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Abstract-- Peering allows service providers to handle traffic 
surges without over-provisioning, reduce the cost of dedicated 
infrastructure, and leverage the specialization and prices of 
partner providers.  In this paper, we develop a peering system for 
multi-provider content delivery based on a cost-optimized peer 
selection algorithm.  We formulate a cost model for evaluating 
competing peering strategies, and use measurement data 
collected from globally distributed network probe stations, large-
scale Web sites, and existing service provider infrastructures to 
empirically evaluate proposed peering strategies.  Our analysis 
shows that our peer selection algorithm is significantly more 
efficient than greedy alternatives, in terms of minimizing service 
cost and respecting network delay and server capacity 
thresholds, over a broad range of real-world scenarios. 

 
Index terms-- System design, simulations, network 

measurements, experimentation with real networks/testbeds. 
 

I. INTRODUCTION 

Delivering large-scale network services requires a 
distributed computing and network infrastructure that provides 
a consistently high level of performance and reliability in the 
face of surges in demand, failures, and changes in customer 
requirements.  Service providers who acquire, provision, and 
manage the service infrastructure must balance these 
requirements against the high costs of deploying customer-
dedicated, over-provisioned resources.  Service providers 
have addressed this problem to some extent by using shared 
infrastructures to multiplex resources between many 
customers, and thus improve utilization.  To lower costs 
further, however, providers are increasingly interested in 
leveraging computing or network infrastructure from partners 
through peering mechanisms that allow provisioning and 
sharing of computing resources, and settlement and exchange 
of the resultant revenue.  The customer’s view remains that of 
a single provider (who we refer to as the primary provider), 
which may in fact consist of pooled resources from several 
providers distributed over a number of locations.   

For example, instead of over-provisioning hosting centers 
for potential surges in demand, or distributing thousands of 
servers worldwide to minimize network latency, a provider 
could offload certain client workloads to partners.  
Cooperatives would also spawn secondary markets for the 
under-utilized resources of some providers.  Federated, multi-
provider architectures have been proposed as part of the CDI 

(Content Distribution Internetworking) effort [8], Grid 
computing [9], and 3G wireless clearinghouses [15].  Recent 
research has shown that multi-provider peering approaches 
offer cost benefits in a variety of scenarios [2], and can 
significantly improve reliability and performance [6][24]. 

In this paper, we focus on the use of cooperatives for 
content delivery services.  In this scenario, the primary service 
provider may deploy a limited content hosting infrastructure in 
a single (or few) data centers, and at the same time, strike 
agreements with other content distribution service providers 
(CDSPs) who agree to serve customer content on behalf of the 
primary provider for a share of the revenue.  As long as the 
client load can be handled by the primary provider, requests 
will be served from the origin since this maximizes revenue 
for the primary provider.  If the actual or predicted workload 
exceeds the capacity of the primary’s servers, the excess 
requests are offloaded to the partner servers.  The choice of 
which clients are offloaded to which partners may be based on 
provider cost and capacity, expected performance delivered to 
the client from a given provider, or policies that prefer one 
provider over another.  Figure 1 shows a simple example of 
how workload might be managed from the primary provider’s 
servers under normal conditions, and partially offloaded to 
partner servers during peak periods.   

Such a peering system allows a service provider to handle 
surges without over-provisioning, reduce infrastructure costs, 
and leverage the prices and specialization (e.g., specific 
geographic regions) of other providers.  While peering for 
content delivery is appealing for all of these reasons, there are 
a number of challenges in designing a system that virtualizes 
multiple providers, and directs clients to different providers 
based on cost, performance, and expected load.  Our 
contribution lies in designing and implementing a peering 
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Figure 1: Example of cooperative, multi-service provider approach. 
While offered workload is within the capacity of the home infrastructure, 
the hosting service provider processes it.  During peak periods, workload 
in excess of the home capacity is offloaded to one or more partner service 
providers. 



system that minimizes cost while also respecting client 
performance requirements.  This is in contrast to peer 
selection in traditional peer-to-peer networks where the focus 
is primarily on efficiently finding a nearby peer with the 
desired content. 

We evaluate our strategy against alternative schemes using 
real traffic data from large Web sites, request-routing data 
gathered from measurements of operational CDSPs, and 
network location data collected from a set of globally 
distributed probe stations. Specifically, we propose solutions 
for the following key issues: 
• When to offload?  We adopt a proactive approach in 
which client load is continuously monitored at the primary 
provider’s servers in order to predict future demand and 
trigger offload when load exceeds available capacity. 
•  Who to offload?  We propose and evaluate a novel client 
clustering scheme that balances network proximity and load 
prediction accuracy.  Small clusters enable more accurate 
estimation of client location, but larger clusters generate more 
aggregate traffic, thus improving traffic prediction 
capabilities. 
• Whom to offload to?  When choosing a partner provider 
for a group of clients, it is necessary to consider the cost as 
well as the expected performance.  This is complicated by 
separate administration and limited information sharing 
between individual providers.  We leverage redirection 
models developed in [3] to predict performance of partners.  
• How to offload?  Our peering system is based on DNS-
based request-routing, which is the de facto standard used by 
CDSPs.  Domain Name Service (DNS) provides a relatively 
transparent way to direct clients between service providers, 
and to recover them when appropriate. 

In evaluating our peering strategy we show that our 
proposed peer selection algorithm is significantly more 
efficient than greedy alternatives, which average a factor of 
1.5 times higher cost.  We demonstrate that this performance 
is consistent over a range of operating environments, 
including different Web sites, pricing structures, and expected 
delay thresholds. 

The remainder of this paper is organized as follows.  In the 
next section we provide background information.  In Section 
III, we provide a more formal statement of the problem our 
peering strategies address.  We present our peer selection 
algorithm, experimental methodology, and data collection 
procedures in Sections IV and V.  We detail the results of our 
analysis in Section VI.  We summarize the paper in Section 
VII. 

II. BACKGROUND 
Our peering system uses state of the art techniques to 

estimate client location and predict performance from partner 
providers. In this section, we give a brief overview of how we 
leverage existing work in designing our system.  In the next 
section, we provide a more formal statement of the problem 
addressed in this paper, using terminology and notation 
introduced in this section. 

A. Network Distance Inference 
We use the terms network delay and distance 

interchangeably to refer to the round trip time (RTT) between 
a pair of IP addresses. A number of techniques have been 
proposed to estimate delays in the Internet [10][13][18]. A 
recent empirical evaluation of distance inference techniques 
[2] shows that the absolute coordinates scheme proposed in 
[18] performs well, and generally provides low absolute and 
relative error in estimating delay.  We summarize the absolute 
coordinates technique here, as it is used in later sections to 
infer distances between Internet hosts. 

Geometric heuristics for delay estimation were originally 
proposed for inter-domain routing by Hotz [10], and recently 
applied to estimating distances between arbitrary Internet 
hosts [18].  Hotz defined the relative location of a given host, 
Hi, as an N-tuple,  

 
V’(Hi)=< d(Hi, P1), d(Hi, P2), d(Hi, P3), …, d(Hi, PN), > 

 
where each element represents the distance between Hi and the 
corresponding probe station (i.e., Pn in position n). This N-
tuple, V’(Hi), is often referred to as the relative coordinates 
vector of a host.  Through the use of global minimization 
techniques [18], these relative coordinates can be translated 
into absolute coordinates, V(Hi).  The distance between a host 
pair, (H1, H2), is computed as the Euclidean distance between 
V(H1) and V(H2). 

We use this scheme to assign absolute coordinates to 
thousands of IP addresses, based on measurements from 
globally distributed probe stations.  We can then infer the 
distance between clients and servers belonging to partner 
providers to enable the peering system to direct clients to 
providers that are expected to meet the performance 
requirements. We detail the collection of the network probe 
data, as well as other data sets used in our study, in Section V. 

Note that while we limit our attention to distance as the 
key performance metric (particularly for Web content 
delivery) other metrics such as optimizing cache hit rate may 
also be useful [25].  

B. Predicting Performance from Partner Server Sets  
Large-scale Web sites often serve content from multiple, 

geographically distributed server sets that may consist of 
mirrored servers or be part of a content delivery network 
(CDN).  The most common approach for directing clients to a 
specific server is via DNS request routing.  DNS-based 
techniques may also be used to redirect clients from the 
primary provider’s hosting infrastructure to a partner who 
performs its own server selection [6]. 

Predicting the performance a partner server set will 
provide to a given client requires some knowledge of how the 
partner selects servers for different clients. The actual server 
selection criteria used in CDNs are generally considered 
proprietary information, and may be based on complex and 
dynamic metrics [5][17], making prediction difficult.  
However, a recent measurement-based study [3] of 



commercial server set deployments showed that, despite the 
use of a variety of selection criteria, these schemes can be 
modeled with reasonable accuracy.   The study determined 
that it was possible to predict the distance between clients and 
the chosen server to within 20 ms in 90% of the cases with a 
few simple models.  The study proposed a distance metric that 
is the average delay from a client to each server in the set, 
weighted by the probability that the client is directed to a 
particular server. 

The models developed in the paper included: i) selecting 
the closest server to the client in terms of network delay 
(referred to as MIN), ii) a uniform choice between the first 
and second closest (MIN2), iii) load-balancing with uniform 
server selection (LBP), and iv) a policy in which 80% of the 
traffic is directed to the closest server while 20% is uniformly 
distributed among the remaining servers (WGT).  

We use information such as the number of servers, 
locations of servers, and redirection policies discovered in [3] 
to evaluate our peering strategies. Additionally, when 
inferring the distance between clients and server sets, we use 
the same weighted average distance metric.  Our peering 
strategy is described in Section IV and the server set data used 
for its evaluation is detailed in Section V. 

III. PROBLEM FORMULATION  
Our goal is to minimize the cost of hosting a workload on 

a federated infrastructure comprising sets of servers deployed 
by a primary service provider and its partners.  The primary 
service provider selects amongst primary and partner server 
sets; each server set provider performs server selection within 
its own server set.  Server sets may be globally or regionally 
deployed, and server set coverage may be overlapping since 
multiple providers may deploy servers in the same network or 
geographical region.  Examples of server sets include 
surrogate servers deployed by CDSPs, mirrored servers 
deployed by a content hosting entity, and caching servers 
deployed in access networks.  We focus on workloads (such as 
Web content delivery) where the primary goal is to service 
client requests by delivering data to the client.   

We perform our analysis using a fee structure 
representative of the content delivery environment [21]. 
Specifically, the cost of servicing a workload is the sum of the 
fees charged by the server sets participating in servicing the 
workload, plus any penalties due to violations of specified 
network delay or capacity thresholds.  Server set fees are 
bandwidth-based, that is, the fee is a charge per megabit of 
content served per second.  Fees are assessed according to the 
95th percentile of the maximum bandwidth utilized in any 
measurement period during the service interval.  A 
measurement period, for example, might be 60 seconds 
whereas a service interval is on the order of 1 month. 

Our problem can be formulated as follows: Let [0, T) 
denote the service interval. Further, let S denote the set of 
participating server sets where i  S, and K denote the set of 
clients, k  K. Each server set i has a positive fee denoted by 
pi m 0, which is charged when servicing all client requests 

within an agreed upon capacity ri m 0.  The network delay 
function, λ(k, i), specifies whether the client k and the server 
set i are within the distance threshold, D.  That is, λ(k, i) = 1 if 
the distance d(i, k) < D; λ(k, i) = 0 otherwise.   

Provider i’s workload, Xi(t), is the sum of the workloads 
imposed by each client k, i.e., Xi(t) = ( )k

ik X t∑ . The excess 

demand of i is δ(Xi, ri) 1: 
 

(1) 

 

(2) 

 

which is the portion of i’s workload that cannot be served by i 
due to either network delay (1) or server capacity (2) 
constraints. 

If δ(Xi, ri) > 0, provider i will incur congestion costs.  
Congestion costs are charges incurred when the offered 
workload exceeds a provider’s capacity.  Examples of 
congestion costs include monetary penalties or loss of 
goodwill due to not achieving customer service level 
agreements.  If a provider with excess demand chooses to 
redirect excess demand to partner providers, congestion costs 
would include peering fees paid to partners.  If provider i 
redirects excess demand to one or more partners, the 
assignment policy determines the fraction, ij, directed to a 
given partner j; this fraction can be expressed relative to 
individual clients, k

ij ijkα α=∑ .   

Client requests that are directed to an overloaded server or 
to a server for which the network delay exceeds D are said to 
be misdirected by the assignment policy.  We use ( , )k k

i ijXξ α  
to denote the portion of the workload that is misdirected.  A 
provider incurs a penalty, γi, for workload that is not serviced 
according to service criteria (either because it was not 
serviced or because it was misdirected). 

Thus, total congestion costs Ci for a single provider i are: 

where φ(X) is the 95th percentile of a workload X.  The terms 
in the definition of Ci represent the cost of offloading traffic to 
other providers (3), the penalties incurred because the 
resources required to meet the service level objectives were 
not available when required (4), and the penalties incurred 
because client requests were incorrectly directed to a server 
                                                           

1 In equation (2) we use the notation x+ := max{x, 0}. 
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that did not meet the service level objectives (5). Note that the 
cost includes terms related to performance as well as business-
related considerations. 

Our goal is to develop an algorithm capable of finding the 
assignment ( )k

ij tα  for all t  T that minimizes the congestion 
costs (specified above in terms (3, 4, 5)) incurred by a single 
provider i.  We do not consider optimizations achieved by 
changes in the capacity (i.e., the values in r are static), since 
workload assignment algorithms affect only the effective 
allocation of the capacity of i and its peers.  Also, we assume 
the workload Xi(t) and the price charged by provider i for 
servicing Xi(t) are not affected by the assignment policy.  This 
allows a simplified cost-based formulation (as opposed to a 
profit-based formulation).  

While the solution is deterministic when the workload, 
X(t), is known, X(t) for the full interval T is not known at the 
time the selection is made.  More importantly, finding the 
optimal assignment is not computationally feasible (since 
there are hundreds of thousands of clients in the environment 
we wish to address).  Our goal is not to solve this problem 
analytically, but instead, to develop a system that uses 
heuristics to approximate the optimal solution, given the 
information available at the time of selection.  We use the 
congestion costs defined in this section to compare our 
strategy to greedy alternatives.  We also describe how our 
algorithm is incorporated into a more comprehensive peering 
system, capable of managing workload assignments in a large-
scale commercial website.    

IV. PEER SELECTION ALGORITHM 
In this section, we detail our proposed algorithm for cost-

optimized peering, which we refer to as COP.  We begin by 
introducing a novel client clustering technique and then 
describe how COP uses it.  We contrast our proposal with two 
alternative greedy strategies.  In later sections, we will 
compare the performance of these strategies on workloads 
generated from two world-wide sporting event Web sites, 
using server sets representative of commercially deployed 
content delivery infrastructures, and client location data 
collected from globally distributed network probe stations.   

A. IP Address Clustering 
COP does not attempt to assign individual client IP 

addresses to server sets, but instead operates on clusters of 
network proximal clients.  Workload statistics are tracked and 
server set assignments are performed on a per-cluster basis.  
While clustering improves the computational efficiency of the 
assignment algorithm, we also use it to mitigate some 
drawbacks of DNS-based redirection.   

DNS redirection is a highly scalable, but coarse-grained 
mechanism for directing clients to network service points. 
Since DNS responses may be cached at clients and local DNS 
(LDNS) servers, multiple requests from potentially different 
clients may use the result from a single DNS resolution. 
Setting the expiration of a DNS response to a small value can 
limit, but not eliminate, this effect.  We propose a traffic 

clustering technique that enables clients to be grouped for 
effective network location and traffic estimation, and thus 
helps to mitigate some of the issues that arise from the coarse-
grained client-to-server assignments common to DNS-based 
redirection.    

Our clustering approach combines techniques from 
network-aware clustering, location inference, and spatial 
analysis.  We use network probe data described in Section V 
to assign absolute coordinates to IP addresses. IP addresses 
that differ only by the last octet (i.e., /24 address subnets) are 
grouped together and assigned a single set of coordinates.  
Our decision to group IP addresses according to the /24 
address is based on findings in [2] indicating a small variance 
in delay measurements to IP addresses in the same /24 subnet.  
The clustering process begins by selecting a representative set 
of station coordinates, as depicted in Figure 2, and assigning 
IP addresses to the nearest station.  The station coordinates, 
which are the centroids of the coordinates of IP addresses in 
the cluster, serve as the location estimate for all IP addresses 
within the cluster.  In Section VI, we provide a comparative 
evaluation of station selection alternatives, including human 
population and Web traffic centers.  We also evaluate COP 
over a range of cluster sizes. 

B. Cost-optimized Peering (COP) 
The COP algorithm functions by accepting three primary 

inputs: server set data, workload data, and IP address 
coordinate data.  It produces an assignment of client workload 
to different server sets, including the primary provider. 

The data for each server set i, is the contracted capacity, ri, 
the unit price of service, pi, and the absolute coordinates, 
V(sij), of the IP addresses of each server sij in server set i.  The 
server set IP addresses could either be provided by the partner 
or inferred using techniques similar to those described in [3].  

The workload input is a traffic log in which each entry 
represents a client request and includes a timestamp, client IP 
address and number of bytes sent in response to the request.  
The workload, Xk(t), is tracked for each client cluster in terms 
of number of requests and number of bytes in the response. 
The absolute coordinates of each client cluster, V(k), are also 
computed and stored.  The output of COP is an assignment of 
the percentage of requests from each client cluster that should 
be assigned to each server set. 

The COP algorithm casts the server set selection problem 
as a minimum cost network flow optimization problem.  Min-
cost flow formulations are a common tool for solving 

Figure 2: Client IP address clustering via spatial partitioning of the plane 
in which a number of stations (shown in gray) are designated and probed 
IP addresses (shown in black) are assigned to the nearest station.   



distribution, resource management and capacity planning 
problems [1], and have even been applied to server selection 
within a single server set [4].    We translate the components 
of our server set selection problem into a flow graph as 
follows.  

Referring to Figure 3, client clusters are connected to 
server sets in a bipartite graph.  An edge connects cluster k to 
server set i, if the distance between k and i (as defined in 
Section II.B) is less than the network delay threshold, D. The 
costs of all edges are 0, except those leading from server sets 
to the sink.  These bear the fee associated with the server set.  
The capacity of the server set to sink edges are set to the 
contracted capacity of the server set. The capacity of edges 
from source to client cluster, and client cluster to server sets is 
set to the workload generated by the corresponding client 
cluster.  COP implements the network simplex algorithm [1] 
to find the flow values, fki for each (k, i)-tuple, that meet the 
min-cost, max-flow objective.  

At administratively defined intervals, COP produces a 
map, which specifies the fraction of the workload fki/Xk(t) from 
k that is to be directed to i in interval t.  The map is stored in 
an expanded trie data structure designed for fast IP routing 
table lookups.  Our peering DNS protocol engine, pDNS, 
performs a lookup using the client IP address when a client 
request is received to determine the appropriate server set 
assignment.  

C. Alternative Strategies 
Although selection criteria for multi-provider content 

delivery have been proposed, none address the criteria we 
wish to evaluate (namely, minimizing service delivery costs 
while respecting service level objectives).  For example, the 
Content Serving Utility described in [11] allows an 
administrator to configure the primary provider’s authoritative 
DNS server to redirect clients to a partner CDN based on a 
few static policies, but does not take into account cost or 
workload.   

A second example, the CDN Brokering system [6], 
implements a DNS-based request-routing system and an 

accounting mechanism to bill for traffic when appropriate.  
The CDN Broker’s assignment strategy classifies each client 
according to the “region” of its IP address, where region is 
defined as a BGP cluster.  The CDN Broker also does not 
address the optimization criteria we consider, but instead uses 
a table in which each region has a list of CDNs serving that 
region.  Each CDN is assigned a weight for the regions in 
which it is listed.  However, the details of how these weights 
are derived, or whether they are ever updated, are not 
described. 

Since none of the published multi-provider request-routing 
systems address the cost and service level objectives we wish 
to target, we compare COP with two greedy peering strategies, 
which we refer to as DualGreedy and MinCost.   

The DualGreedy bases its assignment on clients belonging 
to /24 clusters; it does not use the client clustering described 
in Section IV.A.  When a request from client k is received, 
pDNS searches the list of server sets, and selects the lowest 
cost server set i that meets the delay threshold D, and for 
which the workload assigned so far in the current 
measurement period t, is less than the capacity, ri.  The 
DualGreedy algorithm is likely to perform well in terms of 
assigning a server set within the network delay threshold.  
However, it may not fair as well in minimizing overall costs, 
since it makes only local (greedy) decisions regarding cost. 

The MinCost strategy also does not use client clustering, 
nor does it use delay threshold.  When a request from client k 
is received, pDNS searches the list of server sets, and selects 
the lowest cost server set i for which the workload assigned i 
in the current measurement period t is less than ri.  Thus, the 
MinCost strategy will minimize peering charges (term 3 from 
Section III) but is more likely to incur penalties (term 5 from 
Section III) due to missed service level objectives. 

In Section VI, we compare the ability of all three strategies 
to minimize the overall service cost for content delivery in the 
multi-service provider scenario. 

V. EXPERIMENTAL METHODOLOGY 

A. Evaluation Platform 
Our software-based evaluation platform consists of three 

components: trafficGenerator, pDNS, and statLogger.  These 
components are depicted in Figure 4.  The trafficGenerator 
reads Web server logs, in which each entry contains a 
timestamp, client IP address, and a count of the bytes served 
as a result of the client’s request.  The trafficGenerator 
generates a DNS request for each entry and sends this request, 
with the timestamp included in the additional data field, to the 
pDNS daemon.  The pDNS daemon performs server set 
selection (using the configured peering strategy, COP, 
DualGreedy, or MinCost), and responds with an answer to 
direct the client to the assigned server set (i.e., using a 
CNAME record).  The trafficGenerator forwards the request 
data and response to the statLogger. 

The statLogger maintains a serverSet object for each 
server set.  The serverSet object maintains the state of each 
server set, including the current workload assigned, the server 

Figure 3: Formulation of server set selection problem as bipartite,
minimum cost flow graph.  Note that edges link a given client cluster k 
and server set, i only if the expected network delay between k and i, is 
less than the distance threshold.

Client Clusters Server Sets

Cost=0, 
Capacity=Xk(t)

if (distance(k, i)<D)

k iCost=0, Capacity= Xk(t)

Cost=pi, 
Capacity=ri

source sink



Name

W1
W2

Cache 
Locations

4
4

Captured

6/27/02 - 7/7/02
8/27/02 - 9/5/02

Event

Wimbledon [23]
US Open [22]

Table 1: Summary of Web cache data sets.  Official site information is 
provided in [22][23]. 

selection policy, and a list of server IP addresses.  The 
serverSet object is capable of responding to statLogger 
requests for mapping a client IP address, by returning the IP 
address of the server selected to service the client according to 
the provider’s inferred selection policy.  For each transaction 
received from the trafficGenerator, the statLogger uses the 
absolute coordinates of the client and assigned server to 
calculate the expected network delay.  If the expected delay 
exceeds the delay threshold D, a penalty is imposed. At the 
end of each measurement period, the statLogger requests 
utilization statistics from each serverSet, and calculates and 
logs the total usage and penalty fees for the measurement 
period.  Note that penalties due to server set overload are 
assessed according to the contracted capacity ri of a server set.  
That is, since provider i has agreed that ri capacity is available 
for use by the primary server set, the load imposed by other 
customers of provider i need not be considered in the penalty 
calculations for the primary provider. 

B. Data collection 
Our evaluation platform employs real-world data collected 

from three sources: commercially deployed server sets, Web 
logs from major sporting events sites, and network location 
data collected from globally distributed network probe 
stations.  In this section, we describe the how these datasets 
were collected. 

1) Web Traffic Logs 
We collected Web cache logs from the official Web sites 

of two major sporting events.  The sporting events are hosted 
on an infrastructure comprising Web servers and caches in 
multiple, distributed hosting centers.  Client requests are 
directed to one of the hosting locations according to expected 
network delay and available server resources.  The request 
logs collected from the June/July 2002 tournament, which we 
refer to as W1, represent an aggregate of the requests received 

by the Web caches located at the four sites indicated in Figure 
5.  The W2 data set is also the aggregate of requests received 
at the same four sites; however the W2 dataset represents a 
different event during August/September 2002.  

These data sets are representative of the large-scale 
distributed network services that motivate our work.  For 
example, the caching infrastructure for the W2 event serviced 
over 217 billion requests from clients accessing the servers 
from over 365 thousand /24 IP address prefixes.  Over three 
terabytes of content were served during this event.  Table 1 
provides a summary of these two data sets.  

2) Network Probe Data 
The D1 dataset was collected from 21 monitors managed 

by CAIDA and deployed in geographically and topologically 
diverse locations [7].  Figure 5 depicts the locations of the 21 
monitors.  Each monitor continuously probes IP addresses 
using one of four lists.  Three of these lists are designed to 
cover significant portions of the routable IP Version 4 (IPv4) 
address space.  The fourth comprises hosts taken from DNS 
root server logs.  The number of IP addresses in each list 
ranged from 125,000 to 825,000. 

 For each of the 21 probe sites, we collected a list of the IP 
addresses probed, and the minimum RTT observed for that IP 
address.  We considered only addresses for which at least ten 
RTT measurement samples had been collected, and grouped 
addresses according to their 24-bit network address prefix, as 
described in Section IV.A.   

There were about 130,000 /24 clusters for which we had 
ten RTT samples from all 21 monitors.  We noted that some 
of the probed addresses had very large delays (e.g., greater 
than 300 ms) from all monitors.  Minimum delays of greater 
than 300 ms across all monitors are likely to be associated 
with, for example, satellite connections or dial-up 
connections.  Since the distance function evaluation in [2] was 
unable to verify the accuracy of known inference techniques 
for such connections, we restricted the D1 dataset to only 
those /24 addresses that were within 300 ms of at least one 
probe station.       

In summary, to avoid skewing our analysis, we limited the 
D1 dataset to only those /24 addresses for which we had at 
least ten RTT measurements from each of the monitors, and 
for which at least one monitor had a minimum RTT of less 
than 300 ms.  Under these restrictions, we selected a set of 
monitors that would provide the largest pool of /24 addresses 
for which we had distance measurements.  We found that with 
a subset of 11 monitors, we had a usable pool of 71,000 /24 
addresses in D1. We assigned absolute coordinates to these 
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Figure 4: Peering DNS (pDNS) evaluation environment.  The pDNS 
daemon initializes policies according to the configuration.  The policies
we report on are COP, DualGreedy, and MinCost.  The trafficGenerator
reads Web server logs to generate DNS transactions and then sends those
transactions to the pDNS daemon using the same protocol as a DNS
client.  The trafficGenerator forwards the results to the statLogger, which
tracks and logs performance. 



/24 addresses according to the scheme described in Section II. 
A. 

3) Server Set Statistics 
Server set statistics were collected as follows.  A set of 23 

server sets was compiled by visiting the Web sites of five 
known CDN service providers to retrieve a customer listing, 
and augmenting this list with popular Web sites using a 
recognized rating site [12].  Selected server sets were assigned 
a policy, based on initial measurements from eight 
geographically distributed clients. The policy assignments 
were then verified by collecting measurement data from 38 
other, non-overlapping systems [20].  The details of this 
measurement study are provided in [3]. 

We wished to have our evaluation platform reflect the 
policies and server locations of commercially deployed server 
sets.  We used the IP address lists and policies collected in [3] 
to create the serverSet objects implemented in our evaluation 
platform.  The characteristics of the serverSet objects are 
summarized in Table 2.   

Each serverSet was also assigned a peering price, pi.  
Intuitively, a server set is likely to be priced according to 
variety of properties, such as the number of server locations, 

capacity, and network bandwidth.  We did not have access to 
the actual rates or capacities of these server sets, so we 
adopted a simple model to enable comparative analysis.  For 
the rate, we assigned pi =b + Ni % m, where b is a base price 
assigned all server sets, Ni is the number of servers in the set, 
and m is a per-server multiplier.  In addition to testing a range 
of values for b and m (including m=0), we also tested pricing 
based on total bytes served (as opposed to 95th percentile of 
maximum bandwidth served).   

We set the capacity of each server set relative to the 
number of servers in server set.  That is, we started by 
computing a multiplier, ω, which was equal to one half of the 
average load observed under W1.  We set ri = ω for server sets 
with Ni < 5 servers, ri = 2ω for server sets with 5 ≤ Ni < 24 
servers, ri = 3ω for server sets with 25 ≤ Ni < 50 servers, and 
ri = 20ω for server sets with Ni > 50 servers. The only 
exception was the home server set (i.e., the primary provider), 
which was assigned a capacity equal to average load observed 
under W1.  

The serverSet objects instantiated by the statLogger were 
also separately instantiated by the pDNS daemon.  The 
difference however, was that pDNS had access only to the 
expected delay for a given client, whereas statLogger 
evaluated results based on the distance between the client and 
the actual server assigned.  Additionally, COP (as part of 
pDNS) bases client assignments on expected workload for 
each client cluster, whereas statLogger evaluated results based 
on the actual workload directed to each serverSet. 

VI. EVALUATION RESULTS 
We compared the ability of our peer selection algorithm to 

minimize the cost of content delivery services in a multi-
provider environment.  We also performed an empirical 
analysis of the sensitivity of these results to a number of 
factors, including target distance threshold, pricing scheme, 
and client cluster sizes.  We evaluated the peer selection 
algorithms for both the W1 and W2 events. Finally, we 
considered operation in an environment requiring predictive 
peer selection to proactively respond to anticipated surges in 
demand.  In this section we present these results and provide 
insights into why different results were achieved. 

b) Skitter (D1) collection sitesa) 4 W1, W2 collection sites 

Figure 5: Collection sites for W1, W2, D1 data.  a) The W1 and W2 data sets were collected from the same four sites.  b) The D1 data was collected under 
the Skitter project [7] from 21 sites.  In some cases, multiple sites were too close to plot separately.  These sites are depicted as a single, larger marker. 
The size of the marker is indicative of the number of collection sites at the indicated location. 

Table 2: Characteristics of serverSets used in our system.  Each serverSet,
except SS0 and home, were modeled after a server set in [3] by adopting 
the server selection policy and server IP address list of the server set.  In
some cases, network probe data was not available for a server IP address.
For example, only 24 IP addresses were used for SS4, since location data
was not available for four of the 28 addresses discovered.  The “home”
server set uses the IP addresses of the origin servers in W1.  SS0 was 
created to represent a server set that is deployed at the same locations. 
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ID Policy   #IP             
Addrs

home MIN 4
SS0 MIN 4
SS1 MIN2 92
SS2 MIN2 98
SS3 MIN2 91
SS4 MIN 24
SS5 LBP 3
SS6 MIN2 41 
SS7 MIN 4 
SS8 WGT 4
SS9 LBP 2



A. Cluster Identification and Evaluation 
The COP algorithm makes decisions based on client 

clusters (as opposed to individual clients), so our first task was 
to isolate and evaluate IP address clusters from the CAIDA 
network probe data.  Minimizing the maximum intra-cell 
width for a given number of stations or minimizing the 
number of stations for a given maximum cell width are NP-
complete problems.  Thus, we used heuristics to choose an 
initial (or seed) set of stations, and apply iterative partition-
based clustering to refine this set of stations.  Iterative 
partition-based clustering refers to the process of selecting a 
set of seed stations, generating a partitioning by assigning 
each probed /24 address to its closest station, and then 
generating new station coordinates as the centroids of the 
current partitions.  The centroid is computed based on the 
network distance from each /24 to its assigned station.  This 
partitioning, assignment, and coordinate update sequence was 
repeated until there was no change in the coordinates over two 
cycles, or a maximum number (we used 2000) of iterations 
were completed.   

We chose two independent methods for selecting the 
initial seed stations and compared these to random seed 
selection.  The first method is based on geographic location, 
and the second on regions in which we had high observed 
traffic volumes.   

The geographic (geo) heuristic entailed mapping each /24 
cluster to a geographic location via IxMapper/GLS [14].  We 
then created a list of all the locations at which we found at 
least two /24 clusters that were within 5 ms of each other.  We 
chose 5 ms as the threshold because previous work had shown 
the typical maximum latency within a single metropolitan area 
is approximately 5 ms [19]. We calculated the centroid of the 
/24 clusters for each location that met this criteria.  If a cluster 
was within 5 ms of another cluster, we selected a single 
representative location by calculating the centroid of 
addresses in both locations.  We found 157 such locations to 
serve as seeds.  We repeated this test by searching for 
locations with two or more /24 clusters within 10 ms of each 
other.  We found 2615 such locations.  We refer to these sets 
as small#geo and large#geo, respectively.  

 For the traffic volume heuristic, we rounded the elements 
of the absolute coordinates vector to the nearest multiple of 
5 ms; we refer to these as the quantized coordinates.  The 
traffic generated by clients for each /24 group was assigned to 
the nearest quantized coordinates so the coordinates could be 
ranked by traffic volume. The top 157 and 2615 coordinates 
formed the seed stations for small#vol and large#vol, 
respectively.  Note that these numbers of clusters are chosen 
to match the numbers found above in the geo heuristics to 
allow comparison.  We also randomly selected a set of 157 
and 2615 coordinates to form the small#ran and large#ran 
seed sets.  We refined the coordinates of these six seed sets as 
described above using iterative partition-based clustering to 
produce the final set of station addresses.   The number of 
final stations, and thus clusters, resulting from each seed set is 
less than the number of seeds, since clusters are merged if  

their station coordinates are within 5 ms.  For example, the set 
of 2615 seeds initially in large#vol resulted in a partitioning 
with 880 clusters. 

In Figure 6, we plotted the distribution of traffic generated 
by /24 clusters, with respect to the distance from their 
assigned station. For example, using clusters formed from the 
large#ran seed set, over 70% of the client requests were 
generated from locations within 10 ms of their assigned 
station, and over 96% from within 20 ms.  Clusters resulting 
from the large#vol and large#geo seed sets had similar 
proximity results.  Expectedly, fewer clusters (as formed from 
small#geo, small#ran, small#vol), resulted in wider clusters.  
For example, approximately 87% of the client requests under 
small#geo and small#ran were generated from locations within 
20 ms of their assigned station.   

We will begin our peering strategy comparison using the 
coordinates identified from the large#vol seeds.  In later 
sections, we will consider the sensitivity of these results by 
comparing other clusterings.  

B. Peering Strategy Comparison 
Using the evaluation platform described in Section V.A, 

we compared the performance of COP and two greedy 
alternatives on the workload generated in W1.  We measured 
the cost achieved by setting the distance threshold to 50 ms, 
100 ms, 150 ms and 200 ms.  This comparison, in relative 
units, is illustrated in Figure 7.   

  The decrease in cost as the distance threshold increases is 
as expected.  COP is significantly more efficient than the 
greedy alternatives, with alternatives averaging a factor of 1.5 
times more costly than COP.  We also computed the relative 
costs when using pricing based on total bytes served.  The 
performance under the bytes-served schemes was consistent, 
with greedy schemes costing 1.3 to 2.1 times more than COP.   

Figure 6: Comparison of cumulative distribution of client requests (traffic 
volume) to network distance.  The x-axis is in log scale for improved 
readability. The plots are labeled according to the number of initial 
stations (small=157, large=2615) and the method used to select the initial 
stations (geo=geographic, vol=traffic volume, ran= random). The plots for 
large#vol and large#geo are overlapping in many areas. 
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We also evaluated the cost achieved by these three 
schemes on the W2 event.   Again, the cost achieved under the 
greedy algorithms averaged 1.5 times the cost achieved when 
using COP.  

Increased costs under the greedy schemes could be due to 
a number of reasons.  Penalties incurred by exceeding the 
capacity or network delay thresholds are the most likely 
reasons.  Both COP and DualGreedy use absolute coordinates 
data as a basis for expected network delay.  However, 
DualGreedy assigns low cost server sets on a first-come-first-
serve basis.  This strategy could result in “filling” the capacity 
of certain server sets with clients that could be served by many 
server sets, at the expense of clients that are within the delay 
threshold of only a small number of server sets.  This does not 
explain why, for example, MinCost achieved similar results to 
DualGreedy, even though it does not consider network delay 
thresholds and therefore is more likely to incur high penalties.  
To gain insights into these and other issues, we plotted the 
distribution of traffic over the course of the W1 event.   

In Figure 8, we show the breakdown of requests serviced 
on the primary provider’s infrastructure, versus those serviced 
on peer infrastructures, as well as on peer infrastructures in 
excess of the contracted capacity.  We also plotted a 
comparison of requests served within the targeted delay 
threshold, versus those exceeding the network delay threshold 
or overloading peers’ servers.     

A prominent feature of this set of plots is that COP, in 
contrast to DualGreedy and MinCost, did not assign load to 
peers in excess of their contracted capacity.  COP does assign 
load in excess of the primary, or home, infrastructure capacity 
during all four of the major surges.  This is an indication that 
the peers with available capacity were outside the network 
delay threshold.  These requests would have incurred penalties 
regardless of whether they were serviced from the primary, or 
a peer’s infrastructure, so they were serviced on the home 
infrastructure to avoid peer charges.   

The diagrams in Figure 8 also illustrate other subtleties.  
For example, consider that MinCost is competitive with 
DualGreedy for most distance thresholds (Figure 7). By 
comparing Figure 8c to 8e, we see MinCost had higher 
proportions of the load serviced under high delay conditions 
(resulting in higher penalties). This is not surprising since 
MinCost does not consider expected network delay when 
making assignments. However, because MinCost directed 
more load to the primary server set than to peers (compare 8b 
to 8d), these penalties were partially offset by lower costs due 
to peers. The captions in Figure 8 discuss additional 
comparisons. 

C. Effects of Client Clustering on Traffic Prediction 
In the preceding evaluations, we used a large number of 

client clusters.  Specifically, using traffic volume heuristics to 
select 2615 seed stations, we used iterative partitioning to 
isolate 880 clusters.  While using a large number of clusters 
can improve the estimation accuracy of client location, it also 
reduces the cluster client population, and may make traffic 
prediction more difficult.  

Table 3 helps to illustrate this trade-off.  We created a 
number of partitions, using different seed heuristics and a 
range of initial stations.  We then used standard linear 
prediction on the numbers of requests generated by each of the 
clusters and calculated the relative deviation between the 
actual and predicted number of requests for each interval in 
W1. The linear prediction used a sliding window of ten 60-
second intervals to predict the expected number of requests 
for the next 60-second interval.  We have tested other 
prediction schemes, such as exponentially weighted moving 
averages and best linear fit, but found that simple linear 
prediction, with three coefficients performs well in this 
environment. 

Table 3 shows that as the number of clusters (column 3) 
increases, the percentage of requests generated from locations 
within 10 ms of the assigned station increases, but the relative 
deviation for traffic predictions also increases.  We were 
interested in the effect this may have on our peering 
algorithm.  We selected three sets of clusters to test the 
sensitivity to cluster size: i) the set of 46 clusters (row 1 of 
Table 3), ii) the set of 310 clusters (row 5), and iii) the set of 
1756 clusters (row 10).  We chose these sets to cover a range 
of cluster sizes.   

We compared the costs achieved using these cluster sets 
and linear prediction to those achieved earlier for 880 clusters, 
which had simply used the number of requests generated by a 
client cluster in the previous interval to estimate the number of 
requests that would be received in the next interval.  Both the 
set with 310, and the set with 1756 provided an improvement 
over the baseline set with 880 clusters.  The set with 310 
clusters achieved a cost of 95% of that achieved by the set 
with 880 clusters.  Additionally, the set with 1756 clusters 
achieved a cost of 79% of the cost under 880 clusters.  The 
cost achieved by the set of 47 clusters was within 0.1% of the 
cost achieved using 880 clusters.  These results indicate the  
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Figure 7: Comparison of relative costs achieved by COP, DualGreedy,
and MinCost algorithms over a range of values used as the targeted
distance threshold (D). 
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Figure 8: Comparison of offload and delay characteristics for COP, DualGreedy and MinCost algorithms over the
course of the W1 event. The diagrams in (a), (c), (e) compare the requests serviced on the home infrastructure, versus
peers, and peers in excess of contracted peer capacity.  The diagrams in (b), (d), (f) compare the requests serviced within
low delay, versus requests that were serviced under high server or network delay conditions. 
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←(a) COP algorithm; comparison 
of requests serviced on home 
infrastructure, versus peers and 
peers in excess of contracted 
capacity.  Unlike DualGreedy (c) 
and MinCost (e), COP did not 
assign load to peers in excess of 
the contracted capacity. 

←(b) COP algorithm; comparison 
of requests serviced within the 
delay threshold versus those 
exceeding delay threshold or 
contracted capacity. Plot shows 
number of requests serviced with 
low delay is more than for 
DualGreedy (d) or MinCost (f) 
during same traffic surge periods. 

←(c) DualGreedy algorithm; 
comparison of requests serviced on 
home infrastructure, versus peers 
and peers in excess of contracted 
capacity. Load served on home 
infrastructure was slightly less than 
under MinCost (e), resulting in 
higher peer costs. 

←(d) DualGreedy algorithm; 
comparison of requests serviced 
within the delay threshold versus 
those exceeding delay threshold or 
contracted capacity.  Load serviced 
under low delay conditions was 
slightly higher than MinCost (f), 
resulting in higher penalties due to 
exceeded network delay threshold.

← (e) MinCost algorithm; 
comparison of requests serviced on 
home infrastructure, versus peers, 
and peers in excess of capacity. 
MinCost directed more of the load 
to the primary server set than either 
COP (a) or DualGreedy (c). The 
result was to lower fees paid to 
peers, but increased penalties due 
to exceeding contracted capacity 
and network delay thresholds.

←(f) MinCost algorithm; 
comparison of requests serviced 
within the delay threshold versus 
those exceeding delay threshold or 
contracted capacity. 
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cost is affected by the selected clustering, but that a range of 
cluster sizes work reasonably well in practice.  In future work, 
we intend to further explore the process for choosing the most 
appropriate number of clusters. 

Our peering system is designed so that this trade-off can 
be dynamically managed, according to the needs of a 
particular application.  For example, during non-peak periods 
(or in environments where server overload is unlikely), a 
clustering with very large numbers of small, more fine-grained 
clusters (e.g., /24 clusters) could be used by the DualGreedy 
algorithm to achieve higher client location accuracy.  Under 
surge conditions (or whenever server overload is more likely), 
a clustering (such as large#vol) with fewer numbers of 
clusters, and thus better traffic prediction, can be used by the 
COP algorithm to protect against both server overload and 
assignments exceeding the delay threshold.  The hybrid 
approach is used only if the system is configured to do so, and 
the switch between the COP and DualGreedy modes can be 
triggered according to traffic volume. 

D. Discussion 
Our analysis has demonstrated the value of intelligent peer 

selection over a broad range of operating scenarios.  We have 
focused on relative performance, using a cost-based 
formulation that takes into account expected network delay 
and server capacity thresholds.  Our COP approach does have 
some drawbacks, however, which we discuss below. 

COP relies on extensive network probing to build a 
database of absolute coordinates in order to infer network 
distances.  (The DualGreedy algorithm also uses this network 
distance database.)  We use the minimum measured delay to 
estimate the raw propagation delay, which is not expected to 
change frequently.  Hence, the probing can be done 
infrequently to refresh the delay database.  Alternatively, we 
could use a "lazy" approach in which we probe only active 
clients (i.e., those that initiate requests) to avoid probing 

portions of the IP address space that do not contain clients of 
interest.  This has the potential drawback of initially 
misdirecting clients for which no location information is yet 
available. 

COP also uses more complex computations in arriving at 
its solution than the other techniques we evaluated.  The 
network simplex flow algorithm that COP uses, however, was 
able to compute flow graphs for hundreds of client clusters in 
less than a second on a 900 MHz Intel processor. Moreover, 
these computations are done independently of the pDNS 
server "fast path" which must respond quickly to client DNS 
queries.  COP monitors the workload and computes client 
cluster-to-server set mappings asynchronously, and 
periodically generates updated maps, which the pDNS server 
consults using an efficient IP routing table lookup scheme.   

Some of the component techniques used in COP can also 
be further improved.  For example, the redirection models do 
not perform as well for some server sets that use dynamic 
selection policies that react frequently to changing network 
conditions or server load.  Also, though the client clustering 
technique used in COP seems to work reasonably well in 
practice, the process of choosing the correct number of 
stations is still not well-explored. 

Finally, scenarios in which multiple providers contend for 
the same cooperative resources may occur in practice.  In such 
scenarios, the resources available from partners might vary 
over time.  Although our evaluation used static capacities, 
COP minimizes the service delivery cost according to the 
available capacities, even if the available capacities vary over 
time.  However, it is possible that also employing a model to 
predict how capacities could be expected to vary over time 
(due to the interplay of multiple providers vying for resources) 
would enable further optimizations.  

There are also a number of advantages to the COP 
approach that go beyond the performance benefits described 
in the previous sections.  In particular, our peering solution is 
highly flexible.  For example, a primary provider typically 
hosts several applications, or Web sites, using the same 
shared, multi-provider infrastructure.  This scenario can be 
accommodated in COP by creating a source node in the flow 
graph for each application, and connecting the source to each 
of the cluster nodes.  COP also provides flexibility in 
partitioning server sets.  If a partner provider implements a 
tiered pricing structure, multiple server set nodes can be 
created in the flow graph, each with a cost and capacity to 
reflect the pricing tiers.     

Additionally, client affinity to server sets is useful to direct 
requests for certain types of objects to particular sever sets, 
especially in scenarios where requested objects (e.g., 
streaming media files) are large. This avoids the situation in 
which many of the partners must deliver bandwidth-intensive 
objects or services (possibly increasing the cost to the primary 
provider).  Also, client affinity can provide a more consistent 
response time by avoiding directing clients to multiple server 
sets that have varied performance characteristics. Client 

Table 3: Effects of seed policy and number of clusters isolated on cluster
properties.  Smaller numbers of clusters tend to be wider (i.e., have
smaller percentages of requests within 10 or 20 ms of assigned station),
but more accurately modeled by simple linear prediction techniques (i.e.,
the predicted request rates have lower average relative deviations).  

157 vol 46 47.5 71.5 0.019 

157 geo 131 46.5 87.2 0.235

157 ran 153 52.9 87.9 0.220

500 vol 145 54.1 90.0 0.257

1000 vol 310 58.8 91.8 0.268

500 ran 412 58.1 91.3 0.261

1000 ran 721 58.9 93.3 0.265

2615 vol 880 62.8 94.4 0.259

2615 geo  1687 61.8 94.4 0.250

2615 ran 1756 69.2 95.1 0.266

#Seeds     Seed    #Clusters   %Reqs   %Reqs      Avg
Policy     Isolated     <10ms   <20ms    Rel Dev



affinity can be accomplished by using the same flow values 
calculated for a previous flow graph in the current interval.  

VII. SUMMARY 
In this paper, we propose an effective peering system for 

content delivery workloads in a federated, multiple service 
provider infrastructure.  The core component in the system is 
a novel peering algorithm, COP, which directs client requests 
to partner providers such that cost is minimized and 
performance targets are respected.  We evaluate the algorithm 
against greedy strategies using real traffic data from large-
scale Web sites and request-routing data gathered from server 
sets deployed by commercial CDSPs.  We also use network 
location data collected from globally distributed probe 
stations.  Our evaluation shows that the proposed cost-
optimized peering algorithm is significantly more effective 
than greedy alternatives, which incurred costs of 1.3 to 2.1 
times more than COP over a variety of network delay 
thresholds, pricing schemes, and client cluster sizes. 

In addition to refining the server set models and client 
clustering techniques used in this study, we are also 
investigating interesting related questions [2].  For example, 
the question of how to provision primary resources relative to 
the capacity contracted from partner providers or the peering 
strategy of partners is virtually unexplored.  We are also 
exploring strategies for how to price a virtual network service, 
comprised of multiple providers, to potential customers.  
Finally, we are considering the application of our peering 
strategy and evaluation methodology in other application 
contexts, such as Grid and 3G wireless deployments. 
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