by the S%us National Science 
Faundatioo under grant number 5005-67322. 

Fig. 1. An example of a network. Nodes transmit thelr data to Ule base 
stations. A rate supply Q is all-ted to each node Xi. lo solid lines, a 
chosen tree smchlre is shavn. lo dashed lines, the mher possible links aye 
shown. 

with the data received from other nodes. A very important 
task in this scenario is to find a transmission structure on the 
network graph that minimizes a cost of interest (e.g. flow cost 
[data size] x [link weight], distance, etc.). In the case of a 
single sink, the optimal structure is usually a tree. This leads 
to the question of how to construct efficient data gathering 
trees. 

When the data measured at nodes are statistically indepen- 
dent, the problem separates: the rate allocation becomes trivial, 
as each node codes its data independently; then next, well 
developed algorithms can be used to solve various network 
problems (minimum,and shortest path spanning tree, minimum 
cost flow etc.). 

However, in many situations, data at nodes are not in- 
dependent. Due to the correlation present, it is expected 
that approaches that take into account this correlation, will 
outperform traditional approaches, for various cost functions 
(metrics). Moreover, jointly exploiting the data structure and 
optimizing the transmission topology (structure) in the net- 
work can provide substantial further improvements. Therefore, 
it is worth studying the interaction between the correlation of 
the data measured at nodes and the transmission structure that 
is used to transport these data. 
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A practical instance can be found in sensor networks [I], 
[21, [3]: a number of sensors acquire measurements which are 
typically correlated to each other, and these measurements are 
sent to a base station for evaluation or decision purposes. Col- 
lecting images from various sources into a common repository 
on the internet is another example of correlated data gathering. 

In particular, let us consider the case of a network of 
sensors taking measurements from the environment. Let X = 
( X I , .  . . , X N )  be the vector formed by the random variables 
measured at the nodes 1,. . . , N .  We assume that the random 
variables are continuous and that there is a quantizer in 
each sensor (with the same resolution for all sensors). A 
rate allocation ( R I ,  . . . , R N )  (bits) has to be assigned at the 
nodes so that the quantized measured information samples are 
described losslessly'. That information has to be transmitted 
through the links of the network to the designated base station 
(see Fig. I). We assume contention is solved by the MAC 
layer. We abstract the wireless case as a graph with point- 
to-point links, mainly because the full wireless multi-point 
case is an open problem, and practical schemes transform the 
problem into a graph with nearest neighbor connectivity. A 
meaningful metric to minimize is the energy consumption, 
which is essentially given by the sum of products [data size] x 
@ink weight], for all the links used in the transmission. Here 
the weight of the link between two nodes is a function of the 
distance d of the two nodes (e.g. kd-" or kexp(ad),  with k, 
a constants that depend on the medium properties). 

We will consider two complementary approaches that may 
be used in this problem. The first approach is to allow nodes 
to use joint coding of correlated data without explicit com- 
munication (this is possible with random binning arguments, 
that is using Slepian-Wolf coding [41, [51, [61, [71). With this 
approach, finding a good routing structure turns out to be 
easy, because routing and coding are separated (decoupled); 
however data coding becomes complex and global network 
knowledge is needed for an optimal solution. 

In the second approach, nodes can exploit the data corre- 
lation only by receiving explicit side information from other 
nodes (for example, when other nodes use a node as relay, 
their data is locally available at that relaying node). Thus, the 
correlation structure is exploited through communication and 
joint aggregate coding/decoding locally at each node. In this 
case data coding is easy and relies only on locally available 
data as side information. However, now optimizing the routing 
structure becomes complex. 

Summarizing, the main tradeoff between these two settings 
is 

If nodes are assumed to know the correlation structure 
(or equivalently, the dependence on the distance), then 
they can employ Slepian-Wolf coding. In this case, source 
coding is complex while the transmission structure can 
he found with classical polynomial time network flow 
algorithms. 

'The use of a dismhted lossy coding settinp (distributed quantization) in 
our problem is a subjecl of OUT fume research. 

If the correlation structure is not known a-priori, then 
side information is needed to reduce the entropy. In other 
words, the correlation structure is learned (explicitly) in a 
distributed manner through explicit communication. This 
leads to a simple source coding, but the transmission 
structure optimization is hard. 

In this work, we show how the rate allocation is dependent 
on the chosen setting. In the Slepian-Wolf case, optimal coding 
allocates most of the load to nodes close to the sink and small 
rates to nodes at the extremity of the network. In the explicit 
communication model, data compression is done only when 
side data is available, and thus large rates are allocated to 
nodes far from the sink, and much smaller rates at nodes 
close to the sink. It is therefore expected that a combined third 
approach will provide not only a complexity tradeoff between 
the source coding and the transmission structure strategy, but 
will also distribute more evenly the rate load throughout the 
network. One possible approach is to consider a combination 
of Slepian-Wolf coding for clusters of nodes, and explicit 
communication among clusters, and this is a topic for further 
research. 

B. Related work 
The problem of data gathering has been considered in the 

context of sensor networks. Let us briefly review some of the 
algorithms proposed so far. 

In [SI, the authors introduce the cluster based LEACH 
algorithm. In their model, the cluster head nodes compress 
data arriving from nodes that belong to the respective cluster, 
and send an aggregated packet to the base station. The work in 
[91 introduces the PEGASIS algorithm, that uses the energy x 
delay metric over the routing tree; their algorithms find chains 
of nodes instead of clusters. 

The work which is most related to the problem we consider 
in this paper is the one involving the concept of directed 
diffusion and data aggregation [IO]. In that model, sensors 
measure events, creating gradients of information in their 
respective neighborhoods. The base station requests data by 
broadcasting interests. When interests fit gradients, paths of 
information flow are formed and then, the best paths are 
reinforced. In order to reduce communication costs, data is 
aggregated on the way. The goal is to find a good aggregation 
tree which gets the data from some of the nodes to the 
base station. Similar work can be found in [ l l ]  and [U]. In 
[121, the authors address the problem of data gathering and 
compression at relay nodes by using the theory of concave 
costs applied to single source aggregation. The authors develop 
an elegant algorithm that finds good trees that simultaneously 
maximize several concave cost functions of interest. Their 
model is significantly different from ours in the sense that 
their setting assumes information sources supply a constant 
amount of information. Moreover, their model does not take 
into account possible collaborations among nodes. In our case, 
due to the correlation structure, the amount of aggregated 
information sent down the tree to the base station from a 
particular node depends on the structure of the subtree whose 
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parent is that node. In addition, we consider the case of 
collaboration between nodes through Slepian-Wolf coding. 

C. Main contributions 
In our work, the case where Slepian-Wolf ccding is em- 

ployed is fully solved. We prove that in the case where aglobal 
Slepian-Wolf coding is performed, the optimal choice of the 
transmission structure is completely separated from the rate 
allocation optimization; however the optimal rate allocation 
does depend in general on the distances between nodes. We 
find the optimal rate allocation in closed form and propose 
a distributed approximation algorithm which provides a rate 
allocation that is very close to the optimal one. Then, we study 
a simplified coding case where Slepian-Wolf is performed 
locally only on clusters of nodes, thus avoiding the use of 
global Slepian-Wolf coding. However, we conjecture that in 
this case separating optimally the nodes into clusters becomes 

Second, we study the case when joint coding of correlated 
data is performed explicitly, that is, the reduction in rate 
by entropy coding due to the correlation is possible only 
when side information is explicitly available (as relayed data). 
We prove that this makes the problem NP-complete and 
propose distributed approximation algorithms with a good 
performance. 

The paper is structured as follows: In Section 11, we state 
the formal definition of the optimization problem we address 
in this work. Section III is concerned with the treatment of the 
Slepian-Wolf case. We consider in Section IV a particular case 
of the mixed approach, where Slepian-Wolf coding on clusters 
is used. In Section V we treat the explicit communication case. 
We illustrate our ideas using an example based on an ergodic 
Gaussian random field as model of correlation. Finally, we 
conclude and present directions of future work in Section VI. 

11. PROBLEM FORMULATION 

Let G = (V, E )  be a weighted graph with 1V1= N +  1. We 
denote by S the particular (N+l)th node called the sink node. 
Each edge e = (i , j)  E E has a weight we. Every node i has to 
transmit a rate (or supply) R, through the network to the sink. 
The rate Ri might be negative because of the rate reduction by 
joint entropy coding at each node. Let f (z, tu) be an arbitrary 
cost function of the flow z through a particular edge and the 
edge weight w. Then the minimum cost data gathering tree 
problem is defined as follows. Find the spanning tree ST of 
the graph G and the rate allocations E’s that minimize the 
cost function: 

I NP-complete. 

f(..,w.), (1) 
e t S T  

under constraints 

z,+. -~z.  = Ri,i = 1 ,..., N ,  

Rs = ER,, 
e-i 

N 

i=l 

where we denote by e + i the set of edges entering node 
i ,  and by i + e the edge from node i to its parent in the 
tree. We restrict our discussion to separable functions f, and 
without loss of generality we assume f(z, w )  = z x 7u. This 
corresponds to many practical settings (e.g. many cases of 
sensor networks). Then the expression (1) to 6e minimized 
can be rewritten as: 

where d s T ( i , S )  is the total weight of the path connecting 
node i to S on the ST tree. 

There is an important generalization that makes the problem 
we consider in this work different from classical network flow 
theory: the rate R, at node i depends on (a) the incoming 
flow C,,,x. entering that node, and (b) on the particular 
structure chosen to transmit information from the nodes that 
supply the incoming flow, that is, the links that form the 
subtree rooted at node i. In general, is a decreasing 
function of the amount of incoming flow because joint coding 
always reduces information rates. This implies that the rate at 
each node depends in general on the particular transmission 
tree structure used, hence the rate allocation and the tree 
construction must be addressed together, rather than separately. 
Because of this important generalization, we call this the 
minimum cos1 network correlated data gathering tree problem. 

We now particularize the optimization problem (2) to the 
two coding settings we introduced in Section I-A. 

A. Slepian- Wolf coding 
Consider (see Fig. I )  the case of two random sources XI 

and XZ that are correlated. Intuitively each of the sources can 
code their data at a rate equal to at least their corresponding 
entropies, RI = H(X1) ,  Rz = H ( X z ) ,  respectively. If they 
are able to communicate, then they could coordinate their 
coding and use together a total rate of RI f R z  = H(X1, X Z ) .  
Slepian and Wolf [41 showed that two correlated sources can 
be coded with a total rate equal to the joint entropy H ( X 1 ,  Xz) 
even if they are not able to communicate with each other, 
as long as their individual rates are at least equal to the 
conditional entropies, H ( X l I X 2 )  and H ( X 2  1x1) respectively; 
this easily generalizes to the N-dimensional case. 

Assume now that in the example given by Fig. 1, the 
nodes know in advance the correlation structure (which we 
assume depends only on the distance among the nodes for 
a given medium). Then nodes 1 , 2 , 3 , .  . . , N ,  can code their 
data jointly, without communicating with each other, with 
a rate H(X1 ,  X 2 , .  . . , XN), as long as their individual rates 
obey constraints related to the different conditional entropies 
[41, [SI. We show in Section In that, when optimizing (2), 
the shortest path tree is optimal for any rate allocation and 
thus the whole optimization problem can be separated into a 
spanning tree optimization and the rate allocation optimization. 
Then the minimization problem in (2) becomes a problem of 
rate allocation that can be posed as a linear programming 
(LP) problem under linear constraints. In general, if the 

0-7803-8355-9/04/$20.M) Oux)4 EEE. 2573 



cost function is separable but nonlinear, then (2) becomes 
a non-linear programming problem that can be solved using 
Lagrange multipliers. For the sake of clarity, we will restrict 
ourselves in this paper to separable linear functions. 

B. Explicit cormunicatwn 
In classical network transport theory, the amount of supply 

at a node is fixed and independent of the communication links 
that are chosen to transport the various supplies. In particular, 
the supply provided by the ith node is independent of the 
nodes that are connected to the ith node through the chosen 
links. The novelty of our problem formulation stems from the 
fact that we consider a class of problems where the supply 
at a given node depends on the incoming flow from other 
nodes that use that node as relay, and also on the transmission 
structure for these nodes. 

Consider again the example in Fig. 1, where nodes have to 
communicate their correlated data to one base station. If we 
consider node X3, then the quantity it has to supply depends 
on whether 

1) neither node X I  nor node X Z  use node X3 as relay, or 
2) node X I  uses node X Z  as relay, and node X Z  transmits 

its aggregate further to node X ,  (this case is shown in 
solid line in Fig. l),  or 

3) both node XI and node X Z  use node X3 as relay. 
In the first case, no side information is available at node X3 

from other nodes. Node X z  sends its entire amount of data on 
a path to the sink. 

In the second case, node X3 does have side information 
available from node X2.  The information at these two nodes 
is not independent. Therefore node X3 can reduce correspond- 
ingly the amount of data it sends further. It jointly codes its 
data with the data from node X ,  and sends the resulting coded 
data further. 

In the third case, the amount of side information available 
is even larger at node X3,  since two nodes use it as relay. 
Thus, the data amount reduction at node X:, is larger as well 
because the joint coding involves more sources. 

This network setting occurs frequently, for example in 
sensor networks measuring correlated data. 

It is clear that in either of these three cases the optimal 
transmission structure might not be the shortest path tree. We 
show in Section V how this joint treatment of source coding 
and transmission structure optimization actually makes the 
problem NP-complete. 

Finally, the two approaches of Slepian-Wolf coding and 
explicit communication can be combined in a third mixed 
approach, where some clusters of nodes code data jointly 
with a Slepian-Wolf procedure, while the rest of the nodes 
use explicit communication. For instance, since nodes that 
are close to the base station relay data from the rest of 
the network, they will have an important amount of side 
information available and thus, they do not need to employ 
Slepian-Wolf coding, reducing the complexity in terms of 
coding. 
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111. SLEPIAN-WOLF CODING 

A. Slepian- Wolf consrraints 

With Slepian-Wolf coding, sources do not need to commu- 
nicate explicitly in order to code their data at a rate equal to 
the joint entropy. By using random binning based codes, it can 
be shown that a rate allocation ( R I , .  . . , R N )  can he achieved 
if and only if it satisfies 

(3) 

for any of the 2N - 1 sub-vectors* Y C X (see Fig. 8 for the 
rate region of two sources). 

Proposition I :  - Separation of source coding and lree 
building: 

When there is a single sink and Slepian-Wolf coding is used, 
the shortest path tree ( S P n  is optimal, in terms of minimizing 
(Z), for any rate allocation. 

Proofi Once the rate allocation is fued, the best way 
to transport any amount of data from any node to the sink 
is to use the shortest path. Minimizing the sum of costs 
in (2) becomes equivalent to minimizing the part of cost 
corresponding to each node in part. Since the shortest path 
tree is a superposition of all individual shortest paths, then it 
is optimal for any rate allocation that does not depend on the 
transmission structure, which is the case here. rn 

Therefore, global Slepian-Wolf coding separates in fact 
rate allocation from how the transmission structure is chosen. 
Correlated data is encoded at nodes with a rate given by the 
joint entropy and without explicit internode communication. 
However, the distances among nodes are needed implicitly in 
expressing the constraints (conditional entropies) in (3), as the 
correlation model is usually distance dependent. 

In Section 111-B, we derive the closed form solution for 
minimizing (2) under the constraints (3). This is however not 
enough from a practical point of view, for example for deriving 
a distributed solution. Global Slepian-Wolf coding involves a 
large complexity. Because of this, in Section III-C we present 
an approximation algorithm that provides a rate allocation 
close to optimum for a large class of networks in which 
the correlation between the nodes decreases with the distance. 
Moreover, our algorithm is fully distributed and relies only 
on local information. In Section 111-D we particularize our 
solution for the case of a Gaussian random field, and show 
numerical simulations. 

B. Solution of the LP problem 

We have seen that for any foed  rate allocation Ri, SPT is 
the optimal gathering tree. We now present the algorithm for 
finding the optimal rate allocation: 

Algorithm 1: Optimal Slepian-Wolf rate allocation: . Find the SPT of the initial connected graph 6. 

ZNote that Y denotes both the vector of random variables, and the node set 
where those random variables are measured. 
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Solve the constrained LP: 

under constraints: (4) 

Ri 2 U(YIYC), (V)Y c X 
i t Y  

where & p ~ ( i , S )  is the total length of the path in the 
SPT from node i to S, and (RT,. . . , Rh) is the optimal 
rate allocation. 

Note that in order to express the rate constraints, centralized 
knowledge of the correlation srmcture among all nodes in the 
network is needed. 

Suppose without loss of generality that nodes are numbered. 
in increasing order of their distance to the sink on the SPT: 

. . . 5 ~SPT(XN,  S). That is, node XI is the closest node 
to the sink and node XN is the furthest one from the sink on 
the SPT. 

Theorem I (LP solution): The solution of the optimization 
problem in (4) is: 

( X l , x Z > . . . > x N )  with dSPT(XlrS) 5 ~ S P T ( X Z I S )  5 

RT = H(Xi), 
R; = H(XzIXi), 
. . . . . . . . . ( 5 )  

RL = H ( X N I X N - ~ , X N - Z , . . . , X ~ ) .  
In words, the closest node to the sink is coded with a rate 

equal to its unconditioned entropy. Each of the other nodes is 
coded with a rate equal to its respective entropy conditioned 
on all other nodes which are closer to the sink than itself. 

The proof is shown in Appendix A. 

C. Approximation algorithm 

Such global knowledge might not be available. Thus, we 
propose a fully distributed approximation algorithm, which 
avoids the need for a node to have global knowledge of 
the network, and which provides solutions very close to the 
optimum. 

Suppose each node i bas complete information (distances 
between nodes and distances to the sink) only about a local 
vicinity N(i) formed by its closest neighbors. This informa- 
tion can be computed by running for example a distributed 
algorithm for finding the SPT (e.g. Bellman-Ford). The ap- 
proximation algorithm we propose is based on the observation 
that nodes that are outside this neighborhood count very little, 
in terms of rate, in the local entropy conditioning, under the 
assumption that the correlation decreases with the distance 
between nodes, which is a natural assumption. 

Algorithm 2: Approximated Slepian-Wolf coding: . Find the SPT. . For each node i: 
- Find in the neighborhood N(i) the set C, of nodes 

that are closer to the sink, on the SPT, than node i .  
- Transmit at rate RJ = H(X,IC,). 

This means that data are coded locally at the node with a 
rate equal to the conditional entropy, where the conditioning 
is performed only on the subset formed by the neighbor nodes 
which are closer to the sink than the respective node. 

The proposed algorithm needs only local information, so 
it is completely distributed. Still, it will give a solution very 
close to the optimum since the neglected conditioning is small 
in terms of rate for a correlation function that is sufficiently 
decaying with distance (see next subsection and Fig. 2). 

The Slepian-Wolf setting, as well as the closed-form solu- 
tion and approximation algorithm, can be easily extended to 
the case of multiole sinks. 

D. Example: Gaussian random field 
A model kequently encountered in practice is the Gaus- 

sian random field. This also has the nice property that the 

In the previous section, we have found the optimal solution 
of the linear programming rate assignment under Slepian- 
Wolf constraints. We consider now the problem of designing 
a distributed algorithm. Even if we can orovide the solution in 
a closed form as (3, the ,,des still n&d local knowledge of 
the SttUCtUIe of the network (distances between nodes 
and distances to the sink), m i s  local knowledge is n&ed for: 

) Ordering the distances on the SPT from the nodes to the 
sink: each node needs its index in the ordered sequence 
of nodes so as to determine on which other nodes 
to condition when cornoutins its rate assignment. For 

dependence in data at different nodes is fully expressed by the 
covariance matrix, which makes it more suitable for analysis. 
Thus, we assume ajointly Gaussian model for the spatial data 
X measured at nodes, with an N-dimensional multivariate 
normal distribution G N ( ~ ,  IC): 

&detlK)l/2 
1 e-( +(X-d=K-'(X-rr)) 

Ri = H(X;IXi-i ,  . . . ,  XI) {i l , .  . .  , i k }  'i {I , .  . . ,N}, k 5 N, w = ( X , , ,  . . . ,Xi,)  
= H ( X 1 , .  . . , X;) - H(X1, .  . . , & - I )  is k-dimensional normal distributed. Its covariance matrix is 

the submatrix K [ I ]  selected from K ,  with rows and columns 
corresponding to {il, . . . , i k } .  

We use here without loss of generality differential entropy 
instead of entropy, since we assume that data at all nodes 

Note that a// distances among nodes (XI, .  . . , X,) are 
needed locally at node Xi for computing this rate 
assignment. 
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A. Disjoint clusters 
Suppose first that a node is part of two clusters. It can 

use the same random codes, but it needs to use different 
binning for the two clusters since two independent Slepian- 
Wolf codings have to be performed. Then, it has to transmit the 
maximum rate allowable by its local cluster rate allocations. 
In order to solve the optimizations, the no& needs to locally 
express the inequalities in (3). But this means it knows all 
the weights involved in these constraints, so clearly, the rate 
allocation can be improved by using the union of the two 
clusters. This is the reason why we consider only the case of 
disjoint Slepian-Wolf clusters for the rest of this section. 

B. Gaussian random field 

a 0 s  nt /i 
I 

( 0  ?D 15 jo 36 10 
om 

Neighborhood range 

Fig. 2. Average value of the ratio between the opUmal and the approximated 
solution, in terms of total cart, YS. the neighbcrhood range. me network 
instances have 50 nodes uniformly dismbuted on a square area of sire 100 x 
100, and the cmelation exponent varies from (I = 0.001 mgh correlation) 
to a = 0.01 (low canelation). 

is quantized with the same quantization step, and differential 
entropy differs from entropy by a constant for uniformly 
quantized variables [5] .  The entropy of a k-dimensional mul- 
tivariate normal distribution Gk(p, K )  is: 

1 
h(Gk(p,  K ) )  = - l o g ( 2 ~ e ) ~  det K. 

2 
The Slepian-Wolf constraints can readily be expressed as: 

h(YIYC)  = h ( Y , Y C )  - h ( Y C )  

det K [ Y C ]  
where K [ Y C ]  is the selected matrix out of K ,  with indices 
corresponding to YC elements respectively. 

This natural correlation model is useful for us because our 
approximation algorithm can be easily tested. Consider for 
example the case where the correlation decays exponentially 
with the distance. Then, the performance of our approximation 
algorithm will be close to optimal even for small neighbor- 
hoods hi(i). Fig. 2 presents the average ratio between the 
approximated solution and the optimal one, for a correlation 
model Kij = exp(-ad:,j), for varying neighborhood range 
radius and varying correlation exponent a. The weight of 
an edge ( i , j )  is w;,j = &,j and the total cost is given by 
expression (2). 

IV. CLUSTERED SLEPIAN-WOLF 
Performing Slepian-Wolf coding of the data jointly at all 

nodes in the network is difficult as it involves a large number 
of bins and global knowledge of the network. In this section we 
consider the case where Slepian-Wolf coding is done locally, 
on clusters of nodes. This simplifies significantly the coding 
task, since only knowledge of the local network structure is 
needed. However, as we will see, the actual task of optimal 
clustering becomes also complex, thus, showing the inherent 
complexity that is present in our problem. 

Fig. 3. Three possible dustenng modes for a oetwork of 6 jointly Gaussian 
nodes (up). The ratio between the Opumal bit allocations between the examples 
in (a),@) and tc) respectively, as function of the distance d (down). 

For a Gaussian random field, the optimization problem can 
be posed in a closed form. We allow a maximum cluster size of 
B. Then the problem is to find an optimal clustering of V that 
minimizes the weighted sum of rates xi R ; d ~ p ~ ( i ,  S) (see 
Fig. 3, for B = 2). Consider first the particular case when 
the distances on the SPT are all, unity (e.g. nodes placed on 
an arc of circle). We show that even in this simple case, the 
problem of optimal clustering becomes complex for 3 5 B < 
N .  Denote by 11, . . . ,IC the disjoint sets of indices such that 
U I; = 11,. . . , N } ,  with C 5 N the (unknown) total number 
of clusters, and each cluster can be encoded with H(X1, )  bits 
using Slepian-Wolf in that cluster. The optimization problem 
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is then to minimize over C,{I;}fz1: 

So finally, we need to solve 

with II,’I 5 B , i  = 1,. . . ,C.  
1J Case B = 1: Trivial, data are coded separately. 
2) Case B = 2: If B = 2, the problem (2) is equibalent 

to finding a minimum weighted perfect marching, and it can 
be solved in polynomial time with the Edmonds ‘blossom’ 
perfect matching algorithm [13]: 

Algorilhm 3: Rate allocation for B = 2: 
For each edge ( i , j ) :  
- assign (8, Rj)  under local constraints: 

* if d s P T ( i ,  S )  < d S m ( j ,  S )  
* then (Ri, Rj)  = (H(X;), H ( X j I X ; ) ) ,  
* else (R;,R,) = ( H ( X J X j ) , H ( X j ) )  
(see Section III-B). - let d ‘ ( i , j )  = R ; d s p ~ ( i , S )  + Rjdsm(j,  S ) .  

Run Edmonds algorithm for d‘(a, j) .  
3J Case B = N: If B = N ,  the optimal cluster division 

is the cluster formed by the whole set of nodes (1, . . . , N ) ,  
which follows from the fact that K is positive definite, and 
applying Fischer’s inequality [14]. 

4 )  Case 3 5 B < N :  We show how this becomes very 
complex, being a particular case of an NP-complete problem, 
minimum 3-dimensional (3-D) matching. We conjecture the 
optimization of (6) is also NP-complete. 

Definition 1: Minimum 3-D matching. . Instance: Three sets X ,  Y ,  and W and a cost function 
c :  X x Y x W + N .  
Question: An assignment A, i.e., a subset A C X x Y x W 
such that every element of X U Y  U W  belongs to exactly 
one triple in A. 
Measure: The cost of the assienment. i.e., - 
C(z,,s!w)ta C(Z> ?J> w). 

The mnimum 3-D matching problem is NP-complete, and 
this extends to the B-dimensional problem. The sets X ,  Y, W 
are replaced by V in the above problem definition, and the 
cost c( .) is replaced by the joint entropy of the corresponding 
nodes. 

Suppose there exists a polynomial time algorithm to solve 
the B-dimensional problem, for 3 5 B < N .  Then (2) could 
be solved in polynomial time similarly to the 2-dimensional 
matching case. Unfortunately, such a polynomial time algo- 
rithm is unlikely to exist. 

v. EXPLICIT COMMUNICATION 

We consider now the case where Slepian-Wolf coding is 
not used, either due to its complexity, or to the lack of global 
knowledge of the network. We address the second approach 

introduced in Section I-A, where the reduction in entropy at 
a node is due to explicit communication. Thus, the reduction 
in data size at a node is due to the direct availability of side 
information locally at the node. 

For the Slepian-Wolf case, we have seen that the problems 
of rate allocation and gathering tree construction separate, 
when optimizing the [data size] x [link weight] metric. This is 
not any longer true for the case of the explicit communication 
model. The reason is that with this model, the amount of data 
supplied at nodes does depend on the transmission structure. 

For the sake of simplicity and clarity in our arguments, and 
without loss of generality, we use in this section a simple 
model for the data correlation, which allows a clearer analysis 
of complexity, and for which we develop good approximation 
algorithms. n i s  model still completely preserves the original 
complexity of the problem. Namely, in our model, data at 
each node are entropy coded with H ( X ; )  = R bits if 
no side information is available from other nodes; hut only 
H(X;(X, ,  . . . ) = T 5 R bits are needed if the node has side 
information available coming from at least another node, that 
uses node i as relay (thus, our simplification is that r does not 
depend on the number of conditional nodes). We denote by 
p = 1 - r f R the correlation coefficient. 

A. The SPT / TSP tradeoff 
In the case of uncorrelated data, if the cost for transmitting 

over an edge was proportional (by a fixed constant) to the 
length of that edge, then the problem is trivial and the optimal 
communication structure is the straight line &om the node to 
the base station. However, for an arbitrary weight function 
on the edge, transmitting via relays may be better than direct 
transmission. In the case of correlated data, things become 
even more interesting, even for very simple networks (Fig. 4). 
If data were independent, the shortest path tree (SPr) would 
be optimal. However, in Fig. 4(a), as soon as p > 112, the 
SPT is no longer optimal. In Fig. 4(h), the ratio of total costs 
is IimN,, ZCSE = (1 - p ~ )  (& + 1).  Since PN + 1 when 
N 4 00, a traveling salesman path (TSP) is arbitrarily more 
cost efficient than direct transmission ( S P n .  

From these simple examples, it can he seen that the corre- 
lated data gathering problem with explicit communication is 
actually a hard optimization problem, in general. Formally, we 
can formulate the minimization of (2) for the case of explicit 
communication as follows: 

PSPT . 

. Find: the spanning tree ST = {T, L, F )  with: 
- T non-terminal nodes, L leaves, T U  L = V .  
- Such that: 

In terms of the correlation coefficient, p = 1 - r / R  



4R+r 3R+3r 
(a) All edge weights are 1. 

1 I 

SPT TSP 
@) s p r  YS. TSP 

Fig. 4. Simple network examples. 

Let us first look at the two extreme cases, that is p + 0 
and p + 1. When p 0 (independent data), the optimal 
tree is the SPT (which is known to be solvable in polynomial 
time by e.g. a distributed Bellman-Ford algorithm). At the 
other extreme, when p + 1 (data maximally correlated), the 
optimal solution is a spanning tree for which the sum of 
paths from the leaves to the base station is minimum. For 
this, the core information is taken from the leaf nodes, and 
passing through all the in-tree nodes only adds infinitesimally 
small new information, as data is strongly correlated. It is 
straightforward to show that solving this problem is equivalent 
to solving the multiple traveling salesman problem [151, which 
is known to be NP-hard. 

To the best of our knowledge, (7) is an original spanning tree 
optimization problem on a graph. In Section V-B we show that 
this problem is NP-complete for the general case 0 < p _< 1 
as well. However, we propose good approximation algorithms 
in Section V-C. 

B. NP-completeness 
In order to prove the NP-completeness of the optimization 

problem given in (7), we prove that the decision version 
problem is NP-hard. The decision version of our optimization 
problem is: 

Definition 2: Network data gathering tree cost problem. 
Znstnnce: A undirected graph G = (V, E )  with weights 
d,i,3 assigned to the edges ( i , j )  E E,  a positive integer 
M ,  and a particular node S E V .  

Quedion: Does the graph admit a spanning tree ST such 
that, when assigning supplies Q = R to the leaf nodes 
and R = r < R to the in-tree nodes in the spanning tree 
ST, the total cost of ST given by (7) is at most M? 

Theorem 2 (NP-completeness): There is no polynomial 
time algorithm that solves the network data gathering tree cost 
problem, unless F=NP 

The proof, which is based on a non-trivial reduction from 
set cover, is shown in Appendix B. 

Since this particular problem is NP-complete, then the 
general version of problem (2) is also NP-complete: 

Corollary I :  Minimizing (2)  with Q = f (Ee+< x.) for an 
arbitrary monotonic function f (.), is NP-complete. 

Note also that, in general, node i has information from 
all the nodes in the subtree s t ( i )  rooted at node i .  Our 
simplified model is a particular case of this general entropy 
coding problem, where If(X,lXat(:)) is approximated with 
H ( X : I X j ) ,  with j being child of i. Then the NP-complexity 
of ow simplified example extends also to this general case by 
means of a trivial further reduction. 

C. Appruximation algorithms 
We propose and compare the following five algorithms: 
I )  Shortest path tree: SPT is computed by using the 

distributed Bellman-Ford algorithm for simultaneously deter- 
mining the shortest paths from all nodes to the root. If the 
data is independent, this is the optimum solution, but it is far 
from optimal if there are high correlations. 

2) Greedy algorithm: We start from an initial subtree 
composed only of the root node. Then, successively, we add, 
to the existing subtree, the node whose addition results in the 
minimum power increment. 

3J Leaves deletion appmximntion: This algorithm is based 
on the observation that good cost improvements may be 
obtained mainly by making the leaf nodes change their parent 
node to some other leaf node in their neighborhood. This 
operation is done only if it reduces the total cost of the whole 
tree. 

Algorithm 4: Leaves deletion algorithm: 
Initialize with the SPT. Each node maintains its parent, 
number of children, and total distance on the current 
spanning tree to the base station d s ~ ( i , S ) .  Let par(;) 
denote the parent node of node i. 
While there is a cost improvement: 
- For each i leaf node (with no children): Find the 

leaf node j E N(i)  that maximizes R ( d s ~ ( i ,  S) + 
d s d j r  s)) - (R(d; , j  + d s ~ ( j ,  SI) + T ~ s T ( ~ ,  SI) - 
I ( i ) ,  where I ( i )  is an adjustment term that indicates 
the cost lost by transforming single parent nodes 
into leaves. If the maximizing quantity is positive, 
par( i )  + j and the corresponding distances on the 
tree and number of children are updated, for all the 
three nodes involved ( i ,  former'par(i), and j ) .  

Endwhile. 
This algorithm involves at most 3 - 4 supplementary itera- 

tions after SPT is computed, and is fully distributed. 
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4 )  Balanced SPT/  TSP tree: We propose an approximation 
based on a combination between the SPT and multiple trav- 
eling salesman paths (TSP). It builds the SPT subtree up to a 
radius q(p) away from the root. It then builds paths for the 
remaining nodes starting from the leaves of the SPT subtree, 
in their respective subregions (see Fig. 6(b)). 

Algorithm 5: SPTITSP balanced tree: 
Build the SPT for the nodes that are in a radius q(p) from 
the root. ?he radius q(p) decreases with the increase of 
the correlation coefficient p. 
From the rest of the nodes, successively add the node i 
that minimizes d(i,l) + d s ~ ( l , S ) ,  1 E L being one of 
leaves of the current obtained subtree. This is actually a 
suboptimal nearest neighbor approximation to the multi- 
ple TSP, which is easily implementable. 

This algorithm was inspired from the insights of our ex- 
periments using simulated annealing, a computationally hard 
method known to provide results close to optimal for large 
combinatorial problem similar to ours (e.g. TSP). 

5)  Simulated annealing: The fitness landscape formulation 
[16] of ow problem is as follows: (a) the configuration space is 
the set of all spanning trees (completely defined by the parent 
relationship), (b) the move set is: one node changes its parent, 
(c) the fitness function is g(ST) = R&,ds~( l ,S )  + 
r C t E T d ~ ~ ( t , S ) .  Our goal is to minimize the fitness over 
the spanning trees set. 

Algorithm 6: Simulated annealing: 
Take a cooling schedule T[k] ,  k = 1,. . . , K .  
Initialize with par( i )  = S, i = 1, . . . , N - 1. 
While k < K 
- k + +, 1 = s(ST);  
- choose i , j  E N(i)  at random such that deleting edge 

( i , par ( i ) ) ,  and adding edge ( i , j)  to the tree does not 
form a cycle; let 1’ = g(ST’), the fitness of the new 
generated spanning tree ST‘. 

- make the chanee oarii) + i.ST + ST’ with 
if 1’51 

probability p = . Endwhile 
With a correctly chosen cooling schedule and if the algo- 

rithm runs for a sufficient number of steps, it can be proved 
to converge to the optimal spanning tree ST. 

D. Numerical simulations 
Our simulations were done in MATLAB for a network of up 

to N = 500 nodes randomly distributed on a 100 x 100 square 
grid. We use an approximated correlation model in which the 
correlation coefficient decreases with the number of nodes, 
that follows in a straightforward manner from the exponential 
correlation models introduced in Section 111-D. We assume a 
uniform distribution of the nodes across space on a fixed area. 

SPT was found with the distributed Bellman-Ford algo- 
rithm, that runs in U(NIE1) steps. Our extensive experiments 
show important improvements of the leaves deletion and the 
balanced SPTnSP approximation algorithms over SPT, for 
randomly distributed nodes (Fig. 5, 6). 

Fig. 5 .  
and between balanced SPT/TSP and SPT. 

Average ratias of total casts between leaves deletion (m) and SPT, 

Fig. 6. Approximated gathering trees on a random network instance: N = 
200, p = 0.2. Costs for this instance: SPT: 2.742+5; LD: 2.3&+5; SPTiTsp: 
2.15e+5. 
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Node number 

Fig. 7. Typical rate alloetion for a network instance of 50 nodes, and 
correlation exponent a = 0.0005. On Ule x-axis, nodes are numbered in 
order as the distance from S inacases, on the mespanding spanning m e .  
Total cos@ for this instance: SYT wirh'qximal Slepian-Wolf: 0.84e + 5: 
SPT with approximated Slepian-Wolf: 1 . 3 0 ~  + 05: SPT/ISP wilh explicit 
mmmunicdoo (with conditioning on first order children): 1.94e + 5; SFT 
with independently coded data: 2.24e + 5. 

In Fig. 7 we show a comparison of the rate allocations 
with our different approaches for rate allocation, as a function 
of the distances from the nodes to the sink. For the explicit 
communication approach, we used a first-order correlation 
model, in which in-tree nodes condition only on the closest 
child, and the value of p is computed a-priori as an average. 
Our experiments have shown that either full conditioning on all 
children, or use of a distance dependent correlation coefficient 
between pairs of nodes, do not improve much on the total cost 
(2).  The main reason for which the approximated Slepian-Wolf 
approach outperforms the explicit communication approach is 
that Slepian-Wolf approaches allocate much smaller values of 
rates for nodes far from the sink. However, this is achieved 
with the cost of increased network knowledge. 

VI. CONCLUSIONS AND FUTURE WORK 

We presented two complementary approaches for solving 
the complex problem of joint rate allocation and transmission 
structure optimization for network correlated data gathering, 
and good approximation algorithms for this task. We showed 
how the rate allocation depends on the chosen approach, 
and assessed the complexity of implementing each of these 
approaches. Directions of future work include the combination 
of the two approaches for further cost improvements, and the 
case of general traffic matrices. 
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APPENDIX A 
PROOF OF Theorem 1 

Pmof: First, we prove that (5) is indeed a feasible solution 
for (41, that is, it satisfies all the constraints given by (3). 
Consider any constraint from (3), for some subset Y E X. 
Denote by Q = IY I the number of elements in Y. Order the 
indices of Xi E Y as ii, i l ,  is , .  . . i ~ ,  with il closest and iQ 
furthest from the sink on the SPT. 

We rewrite the left-hand-side in terms of the solutions we 
give in the theorem: 

Ri , = H(Si,lXi,-i,. . . , X i )  + 
I E Y  

H(XiQ-,lXiQ-l-l,. . . ,Xl) + 
' " + ' " +  . . .  (8) 
fVi1lXi1-l,.  . . >  Xl) 

and expand the right-hand-side terms with the chain law for 
conditional entropies: 

H(YIYC) = H ( X i ,  IYC U {Y - {Xi*}}) + 
H(Xi ,_ , IYCu{Y-{X i , ,X i ,_ , } } )+  

H(X,,IYCU{Y- {Xi,, . . . ,  Xi,}}) 
H(Xi, IX - {Xi,)) + 
H(Xi,_, IX - {Xi,, xi,-, 1) + 
' "+. . .+ ... (9) 
H(&,  IX - {Xi*, xi,-, , , . , ,Xi, 

" ' + . . . +  . . .  

= 
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7 E 

Fig. 8. A simple example wilh two odes .  The total weights from 
swces x 1 . X ~  10 the sinks, are respectivelydSpT(X1,S),dspT(X2,S). 
dsPp(X1,S) < dspr(Xz, S), in this panicular case. In order to achieve 
lhe minimization, the cost line RldspT(X1,S) + RzdspT(X2.S) has to 
be tangent to the most intenor point of the Slepian-Wolf rate region, given 
by (Ri,Ra) = ( H ( X I ) , ~ ~ ( X ~ I X I ) ) .  

Consider the terms on the right-hand-side in expressions (8) 
and (9). It is clear that for any ik E Y, the term corresponding 
to X,, in (9) is at most equal to its counterpan in (8). This 
is because the set of nodes on which the entropy conditioning 
is done for each term in (8), is a subset of its counterpart in 
(9). Since the choice of Y was arbitrary, then any constraint 
in (3) is satisfied by the assignment (5) .  

On the other hand, note also that the rate allocation in (5) 
satisfies with equality the constraint on the total sum of rates: 

(10) 

So we have proven that (5 )  is a valid rate allocation. We have 
to prove now that the assignment in ( 5 )  makes the expression 
to he minimized in (4) smaller than any other valid assignment. 
In Fig. 8 we illustrate with an example involving only two 
nodes how the cost function is indeed minimized with such a 
rate allocation. The assignment (5) corresponds in this case to 
the point (RI ,&) = (H(XIIXZ),WXZ)). 

We prove this by recursion. Note first that the rate 
allocation to node N is minimal. That is, we cannot 
allocate to X N  less than H ( X N I X N - I , X N - - ~ , .  . . , X I )  
bits, due to the Slepian-Wolf constraint corresponding to 
Y = { X N } .  Assume now that a solution that assigns 
H(XNIXN-I,XN-~, . . . ,XI)  bits to X N  is not optimal, 
and X N  is assigned H(XNIX,-,, . . . ,XI)  + b bits. Due to 
(IO), at most b bits in total can be extracted from the rates 
assigned to some of the other nodes. But since &PT(XN, S) 
is the largest coefficient in the optimization problem (41, 
it is straightforward to see that any such change in rate 
allocation increases the cost function in (4). Thus assigning 
RN = H ( X N / X N - ~ ,  . . . ,  XI) bits to XN is indeed optimal. 

From the rate Consider now the rate assigned to 

constraint corresponding to Y = { X N - ~ , X N } ,  it follows 
that: 

RN f h - 1  2 U(XN,XN-IIXN-~ , . . . , X I )  
= H(XNIXN-1, X N - 2 ,  . . . j XI) f 

+~(XN-llXN-2,...,XI) 

Since for optimality RN must be given by RN = 
H ( X N I X N - ~ , X N - ~ ,  ..., X I ) ,  it follows that RN-I 2 
H ( X N - I I X N _ ~ ,  . . . ,XI). Following a similar argument as 
for X N ,  we can show in the same way that the optimal solution 
allocates R N - ~  = H ( X N - I ( X N - ~ , .  . . ,XI).  The rest of the 
proof follows similarly by considering in order the constraints 
corresponding to the subsets Y = {X,, Xi+,, . . . , XN}, with 
i = N - 2, N - 3, . . . 1 .  

APPENDIX B 
PROOF OF Theorem 2 

Pmot First, the decision version of our problem is in 
N P  a nondeterministic algorithm needs to guess the parent 
relationship (that is, specify the parent node for each of the 
nodes), and then find in polynomial time the nodes that are 
not parent nodes, assign to all nodes the number of bits 
corresponding to either leaf or in-wee node, and test that its 
total cost is less than the given value M .  

Next, to prove the NP-hardness, we perform a reduction 
from the set cover problem [17], whose decision version is 
defined as follows: 

Definition 3: Set cover. . Instance: A collection C of subsets of a finite set P and 
an integer 0 < K 2 ICJ, with IC1 the cardinality of C. 
Question: Does C contain a subset C' C with IC'I 5 
K ,  such that every element of P belongs to at least one 
of the subsets in C' (this is called a set cover for P)? 

For any instance of the set cover problem we build an 
instance of our decision problem. Fig. 9 illustrates the con- 
struction of the graph instance for our problem. The resulting 
graph is formed of three layers: a root node S, a layer corre- 
sponding to the subsets Ci E C, and a layer corresponding to 
the elements { p j }  of the set P. For each element C, E C we 
buildast~ctureformedby4nodesrcl,xz,z3,x~,asinFig. 10 
(there are four different nodes for each subset C,, but we drop 
the superscript Ci of the nodes x for the sake of simplicity). 
The node x3 is linked to the root S, node xq is connected only 
to node XI, and X I ,  52, x3 are all interconnected. Furthermore, 
we connect each structure C, E C (namely the node X I  from 
that structure) to only the nodes in the P layer that correspond 
to elements contained in C, (example: in the instance in Fig. 
9, subset CI = h # Z , P 4 } > C 2  = { P Z , P L P ~ P / - I }  etc.) All 
the edges connecting the P layer to the C layer have a weight 
d > 0; for all C,, the edges of type (21,  x3) and (zz, z3) have 
weight a 2 1; the rest of the edges shown in Fig. 9 have all 
weight 1. All other edges Me assumed of infinite weight and 
are not plotted. Without loss of generality, we consider that 
in-tree nodes use r = 1 bits for coding their data, while leaf 
nodes use R > 1 bits. 



. . . .  gA the elements of 
the P set 
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Fig. 9. A graph instmoe. 

.Player 

3,: 

root S 
\ 

Fig. IO. Inner smctwe of each subset C. 

The goal is to find a spanning tree for this graph, for which 
the cost in (7) is at most M .  We now show that if M = 

3R+2a+4), for the positive integer K 5 ICI, then finding a 
spanning tree with cost at most M is equivalent to finding a 
set cover of cardinality K or less for the set P. Notice that the 
construction of our graph instance from the set cover instance 
can be performed in polynomial time. 

With a large enough value chosen for d (i.e. d > ICI(ZaR+ 
3R+a+2)/R), a tree with cost at most M will contain exactly 
IP( links between.the layers P and C. That means that no 
p j  node is used as relay, so all p,  E P are necessarily leaf 
nodes. If some pi node was used as relay, then the cost of 
the tree would contain R bits passing through more than 1PI 
such links, which would result in a cost larger than M .  This 
also implies that the only way the C, structures can connect 
to the root S is via their corresponding x3 node, so all x3’s 
must be in-tree nodes. Furthermore, all xi’s nodes need to be 
connected to their corresponding xi node in order to belong 
to the tree, so necessarily all 24-s are leaf nodes and all xi’s 
nodes are in-tree nodes. The only degrees of freedom are the 
choices of two out of the three edges interconnecting the nodes 
q , x 2 ,  x3, for each structure C,. 

The key idea of our proof is that, for properly chosen 
values for d and a, finding a tree with cost at most M means 
connecting the nodes in layer P to at most K nodes of layer 
C. If the tree needs to connect the layer P to more than K 
nodes in layer C, then the cost of the tree will necessarily be 

IP/(d+ a +  1)R+ K(2aR+ 3R+a+2) + (IC1 - K)(aR+ 

Fig. 1 I .  ’ b e  three possible gathering patterns for the SubsmcNre C.. 

higher than M .  The intuition is that ’detours’ via the (XI, x2) 
edges are worthy from the point of view of cost reduction only 
if the flow that goes through node x1 comes exclusively from 
node x4 and no flow from the P layer goes through XI. If 
some flow from the P layer joins as well, then the optimal 
path would use the edge (xi, 23) instead. In this latter case, 
we see now that for optimality, the edge ( ~ 1 ~ x 2 )  should not 
be used. 

We choose a value of a 2 1 such that (a  + 2) /a  < R < 
( a  + Z ) / ( a  - 1). Note that, for a given R > 1, it is always 
possible to choose a value for a that fulfills this condition. 

With the given weights on the edges, if no p i  node is 
connected to a C, structure, then since R > ( a  + 2 ) / a ,  the 
optimal pattern (pattern 1, see Fig. 11) for this structure con- 
tains the links (x~,x~),(z1,z~),(x~,x3),(x3,S), with cost 
( a  + 3)R  + ( a  + 2) 3- ( a  + 1) + 1. The other possible struc- 
tures contain either links (x4,x~),(x~,x3), (xz,x3),(x%,S) 
(pattern2) withcost ( a + 2 ) R + ( a f l ) R + ( a + l ) + l , o r  
links ( x ~ , x ~ ) , ( x ~ , x ~ ) , ( x ~ , x ~ ) , ( ~ ~ , S )  (pattern 3) with cost 
( a  + 2)R+ (a+ 2)R+ (a+ 1) + 1. They both are sub-optimal 
if R > (a+ 2)/a (since pattern 2 is always better than pattern 
3, we will consider only pattern 2 for the rest of our proof). 

However, when m 2 1 nodes {pj}y=i from the P layer 
connect to xlr for any of Cs’s, the pattern 1 is no longer 
optimal, because it has a cost m(d + a + 2)R + ( a  + 3)R + 
( a  + 3) + ( a  + 1) + 1. The alternative structure (pattern 2) has 
cost m(d + a + l ) R  + ( a  + 2)R + ( a  + l ) R  + ( a  + 1)  + 1, 
which is more efficient if m 2 1, and R < (a+Z)/(a- 1). We 
notice that in an optimal tree the cost to transmit data from 
each p j  to the root S is the same for all pi’s nodes (and equal 
to ( d  + a, + 1)R). Therefore the goal is to keep minimal the 
part of the total cost corresponding to the rest of the nodes 
(i.e. nodes in layer C). 

That means that to find a tree with cost less or equal to 
IPl(d+ a + 1)R+ K(2aR+ 3R + a+ 2) + (IC1 - K)(aR  + 
3R + 2a + 4)  is equivalent to finding a set of K elements or 
less from the C layer to which all nodes in the set P connect. 
This is actually achieved by having at most K nodes of type 
x1 used to connect to the p j ’ s  nodes, which turns out to be 
equivalent to finding a set cover for the set P of size K or 
less, that is to solving the set cover problem. 
Thus our decision problem is NP-hard and our optimization 

problem NP-complete. 
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