
Effective Peering for Multi-provider
Content Delivery Services

Lisa Aminia,b, Anees Shaikha, Henning Schulzrinneb
aIBM Research, Hawthorne, New York

bColumbia University, New York, New York
Email: aminil@us.ibm.com, aashaikh@watson.ibm.com, hgs@cs.columbia.edu

Abstract-- Peering allows service providers to handle traffic
surges without over-provisioning, reduce the cost of dedicated
infrastructure, and leverage the specialization and prices of
partner providers. In this paper, we develop a peering system for
multi-provider content delivery based on a cost-optimized peer
selection algorithm. We formulate a cost model for evaluating
competing peering strategies, and use measurement data
collected from globally distributed network probe stations, large-
scale Web sites, and existing service provider infrastructures to
empirically evaluate proposed peering strategies. Our analysis
shows that our peer selection algorithm is significantly more
efficient than greedy alternatives, in terms of minimizing service
cost and respecting network delay and server capacity
thresholds, over a broad range of real-world scenarios.

Index terms-- System design, simulations, network

measurements, experimentation with real networks/testbeds.

I. INTRODUCTION

Delivering large-scale network services requires a
distributed computing and network infrastructure that provides
a consistently high level of performance and reliability in the
face of surges in demand, failures, and changes in customer
requirements. Service providers who acquire, provision, and
manage the service infrastructure must balance these
requirements against the high costs of deploying customer-
dedicated, over-provisioned resources. Service providers
have addressed this problem to some extent by using shared
infrastructures to multiplex resources between many
customers, and thus improve utilization. To lower costs
further, however, providers are increasingly interested in
leveraging computing or network infrastructure from partners
through peering mechanisms that allow provisioning and
sharing of computing resources, and settlement and exchange
of the resultant revenue. The customer’s view remains that of
a single provider (who we refer to as the primary provider),
which may in fact consist of pooled resources from several
providers distributed over a number of locations.

For example, instead of over-provisioning hosting centers
for potential surges in demand, or distributing thousands of
servers worldwide to minimize network latency, a provider
could offload certain client workloads to partners.
Cooperatives would also spawn secondary markets for the
under-utilized resources of some providers. Federated, multi-
provider architectures have been proposed as part of the CDI

(Content Distribution Internetworking) effort [8], Grid
computing [9], and 3G wireless clearinghouses [15]. Recent
research has shown that multi-provider peering approaches
offer cost benefits in a variety of scenarios [2], and can
significantly improve reliability and performance [6][24].

In this paper, we focus on the use of cooperatives for
content delivery services. In this scenario, the primary service
provider may deploy a limited content hosting infrastructure in
a single (or few) data centers, and at the same time, strike
agreements with other content distribution service providers
(CDSPs) who agree to serve customer content on behalf of the
primary provider for a share of the revenue. As long as the
client load can be handled by the primary provider, requests
will be served from the origin since this maximizes revenue
for the primary provider. If the actual or predicted workload
exceeds the capacity of the primary’s servers, the excess
requests are offloaded to the partner servers. The choice of
which clients are offloaded to which partners may be based on
provider cost and capacity, expected performance delivered to
the client from a given provider, or policies that prefer one
provider over another. Figure 1 shows a simple example of
how workload might be managed from the primary provider’s
servers under normal conditions, and partially offloaded to
partner servers during peak periods.

Such a peering system allows a service provider to handle
surges without over-provisioning, reduce infrastructure costs,
and leverage the prices and specialization (e.g., specific
geographic regions) of other providers. While peering for
content delivery is appealing for all of these reasons, there are
a number of challenges in designing a system that virtualizes
multiple providers, and directs clients to different providers
based on cost, performance, and expected load. Our
contribution lies in designing and implementing a peering

Partner 4

Partner 3

Partner 2

Partner 1

Primary W
or

kl
oa

d
Se

rv
ic

ed

Time

Figure 1: Example of cooperative, multi-service provider approach.
While offered workload is within the capacity of the home infrastructure,
the hosting service provider processes it. During peak periods, workload
in excess of the home capacity is offloaded to one or more partner service
providers.

system that minimizes cost while also respecting client
performance requirements. This is in contrast to peer
selection in traditional peer-to-peer networks where the focus
is primarily on efficiently finding a nearby peer with the
desired content.

We evaluate our strategy against alternative schemes using
real traffic data from large Web sites, request-routing data
gathered from measurements of operational CDSPs, and
network location data collected from a set of globally
distributed probe stations. Specifically, we propose solutions
for the following key issues:
• When to offload? We adopt a proactive approach in
which client load is continuously monitored at the primary
provider’s servers in order to predict future demand and
trigger offload when load exceeds available capacity.
• Who to offload? We propose and evaluate a novel client
clustering scheme that balances network proximity and load
prediction accuracy. Small clusters enable more accurate
estimation of client location, but larger clusters generate more
aggregate traffic, thus improving traffic prediction
capabilities.
• Whom to offload to? When choosing a partner provider
for a group of clients, it is necessary to consider the cost as
well as the expected performance. This is complicated by
separate administration and limited information sharing
between individual providers. We leverage redirection
models developed in [3] to predict performance of partners.
• How to offload? Our peering system is based on DNS-
based request-routing, which is the de facto standard used by
CDSPs. Domain Name Service (DNS) provides a relatively
transparent way to direct clients between service providers,
and to recover them when appropriate.

In evaluating our peering strategy we show that our
proposed peer selection algorithm is significantly more
efficient than greedy alternatives, which average a factor of
1.5 times higher cost. We demonstrate that this performance
is consistent over a range of operating environments,
including different Web sites, pricing structures, and expected
delay thresholds.

The remainder of this paper is organized as follows. In the
next section we provide background information. In Section
III, we provide a more formal statement of the problem our
peering strategies address. We present our peer selection
algorithm, experimental methodology, and data collection
procedures in Sections IV and V. We detail the results of our
analysis in Section VI. We summarize the paper in Section
VII.

II. BACKGROUND
Our peering system uses state of the art techniques to

estimate client location and predict performance from partner
providers. In this section, we give a brief overview of how we
leverage existing work in designing our system. In the next
section, we provide a more formal statement of the problem
addressed in this paper, using terminology and notation
introduced in this section.

A. Network Distance Inference
We use the terms network delay and distance

interchangeably to refer to the round trip time (RTT) between
a pair of IP addresses. A number of techniques have been
proposed to estimate delays in the Internet [10][13][18]. A
recent empirical evaluation of distance inference techniques
[2] shows that the absolute coordinates scheme proposed in
[18] performs well, and generally provides low absolute and
relative error in estimating delay. We summarize the absolute
coordinates technique here, as it is used in later sections to
infer distances between Internet hosts.

Geometric heuristics for delay estimation were originally
proposed for inter-domain routing by Hotz [10], and recently
applied to estimating distances between arbitrary Internet
hosts [18]. Hotz defined the relative location of a given host,
Hi, as an N-tuple,

V’(Hi)=< d(Hi, P1), d(Hi, P2), d(Hi, P3), …, d(Hi, PN), >

where each element represents the distance between Hi and the
corresponding probe station (i.e., Pn in position n). This N-
tuple, V’(Hi), is often referred to as the relative coordinates
vector of a host. Through the use of global minimization
techniques [18], these relative coordinates can be translated
into absolute coordinates, V(Hi). The distance between a host
pair, (H1, H2), is computed as the Euclidean distance between
V(H1) and V(H2).

We use this scheme to assign absolute coordinates to
thousands of IP addresses, based on measurements from
globally distributed probe stations. We can then infer the
distance between clients and servers belonging to partner
providers to enable the peering system to direct clients to
providers that are expected to meet the performance
requirements. We detail the collection of the network probe
data, as well as other data sets used in our study, in Section V.

Note that while we limit our attention to distance as the
key performance metric (particularly for Web content
delivery) other metrics such as optimizing cache hit rate may
also be useful [25].

B. Predicting Performance from Partner Server Sets
Large-scale Web sites often serve content from multiple,

geographically distributed server sets that may consist of
mirrored servers or be part of a content delivery network
(CDN). The most common approach for directing clients to a
specific server is via DNS request routing. DNS-based
techniques may also be used to redirect clients from the
primary provider’s hosting infrastructure to a partner who
performs its own server selection [6].

Predicting the performance a partner server set will
provide to a given client requires some knowledge of how the
partner selects servers for different clients. The actual server
selection criteria used in CDNs are generally considered
proprietary information, and may be based on complex and
dynamic metrics [5][17], making prediction difficult.
However, a recent measurement-based study [3] of

commercial server set deployments showed that, despite the
use of a variety of selection criteria, these schemes can be
modeled with reasonable accuracy. The study determined
that it was possible to predict the distance between clients and
the chosen server to within 20 ms in 90% of the cases with a
few simple models. The study proposed a distance metric that
is the average delay from a client to each server in the set,
weighted by the probability that the client is directed to a
particular server.

The models developed in the paper included: i) selecting
the closest server to the client in terms of network delay
(referred to as MIN), ii) a uniform choice between the first
and second closest (MIN2), iii) load-balancing with uniform
server selection (LBP), and iv) a policy in which 80% of the
traffic is directed to the closest server while 20% is uniformly
distributed among the remaining servers (WGT).

We use information such as the number of servers,
locations of servers, and redirection policies discovered in [3]
to evaluate our peering strategies. Additionally, when
inferring the distance between clients and server sets, we use
the same weighted average distance metric. Our peering
strategy is described in Section IV and the server set data used
for its evaluation is detailed in Section V.

III. PROBLEM FORMULATION
Our goal is to minimize the cost of hosting a workload on

a federated infrastructure comprising sets of servers deployed
by a primary service provider and its partners. The primary
service provider selects amongst primary and partner server
sets; each server set provider performs server selection within
its own server set. Server sets may be globally or regionally
deployed, and server set coverage may be overlapping since
multiple providers may deploy servers in the same network or
geographical region. Examples of server sets include
surrogate servers deployed by CDSPs, mirrored servers
deployed by a content hosting entity, and caching servers
deployed in access networks. We focus on workloads (such as
Web content delivery) where the primary goal is to service
client requests by delivering data to the client.

We perform our analysis using a fee structure
representative of the content delivery environment [21].
Specifically, the cost of servicing a workload is the sum of the
fees charged by the server sets participating in servicing the
workload, plus any penalties due to violations of specified
network delay or capacity thresholds. Server set fees are
bandwidth-based, that is, the fee is a charge per megabit of
content served per second. Fees are assessed according to the
95th percentile of the maximum bandwidth utilized in any
measurement period during the service interval. A
measurement period, for example, might be 60 seconds
whereas a service interval is on the order of 1 month.

Our problem can be formulated as follows: Let [0, T)
denote the service interval. Further, let S denote the set of
participating server sets where i S, and K denote the set of
clients, k K. Each server set i has a positive fee denoted by
pi m 0, which is charged when servicing all client requests

within an agreed upon capacity ri m 0. The network delay
function, λ(k, i), specifies whether the client k and the server
set i are within the distance threshold, D. That is, λ(k, i) = 1 if
the distance d(i, k) < D; λ(k, i) = 0 otherwise.

Provider i’s workload, Xi(t), is the sum of the workloads
imposed by each client k, i.e., Xi(t) = ()k

ik X t∑ . The excess

demand of i is δ(Xi, ri) 1:

(1)

(2)

which is the portion of i’s workload that cannot be served by i
due to either network delay (1) or server capacity (2)
constraints.

If δ(Xi, ri) > 0, provider i will incur congestion costs.
Congestion costs are charges incurred when the offered
workload exceeds a provider’s capacity. Examples of
congestion costs include monetary penalties or loss of
goodwill due to not achieving customer service level
agreements. If a provider with excess demand chooses to
redirect excess demand to partner providers, congestion costs
would include peering fees paid to partners. If provider i
redirects excess demand to one or more partners, the
assignment policy determines the fraction, ij, directed to a
given partner j; this fraction can be expressed relative to
individual clients, k

ij ijkα α=∑ .

Client requests that are directed to an overloaded server or
to a server for which the network delay exceeds D are said to
be misdirected by the assignment policy. We use (,)k k

i ijXξ α
to denote the portion of the workload that is misdirected. A
provider incurs a penalty, γi, for workload that is not serviced
according to service criteria (either because it was not
serviced or because it was misdirected).

Thus, total congestion costs Ci for a single provider i are:

where φ(X) is the 95th percentile of a workload X. The terms
in the definition of Ci represent the cost of offloading traffic to
other providers (3), the penalties incurred because the
resources required to meet the service level objectives were
not available when required (4), and the penalties incurred
because client requests were incorrectly directed to a server

1 In equation (2) we use the notation x+ := max{x, 0}.

(3)

(4)

(5)

((,)(1))i i i ij
j

X rγ φ δ α+ −∑

() (,)k k
i i i ij j

j k
C r X r pφ δ α =

∑ ∑

(,)]k k
i i ijXγ ξ α+

()
()

(,) ()(1 (,))

() (,)

k
i i ik

k
i ik

X r X t k i

X t k i r

δ λ

λ
+

= −

 + −

∑

∑

that did not meet the service level objectives (5). Note that the
cost includes terms related to performance as well as business-
related considerations.

Our goal is to develop an algorithm capable of finding the
assignment ()k

ij tα for all t T that minimizes the congestion
costs (specified above in terms (3, 4, 5)) incurred by a single
provider i. We do not consider optimizations achieved by
changes in the capacity (i.e., the values in r are static), since
workload assignment algorithms affect only the effective
allocation of the capacity of i and its peers. Also, we assume
the workload Xi(t) and the price charged by provider i for
servicing Xi(t) are not affected by the assignment policy. This
allows a simplified cost-based formulation (as opposed to a
profit-based formulation).

While the solution is deterministic when the workload,
X(t), is known, X(t) for the full interval T is not known at the
time the selection is made. More importantly, finding the
optimal assignment is not computationally feasible (since
there are hundreds of thousands of clients in the environment
we wish to address). Our goal is not to solve this problem
analytically, but instead, to develop a system that uses
heuristics to approximate the optimal solution, given the
information available at the time of selection. We use the
congestion costs defined in this section to compare our
strategy to greedy alternatives. We also describe how our
algorithm is incorporated into a more comprehensive peering
system, capable of managing workload assignments in a large-
scale commercial website.

IV. PEER SELECTION ALGORITHM
In this section, we detail our proposed algorithm for cost-

optimized peering, which we refer to as COP. We begin by
introducing a novel client clustering technique and then
describe how COP uses it. We contrast our proposal with two
alternative greedy strategies. In later sections, we will
compare the performance of these strategies on workloads
generated from two world-wide sporting event Web sites,
using server sets representative of commercially deployed
content delivery infrastructures, and client location data
collected from globally distributed network probe stations.

A. IP Address Clustering
COP does not attempt to assign individual client IP

addresses to server sets, but instead operates on clusters of
network proximal clients. Workload statistics are tracked and
server set assignments are performed on a per-cluster basis.
While clustering improves the computational efficiency of the
assignment algorithm, we also use it to mitigate some
drawbacks of DNS-based redirection.

DNS redirection is a highly scalable, but coarse-grained
mechanism for directing clients to network service points.
Since DNS responses may be cached at clients and local DNS
(LDNS) servers, multiple requests from potentially different
clients may use the result from a single DNS resolution.
Setting the expiration of a DNS response to a small value can
limit, but not eliminate, this effect. We propose a traffic

clustering technique that enables clients to be grouped for
effective network location and traffic estimation, and thus
helps to mitigate some of the issues that arise from the coarse-
grained client-to-server assignments common to DNS-based
redirection.

Our clustering approach combines techniques from
network-aware clustering, location inference, and spatial
analysis. We use network probe data described in Section V
to assign absolute coordinates to IP addresses. IP addresses
that differ only by the last octet (i.e., /24 address subnets) are
grouped together and assigned a single set of coordinates.
Our decision to group IP addresses according to the /24
address is based on findings in [2] indicating a small variance
in delay measurements to IP addresses in the same /24 subnet.
The clustering process begins by selecting a representative set
of station coordinates, as depicted in Figure 2, and assigning
IP addresses to the nearest station. The station coordinates,
which are the centroids of the coordinates of IP addresses in
the cluster, serve as the location estimate for all IP addresses
within the cluster. In Section VI, we provide a comparative
evaluation of station selection alternatives, including human
population and Web traffic centers. We also evaluate COP
over a range of cluster sizes.

B. Cost-optimized Peering (COP)
The COP algorithm functions by accepting three primary

inputs: server set data, workload data, and IP address
coordinate data. It produces an assignment of client workload
to different server sets, including the primary provider.

The data for each server set i, is the contracted capacity, ri,
the unit price of service, pi, and the absolute coordinates,
V(sij), of the IP addresses of each server sij in server set i. The
server set IP addresses could either be provided by the partner
or inferred using techniques similar to those described in [3].

The workload input is a traffic log in which each entry
represents a client request and includes a timestamp, client IP
address and number of bytes sent in response to the request.
The workload, Xk(t), is tracked for each client cluster in terms
of number of requests and number of bytes in the response.
The absolute coordinates of each client cluster, V(k), are also
computed and stored. The output of COP is an assignment of
the percentage of requests from each client cluster that should
be assigned to each server set.

The COP algorithm casts the server set selection problem
as a minimum cost network flow optimization problem. Min-
cost flow formulations are a common tool for solving

Figure 2: Client IP address clustering via spatial partitioning of the plane
in which a number of stations (shown in gray) are designated and probed
IP addresses (shown in black) are assigned to the nearest station.

distribution, resource management and capacity planning
problems [1], and have even been applied to server selection
within a single server set [4]. We translate the components
of our server set selection problem into a flow graph as
follows.

Referring to Figure 3, client clusters are connected to
server sets in a bipartite graph. An edge connects cluster k to
server set i, if the distance between k and i (as defined in
Section II.B) is less than the network delay threshold, D. The
costs of all edges are 0, except those leading from server sets
to the sink. These bear the fee associated with the server set.
The capacity of the server set to sink edges are set to the
contracted capacity of the server set. The capacity of edges
from source to client cluster, and client cluster to server sets is
set to the workload generated by the corresponding client
cluster. COP implements the network simplex algorithm [1]
to find the flow values, fki for each (k, i)-tuple, that meet the
min-cost, max-flow objective.

At administratively defined intervals, COP produces a
map, which specifies the fraction of the workload fki/Xk(t) from
k that is to be directed to i in interval t. The map is stored in
an expanded trie data structure designed for fast IP routing
table lookups. Our peering DNS protocol engine, pDNS,
performs a lookup using the client IP address when a client
request is received to determine the appropriate server set
assignment.

C. Alternative Strategies
Although selection criteria for multi-provider content

delivery have been proposed, none address the criteria we
wish to evaluate (namely, minimizing service delivery costs
while respecting service level objectives). For example, the
Content Serving Utility described in [11] allows an
administrator to configure the primary provider’s authoritative
DNS server to redirect clients to a partner CDN based on a
few static policies, but does not take into account cost or
workload.

A second example, the CDN Brokering system [6],
implements a DNS-based request-routing system and an

accounting mechanism to bill for traffic when appropriate.
The CDN Broker’s assignment strategy classifies each client
according to the “region” of its IP address, where region is
defined as a BGP cluster. The CDN Broker also does not
address the optimization criteria we consider, but instead uses
a table in which each region has a list of CDNs serving that
region. Each CDN is assigned a weight for the regions in
which it is listed. However, the details of how these weights
are derived, or whether they are ever updated, are not
described.

Since none of the published multi-provider request-routing
systems address the cost and service level objectives we wish
to target, we compare COP with two greedy peering strategies,
which we refer to as DualGreedy and MinCost.

The DualGreedy bases its assignment on clients belonging
to /24 clusters; it does not use the client clustering described
in Section IV.A. When a request from client k is received,
pDNS searches the list of server sets, and selects the lowest
cost server set i that meets the delay threshold D, and for
which the workload assigned so far in the current
measurement period t, is less than the capacity, ri. The
DualGreedy algorithm is likely to perform well in terms of
assigning a server set within the network delay threshold.
However, it may not fair as well in minimizing overall costs,
since it makes only local (greedy) decisions regarding cost.

The MinCost strategy also does not use client clustering,
nor does it use delay threshold. When a request from client k
is received, pDNS searches the list of server sets, and selects
the lowest cost server set i for which the workload assigned i
in the current measurement period t is less than ri. Thus, the
MinCost strategy will minimize peering charges (term 3 from
Section III) but is more likely to incur penalties (term 5 from
Section III) due to missed service level objectives.

In Section VI, we compare the ability of all three strategies
to minimize the overall service cost for content delivery in the
multi-service provider scenario.

V. EXPERIMENTAL METHODOLOGY

A. Evaluation Platform
Our software-based evaluation platform consists of three

components: trafficGenerator, pDNS, and statLogger. These
components are depicted in Figure 4. The trafficGenerator
reads Web server logs, in which each entry contains a
timestamp, client IP address, and a count of the bytes served
as a result of the client’s request. The trafficGenerator
generates a DNS request for each entry and sends this request,
with the timestamp included in the additional data field, to the
pDNS daemon. The pDNS daemon performs server set
selection (using the configured peering strategy, COP,
DualGreedy, or MinCost), and responds with an answer to
direct the client to the assigned server set (i.e., using a
CNAME record). The trafficGenerator forwards the request
data and response to the statLogger.

The statLogger maintains a serverSet object for each
server set. The serverSet object maintains the state of each
server set, including the current workload assigned, the server

Figure 3: Formulation of server set selection problem as bipartite,
minimum cost flow graph. Note that edges link a given client cluster k
and server set, i only if the expected network delay between k and i, is
less than the distance threshold.

Client Clusters Server Sets

Cost=0,
Capacity=Xk(t)

if (distance(k, i)<D)

k iCost=0, Capacity= Xk(t)

Cost=pi,
Capacity=ri

source sink

Name

W1
W2

Cache
Locations

4
4

Captured

6/27/02 - 7/7/02
8/27/02 - 9/5/02

Event

Wimbledon [23]
US Open [22]

Table 1: Summary of Web cache data sets. Official site information is
provided in [22][23].

selection policy, and a list of server IP addresses. The
serverSet object is capable of responding to statLogger
requests for mapping a client IP address, by returning the IP
address of the server selected to service the client according to
the provider’s inferred selection policy. For each transaction
received from the trafficGenerator, the statLogger uses the
absolute coordinates of the client and assigned server to
calculate the expected network delay. If the expected delay
exceeds the delay threshold D, a penalty is imposed. At the
end of each measurement period, the statLogger requests
utilization statistics from each serverSet, and calculates and
logs the total usage and penalty fees for the measurement
period. Note that penalties due to server set overload are
assessed according to the contracted capacity ri of a server set.
That is, since provider i has agreed that ri capacity is available
for use by the primary server set, the load imposed by other
customers of provider i need not be considered in the penalty
calculations for the primary provider.

B. Data collection
Our evaluation platform employs real-world data collected

from three sources: commercially deployed server sets, Web
logs from major sporting events sites, and network location
data collected from globally distributed network probe
stations. In this section, we describe the how these datasets
were collected.

1) Web Traffic Logs
We collected Web cache logs from the official Web sites

of two major sporting events. The sporting events are hosted
on an infrastructure comprising Web servers and caches in
multiple, distributed hosting centers. Client requests are
directed to one of the hosting locations according to expected
network delay and available server resources. The request
logs collected from the June/July 2002 tournament, which we
refer to as W1, represent an aggregate of the requests received

by the Web caches located at the four sites indicated in Figure
5. The W2 data set is also the aggregate of requests received
at the same four sites; however the W2 dataset represents a
different event during August/September 2002.

These data sets are representative of the large-scale
distributed network services that motivate our work. For
example, the caching infrastructure for the W2 event serviced
over 217 billion requests from clients accessing the servers
from over 365 thousand /24 IP address prefixes. Over three
terabytes of content were served during this event. Table 1
provides a summary of these two data sets.

2) Network Probe Data
The D1 dataset was collected from 21 monitors managed

by CAIDA and deployed in geographically and topologically
diverse locations [7]. Figure 5 depicts the locations of the 21
monitors. Each monitor continuously probes IP addresses
using one of four lists. Three of these lists are designed to
cover significant portions of the routable IP Version 4 (IPv4)
address space. The fourth comprises hosts taken from DNS
root server logs. The number of IP addresses in each list
ranged from 125,000 to 825,000.

 For each of the 21 probe sites, we collected a list of the IP
addresses probed, and the minimum RTT observed for that IP
address. We considered only addresses for which at least ten
RTT measurement samples had been collected, and grouped
addresses according to their 24-bit network address prefix, as
described in Section IV.A.

There were about 130,000 /24 clusters for which we had
ten RTT samples from all 21 monitors. We noted that some
of the probed addresses had very large delays (e.g., greater
than 300 ms) from all monitors. Minimum delays of greater
than 300 ms across all monitors are likely to be associated
with, for example, satellite connections or dial-up
connections. Since the distance function evaluation in [2] was
unable to verify the accuracy of known inference techniques
for such connections, we restricted the D1 dataset to only
those /24 addresses that were within 300 ms of at least one
probe station.

In summary, to avoid skewing our analysis, we limited the
D1 dataset to only those /24 addresses for which we had at
least ten RTT measurements from each of the monitors, and
for which at least one monitor had a minimum RTT of less
than 300 ms. Under these restrictions, we selected a set of
monitors that would provide the largest pool of /24 addresses
for which we had distance measurements. We found that with
a subset of 11 monitors, we had a usable pool of 71,000 /24
addresses in D1. We assigned absolute coordinates to these

Cluster
database

Origin site
traffic log

Server Set
database

DNS protocol handler

Policy Engine

COP DualGreedy MinCost

trafficGenerator

statLogger

simulation
results

DNS client

pDNS

Figure 4: Peering DNS (pDNS) evaluation environment. The pDNS
daemon initializes policies according to the configuration. The policies
we report on are COP, DualGreedy, and MinCost. The trafficGenerator
reads Web server logs to generate DNS transactions and then sends those
transactions to the pDNS daemon using the same protocol as a DNS
client. The trafficGenerator forwards the results to the statLogger, which
tracks and logs performance.

/24 addresses according to the scheme described in Section II.
A.

3) Server Set Statistics
Server set statistics were collected as follows. A set of 23

server sets was compiled by visiting the Web sites of five
known CDN service providers to retrieve a customer listing,
and augmenting this list with popular Web sites using a
recognized rating site [12]. Selected server sets were assigned
a policy, based on initial measurements from eight
geographically distributed clients. The policy assignments
were then verified by collecting measurement data from 38
other, non-overlapping systems [20]. The details of this
measurement study are provided in [3].

We wished to have our evaluation platform reflect the
policies and server locations of commercially deployed server
sets. We used the IP address lists and policies collected in [3]
to create the serverSet objects implemented in our evaluation
platform. The characteristics of the serverSet objects are
summarized in Table 2.

Each serverSet was also assigned a peering price, pi.
Intuitively, a server set is likely to be priced according to
variety of properties, such as the number of server locations,

capacity, and network bandwidth. We did not have access to
the actual rates or capacities of these server sets, so we
adopted a simple model to enable comparative analysis. For
the rate, we assigned pi =b + Ni % m, where b is a base price
assigned all server sets, Ni is the number of servers in the set,
and m is a per-server multiplier. In addition to testing a range
of values for b and m (including m=0), we also tested pricing
based on total bytes served (as opposed to 95th percentile of
maximum bandwidth served).

We set the capacity of each server set relative to the
number of servers in server set. That is, we started by
computing a multiplier, ω, which was equal to one half of the
average load observed under W1. We set ri = ω for server sets
with Ni < 5 servers, ri = 2ω for server sets with 5 ≤ Ni < 24
servers, ri = 3ω for server sets with 25 ≤ Ni < 50 servers, and
ri = 20ω for server sets with Ni > 50 servers. The only
exception was the home server set (i.e., the primary provider),
which was assigned a capacity equal to average load observed
under W1.

The serverSet objects instantiated by the statLogger were
also separately instantiated by the pDNS daemon. The
difference however, was that pDNS had access only to the
expected delay for a given client, whereas statLogger
evaluated results based on the distance between the client and
the actual server assigned. Additionally, COP (as part of
pDNS) bases client assignments on expected workload for
each client cluster, whereas statLogger evaluated results based
on the actual workload directed to each serverSet.

VI. EVALUATION RESULTS
We compared the ability of our peer selection algorithm to

minimize the cost of content delivery services in a multi-
provider environment. We also performed an empirical
analysis of the sensitivity of these results to a number of
factors, including target distance threshold, pricing scheme,
and client cluster sizes. We evaluated the peer selection
algorithms for both the W1 and W2 events. Finally, we
considered operation in an environment requiring predictive
peer selection to proactively respond to anticipated surges in
demand. In this section we present these results and provide
insights into why different results were achieved.

b) Skitter (D1) collection sitesa) 4 W1, W2 collection sites

Figure 5: Collection sites for W1, W2, D1 data. a) The W1 and W2 data sets were collected from the same four sites. b) The D1 data was collected under
the Skitter project [7] from 21 sites. In some cases, multiple sites were too close to plot separately. These sites are depicted as a single, larger marker.
The size of the marker is indicative of the number of collection sites at the indicated location.

Table 2: Characteristics of serverSets used in our system. Each serverSet,
except SS0 and home, were modeled after a server set in [3] by adopting
the server selection policy and server IP address list of the server set. In
some cases, network probe data was not available for a server IP address.
For example, only 24 IP addresses were used for SS4, since location data
was not available for four of the 28 addresses discovered. The “home”
server set uses the IP addresses of the origin servers in W1. SS0 was
created to represent a server set that is deployed at the same locations.

••
• •

•

••

• •
••

•

•

•

• •••

ID Policy #IP
Addrs

home MIN 4
SS0 MIN 4
SS1 MIN2 92
SS2 MIN2 98
SS3 MIN2 91
SS4 MIN 24
SS5 LBP 3
SS6 MIN2 41
SS7 MIN 4
SS8 WGT 4
SS9 LBP 2

A. Cluster Identification and Evaluation
The COP algorithm makes decisions based on client

clusters (as opposed to individual clients), so our first task was
to isolate and evaluate IP address clusters from the CAIDA
network probe data. Minimizing the maximum intra-cell
width for a given number of stations or minimizing the
number of stations for a given maximum cell width are NP-
complete problems. Thus, we used heuristics to choose an
initial (or seed) set of stations, and apply iterative partition-
based clustering to refine this set of stations. Iterative
partition-based clustering refers to the process of selecting a
set of seed stations, generating a partitioning by assigning
each probed /24 address to its closest station, and then
generating new station coordinates as the centroids of the
current partitions. The centroid is computed based on the
network distance from each /24 to its assigned station. This
partitioning, assignment, and coordinate update sequence was
repeated until there was no change in the coordinates over two
cycles, or a maximum number (we used 2000) of iterations
were completed.

We chose two independent methods for selecting the
initial seed stations and compared these to random seed
selection. The first method is based on geographic location,
and the second on regions in which we had high observed
traffic volumes.

The geographic (geo) heuristic entailed mapping each /24
cluster to a geographic location via IxMapper/GLS [14]. We
then created a list of all the locations at which we found at
least two /24 clusters that were within 5 ms of each other. We
chose 5 ms as the threshold because previous work had shown
the typical maximum latency within a single metropolitan area
is approximately 5 ms [19]. We calculated the centroid of the
/24 clusters for each location that met this criteria. If a cluster
was within 5 ms of another cluster, we selected a single
representative location by calculating the centroid of
addresses in both locations. We found 157 such locations to
serve as seeds. We repeated this test by searching for
locations with two or more /24 clusters within 10 ms of each
other. We found 2615 such locations. We refer to these sets
as small#geo and large#geo, respectively.

 For the traffic volume heuristic, we rounded the elements
of the absolute coordinates vector to the nearest multiple of
5 ms; we refer to these as the quantized coordinates. The
traffic generated by clients for each /24 group was assigned to
the nearest quantized coordinates so the coordinates could be
ranked by traffic volume. The top 157 and 2615 coordinates
formed the seed stations for small#vol and large#vol,
respectively. Note that these numbers of clusters are chosen
to match the numbers found above in the geo heuristics to
allow comparison. We also randomly selected a set of 157
and 2615 coordinates to form the small#ran and large#ran
seed sets. We refined the coordinates of these six seed sets as
described above using iterative partition-based clustering to
produce the final set of station addresses. The number of
final stations, and thus clusters, resulting from each seed set is
less than the number of seeds, since clusters are merged if

their station coordinates are within 5 ms. For example, the set
of 2615 seeds initially in large#vol resulted in a partitioning
with 880 clusters.

In Figure 6, we plotted the distribution of traffic generated
by /24 clusters, with respect to the distance from their
assigned station. For example, using clusters formed from the
large#ran seed set, over 70% of the client requests were
generated from locations within 10 ms of their assigned
station, and over 96% from within 20 ms. Clusters resulting
from the large#vol and large#geo seed sets had similar
proximity results. Expectedly, fewer clusters (as formed from
small#geo, small#ran, small#vol), resulted in wider clusters.
For example, approximately 87% of the client requests under
small#geo and small#ran were generated from locations within
20 ms of their assigned station.

We will begin our peering strategy comparison using the
coordinates identified from the large#vol seeds. In later
sections, we will consider the sensitivity of these results by
comparing other clusterings.

B. Peering Strategy Comparison
Using the evaluation platform described in Section V.A,

we compared the performance of COP and two greedy
alternatives on the workload generated in W1. We measured
the cost achieved by setting the distance threshold to 50 ms,
100 ms, 150 ms and 200 ms. This comparison, in relative
units, is illustrated in Figure 7.

 The decrease in cost as the distance threshold increases is
as expected. COP is significantly more efficient than the
greedy alternatives, with alternatives averaging a factor of 1.5
times more costly than COP. We also computed the relative
costs when using pricing based on total bytes served. The
performance under the bytes-served schemes was consistent,
with greedy schemes costing 1.3 to 2.1 times more than COP.

Figure 6: Comparison of cumulative distribution of client requests (traffic
volume) to network distance. The x-axis is in log scale for improved
readability. The plots are labeled according to the number of initial
stations (small=157, large=2615) and the method used to select the initial
stations (geo=geographic, vol=traffic volume, ran= random). The plots for
large#vol and large#geo are overlapping in many areas.

C
um

ul
at

iv
e

 %
 o

f
re

qu
es

ts

Distance from Station (in ms)

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

small# vol
large# vol
small# ran
large# ran
small# geo
large# geo

We also evaluated the cost achieved by these three
schemes on the W2 event. Again, the cost achieved under the
greedy algorithms averaged 1.5 times the cost achieved when
using COP.

Increased costs under the greedy schemes could be due to
a number of reasons. Penalties incurred by exceeding the
capacity or network delay thresholds are the most likely
reasons. Both COP and DualGreedy use absolute coordinates
data as a basis for expected network delay. However,
DualGreedy assigns low cost server sets on a first-come-first-
serve basis. This strategy could result in “filling” the capacity
of certain server sets with clients that could be served by many
server sets, at the expense of clients that are within the delay
threshold of only a small number of server sets. This does not
explain why, for example, MinCost achieved similar results to
DualGreedy, even though it does not consider network delay
thresholds and therefore is more likely to incur high penalties.
To gain insights into these and other issues, we plotted the
distribution of traffic over the course of the W1 event.

In Figure 8, we show the breakdown of requests serviced
on the primary provider’s infrastructure, versus those serviced
on peer infrastructures, as well as on peer infrastructures in
excess of the contracted capacity. We also plotted a
comparison of requests served within the targeted delay
threshold, versus those exceeding the network delay threshold
or overloading peers’ servers.

A prominent feature of this set of plots is that COP, in
contrast to DualGreedy and MinCost, did not assign load to
peers in excess of their contracted capacity. COP does assign
load in excess of the primary, or home, infrastructure capacity
during all four of the major surges. This is an indication that
the peers with available capacity were outside the network
delay threshold. These requests would have incurred penalties
regardless of whether they were serviced from the primary, or
a peer’s infrastructure, so they were serviced on the home
infrastructure to avoid peer charges.

The diagrams in Figure 8 also illustrate other subtleties.
For example, consider that MinCost is competitive with
DualGreedy for most distance thresholds (Figure 7). By
comparing Figure 8c to 8e, we see MinCost had higher
proportions of the load serviced under high delay conditions
(resulting in higher penalties). This is not surprising since
MinCost does not consider expected network delay when
making assignments. However, because MinCost directed
more load to the primary server set than to peers (compare 8b
to 8d), these penalties were partially offset by lower costs due
to peers. The captions in Figure 8 discuss additional
comparisons.

C. Effects of Client Clustering on Traffic Prediction
In the preceding evaluations, we used a large number of

client clusters. Specifically, using traffic volume heuristics to
select 2615 seed stations, we used iterative partitioning to
isolate 880 clusters. While using a large number of clusters
can improve the estimation accuracy of client location, it also
reduces the cluster client population, and may make traffic
prediction more difficult.

Table 3 helps to illustrate this trade-off. We created a
number of partitions, using different seed heuristics and a
range of initial stations. We then used standard linear
prediction on the numbers of requests generated by each of the
clusters and calculated the relative deviation between the
actual and predicted number of requests for each interval in
W1. The linear prediction used a sliding window of ten 60-
second intervals to predict the expected number of requests
for the next 60-second interval. We have tested other
prediction schemes, such as exponentially weighted moving
averages and best linear fit, but found that simple linear
prediction, with three coefficients performs well in this
environment.

Table 3 shows that as the number of clusters (column 3)
increases, the percentage of requests generated from locations
within 10 ms of the assigned station increases, but the relative
deviation for traffic predictions also increases. We were
interested in the effect this may have on our peering
algorithm. We selected three sets of clusters to test the
sensitivity to cluster size: i) the set of 46 clusters (row 1 of
Table 3), ii) the set of 310 clusters (row 5), and iii) the set of
1756 clusters (row 10). We chose these sets to cover a range
of cluster sizes.

We compared the costs achieved using these cluster sets
and linear prediction to those achieved earlier for 880 clusters,
which had simply used the number of requests generated by a
client cluster in the previous interval to estimate the number of
requests that would be received in the next interval. Both the
set with 310, and the set with 1756 provided an improvement
over the baseline set with 880 clusters. The set with 310
clusters achieved a cost of 95% of that achieved by the set
with 880 clusters. Additionally, the set with 1756 clusters
achieved a cost of 79% of the cost under 880 clusters. The
cost achieved by the set of 47 clusters was within 0.1% of the
cost achieved using 880 clusters. These results indicate the

Distance Threshold (in ms)

C
os

t (
R

el
at

iv
e

U
ni

ts
)

Figure 7: Comparison of relative costs achieved by COP, DualGreedy,
and MinCost algorithms over a range of values used as the targeted
distance threshold (D).

50 100 150 200
0

1

2

3

4

5

6

7

8
COP
DualGreedy
MinCost

Figure 8: Comparison of offload and delay characteristics for COP, DualGreedy and MinCost algorithms over the
course of the W1 event. The diagrams in (a), (c), (e) compare the requests serviced on the home infrastructure, versus
peers, and peers in excess of contracted peer capacity. The diagrams in (b), (d), (f) compare the requests serviced within
low delay, versus requests that were serviced under high server or network delay conditions.

Time

Time

Time

Time

Time

Time

←(a) COP algorithm; comparison
of requests serviced on home
infrastructure, versus peers and
peers in excess of contracted
capacity. Unlike DualGreedy (c)
and MinCost (e), COP did not
assign load to peers in excess of
the contracted capacity.

←(b) COP algorithm; comparison
of requests serviced within the
delay threshold versus those
exceeding delay threshold or
contracted capacity. Plot shows
number of requests serviced with
low delay is more than for
DualGreedy (d) or MinCost (f)
during same traffic surge periods.

←(c) DualGreedy algorithm;
comparison of requests serviced on
home infrastructure, versus peers
and peers in excess of contracted
capacity. Load served on home
infrastructure was slightly less than
under MinCost (e), resulting in
higher peer costs.

←(d) DualGreedy algorithm;
comparison of requests serviced
within the delay threshold versus
those exceeding delay threshold or
contracted capacity. Load serviced
under low delay conditions was
slightly higher than MinCost (f),
resulting in higher penalties due to
exceeded network delay threshold.

← (e) MinCost algorithm;
comparison of requests serviced on
home infrastructure, versus peers,
and peers in excess of capacity.
MinCost directed more of the load
to the primary server set than either
COP (a) or DualGreedy (c). The
result was to lower fees paid to
peers, but increased penalties due
to exceeding contracted capacity
and network delay thresholds.

←(f) MinCost algorithm;
comparison of requests serviced
within the delay threshold versus
those exceeding delay threshold or
contracted capacity.

R
eq

ue
st

s
(x

10
6)

R
eq

ue
st

s
(x

10
6)

R
eq

ue
st

s
(x

10
6)

R
eq

ue
st

s
(x

10
6)

R
eq

ue
st

s
(x

10
6)

R
eq

ue
st

s
(x

10
6)

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10 home
peer
peerpeak

home
peer
peerpeak

home
peer
peerpeak

low
high

low
high

low
high

cost is affected by the selected clustering, but that a range of
cluster sizes work reasonably well in practice. In future work,
we intend to further explore the process for choosing the most
appropriate number of clusters.

Our peering system is designed so that this trade-off can
be dynamically managed, according to the needs of a
particular application. For example, during non-peak periods
(or in environments where server overload is unlikely), a
clustering with very large numbers of small, more fine-grained
clusters (e.g., /24 clusters) could be used by the DualGreedy
algorithm to achieve higher client location accuracy. Under
surge conditions (or whenever server overload is more likely),
a clustering (such as large#vol) with fewer numbers of
clusters, and thus better traffic prediction, can be used by the
COP algorithm to protect against both server overload and
assignments exceeding the delay threshold. The hybrid
approach is used only if the system is configured to do so, and
the switch between the COP and DualGreedy modes can be
triggered according to traffic volume.

D. Discussion
Our analysis has demonstrated the value of intelligent peer

selection over a broad range of operating scenarios. We have
focused on relative performance, using a cost-based
formulation that takes into account expected network delay
and server capacity thresholds. Our COP approach does have
some drawbacks, however, which we discuss below.

COP relies on extensive network probing to build a
database of absolute coordinates in order to infer network
distances. (The DualGreedy algorithm also uses this network
distance database.) We use the minimum measured delay to
estimate the raw propagation delay, which is not expected to
change frequently. Hence, the probing can be done
infrequently to refresh the delay database. Alternatively, we
could use a "lazy" approach in which we probe only active
clients (i.e., those that initiate requests) to avoid probing

portions of the IP address space that do not contain clients of
interest. This has the potential drawback of initially
misdirecting clients for which no location information is yet
available.

COP also uses more complex computations in arriving at
its solution than the other techniques we evaluated. The
network simplex flow algorithm that COP uses, however, was
able to compute flow graphs for hundreds of client clusters in
less than a second on a 900 MHz Intel processor. Moreover,
these computations are done independently of the pDNS
server "fast path" which must respond quickly to client DNS
queries. COP monitors the workload and computes client
cluster-to-server set mappings asynchronously, and
periodically generates updated maps, which the pDNS server
consults using an efficient IP routing table lookup scheme.

Some of the component techniques used in COP can also
be further improved. For example, the redirection models do
not perform as well for some server sets that use dynamic
selection policies that react frequently to changing network
conditions or server load. Also, though the client clustering
technique used in COP seems to work reasonably well in
practice, the process of choosing the correct number of
stations is still not well-explored.

Finally, scenarios in which multiple providers contend for
the same cooperative resources may occur in practice. In such
scenarios, the resources available from partners might vary
over time. Although our evaluation used static capacities,
COP minimizes the service delivery cost according to the
available capacities, even if the available capacities vary over
time. However, it is possible that also employing a model to
predict how capacities could be expected to vary over time
(due to the interplay of multiple providers vying for resources)
would enable further optimizations.

There are also a number of advantages to the COP
approach that go beyond the performance benefits described
in the previous sections. In particular, our peering solution is
highly flexible. For example, a primary provider typically
hosts several applications, or Web sites, using the same
shared, multi-provider infrastructure. This scenario can be
accommodated in COP by creating a source node in the flow
graph for each application, and connecting the source to each
of the cluster nodes. COP also provides flexibility in
partitioning server sets. If a partner provider implements a
tiered pricing structure, multiple server set nodes can be
created in the flow graph, each with a cost and capacity to
reflect the pricing tiers.

Additionally, client affinity to server sets is useful to direct
requests for certain types of objects to particular sever sets,
especially in scenarios where requested objects (e.g.,
streaming media files) are large. This avoids the situation in
which many of the partners must deliver bandwidth-intensive
objects or services (possibly increasing the cost to the primary
provider). Also, client affinity can provide a more consistent
response time by avoiding directing clients to multiple server
sets that have varied performance characteristics. Client

Table 3: Effects of seed policy and number of clusters isolated on cluster
properties. Smaller numbers of clusters tend to be wider (i.e., have
smaller percentages of requests within 10 or 20 ms of assigned station),
but more accurately modeled by simple linear prediction techniques (i.e.,
the predicted request rates have lower average relative deviations).

157 vol 46 47.5 71.5 0.019

157 geo 131 46.5 87.2 0.235

157 ran 153 52.9 87.9 0.220

500 vol 145 54.1 90.0 0.257

1000 vol 310 58.8 91.8 0.268

500 ran 412 58.1 91.3 0.261

1000 ran 721 58.9 93.3 0.265

2615 vol 880 62.8 94.4 0.259

2615 geo 1687 61.8 94.4 0.250

2615 ran 1756 69.2 95.1 0.266

#Seeds Seed #Clusters %Reqs %Reqs Avg
Policy Isolated <10ms <20ms Rel Dev

affinity can be accomplished by using the same flow values
calculated for a previous flow graph in the current interval.

VII. SUMMARY
In this paper, we propose an effective peering system for

content delivery workloads in a federated, multiple service
provider infrastructure. The core component in the system is
a novel peering algorithm, COP, which directs client requests
to partner providers such that cost is minimized and
performance targets are respected. We evaluate the algorithm
against greedy strategies using real traffic data from large-
scale Web sites and request-routing data gathered from server
sets deployed by commercial CDSPs. We also use network
location data collected from globally distributed probe
stations. Our evaluation shows that the proposed cost-
optimized peering algorithm is significantly more effective
than greedy alternatives, which incurred costs of 1.3 to 2.1
times more than COP over a variety of network delay
thresholds, pricing schemes, and client cluster sizes.

In addition to refining the server set models and client
clustering techniques used in this study, we are also
investigating interesting related questions [2]. For example,
the question of how to provision primary resources relative to
the capacity contracted from partner providers or the peering
strategy of partners is virtually unexplored. We are also
exploring strategies for how to price a virtual network service,
comprised of multiple providers, to potential customers.
Finally, we are considering the application of our peering
strategy and evaluation methodology in other application
contexts, such as Grid and 3G wireless deployments.

ACKNOWLEDGEMENTS

Daniel Bienstock and Olivier Verscheure provided many
valuable comments. kc claffy, Daniel Anderson, Andre
Broido, and Young Hyun provided access and explanations
regarding the Skitter (D1) dataset. Paul Dantzig, Brian
Snitzer, Herbie Pearthree, Milo Choong, Robert Danford, and
Todd Allensworth provided access and key insights into the
W1 and W2 datasets. We are thankful for all of their help.

REFERENCES
[1] R. Ahuja, T. Magnanti, J. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.
[2] L. Amini, “Models and Algorithms for Resource Management in
Distributed Computing Cooperatives,” PhD Thesis, Columbia University,
2003.
[3] L. Amini, A. Shaikh, H. Schulzrinne, “Modeling Redirection in
Geographically Diverse Server Sets,” Proceedings of World Wide Web
Conference (WWW2003), May 2003.
[4] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, F. Zane,
“Clustering and Server Selection using Passive Monitoring,” Proceedings
Infocom 2002.
[5] S. Bhattacharjee, Z. Fei, “A Novel Server Selection Technique for
Improving the Response Time of a Replicated Service,” Proceedings of IEEE
Infocom, March/April 1998.
[6] A. Biliris, C. Cranor, F. Douglis, M. Rabinovich, S. Sibal and O.
Spatscheck, "CDN Brokering," Web Caching and Content Distribution
Workshop, June 2001.
[7] CAIDA’s Internet Topology Data Kit #0204. http://www.caida.org.
Funding for this work was provided by DARPA’s Network Modeling and

Simulation Program N66001-01-1-8909.M. Crovella and R. Carter,
“Dynamic Server Selection in the Internet,” Proceedings of the Third IEEE
Workshop on the Architecture and Implementation of High Performance
Communication Subsystems (HPCS'95), August 1995.
[8] M. Day, B. Cain, G. Tomlinson, P. Rzewski, “A Model for Content
Internetworking,” Work in Progress, May 2002, http://www.ietf.org/internet-
drafts/draft-ietf-cdi-model-02.txt.
[9] I. Foster, C. Kesselman, S. Teucke, “The Anatomy of the Grid,”
International Journal of Supercomputer Applications, November 2001.
[10] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang,
“IDMaps: A Global Internet Host Distance Estimation Service,” IEEE/ACM
Transactions on Networking, October 2001.
[11] P. Gayek, R. Nesbitt, H. Pearthree, A.Shaikh, B. Snitzer. “A Web
Content Serving Utility,” IBM Systems Journal, 43(1), 2004.
[12] Hot100. http://www.100hot.com
[13] S. Hotz, “Routing Information organization to support scalable
interdomain routing with heterogeneous path requirements,” PhD Thesis,
University of Southern California, 1994.
[14] IxMapper. http://www.ixiacom.com/products.
[15] R. Katz, A. Joseph, “A Revolutionary Confederated Service
Architecture for Future Telecommunications Systems,” University of
California MICRO Research Proposal, March 2001,
http://www.cs.berkeley.edu/~randy/proposals/micro01.pdf.
[16] B. Krishnamurthy, J. Wang, “On network-aware clustering of web
clients,” Proceedings of SIGCOMM, August 2000.
[17] B. Krishnamurthy, C. Wills, Y. Zhang, “On the Use and Performance of
Content Distribution Networks,” Proceedings of ACM SIGCOMM Internet
Measurement Workshop (IMW'2001), November 2001.
[18] T. Ng, H. Zhang, “Predicting Network Distance with Coordinates-
Based Approaches,” Proceedings of Infocom, June 2002.
[19] V. Padmanabhan, L. Subramanian. “An Investigation of Geographic
Mapping Techniques for Internet Hosts,” Proceedings of the ACM
SIGCOMM, August 2001.
[20] Planetlab, http://www.planet-lab.org.
[21] S. Poulouchkine, J. Ravier, “State of the Art on Content Delivery
Networks (CDNS),” survey published by France Telecom Research and
Development Division, July, 2000.
[22] 2002 US Open Tournament Web Site, August 28 – September 5, 2002,
http://www.usopen.org, site is no longer available.
[23] 2002 Wimbledon Tournament Web Site, June 27 – July 7, 2002,
http://www.wimbledon.org, site is no longer available.
[24] D. Villela, and D. Rubenstein, “A Queueing Analysis of Server Sharing
Collectives for Content Distribution,” International Workshop on Quality of
Service (IWQoS 2003), June 2003.
[25] L. Wang, V. Pai, and L. Peterson, “The Effectiveness of Request
Redirection on CDN Robustness,” Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI), December 2002.

