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Abstract—Efficient event delivery in a content-based 

publish/subscribe system has been a challenging problem. 
Existing group communication solutions, such as IP multicast or 
application-level multicast techniques, are not readily applicable 
due to the highly heterogeneous communication pattern in such 
systems. We first explore the design space of event routing 
strategies for content-based publish/subscribe systems. Two 
major existing approaches are studied: filter-based approach, 
which performs content-based filtering on intermediate routing 
servers to dynamically guide routing decisions, and multicast-
based approach, which delivers events through a few high-quality 
multicast groups that are pre-constructed to approximately 
match user interests. These approaches have different trade-offs 
in the routing quality achieved and the implementation cost and 
system load generated. We then present a new routing scheme 
called Kyra that carefully balance these trade-offs. Kyra 
combines the advantages of content-based filtering and event-
space partitioning in the existing approaches to achieve better 
overall routing efficiency. We use detailed simulations to evaluate 
Kyra and compare it with existing approaches. The results 
demonstrate the effectiveness of Kyra in achieving high network 
efficiency, reducing implementation cost and balancing system 
load across the publish-subscribe service network. 

Keywords—System design, simulations, publish-subscribe, 
event notification 

I. INTRODUCTION  
Publish-subscribe (pub-sub for short) is an important 

paradigm for asynchronous communication between entities in 
a distributed network. In the pub-sub paradigm, subscribers 
specify their interests in certain event conditions, and will be 
notified afterwards of any event fired by a publisher that 
matches their registered interests. Such timely notification of 
customized information is of great value for many distributed 
applications, such as enterprise activity monitoring and 
consumer event notification systems [5][7][12], mobile 
alerting systems [1][35], etc. 

Pub-sub systems can be characterized into three broad 
types based on the expressiveness of the subscriptions they 
support. In topic-based and subject-based schemes, events are 
classified and labeled by publisher as belonging to one of a 
predefined set of subjects. This type of pub-sub system is able 
to leverage existing group-based multicast techniques for 
event delivery, by assigning each subject to a multicast group. 

Content-based pub-sub is a more general and powerful 
paradigm, in which subscribers have the added flexibility of 
choosing filtering criteria along multiple dimensions, using 
thresholds and conditions on the contents of the message, 
rather than being restricted to (or even requiring) pre-defined 
subject fields. Content-based pub-sub applications present a 
unique challenge not only for efficient matching of events to 
subscriptions but also for efficient event delivery. In 
particular, content-based subscriptions can be highly diverse, 
and different events may satisfy the interests of widely varying 
groups of subscribers. As a result, mapping events into exact 
multicast groups may require the number of groups 
exponential in the number of subscribers (i.e. 2n where n is the 
number of subscribers) in the worst-case scenario. Thus, 
existing group-based multicast techniques cannot readily be 
applied to such systems. 

In this paper, we study the event delivery problem in the 
context of a content-based pub-sub service network. The 
general architecture of a pub-sub service network is shown in 
Figure 1: a set of pub-sub servers are distributed over the 
Internet; clients access the pub-sub service, either to publish 
events or to register subscriptions, through appropriate servers, 
such as the ones that are close to them or in the same 
administrative domains. Thus, pub-sub servers serve as 
publication proxies as well as subscription proxies on behalf o 
clients, and we can view the problem as one of getting 
published events to the pub-sub servers that subscribe – as 
proxies – to the events. Communication between pub-sub 
servers with their associated clients is a separate matter and is 
not discussed in this paper. We focus on the following 
questions: 

 
Figure 1. Example of a pub-sub service network with 

eight pub-sub servers. The subscriptions submitted to the 
servers are listed in the table on the right. Events are 

represented by integer values between 0 and 9. 
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• What should the interconnection topology of the pub-
sub servers look like? 

• How should events be correctly and efficiently routed 
through the network to the interested subscribers? 

We use the following metrics to evaluate the efficiency of 
an event routing scheme: the storage, management, and 
computation costs at the pub-sub servers, and the network 
resource utilization for event transmission.  

Existing event routing solutions can be largely categorized 
into two classes: the filter-based approach [12][7][22][29] and 
the multicast-based approach [22][16][25][34]. In the filter-
based approach, routing decisions are made via successive 
content-based filtering at all nodes from source to destination: 
every pub-sub server along the way matches the event with 
remote subscriptions from other servers, and then forwards it 
only toward directions that lead to matching subscriptions. 
This approach can achieve high network efficiency, but at the 
cost of expensive subscription information management and 
high processing load at pub-sub servers.  

In the multicast-based approach, a limited number of 
multicast groups are computed before event transmission 
begins. For each event, the routing decision is made only once 
at the publisher, mapping the event into the single appropriate 
group. The event is then multicast to that group, assuming IP 
multicast [13] or application-level multicast [9][10] support. 
Because only a limited number of multicast groups can be 
built, servers with different interests may be clustered into 
same group, and events may be sent to uninterested servers as 
well. The network efficiency of this approach is often highly 
sensitive to the data types and the distributions of events and 
subscriptions in the application. 

In this paper, we propose a new event routing scheme 
called Kyra. The goal of Kyra is to reduce the implementation 
cost of the filter-based approach while still maintaining 
comparable network efficiency. The main idea is to construct 
multiple smaller routing networks, so that filter-based routing 
is implemented in each one with lower cost. Server load is 
reduced because each Kyra server is guaranteed to only 
participate in a small number of routing networks. This is 
achieved through strategically “moving” subscriptions 
between servers to improve content locality. Therefore, the 
effectiveness of Kyra is independent of data characteristics of 
pub-sub applications. Detailed simulation results show that 
Kyra significantly reduces the storage, processing and network 
traffic loads on pub-sub servers, while achieving network 
efficiency close to that of the filter-based approach. Kyra also 
balances routing load across the pub-sub service network. 

The remainder of the paper is organized as follows. We 
study the two major existing approaches in Section II and 
present Kyra system design in Section III. We describe our 
performance evaluation methodology in Section IV, and 
present detailed simulation-based evaluation of Kyra and other 
routing schemes in Section V. Section VI discusses related 
work and Section VII concludes the paper. 

II. OVERVIEW OF EXISTING SOLUTIONS 
In this Section, we briefly review two major state-of-the-

art event routing approaches and discuss their trade-offs. The 
analysis explains our observations and leads to the design of 
Kyra. 

A. Filter-based event routing 
We use the implementation of Siena system [7] as a 

representative for the filter-based event routing approach. The 
architecture is as shown in Figure 2. Pub-sub servers are 
organized into an acyclic (tree) peer-to-peer topology1,2. First, 
all subscriptions are broadcast over the entire network along 
the tree topology3. Each server then records the subscriptions 
received from each direction in its routing table. When an 
event is received, it is matched against subscriptions in the 
routing table and forwarded toward only the directions with 
matching subscriptions.  

Since events are only routed in the directions to which they 
are relevant, filter-based event routing achieves network 
efficiency in an elegant way. However, the implementation 
and management cost can be high. First, the cost of flooding 
and replicating all subscriptions at all pub-sub servers grows 
super-linearly against total number of subscriptions in the 
system. Although summarization techniques such as merging 
and covering have been proposed to alleviate this problem, it 
is an open question as to how efficiently and effectively they 
can perform, especially with multi-dimensional data types. 
Even with the simple, one-dimensional example shown in 
Figure 2, the routing tables still contain a lot of information, 
much of which is duplicated over many servers. The second 
problem is that event routing can result in high processing and 
network traffic load at pub-sub servers that are not interested 

Figure 2. Example of filter-based event routing.  

                                                           
1 [8] proposed that Siena can work with a cyclic network topology by first 
extracting a routing tree rooted at the origin of the message. However, the 
actual routing scheme is the same as with acyclic graph and is not further 
discussed in their papers. Therefore, we only consider acyclic topology for 
Siena in this paper.  
2 Another acyclic topology, i.e. hierarchical topology, was shown to perform 
worse than the peer-to-peer topology and therefore is not considered in this 
paper. 
3 Siena also proposed an alternative strategy of using advertisements (by 
publishers) to contain the transmission of subscriptions. Since this is an 
additional and nonstandard burden on a pub-sub service, we postpone 
discussion of it until Section IV. 
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in the event themselves. For example, in Figure 2, when a 
client publishes event 9 at server A, the message is matched 
four times at server C, E, F, and G before reaching destination 
H. Finally, routing load on the pub-sub servers is imbalanced: 
generally, the closer a server is to the center of the tree, the 
more events it receives and forwards. A server at the edge of 
the network only receives events of its interest and never 
routes for others. 

B. Multicast-based event routing 
We use the approach in [25] as a representative for the 
multicast-based event routing approach. The process is 
illustrated in Figure 3. First, the event space is partitioned into 
a limited number of multicast groups. For each group, a 
multicast tree is built that spans all servers with subscription 
for any event in that group. When an event is published, it is 
mapped into a group and multicast on the corresponding tree 
to all group members. 

Three major differences are seen in comparing Figure 3 to 
Figure 2. First, there are three routing trees and each tree only 
spans a subset of servers. As a result, the routing path can be 
shorter: event 9 no longer traverses server G to reach server H. 
Second, the routing table is simpler. It maps events to 
multicast groups, and the routing table is the same for every 
server. Finally, without fine-grained filtering, events can be 
sent to servers that are neither interested in the event nor 
needed to route it to its interested destinations. In Figure 3, 
event 9 is forwarded to server B, resulting in extraneous 
network traffic.  

To reduce network wastage, the multicast-based approach 
uses intelligent clustering algorithms to partition multicast 
groups, with the goal of maximizing the commonality between 
member interests within each group. However, the 
effectiveness of clustering heavily depends on the locality 
property of events and subscriptions in the application. If the 
application data distribution does not lend itself to clustering 
opportunities, it is expected to be difficult to form only a few 
groups to match every server’s interest with high accuracy. 
For example, when events and user interests are uniformly 
distributed, each of the 2n possible multicast groups would be 
needed with roughly equal probability.  

C. Discussion 
The discussion above implies that filter-based event  

Figure 3. Example of multicast-based event routing. 
Forgy’s K-Means algorithm is used to cluster the events 

into three multicast groups. 

routing should achieve better network efficiency than the 
multicast-based approach. Its fine-grained filtering 
functionality naturally fits the highly diversified 
communication pattern in content-based pub-sub systems. 
However, the problems of subscription management, high 
processing load imbalance can be substantial impediments to 
the scalability of this scheme. 

We observe that partitions and topologies can be 
constructed to confine the information flooding and event 
routing to smaller scopes. The idea is to build multiple, 
smaller routing networks, and to guarantee that certain events 
are only routed through certain networks and a pub-sub server 
only joins a small subset of networks. In this way, events 
traverse fewer pub-sub servers, reducing processing and 
network load; also, pub-sub servers only need to maintain a 
subset of routing information, pertaining the events that may 
be routed on the networks in which it participates. 
Furthermore, dividing the routing load between multiple 
networks provides opportunities for better resilience and load 
balancing.  

To meet the requirement above, the content space (or 
“event space”) of the pub-sub system must be partitioned 
between the routing networks. The partitioning is critical to 
the effectiveness of the approach, because it determines the 
size and membership of the routing networks. A bad 
partitioning may result in all servers joining every network. 

One candidate partitioning method is the content space 
clustering used in the multicast-based routing scheme 
discussed above. However, in this paper, we hope to develop a 
general event routing scheme whose success does not depend 
so much on specific pub-sub application characteristics. 
Therefore, instead of simply exploiting the clustering 
opportunity offered by the subscriptions and event patterns as 
they happen to be associated with servers, we explore the 
opportunity of actively creating content locality for the routing 
networks, by moving subscriptions and events around in 
constrained ways. 

In the next section, we present the design of Kyra system 
developed based on these ideas. 

III. KYRA DESIGN 
The architecture of Kyra system consists of multiple event 

routing networks, with the following properties: 
• Filtering-based event routing within each routing network 

generates low processing and network traffic load. 
• Each pub-sub server manages only a small amount of 

routing information for the networks in which it 
participates. 

• The event routing load is more evenly balanced across all 
pub-sub servers. 

Kyra is designed with a two-level interconnection 
topology, as shown in Figure 4. At the bottom level, Kyra 
servers are organized into server cliques based on their 
network proximity. Servers in the same clique know about 
each other and communicate through unicast. At the second 
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Figure 4. Example of Kyra network, with three server 

cliques and three routing trees. 
level, multiple routing trees are built, each for routing a subset 
of events. 

Corresponding to the two-level topology, the content space 
in the pub-sub system is partitioned at two levels: locally, it is 
partitioned between servers in the same clique. Each server is 
assigned a non-overlapping zone in the space, and becomes 
the proxy server for all subscriptions in the same clique that 
overlap with this zone, which are in turn called this server’s 
proxy subscriptions.  The original servers that receive 
subscriptions from end clients will forward the subscriptions 
to the appropriate proxy servers. We call this process 
subscription movement. Globally, the content space is 
partitioned between the routing trees. Each routing tree is 
assigned a non-overlapping content zone and used to route all 
events falling into its zone. The global partition is the same 
across all Kyra servers, while the local partitions are only 
visible inside each clique. Kyra servers join all the routing 
trees whose zone overlap with that of their own, and route on 
behalf of their proxy subscriptions. Each routing tree then 
becomes an independent filter-based routing network as 
described in Section 2. When an event is published, it is first 
forwarded to the server in the same clique whose content zone 
covers it, and then routed on the tree with covering zone.  

In Figure 4, the pub-sub servers are organized into three 
server cliques, and three routing trees are built. The content 
zone of the servers and the routing trees are listed in the tables 
on the left. Each server maintains a routing table for each 
routing tree it joins, as shown on the right. When event 9 is 
published, it is first forwarded to server C, and then routed on 
tree t2 to arrive at server H. 

Three observations can be made from Figure 4. First, the 
routing tables are more concise than those in Figure 2, as each 
server only needs to know about a subset of subscriptions in 

the system. Second, routing trees in Figure 4 span fewer 
servers than those in Figure 3, due to the increased content 
locality on each server obtained from subscription movement. 
Finally, the routing path of event 9 traverses fewer immediate 
servers than in Figure 2 and Figure 3, resulting in less network 
traffic and processing load. 

In the rest of this section, we present the design of Kyra in 
more detail.  

A. Interconnection topology 
In this paper, we use network latency to measure the distance 
between servers. We use the Hierarchical Agglomerate 
Clustering (HAC) algorithm [21] to cluster “close” servers 
into server cliques. The distance between two cliques is 
defined as the furthest distance between any pair of servers in 
the two cliques. The algorithm is presented in Figure 5. Two 
parameters are specified: the maximum distance between 
servers in the same clique, and the maximum number of 
servers in one clique. The output of the algorithm is a set of 
server cliques that satisfy both conditions.  

For small-scale server cliques, the intra-clique topology is 
indeed a “clique”: each server knows the address and content 
zone of all other servers in the clique; if a clique has too many 
servers, the Distributed Hash Table (DHT) techniques 
[24][27][31] can be used as an elegant solution for scalable 
subscription and event routing inside clique. Specifically, 
when there are k servers in the clique, a server only needs to 
know about O(logk) other  servers and a message can be 
routed between any two servers in the clique within O(logk) 
steps. The content space partition in the clique can be directly 
used for dividing the index value space in DHT. For 
simplicity, we only experiment with the full-mesh topology 
within cliques in this paper.  

In Kyra, routing trees are built as minimum spanning trees 
(MST) across all servers whose content zones overlap with 
that of the tree. The number of routing trees built, T, is related 
to server clique size as shown in Figure 6: if a clique has more 
than T servers, multiple servers have to join the same tree. As 
a result, subscription information for this tree is replicated on 
all these servers, reducing the effectiveness of local content 
space partitioning. On the other hand, increasing T to larger  

Figure 5. Server clique clustering algorithm. 

A 

D 

B 

C G 

F 

H 

E 

Tree  Tree zone Servers 
t0 0-3 A D F 
t1 4-6 B D E G 
t2 7-9 C E H 

Server Server 
zone 

Proxy 
subscriptions 

A 0-3 {1,2} 
B 4-6 - 
C 7-9 {7,8} 
D 0-4 {0,3} 
E 5-9 {5,6} 
F 0-3 {2} 
G 4-6 {4-6} 
H 7-9 {7,9} 
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E {5,6} B t1 G {4-6} 
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  H {7,9} 

A {1,2} t0 F {2} D 
 t1 E {4-6} 
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Cluster_servercliques(maxDistance, maxNumServers) { 
foreach i in [1, …, n]      // n is the number of servers 
     clique ci ← server si; 

     proximitymatrixi,j = distance(si, sj); 
     while (number_of_cliques > 1) {  

     foreach (ci, cj) with increasing proximitymatrixi,j { 
          if (proximitymatrixi,j > maxDistance)  
               return cliques; 
          if (size(ci) + size(cj) ≤ maxNumServers) { 

                    merge(ci, cj); 
               update_proximitymatrix; 
               break;      
          }}} 
 return cliques; 

} 
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than the clique size cannot improve the effect of global space 
partitioning, because multiple trees will span the same set of 
servers. Therefore, in practice, we expect T~max{ki} to be a 
reasonable configuration, where ki is the number of servers in 
clique i.  

B. Content space partition 
The partitioning methodology in Kyra is simple: to 

partition the content space into non-overlapping continuous 
zones with balanced load.  

We choose to partition the space into continuous zones for 
several reasons: first, such zones can be concisely described 
by their boundaries. This leads to low storage and 
communication cost to store the partition results and 
synchronize between servers. It is also easy to determine the 
membership of an event. Second, many pub-sub systems 
support subscriptions in the format of range queries, such as 
“price<5” or “5,000<volume<10,000”. Compared to discrete 
partitions (such as by clustering individual event values), 
continuous partitions reduce the number of partitions with 
which such range subscriptions overlap. This is desirable 
because a subscription has to be replicated on all the servers 
and routing trees whose zones overlap with it. For the same 
reason, when the number of routing trees is different from the 
number of servers in the cliques, continuous partitions reduce 
the number of trees a server needs to join. Finally, continuous 
partitions make building more structured and scalable 
topology, such as DHT systems, possible. 

 

Figure 6. Relationship between number of routing trees 
and number of servers in a clique. 

 
 
 
 
 
 
 
 
 
 
Figure 7. Percentage of servers an event traverses in a 

tree topology. 

We define the popularity of an event to be the percentage 
of subscriptions interested in it, the volume of an event to be 
the frequency with which it is published, and the weight of an 
event to be the normalized resource consumption for 
processing the event. The load of a content zone is then 
computed as 

∑
∈

⋅⋅=
zonee

eeezone weightvolumepopularityworkload )( α  
 
The reason for using popularitye

α rather than popularitye 
is the observation that when routed in a tree topology, an event 
is routed through more servers than the ones that are interested 
in it, and the routing load on all the servers traversed should be 
counted. In Figure 7, the horizontal axis shows the popularity 
of an event, and the solid curve plots the percentage of servers 
on the tree that the event is actually routed through. The curve 
is regressed to the power function presented, with R-square 
value of 0.9988. For reference, the dotted line shows the 
percentage of servers from the tree that actually interested in 
the event, which is in fact a 45-degree line. Figure 7 is based 
on experimental results with minimum spanning trees of 
randomly distributed servers, and the regression function is 
used to derive the α value of 0.6101 in our experiments.  

The problem of partitioning a multi-dimensional space into 
continuous zones with balanced load has been well studied in 
many areas, such as parallel and distributed computing and 
database management [19][20][32]. Partitioning can be 
challenging since the nature of the event and subscription 
distributions can change with time, and the necessary 
information may have to be gathered and recomputed 
periodically. However, reasonably good partitioning results 
may be achieved based on coarse-grained load estimation and 
experience. In addition, we expect that in many pub-sub 
applications, partitioning along only a subset of dimensions, 
such as one or two of event attributes, will be sufficient to 
achieve the goals. Thus, we expect the partitioning process to 
scale well with both routing load and dimension of the content 
space. A specific partitioning algorithm dependents on 
application data types and properties, and is beyond the scope 
of this paper. Instead, we assume that such an algorithm is 
available and focus on the effectiveness of the overall routing 
scheme. 

C. Subscription and publication   
In Kyra, a subscription is submitted to a server close to the 

subscriber. Then, it is forwarded from the original server to 
one or more proxy servers, based on the content zones with 
which it overlaps. The subscription management process is 
shown in Figure 8. 

Note that on the routing trees, events are routed for proxy 
subscriptions at each server, rather than its original 
subscriptions. Because the proxy subscriptions are wholly 
contained within the server’s content zone, the content locality 
of proxy subscriptions on the server is expected to be higher 
than that of the original subscriptions. 

Filter-based event routing is performed on each routing 
tree. At the same time, a received event is matched with the 
server’s proxy subscriptions. Upon successful matches, the 
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Figure 8. Subscription management in Kyra. 

Figure 9. Event routing in Kyra. 
event is sent to the original servers of the matching 
subscriptions. The original server will notify the subscriber 
about the event, so that the process of subscription movement 
is transparent to end-users. The event routing process is shown 
in Figure 9. 

In this paper, we assume centralized topology construction 
and content space partitioning algorithms. This provides 
simplicity and reduced communication overhead. We leave 
distributed algorithms as a topic for future work. 

IV. EXPERIMENTAL METHODOLOGY 
We now evaluate the performance of Kyra and other 

routing schemes with detailed simulations.  

A. Event routing schemes  
To understand how Kyra compares with existing 

approaches, we have also simulated a basic filter-based 
routing scheme (FBR) and a basic multicast-based routing 
scheme (MBR). 

FBR is based on the Siena implementation described in 
[7], with the peer-to-peer minimum spanning tree topology. 
Some optimization techniques, such as use of advertisements 
(which are an additional burden on the system) and 
subscription summarization (whose success is application-
dependent), are not included in FBR. These optimizations are 

applicable to Kyra as well, since it uses filter-based routing 
within each routing tree. In fact, we expect them to be more 
effective in Kyra, because of their lower implementation cost 
and the increased subscription locality in Kyra. By not 
including these optimizations, we can better compare the basic 
approaches.  

MBR is based on the multicast-based routing scheme 
described in [25]. The Forgy’s K-Means algorithm [21] is 
used for data clustering, as it was found to perform best 
among the clustering algorithms in [25]. An optimization 
technique is proposed in a companion paper [26] to 
dynamically switch to unicast if the event popularity is below 
a threshold. We do not include this optimization in MBR, so 
that we can clearly identify the effectiveness of the multicast-
based approach. 

We believe that FBR and MBR as we implement them 
represent the major properties of the two routing approaches, 
and the comparison provides us an opportunity to understand 
the trade-off of various routing schemes. To our knowledge, 
there has not been comprehensive comparison and evaluation 
of different event routing schemes for content-based pub-sub 
network. 

Performance of three other basic routing schemes, unicast, 
broadcast and ideal multicast, are also presented as reference 
baselines. In ideal multicast, each event is sent to matching 
servers through IP multicast, assuming multicast trees exist for 
all possible matching subscription server sets. 

B. Data model 
A major challenge in pub-sub system evaluation is the lack 

of real-world workloads. For comprehensiveness, we 
experimented with four different distributions for events and 
subscriptions. These distributions are either prevalent in other 
information delivery applications [4] and/or have been used in 
the pub-sub literature [25][34][33]:  
• Uniform distribution, in which both popularity and 

volume of events are uniformly randomly distributed. 
• Zipf-uniform distribution, in which event popularity 

follows Zipf distribution [4], i.e. the number of 
subscriptions matching the ith most popular event is 
proportional to i-α, (with α here set to 1). The volume of 
events is uniformly randomly distributed. 

• Multimodal distribution [25], in which both popularity 
and volume of events follow the same multivariate 
Gaussian distribution. In this case, more popular events 
are also published more often. In our experiments, five 
distribution peaks are randomly chosen in the content 
space, and the standard deviations are set to 1/4 of the 
average distance between peaks.  

• Regional distribution [34], in which the probability that a 
subscription from server si matches an event from server 
sj is set to: 

 
 γ),(

),(
ji

jimatch ssdistance
cssp =

receive_original_subscription(sub, client) { 
     store_original_subscription(sub, client); 
     Z = all_overlap_zones(local_partition, sub); 
     foreach z in Z { 
          server s = server_for_zone(z); 
          subscription newsub = intersection(z, sub); 

          send newsub to s; 
     }} 

 
receive_proxy_subscription(sub, from_server) { 

store_proxy_subscription(sub, from_server); 
Z = all_overlap_zones(global_partition, sub); 
foreach z in Z { 
     tree t = tree_for_zone(z); 
     subscription newsub = intersection(z, sub); 

          advertise_subscription(t, newsub); 
}} 

route_event(event, from_server) { 
     t = tree_for_event(e); 

foreach neighbor n on tree t { 
     if ((n != from_server) &&  
          match(subscriptions_from(t, n), event)) 
          send event to n; 
} 
foreach server s in local_clique { 
     if ((s != from_server) && 
          match(subscriptions_from(s), event)) { 
          mark event as final notification; 
          send event to s; 

           }}} 
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where c is a normalizing factor. This distribution 
simulates the scenario that users are more interested in 
events close to them, such as local activities. In our 
experiments, γ is set to 1. 

In all distributions, event weights are uniformly randomly 
assigned.  

We define average user interest rate to be the probability 
that subscriptions on a server match a randomly chosen event. 
Three level of user interest rates, 1%, 10% and 50% are 
chosen to represent applications with user interests of high, 
medium and low selectivity. 

Since our focus is not on partitioning algorithms 
themselves, we simplify partitioning by experimenting with a 
one-dimensional content space of integer values. We believe 
that the evaluations presented in this paper are not sensitive to 
the dimensionality of content space, and the results are of 
general importance. 

C. Performance measures 
We evaluate the performance of event routing schemes 

along the following dimensions: 
• Storage and management cost, measured by the amount of 

routing information each pub-sub server maintains.  
• Processing load. In FBR and Kyra, this is measured by the 

total number intermediate servers that perform content-
based matching to route one event.  

• Network performance, which includes: 
o Node stress: for every fixed number (1000 in our 

experiments) of randomly chosen events handled by 
the system, the number of messages that are 
received and sent by the average pub-sub server. 

o Link stress: for every fixed number (1000 in our 
experiments) of randomly chosen events handled by 
the system, the number of messages that are carried 
by the average underlying network link.   

o Normalized resource usage (NRU). As in [10], we 
define network resource usage as the summation of 
underlying network link costs consumed in routing 
an event. Link latency is used as the cost measure. 
Since the ideal multicast scheme achieves the lower 
bound of network resource usage, normalized 
resource usage is defined as the ratio of network 
resource usage of an event routing scheme relative 
to this lower bound.  

For MBR, only its network performance is studied. Its 
storage and processing cost depends on pub-sub data type  and 
is not evaluated in this paper. 

V. SIMULATION RESULTS 
We developed a message-level, event-based simulator for 

evaluation. Our network topology is generated by GT-ITM [6] 
random graph generator using the transit-stub model. There 
are 20 transit domains with an average of 5 routers in each. 
Each transit router has an average of 3 stub domains attached, 
and each stub domain has an average of 8 routers. The link 

latencies are randomly chosen between 50-100ms for intra-
transit domain links, 10-40ms for transit-stub links, and 1-5ms 
for intra-stub domain links. Altogether there are 2500 routers 
and 8938 links. 500 pub-sub servers are randomly attached to 
the routers by LAN links with 1ms latency. Events and 
subscriptions from the distributions described above are 
randomly assigned to the servers. IP multicast routing is 
simulated using a shortest path tree formed by the merger of 
the unicast routes from the source to each destination. 

A. Kyra performance analysis 
In this section, we analyze the performance of Kyra with 

varying configurations of server clique size and number of 
routing trees built. Since FBR can be seen as a special case of 
Kyra, with single-server cliques and one routing tree, our 
presentation discusses the results for Kyra relative to this case, 
allowing us to very naturally compare Kyra with FBR. Results 
for MBR and other routing schemes will be discussed in 
Section V. B. Due to space constraint, we present detailed 
results for only the Zipf-uniform data distribution here, 
leaving others to Section V. B.   

1) Storage and management cost 
Figure 10 shows the amount of routing information that a 

Kyra server maintains. The horizontal axis shows the clique 
size configuration, in terms of maximum intra-clique distance. 
The corresponding average and maximum numbers of servers 
in each clique are given in Table I. The vertical axis shows, 
using a log scale, the fraction of the total subscription 
information that the average server maintains. The four curves 
represent the cases of 1, 10, 20 and 50 routing trees. Figure 10 
clearly demonstrates the effectiveness of Kyra in reducing the 
information load on each server. For example, with cliques of 
200ms intra-clique distance and 20 routing trees, a Kyra server 
only knows about 1/10 of total subscriptions. Another 
observation is that both the server clique size and the number 
of routing trees have to be greater than 1 to effectively reduce 
the per-server information size. This confirms the importance 
of two-level content space partitioning and subscription 
movement: Without local content space partitioning and 
subscription movement, every server has to join all the routing 
trees; with only one routing tree, each server has to know 
about all subscriptions to correctly route for other nodes on the 
tree. Finally, Figure 10 shows that the server clique size and 
number of routing trees interleave in a fashion that validates  

Figure 10. Amount of subscription information at each 
Kyra server. 
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TABLE I. KYRA SERVER CLIQUE SIZE. 

Max intra-clique 
latency 0 100 200 300 400 500 

Avg #servers/clique 1 6 13 32 125 500 
Max #servers/clique 1 21 29 64 266 500 

 
the setting of T ~ max{ki} in Section 3. For example, when 
there are at most 21 servers per clique (max intra-clique 
latency is 100ms), the use of 50 trees results in almost no 
improvement over the case of 20 trees.  

2)Processing load 
In filter-based event routing, an event is repeatedly 

matched with remote subscriptions at intermediate pub-sub 
servers. Figure 11 plots the number of servers on which 
matching is performed in routing one event in Kyra. The three 
charts present the results with different user interest rates. All 
the curves converge at the two ends: the left end represents the 
case of FBR; the right end represents the extreme case of all 
servers organized into one clique. In this case, each event is 
matched once at the publishing server and sent directly to all 
matching servers.  

Figure 11 shows that increasing clique size and increasing 
number of trees both effectively reduce the processing load in 
event routing. Differently from Figure 10, the top curves show 
that even with only one routing tree, increasing clique size 
leads to smaller matching load. This is because an event is 
matched only once in each clique. The saving is even more 
significant with high user interest rates in the figure. Higher 
user interest has the same effect of large clique size in this 
regard, because more users in the clique are interested and 
there is a larger space for improvement. 

3)Network performance 
a)Node stress  

Figure 12 presents the average node stress of a Kyra 
server. The trend in each curve is similar to that in Figure 11: 
with larger server cliques and more routing trees, fewer 
intermediate servers are traversed on a routing path and the 
average node stress is reduced. However, the improvement 
diminishes with increasing user interest rates. The reason can 
be seen from : in the FBR approach, the fraction of 
uninterested servers an event traverses decreases as more users 
are interested in the event.  

b)Link stress  
From Figure 13, we can see that different configurations of 

Kyra can affect network link stress in three ways: first, with 
larger clique size, an event traverses fewer network links on 
the routing trees. This effect dominates when user interest 
level is as low as 1% and with large clique size. Second, the 
intra-clique unicast can result in high stress on links close to 
the unicast source. This effect is stronger with higher user 
interests, because more servers in the clique must be notified. 
Finally, multiple routing trees improve average link stress by 
distributing the network traffic over more network links. 
However, the magnitude of improvement is not as significant 
as we expected. We found that this is because of the low path 
diversity in the GT-ITM topology graph we used. For 

example, each stub domain is connected to a transit server 
through a single link. Building more routing trees cannot 
relieve the high stress on these links. We found that by setting 
10% domains as multi-homed can reduce average link stress 
of Kyra by 10%. To gain a more comprehensive 
understanding of routing load on underlying network links, we 
plan to deploy experiments on larger network scale and take 
link bandwidth capacity into consideration. 

c)Normalized Resource Usage 
Figure 14 presents the NRU of Kyra. Larger server cliques 

almost always result in higher resource usage, mainly due to 
the network inefficiency of the intra-clique unicast. The 
inefficiency is severe with high user interest rates, in which 
case unicast communication comprises a high fraction of the 
total network traffic. The number of routing trees does not 
have much effect on NRU.  

4)Kyra performance summary 
We have evaluated Kyra using various metrics and the results 
are summarized in Table II. Briefly, with large server cliques 
and multiple routing trees, Kyra effectively reduces the 
storage, processing and network traffic load on each pub-sub 
server, compared to FBR. The intra-clique unicast 
communication results in increased network link stress and 
network resource usage. The inefficiency is more significant 
with larger server cliques and higher user interests, and 
independent of the number of routing trees. In general, this 
trade-off must be balanced by choosing configurations based 
on the characteristics of the pub-sub application. 

Table III illustrates a set of concrete configurations that we 
use for Kyra in further experiments, chosen such that the NRU 
of Kyra is always smaller than 1.3 times that of FBR.  

B. Comparison of Routing Approaches 
In this section, we compare the network performance of 

various event routing schemes using four different pub-sub 
data distributions. We use 50 trees for MBR.   

TABLE II. KYRA PERFORMANCE SUMMARY  
 Storage 

and proc. 
load 

Average 
node 
stress 

Average  
link stress 

 
NRU 

Increasing 
clique 
size 

↓ ↓ ↑ (w/ low 
interests) ↓ (w/ 
high interests) 

↑ 

Increasing 
#trees 

↓ ↓ ↓ − 

TABLE III. KYRA CONFIGURATION AND PERFORMANCE 
COMPARISON WITH FBR. 

Average interest level 1% 10% 50% 
Clique size 500 100 50 Kyra 

config. #routing trees 50 20 10
Strorage 2% 20% 30% 

Processing load 6% 46% 35% 
Avg. node stress 30% 78% 92% 
Avg. link stress 62% 98% 116% 

 
 

Kyra/ 
FBR 

NRU 126% 116% 111%
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Figure 11. Routing processing load in Kyra 

Figure 12. Average node stress in Kyra. 

Figure 13. Average link stress in Kyra. 

Figure 14. Normalized Resource Usage (NRU) in Kyra. 
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C. Comparison of Routing Approaches 
Figure 15 compares the NRU of the FBR, Kyra, MBR, 

unicast and broadcast schemes. By definition, ideal multicast 
achieves NRU of 1. Overall, the results show that FBR and 
Kyra perform quite well under all circumstances. When user 
interests are highly selective, performance of Kyra is close to 
that of unicast and even better than FBR in some cases. In 
comparison, MBR is penalized for sending events to 
uninterested users. It performs worst with the Zipf-uniform 
distribution: the network waste mainly comes from 
multicasting the many “cold events” with few interested 
subscribers to the whole multicast group. The best distribution 
for MBR is the multimodal one, in which cold events are also 
published less often. In particular, when average user interest 
rate is 10% with the multimodal distribution, MBR achieves 
NRU 70% better than unicast, which confirms the results 
found in [25] under the same data distribution. With the 
regional distribution, MBR is penalized for sending events to 
uninterested users that are far away. When the average user 
interest rate is high enough, all the three routing schemes 
perform close to broadcast.  

Table IV presents node stress and link stress of the three 
routing schemes. Due to space constraints, only the results for 
the zipf-uniform distribution and multi-modal distribution are 
presented. Under all circumstances, Kyra achieves the smallest 
average and maximum server node stress, and the savings are 
significant: for subscriptions with 1% selectivity, an average 
Kyra server experiences 1/4 network traffic load compared to 
an FBR server and only 1/25 of that of an MBR server. Even 
for the case of 50% interests, when the average node stress 
results are close, Kyra is more effective in distributing the 

network traffic across all servers and reducing the maximum 
node stress. In fact, Kyra always achieves the smallest average 
link stress except for the case of 50% interests, when FBR 
outperforms Kyra slightly. In this case here too, Kyra 
effectively minimizes the maximum link stress compared to 
FBR. 

D. Load balance 
Load balance is an important factor in pub-sub networks, 

as any overloaded server or network link may degrade the total 
system performance and limit system scalability. Table III 
shows that there is still a large gap between the average and 
maximum node stress and link stress in Kyra, which we should 
address. In this paper, we mainly focus on balancing node 
stress on pub-sub servers. Because link stress is affected by 
network resource dimensioning and provisioning strategies, it 
is left as future work. 

To build a more load-balanced Kyra, we developed a 
modified version of Kruskal’s MST algorithm [11] for 
building routing trees: at each step of adding an overlay 
connection into the routing tree, we first find the M shortest 
connections that do not add loops into the tree; these 
connections are then ranked by the maximum degree of their 
two end nodes. The connection with the lowest maximum 
degree is added into the tree. We call M the balance factor. 

When M=1, the algorithm is Kruskal’s algorithm; when M 
equals to the total number of valid connections, the algorithm 
aims at pure load balancing. Figure 16 shows the cumulative 
distribution of node stress in FBR, MBR, basic Kyra and 
balanced Kyra with balance factor of 100. The horizontal axis 
represents a given value of node stress, and the vertical axis 

Figure 15. NRU comparison  

TABLE IV. BANDWIDTH AND LINK STRESS COMPARISON, WITH ZIPF-UNIFORM DISTRIBUTION. 

Average user interest rate 1% 10% 50% 
Event routing scheme FBR MBR Kyra FBR MBR Kyra FBR MBR Kyra 

Avg. node stress 77 559 23 416 1791 326 1298 1781 1199 
Max node stress 1828 2154 557 4949 9248 1626 8390 9208 3820 
Avg. link stress 32 286 20 173 759 171 491 755 548 

Zipf-uniform 
distribution 

Max link stress 654 2510 560 2475 7338 1743 5211 5872 4606 
Avg. node stress 132 693 31 873 1736 565 1742 1939 1574 
Max node stress 2758 2793 72 7318 10046 2136 10406 10723 4253 
Avg. link stress 61 359 27 370 777 297 668 938 746 

 
Multi-modal 
distribution 

Max link stress 1512 4716 189 4967 7648 2412 7695 7933 5070 

NRU comparison
with uniform distribution

0

4

8

12

16

20

1% 10% 50%

NRU comparison 
w ith zipf_uniform distribution

0

6

12

18

24

1% 10% 50%

NRU comparison 
w ith multimodal distribution

0

4

8

12

16

1% 10% 50%

NRU comparison
with regional distribution

0

6

12

18

24

1% 10% 50%

FBR

Kyra

MBR

unicast

broadcast

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



Figure 16. Cumulative distribution of node stress. 
 
represents the percentage of servers with stress less than this 
value. It is evident from the graph that FBR and the two 
versions of Kyra perform much better than MBR: the 80-th 
percentile is about 500 for these schemes and 2500 for MBR. 
FBR has a heavy tail that ends at 4939, while the maximum 
stress is 1626 in Kyra and only 728 in balanced Kyra.  

VI. RELATED WORK 
Much research exists on the distributed pub-sub systems. 

The architecture designs include Siena [7][8], Gryphon 
[2][22], JEDI [12], Rebeca [15], Elvin [28], Ready [17], and 
Herald [5]. Most of these systems adopt the filter-based 
routing approach. In JEDI, a hierarchical interconnection 
topology is proposed in which a server is only informed of 
subscriptions from servers in its sub-tree. Events are always 
forwarded up the hierarchy regardless of the interests in other 
parts of the network. [7] shows that the performance of such 
hierarchical scheme is inferior to the peer-to-peer topology we 
discussed in this paper. In Gryphon, a link-matching algorithm 
is designed to partially match an event at each step in filter-
based routing, in order to determine the directions in which to 
send the event. The Elvin system proposes a technique called 
“quenching”, in which publishers are aware of all 
subscriptions so that they only publish the events that have at 
least some matching subscribers. [29] has a different problem 
statement. It assumes that only a small number of content 
filters are available, and studies the problem of strategically 
placing the filters on a multicast tree topology, to minimize 
total network traffic or event delivery delay. 

The problem of delivering an event message to a group of 
interested users through a service network is similar to the 
traditional multicast problem (except that in traditional 
multicast the addresses of the destination nodes are known 
while in pub-sub systems they have to be determined via 
content-based matching). IP multicast has been proposed since 
[13] but has not been fully deployed due to its inherent 
scalability problems. Recently, much effort has been put to 
move the multicast functionality to the application layer, at end 
hosts [10][9]. Application-layer multicast is expected to scale 
better than IP multicast, mainly because an end host only 
needs to perform complex processing for a small number of 

groups that it participates. This philosophy of confining the 
expensive routing functionality to only a subset of participants 
is similar to our idea of constructing multiple small routing 
networks in Kyra.  

How to efficiently match an event against a large number 
of subscriptions is another important problem in pub-sub 
system design. The matching problem has been studied for 
various data types and event schemes [2][3][18][30]. In this 
paper, we have assumed that a suitable matching algorithm is 
available, and have focused on the problem of routing events 
(based on matching results, as appropriate). 

A review of the various properties of pub-sub systems can 
be found in [14]. 

VII. CONCLUSION AND FUTURE WORK 
We have designed and evaluated Kyra, an event routing 

scheme for content-based publish-subscribe service networks. 
Our findings can be broadly summarized as follows: 
• The two-level hierarchical topology and the content space 

partitioning techniques in Kyra effectively partition a pub-
sub network into multiple smaller routing networks. Event 
routing within each routing network generates 
significantly lower storage, processing and network traffic 
load, compared to routing in the global network. 

• The reduced scope of filter-based routing in Kyra can lead 
to inefficient network resource usage in unicast 
communication in server cliques. However, detailed 
simulations showed that the penalty is small compared to 
the magnitude of the savings in implementation cost and 
routing load. This is because unicast communication is 
only used between servers that are close to one another in 
the network, i.e. in the same clique. The trade-off between 
storage, processing cost and node/link stress on the one 
hand and the network resource usage measure on the other 
can be managed by configuring Kyra’s main parameters 
(clique size and number of routing trees) based on 
application-specific preferences. 

• Unlike other systems, Kyra is effective in balancing 
routing load over all pub-sub servers. 

Because of its efficiency and balance along various 
resource usage criteria, we expect Kyra to gracefully scale to 
large pub-sub systems. 

There are many areas of future work. In addition to those 
already mentioned in the paper, an interesting direction is to 
investigate the possibility of combining our subscription 
movement technique with multicast-based routing (rather than 
filter-based routing, which we have used within the routing 
trees here). We expect that the increased locality of 
subscription distributions would improve the quality of the 
multicast groups formed; however, the overall network 
resource usage may still be less efficient than filter-based 
routing.  

A key (and complementary) direction of our current work 
is in replacing filter-based routing with an approach that 
decouples the matching and routing steps in a content-based 
pub-sub service network. The idea is to first match event with 

 

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

Node stress

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f n
um

be
r o

f s
er

ve
rs

FBR
MBR
Kyra
Balanced Kyra

max 9248max 4939max 1626max 728

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



global subscriptions at publisher, and obtains a list of 
destination servers interested in the event. This destination list 
is then attached in the message header as the event is 
forwarded; a pub-sub server receiving the event will 
dynamically figure out the next hops for the event based on the 
destination list. Our preliminary analysis and experimental 
results show that this match-early approach offers high routing 
efficiency and flexibility: because routing decision is made for 
each individual event on the fly, the approach naturally fits the 
highly diversified communication pattern in pub-sub systems, 
and can easily adjust for network conditions and application 
preferences.  
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