
Efficient Event Routing in Content-based
Publish-Subscribe Service Networks

 Fengyun Cao Jaswinder Pal Singh
Computer Science Department Computer Science Department

 Princeton University Princeton University
 Princeton, NJ 08540, USA Princeton, NJ 08540, USA

 fcao@cs.princeton.edu jps@cs.princeton.edu

Abstract—Efficient event delivery in a content-based

publish/subscribe system has been a challenging problem.
Existing group communication solutions, such as IP multicast or
application-level multicast techniques, are not readily applicable
due to the highly heterogeneous communication pattern in such
systems. We first explore the design space of event routing
strategies for content-based publish/subscribe systems. Two
major existing approaches are studied: filter-based approach,
which performs content-based filtering on intermediate routing
servers to dynamically guide routing decisions, and multicast-
based approach, which delivers events through a few high-quality
multicast groups that are pre-constructed to approximately
match user interests. These approaches have different trade-offs
in the routing quality achieved and the implementation cost and
system load generated. We then present a new routing scheme
called Kyra that carefully balance these trade-offs. Kyra
combines the advantages of content-based filtering and event-
space partitioning in the existing approaches to achieve better
overall routing efficiency. We use detailed simulations to evaluate
Kyra and compare it with existing approaches. The results
demonstrate the effectiveness of Kyra in achieving high network
efficiency, reducing implementation cost and balancing system
load across the publish-subscribe service network.

Keywords—System design, simulations, publish-subscribe,
event notification

I. INTRODUCTION
Publish-subscribe (pub-sub for short) is an important

paradigm for asynchronous communication between entities in
a distributed network. In the pub-sub paradigm, subscribers
specify their interests in certain event conditions, and will be
notified afterwards of any event fired by a publisher that
matches their registered interests. Such timely notification of
customized information is of great value for many distributed
applications, such as enterprise activity monitoring and
consumer event notification systems [5][7][12], mobile
alerting systems [1][35], etc.

Pub-sub systems can be characterized into three broad
types based on the expressiveness of the subscriptions they
support. In topic-based and subject-based schemes, events are
classified and labeled by publisher as belonging to one of a
predefined set of subjects. This type of pub-sub system is able
to leverage existing group-based multicast techniques for
event delivery, by assigning each subject to a multicast group.

Content-based pub-sub is a more general and powerful
paradigm, in which subscribers have the added flexibility of
choosing filtering criteria along multiple dimensions, using
thresholds and conditions on the contents of the message,
rather than being restricted to (or even requiring) pre-defined
subject fields. Content-based pub-sub applications present a
unique challenge not only for efficient matching of events to
subscriptions but also for efficient event delivery. In
particular, content-based subscriptions can be highly diverse,
and different events may satisfy the interests of widely varying
groups of subscribers. As a result, mapping events into exact
multicast groups may require the number of groups
exponential in the number of subscribers (i.e. 2n where n is the
number of subscribers) in the worst-case scenario. Thus,
existing group-based multicast techniques cannot readily be
applied to such systems.

In this paper, we study the event delivery problem in the
context of a content-based pub-sub service network. The
general architecture of a pub-sub service network is shown in
Figure 1: a set of pub-sub servers are distributed over the
Internet; clients access the pub-sub service, either to publish
events or to register subscriptions, through appropriate servers,
such as the ones that are close to them or in the same
administrative domains. Thus, pub-sub servers serve as
publication proxies as well as subscription proxies on behalf o
clients, and we can view the problem as one of getting
published events to the pub-sub servers that subscribe – as
proxies – to the events. Communication between pub-sub
servers with their associated clients is a separate matter and is
not discussed in this paper. We focus on the following
questions:

Figure 1. Example of a pub-sub service network with

eight pub-sub servers. The subscriptions submitted to the
servers are listed in the table on the right. Events are

represented by integer values between 0 and 9.

A

D

C G

F

H

E

Server Subscriptions
A {1,5}
B {7,8}
C {1,2}
D {0,6}
E {3,5}
F {5,7}
G {4,6}
H {2,9}

B

Publish
 Notify

Subscribe

End
user

End
user

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

• What should the interconnection topology of the pub-
sub servers look like?

• How should events be correctly and efficiently routed
through the network to the interested subscribers?

We use the following metrics to evaluate the efficiency of
an event routing scheme: the storage, management, and
computation costs at the pub-sub servers, and the network
resource utilization for event transmission.

Existing event routing solutions can be largely categorized
into two classes: the filter-based approach [12][7][22][29] and
the multicast-based approach [22][16][25][34]. In the filter-
based approach, routing decisions are made via successive
content-based filtering at all nodes from source to destination:
every pub-sub server along the way matches the event with
remote subscriptions from other servers, and then forwards it
only toward directions that lead to matching subscriptions.
This approach can achieve high network efficiency, but at the
cost of expensive subscription information management and
high processing load at pub-sub servers.

In the multicast-based approach, a limited number of
multicast groups are computed before event transmission
begins. For each event, the routing decision is made only once
at the publisher, mapping the event into the single appropriate
group. The event is then multicast to that group, assuming IP
multicast [13] or application-level multicast [9][10] support.
Because only a limited number of multicast groups can be
built, servers with different interests may be clustered into
same group, and events may be sent to uninterested servers as
well. The network efficiency of this approach is often highly
sensitive to the data types and the distributions of events and
subscriptions in the application.

In this paper, we propose a new event routing scheme
called Kyra. The goal of Kyra is to reduce the implementation
cost of the filter-based approach while still maintaining
comparable network efficiency. The main idea is to construct
multiple smaller routing networks, so that filter-based routing
is implemented in each one with lower cost. Server load is
reduced because each Kyra server is guaranteed to only
participate in a small number of routing networks. This is
achieved through strategically “moving” subscriptions
between servers to improve content locality. Therefore, the
effectiveness of Kyra is independent of data characteristics of
pub-sub applications. Detailed simulation results show that
Kyra significantly reduces the storage, processing and network
traffic loads on pub-sub servers, while achieving network
efficiency close to that of the filter-based approach. Kyra also
balances routing load across the pub-sub service network.

The remainder of the paper is organized as follows. We
study the two major existing approaches in Section II and
present Kyra system design in Section III. We describe our
performance evaluation methodology in Section IV, and
present detailed simulation-based evaluation of Kyra and other
routing schemes in Section V. Section VI discusses related
work and Section VII concludes the paper.

II. OVERVIEW OF EXISTING SOLUTIONS
In this Section, we briefly review two major state-of-the-

art event routing approaches and discuss their trade-offs. The
analysis explains our observations and leads to the design of
Kyra.

A. Filter-based event routing
We use the implementation of Siena system [7] as a

representative for the filter-based event routing approach. The
architecture is as shown in Figure 2. Pub-sub servers are
organized into an acyclic (tree) peer-to-peer topology1,2. First,
all subscriptions are broadcast over the entire network along
the tree topology3. Each server then records the subscriptions
received from each direction in its routing table. When an
event is received, it is matched against subscriptions in the
routing table and forwarded toward only the directions with
matching subscriptions.

Since events are only routed in the directions to which they
are relevant, filter-based event routing achieves network
efficiency in an elegant way. However, the implementation
and management cost can be high. First, the cost of flooding
and replicating all subscriptions at all pub-sub servers grows
super-linearly against total number of subscriptions in the
system. Although summarization techniques such as merging
and covering have been proposed to alleviate this problem, it
is an open question as to how efficiently and effectively they
can perform, especially with multi-dimensional data types.
Even with the simple, one-dimensional example shown in
Figure 2, the routing tables still contain a lot of information,
much of which is duplicated over many servers. The second
problem is that event routing can result in high processing and
network traffic load at pub-sub servers that are not interested

Figure 2. Example of filter-based event routing.

1 [8] proposed that Siena can work with a cyclic network topology by first
extracting a routing tree rooted at the origin of the message. However, the
actual routing scheme is the same as with acyclic graph and is not further
discussed in their papers. Therefore, we only consider acyclic topology for
Siena in this paper.
2 Another acyclic topology, i.e. hierarchical topology, was shown to perform
worse than the peer-to-peer topology and therefore is not considered in this
paper.
3 Siena also proposed an alternative strategy of using advertisements (by
publishers) to contain the transmission of subscriptions. Since this is an
additional and nonstandard burden on a pub-sub service, we postpone
discussion of it until Section IV.

Routing table Server Neighbor Subscriptions
A C {0-9}
B C {0-7,9}

A {1,5}
B {7,8}
D {0,6}

C

E {2-7,9}
D C {1-9}

C {0-2,5-8} E F {2,4-7,9}
E {0-3,5-8} F G {2,4,6,9}
F {0-3,5-8} G H {2,9}

H G {0-8}

A

D

B

C G

F

H

E

Event 9

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Group Events Servers

g0 5 8 A B E F
g1 0 1 4 6 A C D G
g2 2 3 7 9 B C E F H

A

D

B

C G

F

H

E
Multicast tree for g0
Multicast tree for g1
Multicast tree for g2

Event 9

in the event themselves. For example, in Figure 2, when a
client publishes event 9 at server A, the message is matched
four times at server C, E, F, and G before reaching destination
H. Finally, routing load on the pub-sub servers is imbalanced:
generally, the closer a server is to the center of the tree, the
more events it receives and forwards. A server at the edge of
the network only receives events of its interest and never
routes for others.

B. Multicast-based event routing
We use the approach in [25] as a representative for the
multicast-based event routing approach. The process is
illustrated in Figure 3. First, the event space is partitioned into
a limited number of multicast groups. For each group, a
multicast tree is built that spans all servers with subscription
for any event in that group. When an event is published, it is
mapped into a group and multicast on the corresponding tree
to all group members.

Three major differences are seen in comparing Figure 3 to
Figure 2. First, there are three routing trees and each tree only
spans a subset of servers. As a result, the routing path can be
shorter: event 9 no longer traverses server G to reach server H.
Second, the routing table is simpler. It maps events to
multicast groups, and the routing table is the same for every
server. Finally, without fine-grained filtering, events can be
sent to servers that are neither interested in the event nor
needed to route it to its interested destinations. In Figure 3,
event 9 is forwarded to server B, resulting in extraneous
network traffic.

To reduce network wastage, the multicast-based approach
uses intelligent clustering algorithms to partition multicast
groups, with the goal of maximizing the commonality between
member interests within each group. However, the
effectiveness of clustering heavily depends on the locality
property of events and subscriptions in the application. If the
application data distribution does not lend itself to clustering
opportunities, it is expected to be difficult to form only a few
groups to match every server’s interest with high accuracy.
For example, when events and user interests are uniformly
distributed, each of the 2n possible multicast groups would be
needed with roughly equal probability.

C. Discussion
The discussion above implies that filter-based event

Figure 3. Example of multicast-based event routing.
Forgy’s K-Means algorithm is used to cluster the events

into three multicast groups.

routing should achieve better network efficiency than the
multicast-based approach. Its fine-grained filtering
functionality naturally fits the highly diversified
communication pattern in content-based pub-sub systems.
However, the problems of subscription management, high
processing load imbalance can be substantial impediments to
the scalability of this scheme.

We observe that partitions and topologies can be
constructed to confine the information flooding and event
routing to smaller scopes. The idea is to build multiple,
smaller routing networks, and to guarantee that certain events
are only routed through certain networks and a pub-sub server
only joins a small subset of networks. In this way, events
traverse fewer pub-sub servers, reducing processing and
network load; also, pub-sub servers only need to maintain a
subset of routing information, pertaining the events that may
be routed on the networks in which it participates.
Furthermore, dividing the routing load between multiple
networks provides opportunities for better resilience and load
balancing.

To meet the requirement above, the content space (or
“event space”) of the pub-sub system must be partitioned
between the routing networks. The partitioning is critical to
the effectiveness of the approach, because it determines the
size and membership of the routing networks. A bad
partitioning may result in all servers joining every network.

One candidate partitioning method is the content space
clustering used in the multicast-based routing scheme
discussed above. However, in this paper, we hope to develop a
general event routing scheme whose success does not depend
so much on specific pub-sub application characteristics.
Therefore, instead of simply exploiting the clustering
opportunity offered by the subscriptions and event patterns as
they happen to be associated with servers, we explore the
opportunity of actively creating content locality for the routing
networks, by moving subscriptions and events around in
constrained ways.

In the next section, we present the design of Kyra system
developed based on these ideas.

III. KYRA DESIGN
The architecture of Kyra system consists of multiple event

routing networks, with the following properties:
• Filtering-based event routing within each routing network

generates low processing and network traffic load.
• Each pub-sub server manages only a small amount of

routing information for the networks in which it
participates.

• The event routing load is more evenly balanced across all
pub-sub servers.

Kyra is designed with a two-level interconnection
topology, as shown in Figure 4. At the bottom level, Kyra
servers are organized into server cliques based on their
network proximity. Servers in the same clique know about
each other and communicate through unicast. At the second

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Figure 4. Example of Kyra network, with three server

cliques and three routing trees.
level, multiple routing trees are built, each for routing a subset
of events.

Corresponding to the two-level topology, the content space
in the pub-sub system is partitioned at two levels: locally, it is
partitioned between servers in the same clique. Each server is
assigned a non-overlapping zone in the space, and becomes
the proxy server for all subscriptions in the same clique that
overlap with this zone, which are in turn called this server’s
proxy subscriptions. The original servers that receive
subscriptions from end clients will forward the subscriptions
to the appropriate proxy servers. We call this process
subscription movement. Globally, the content space is
partitioned between the routing trees. Each routing tree is
assigned a non-overlapping content zone and used to route all
events falling into its zone. The global partition is the same
across all Kyra servers, while the local partitions are only
visible inside each clique. Kyra servers join all the routing
trees whose zone overlap with that of their own, and route on
behalf of their proxy subscriptions. Each routing tree then
becomes an independent filter-based routing network as
described in Section 2. When an event is published, it is first
forwarded to the server in the same clique whose content zone
covers it, and then routed on the tree with covering zone.

In Figure 4, the pub-sub servers are organized into three
server cliques, and three routing trees are built. The content
zone of the servers and the routing trees are listed in the tables
on the left. Each server maintains a routing table for each
routing tree it joins, as shown on the right. When event 9 is
published, it is first forwarded to server C, and then routed on
tree t2 to arrive at server H.

Three observations can be made from Figure 4. First, the
routing tables are more concise than those in Figure 2, as each
server only needs to know about a subset of subscriptions in

the system. Second, routing trees in Figure 4 span fewer
servers than those in Figure 3, due to the increased content
locality on each server obtained from subscription movement.
Finally, the routing path of event 9 traverses fewer immediate
servers than in Figure 2 and Figure 3, resulting in less network
traffic and processing load.

In the rest of this section, we present the design of Kyra in
more detail.

A. Interconnection topology
In this paper, we use network latency to measure the distance
between servers. We use the Hierarchical Agglomerate
Clustering (HAC) algorithm [21] to cluster “close” servers
into server cliques. The distance between two cliques is
defined as the furthest distance between any pair of servers in
the two cliques. The algorithm is presented in Figure 5. Two
parameters are specified: the maximum distance between
servers in the same clique, and the maximum number of
servers in one clique. The output of the algorithm is a set of
server cliques that satisfy both conditions.

For small-scale server cliques, the intra-clique topology is
indeed a “clique”: each server knows the address and content
zone of all other servers in the clique; if a clique has too many
servers, the Distributed Hash Table (DHT) techniques
[24][27][31] can be used as an elegant solution for scalable
subscription and event routing inside clique. Specifically,
when there are k servers in the clique, a server only needs to
know about O(logk) other servers and a message can be
routed between any two servers in the clique within O(logk)
steps. The content space partition in the clique can be directly
used for dividing the index value space in DHT. For
simplicity, we only experiment with the full-mesh topology
within cliques in this paper.

In Kyra, routing trees are built as minimum spanning trees
(MST) across all servers whose content zones overlap with
that of the tree. The number of routing trees built, T, is related
to server clique size as shown in Figure 6: if a clique has more
than T servers, multiple servers have to join the same tree. As
a result, subscription information for this tree is replicated on
all these servers, reducing the effectiveness of local content
space partitioning. On the other hand, increasing T to larger

Figure 5. Server clique clustering algorithm.

A

D

B

C G

F

H

E

Tree Tree zone Servers
t0 0-3 A D F
t1 4-6 B D E G
t2 7-9 C E H

Server Server
zone

Proxy
subscriptions

A 0-3 {1,2}
B 4-6 -
C 7-9 {7,8}
D 0-4 {0,3}
E 5-9 {5,6}
F 0-3 {2}
G 4-6 {4-6}
H 7-9 {7,9}

Routing table Server Tree Neighbor Subscriptions
A t0 D {0,2,3}

E {5,6} B t1 G {4-6}
C t2 E -
 H {7,9}

A {1,2} t0 F {2} D
 t1 E {4-6}

B {4-6} t1 D - E
t2 C {7-9}

F t0 D {0-3}
G t1 G {5,6}
H t2 C {7,8}

Routing tree t0
Routing tree t1

Routing tree t2
Intra-clique connection

Server clique
Event 9

Cluster_servercliques(maxDistance, maxNumServers) {
foreach i in [1, …, n] // n is the number of servers
 clique ci ← server si;

 proximitymatrixi,j = distance(si, sj);
 while (number_of_cliques > 1) {

 foreach (ci, cj) with increasing proximitymatrixi,j {
 if (proximitymatrixi,j > maxDistance)
 return cliques;
 if (size(ci) + size(cj) ≤ maxNumServers) {

 merge(ci, cj);
 update_proximitymatrix;
 break;
 }}}
 return cliques;

}

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

than the clique size cannot improve the effect of global space
partitioning, because multiple trees will span the same set of
servers. Therefore, in practice, we expect T~max{ki} to be a
reasonable configuration, where ki is the number of servers in
clique i.

B. Content space partition
The partitioning methodology in Kyra is simple: to

partition the content space into non-overlapping continuous
zones with balanced load.

We choose to partition the space into continuous zones for
several reasons: first, such zones can be concisely described
by their boundaries. This leads to low storage and
communication cost to store the partition results and
synchronize between servers. It is also easy to determine the
membership of an event. Second, many pub-sub systems
support subscriptions in the format of range queries, such as
“price<5” or “5,000<volume<10,000”. Compared to discrete
partitions (such as by clustering individual event values),
continuous partitions reduce the number of partitions with
which such range subscriptions overlap. This is desirable
because a subscription has to be replicated on all the servers
and routing trees whose zones overlap with it. For the same
reason, when the number of routing trees is different from the
number of servers in the cliques, continuous partitions reduce
the number of trees a server needs to join. Finally, continuous
partitions make building more structured and scalable
topology, such as DHT systems, possible.

Figure 6. Relationship between number of routing trees
and number of servers in a clique.

Figure 7. Percentage of servers an event traverses in a

tree topology.

We define the popularity of an event to be the percentage
of subscriptions interested in it, the volume of an event to be
the frequency with which it is published, and the weight of an
event to be the normalized resource consumption for
processing the event. The load of a content zone is then
computed as

∑
∈

⋅⋅=
zonee

eeezone weightvolumepopularityworkload)(α

The reason for using popularitye

α rather than popularitye
is the observation that when routed in a tree topology, an event
is routed through more servers than the ones that are interested
in it, and the routing load on all the servers traversed should be
counted. In Figure 7, the horizontal axis shows the popularity
of an event, and the solid curve plots the percentage of servers
on the tree that the event is actually routed through. The curve
is regressed to the power function presented, with R-square
value of 0.9988. For reference, the dotted line shows the
percentage of servers from the tree that actually interested in
the event, which is in fact a 45-degree line. Figure 7 is based
on experimental results with minimum spanning trees of
randomly distributed servers, and the regression function is
used to derive the α value of 0.6101 in our experiments.

The problem of partitioning a multi-dimensional space into
continuous zones with balanced load has been well studied in
many areas, such as parallel and distributed computing and
database management [19][20][32]. Partitioning can be
challenging since the nature of the event and subscription
distributions can change with time, and the necessary
information may have to be gathered and recomputed
periodically. However, reasonably good partitioning results
may be achieved based on coarse-grained load estimation and
experience. In addition, we expect that in many pub-sub
applications, partitioning along only a subset of dimensions,
such as one or two of event attributes, will be sufficient to
achieve the goals. Thus, we expect the partitioning process to
scale well with both routing load and dimension of the content
space. A specific partitioning algorithm dependents on
application data types and properties, and is beyond the scope
of this paper. Instead, we assume that such an algorithm is
available and focus on the effectiveness of the overall routing
scheme.

C. Subscription and publication
In Kyra, a subscription is submitted to a server close to the

subscriber. Then, it is forwarded from the original server to
one or more proxy servers, based on the content zones with
which it overlaps. The subscription management process is
shown in Figure 8.

Note that on the routing trees, events are routed for proxy
subscriptions at each server, rather than its original
subscriptions. Because the proxy subscriptions are wholly
contained within the server’s content zone, the content locality
of proxy subscriptions on the server is expected to be higher
than that of the original subscriptions.

Filter-based event routing is performed on each routing
tree. At the same time, a received event is matched with the
server’s proxy subscriptions. Upon successful matches, the

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Event popularity

Pe
rc

en
ta

ge
 o

f s
er

ve
rs

% servers
traversed
% servers
interested

y = x0.6101

R2 = 0.9988

Servers

Trees

Too few trees Too many trees

Event space Event space

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Figure 8. Subscription management in Kyra.

Figure 9. Event routing in Kyra.
event is sent to the original servers of the matching
subscriptions. The original server will notify the subscriber
about the event, so that the process of subscription movement
is transparent to end-users. The event routing process is shown
in Figure 9.

In this paper, we assume centralized topology construction
and content space partitioning algorithms. This provides
simplicity and reduced communication overhead. We leave
distributed algorithms as a topic for future work.

IV. EXPERIMENTAL METHODOLOGY
We now evaluate the performance of Kyra and other

routing schemes with detailed simulations.

A. Event routing schemes
To understand how Kyra compares with existing

approaches, we have also simulated a basic filter-based
routing scheme (FBR) and a basic multicast-based routing
scheme (MBR).

FBR is based on the Siena implementation described in
[7], with the peer-to-peer minimum spanning tree topology.
Some optimization techniques, such as use of advertisements
(which are an additional burden on the system) and
subscription summarization (whose success is application-
dependent), are not included in FBR. These optimizations are

applicable to Kyra as well, since it uses filter-based routing
within each routing tree. In fact, we expect them to be more
effective in Kyra, because of their lower implementation cost
and the increased subscription locality in Kyra. By not
including these optimizations, we can better compare the basic
approaches.

MBR is based on the multicast-based routing scheme
described in [25]. The Forgy’s K-Means algorithm [21] is
used for data clustering, as it was found to perform best
among the clustering algorithms in [25]. An optimization
technique is proposed in a companion paper [26] to
dynamically switch to unicast if the event popularity is below
a threshold. We do not include this optimization in MBR, so
that we can clearly identify the effectiveness of the multicast-
based approach.

We believe that FBR and MBR as we implement them
represent the major properties of the two routing approaches,
and the comparison provides us an opportunity to understand
the trade-off of various routing schemes. To our knowledge,
there has not been comprehensive comparison and evaluation
of different event routing schemes for content-based pub-sub
network.

Performance of three other basic routing schemes, unicast,
broadcast and ideal multicast, are also presented as reference
baselines. In ideal multicast, each event is sent to matching
servers through IP multicast, assuming multicast trees exist for
all possible matching subscription server sets.

B. Data model
A major challenge in pub-sub system evaluation is the lack

of real-world workloads. For comprehensiveness, we
experimented with four different distributions for events and
subscriptions. These distributions are either prevalent in other
information delivery applications [4] and/or have been used in
the pub-sub literature [25][34][33]:
• Uniform distribution, in which both popularity and

volume of events are uniformly randomly distributed.
• Zipf-uniform distribution, in which event popularity

follows Zipf distribution [4], i.e. the number of
subscriptions matching the ith most popular event is
proportional to i-α, (with α here set to 1). The volume of
events is uniformly randomly distributed.

• Multimodal distribution [25], in which both popularity
and volume of events follow the same multivariate
Gaussian distribution. In this case, more popular events
are also published more often. In our experiments, five
distribution peaks are randomly chosen in the content
space, and the standard deviations are set to 1/4 of the
average distance between peaks.

• Regional distribution [34], in which the probability that a
subscription from server si matches an event from server
sj is set to:

 γ),(

),(
ji

jimatch ssdistance
cssp =

receive_original_subscription(sub, client) {
 store_original_subscription(sub, client);
 Z = all_overlap_zones(local_partition, sub);
 foreach z in Z {
 server s = server_for_zone(z);
 subscription newsub = intersection(z, sub);

 send newsub to s;
 }}

receive_proxy_subscription(sub, from_server) {

store_proxy_subscription(sub, from_server);
Z = all_overlap_zones(global_partition, sub);
foreach z in Z {
 tree t = tree_for_zone(z);
 subscription newsub = intersection(z, sub);

 advertise_subscription(t, newsub);
}}

route_event(event, from_server) {
 t = tree_for_event(e);

foreach neighbor n on tree t {
 if ((n != from_server) &&
 match(subscriptions_from(t, n), event))
 send event to n;
}
foreach server s in local_clique {
 if ((s != from_server) &&
 match(subscriptions_from(s), event)) {
 mark event as final notification;
 send event to s;

 }}}

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

where c is a normalizing factor. This distribution
simulates the scenario that users are more interested in
events close to them, such as local activities. In our
experiments, γ is set to 1.

In all distributions, event weights are uniformly randomly
assigned.

We define average user interest rate to be the probability
that subscriptions on a server match a randomly chosen event.
Three level of user interest rates, 1%, 10% and 50% are
chosen to represent applications with user interests of high,
medium and low selectivity.

Since our focus is not on partitioning algorithms
themselves, we simplify partitioning by experimenting with a
one-dimensional content space of integer values. We believe
that the evaluations presented in this paper are not sensitive to
the dimensionality of content space, and the results are of
general importance.

C. Performance measures
We evaluate the performance of event routing schemes

along the following dimensions:
• Storage and management cost, measured by the amount of

routing information each pub-sub server maintains.
• Processing load. In FBR and Kyra, this is measured by the

total number intermediate servers that perform content-
based matching to route one event.

• Network performance, which includes:
o Node stress: for every fixed number (1000 in our

experiments) of randomly chosen events handled by
the system, the number of messages that are
received and sent by the average pub-sub server.

o Link stress: for every fixed number (1000 in our
experiments) of randomly chosen events handled by
the system, the number of messages that are carried
by the average underlying network link.

o Normalized resource usage (NRU). As in [10], we
define network resource usage as the summation of
underlying network link costs consumed in routing
an event. Link latency is used as the cost measure.
Since the ideal multicast scheme achieves the lower
bound of network resource usage, normalized
resource usage is defined as the ratio of network
resource usage of an event routing scheme relative
to this lower bound.

For MBR, only its network performance is studied. Its
storage and processing cost depends on pub-sub data type and
is not evaluated in this paper.

V. SIMULATION RESULTS
We developed a message-level, event-based simulator for

evaluation. Our network topology is generated by GT-ITM [6]
random graph generator using the transit-stub model. There
are 20 transit domains with an average of 5 routers in each.
Each transit router has an average of 3 stub domains attached,
and each stub domain has an average of 8 routers. The link

latencies are randomly chosen between 50-100ms for intra-
transit domain links, 10-40ms for transit-stub links, and 1-5ms
for intra-stub domain links. Altogether there are 2500 routers
and 8938 links. 500 pub-sub servers are randomly attached to
the routers by LAN links with 1ms latency. Events and
subscriptions from the distributions described above are
randomly assigned to the servers. IP multicast routing is
simulated using a shortest path tree formed by the merger of
the unicast routes from the source to each destination.

A. Kyra performance analysis
In this section, we analyze the performance of Kyra with

varying configurations of server clique size and number of
routing trees built. Since FBR can be seen as a special case of
Kyra, with single-server cliques and one routing tree, our
presentation discusses the results for Kyra relative to this case,
allowing us to very naturally compare Kyra with FBR. Results
for MBR and other routing schemes will be discussed in
Section V. B. Due to space constraint, we present detailed
results for only the Zipf-uniform data distribution here,
leaving others to Section V. B.

1) Storage and management cost
Figure 10 shows the amount of routing information that a

Kyra server maintains. The horizontal axis shows the clique
size configuration, in terms of maximum intra-clique distance.
The corresponding average and maximum numbers of servers
in each clique are given in Table I. The vertical axis shows,
using a log scale, the fraction of the total subscription
information that the average server maintains. The four curves
represent the cases of 1, 10, 20 and 50 routing trees. Figure 10
clearly demonstrates the effectiveness of Kyra in reducing the
information load on each server. For example, with cliques of
200ms intra-clique distance and 20 routing trees, a Kyra server
only knows about 1/10 of total subscriptions. Another
observation is that both the server clique size and the number
of routing trees have to be greater than 1 to effectively reduce
the per-server information size. This confirms the importance
of two-level content space partitioning and subscription
movement: Without local content space partitioning and
subscription movement, every server has to join all the routing
trees; with only one routing tree, each server has to know
about all subscriptions to correctly route for other nodes on the
tree. Finally, Figure 10 shows that the server clique size and
number of routing trees interleave in a fashion that validates

Figure 10. Amount of subscription information at each
Kyra server.

0.01

0.1

1
0 100 200 300 400 500

Max distance in clique

Fr
ac

tio
n

of
 to

ta
l s

ub
sc

rip
tio

ns

(in
 lo

g
sc

al
e)

1 tree
10 trees
20 trees
50 trees

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

TABLE I. KYRA SERVER CLIQUE SIZE.

Max intra-clique
latency 0 100 200 300 400 500

Avg #servers/clique 1 6 13 32 125 500
Max #servers/clique 1 21 29 64 266 500

the setting of T ~ max{ki} in Section 3. For example, when
there are at most 21 servers per clique (max intra-clique
latency is 100ms), the use of 50 trees results in almost no
improvement over the case of 20 trees.

2)Processing load
In filter-based event routing, an event is repeatedly

matched with remote subscriptions at intermediate pub-sub
servers. Figure 11 plots the number of servers on which
matching is performed in routing one event in Kyra. The three
charts present the results with different user interest rates. All
the curves converge at the two ends: the left end represents the
case of FBR; the right end represents the extreme case of all
servers organized into one clique. In this case, each event is
matched once at the publishing server and sent directly to all
matching servers.

Figure 11 shows that increasing clique size and increasing
number of trees both effectively reduce the processing load in
event routing. Differently from Figure 10, the top curves show
that even with only one routing tree, increasing clique size
leads to smaller matching load. This is because an event is
matched only once in each clique. The saving is even more
significant with high user interest rates in the figure. Higher
user interest has the same effect of large clique size in this
regard, because more users in the clique are interested and
there is a larger space for improvement.

3)Network performance
a)Node stress

Figure 12 presents the average node stress of a Kyra
server. The trend in each curve is similar to that in Figure 11:
with larger server cliques and more routing trees, fewer
intermediate servers are traversed on a routing path and the
average node stress is reduced. However, the improvement
diminishes with increasing user interest rates. The reason can
be seen from : in the FBR approach, the fraction of
uninterested servers an event traverses decreases as more users
are interested in the event.

b)Link stress
From Figure 13, we can see that different configurations of

Kyra can affect network link stress in three ways: first, with
larger clique size, an event traverses fewer network links on
the routing trees. This effect dominates when user interest
level is as low as 1% and with large clique size. Second, the
intra-clique unicast can result in high stress on links close to
the unicast source. This effect is stronger with higher user
interests, because more servers in the clique must be notified.
Finally, multiple routing trees improve average link stress by
distributing the network traffic over more network links.
However, the magnitude of improvement is not as significant
as we expected. We found that this is because of the low path
diversity in the GT-ITM topology graph we used. For

example, each stub domain is connected to a transit server
through a single link. Building more routing trees cannot
relieve the high stress on these links. We found that by setting
10% domains as multi-homed can reduce average link stress
of Kyra by 10%. To gain a more comprehensive
understanding of routing load on underlying network links, we
plan to deploy experiments on larger network scale and take
link bandwidth capacity into consideration.

c)Normalized Resource Usage
Figure 14 presents the NRU of Kyra. Larger server cliques

almost always result in higher resource usage, mainly due to
the network inefficiency of the intra-clique unicast. The
inefficiency is severe with high user interest rates, in which
case unicast communication comprises a high fraction of the
total network traffic. The number of routing trees does not
have much effect on NRU.

4)Kyra performance summary
We have evaluated Kyra using various metrics and the results
are summarized in Table II. Briefly, with large server cliques
and multiple routing trees, Kyra effectively reduces the
storage, processing and network traffic load on each pub-sub
server, compared to FBR. The intra-clique unicast
communication results in increased network link stress and
network resource usage. The inefficiency is more significant
with larger server cliques and higher user interests, and
independent of the number of routing trees. In general, this
trade-off must be balanced by choosing configurations based
on the characteristics of the pub-sub application.

Table III illustrates a set of concrete configurations that we
use for Kyra in further experiments, chosen such that the NRU
of Kyra is always smaller than 1.3 times that of FBR.

B. Comparison of Routing Approaches
In this section, we compare the network performance of

various event routing schemes using four different pub-sub
data distributions. We use 50 trees for MBR.

TABLE II. KYRA PERFORMANCE SUMMARY
 Storage

and proc.
load

Average
node
stress

Average
link stress

NRU

Increasing
clique
size

↓ ↓ ↑ (w/ low
interests) ↓ (w/
high interests)

↑

Increasing
#trees

↓ ↓ ↓ −

TABLE III. KYRA CONFIGURATION AND PERFORMANCE
COMPARISON WITH FBR.

Average interest level 1% 10% 50%
Clique size 500 100 50 Kyra

config. #routing trees 50 20 10
Strorage 2% 20% 30%

Processing load 6% 46% 35%
Avg. node stress 30% 78% 92%
Avg. link stress 62% 98% 116%

Kyra/
FBR

NRU 126% 116% 111%

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Figure 11. Routing processing load in Kyra

Figure 12. Average node stress in Kyra.

Figure 13. Average link stress in Kyra.

Figure 14. Normalized Resource Usage (NRU) in Kyra.

Remote matching times

 (1% interest)

0

4

8

12

16

20

0 100 200 300 400 500

Max distance in clique

Remote matching times
(10% interest)

0

20

40

60

80

100

0 100 200 300 400 500

Max distance in clique

Remote matching times
 (50% interest)

0

40

80

120

160

200

0 100 200 300 400 500

Max distance in clique

1 tree
10 trees
20 trees
50 trees

NRU

(1% interest)

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500

Max distance in clique

 NRU
(10% interest)

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

Max distance in clique

NRU
(50% interest)

0

1

2

3

4

5

6

7

0 100 200 300 400 500

Max distance in clique

1 tree

10 trees

20 trees

50 trees

 Average node stress
(1% interest)

0

20

40

60

80

100

0 100 200 300 400 500

Max distance in clique

 Average node stress
(10% interest)

0

100

200

300

400

500

0 100 200 300 400 500

Max distance in clique

Average node stress
(50% interest)

0

300

600

900

1200

1500

0 100 200 300 400 500

Max distance in clique

1 tree

10 trees

20 trees

50 trees

Avearage link stress

(1% interest)

0

10

20

30

40

0 100 200 300 400 500

Max distance in clique

Average link stress
(10% interest)

0

50

100

150

200

250

0 100 200 300 400 500

Max distance in clique

Average link stress
(50% interest)

0

200

400

600

800

0 100 200 300 400 500

Max distance in clique

1 tree
10 trees

20 trees
50 trees

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

C. Comparison of Routing Approaches
Figure 15 compares the NRU of the FBR, Kyra, MBR,

unicast and broadcast schemes. By definition, ideal multicast
achieves NRU of 1. Overall, the results show that FBR and
Kyra perform quite well under all circumstances. When user
interests are highly selective, performance of Kyra is close to
that of unicast and even better than FBR in some cases. In
comparison, MBR is penalized for sending events to
uninterested users. It performs worst with the Zipf-uniform
distribution: the network waste mainly comes from
multicasting the many “cold events” with few interested
subscribers to the whole multicast group. The best distribution
for MBR is the multimodal one, in which cold events are also
published less often. In particular, when average user interest
rate is 10% with the multimodal distribution, MBR achieves
NRU 70% better than unicast, which confirms the results
found in [25] under the same data distribution. With the
regional distribution, MBR is penalized for sending events to
uninterested users that are far away. When the average user
interest rate is high enough, all the three routing schemes
perform close to broadcast.

Table IV presents node stress and link stress of the three
routing schemes. Due to space constraints, only the results for
the zipf-uniform distribution and multi-modal distribution are
presented. Under all circumstances, Kyra achieves the smallest
average and maximum server node stress, and the savings are
significant: for subscriptions with 1% selectivity, an average
Kyra server experiences 1/4 network traffic load compared to
an FBR server and only 1/25 of that of an MBR server. Even
for the case of 50% interests, when the average node stress
results are close, Kyra is more effective in distributing the

network traffic across all servers and reducing the maximum
node stress. In fact, Kyra always achieves the smallest average
link stress except for the case of 50% interests, when FBR
outperforms Kyra slightly. In this case here too, Kyra
effectively minimizes the maximum link stress compared to
FBR.

D. Load balance
Load balance is an important factor in pub-sub networks,

as any overloaded server or network link may degrade the total
system performance and limit system scalability. Table III
shows that there is still a large gap between the average and
maximum node stress and link stress in Kyra, which we should
address. In this paper, we mainly focus on balancing node
stress on pub-sub servers. Because link stress is affected by
network resource dimensioning and provisioning strategies, it
is left as future work.

To build a more load-balanced Kyra, we developed a
modified version of Kruskal’s MST algorithm [11] for
building routing trees: at each step of adding an overlay
connection into the routing tree, we first find the M shortest
connections that do not add loops into the tree; these
connections are then ranked by the maximum degree of their
two end nodes. The connection with the lowest maximum
degree is added into the tree. We call M the balance factor.

When M=1, the algorithm is Kruskal’s algorithm; when M
equals to the total number of valid connections, the algorithm
aims at pure load balancing. Figure 16 shows the cumulative
distribution of node stress in FBR, MBR, basic Kyra and
balanced Kyra with balance factor of 100. The horizontal axis
represents a given value of node stress, and the vertical axis

Figure 15. NRU comparison

TABLE IV. BANDWIDTH AND LINK STRESS COMPARISON, WITH ZIPF-UNIFORM DISTRIBUTION.

Average user interest rate 1% 10% 50%
Event routing scheme FBR MBR Kyra FBR MBR Kyra FBR MBR Kyra

Avg. node stress 77 559 23 416 1791 326 1298 1781 1199
Max node stress 1828 2154 557 4949 9248 1626 8390 9208 3820
Avg. link stress 32 286 20 173 759 171 491 755 548

Zipf-uniform
distribution

Max link stress 654 2510 560 2475 7338 1743 5211 5872 4606
Avg. node stress 132 693 31 873 1736 565 1742 1939 1574
Max node stress 2758 2793 72 7318 10046 2136 10406 10723 4253
Avg. link stress 61 359 27 370 777 297 668 938 746

Multi-modal
distribution

Max link stress 1512 4716 189 4967 7648 2412 7695 7933 5070

NRU comparison
with uniform distribution

0

4

8

12

16

20

1% 10% 50%

NRU comparison
w ith zipf_uniform distribution

0

6

12

18

24

1% 10% 50%

NRU comparison
w ith multimodal distribution

0

4

8

12

16

1% 10% 50%

NRU comparison
with regional distribution

0

6

12

18

24

1% 10% 50%

FBR

Kyra

MBR

unicast

broadcast

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Figure 16. Cumulative distribution of node stress.

represents the percentage of servers with stress less than this
value. It is evident from the graph that FBR and the two
versions of Kyra perform much better than MBR: the 80-th
percentile is about 500 for these schemes and 2500 for MBR.
FBR has a heavy tail that ends at 4939, while the maximum
stress is 1626 in Kyra and only 728 in balanced Kyra.

VI. RELATED WORK
Much research exists on the distributed pub-sub systems.

The architecture designs include Siena [7][8], Gryphon
[2][22], JEDI [12], Rebeca [15], Elvin [28], Ready [17], and
Herald [5]. Most of these systems adopt the filter-based
routing approach. In JEDI, a hierarchical interconnection
topology is proposed in which a server is only informed of
subscriptions from servers in its sub-tree. Events are always
forwarded up the hierarchy regardless of the interests in other
parts of the network. [7] shows that the performance of such
hierarchical scheme is inferior to the peer-to-peer topology we
discussed in this paper. In Gryphon, a link-matching algorithm
is designed to partially match an event at each step in filter-
based routing, in order to determine the directions in which to
send the event. The Elvin system proposes a technique called
“quenching”, in which publishers are aware of all
subscriptions so that they only publish the events that have at
least some matching subscribers. [29] has a different problem
statement. It assumes that only a small number of content
filters are available, and studies the problem of strategically
placing the filters on a multicast tree topology, to minimize
total network traffic or event delivery delay.

The problem of delivering an event message to a group of
interested users through a service network is similar to the
traditional multicast problem (except that in traditional
multicast the addresses of the destination nodes are known
while in pub-sub systems they have to be determined via
content-based matching). IP multicast has been proposed since
[13] but has not been fully deployed due to its inherent
scalability problems. Recently, much effort has been put to
move the multicast functionality to the application layer, at end
hosts [10][9]. Application-layer multicast is expected to scale
better than IP multicast, mainly because an end host only
needs to perform complex processing for a small number of

groups that it participates. This philosophy of confining the
expensive routing functionality to only a subset of participants
is similar to our idea of constructing multiple small routing
networks in Kyra.

How to efficiently match an event against a large number
of subscriptions is another important problem in pub-sub
system design. The matching problem has been studied for
various data types and event schemes [2][3][18][30]. In this
paper, we have assumed that a suitable matching algorithm is
available, and have focused on the problem of routing events
(based on matching results, as appropriate).

A review of the various properties of pub-sub systems can
be found in [14].

VII. CONCLUSION AND FUTURE WORK
We have designed and evaluated Kyra, an event routing

scheme for content-based publish-subscribe service networks.
Our findings can be broadly summarized as follows:
• The two-level hierarchical topology and the content space

partitioning techniques in Kyra effectively partition a pub-
sub network into multiple smaller routing networks. Event
routing within each routing network generates
significantly lower storage, processing and network traffic
load, compared to routing in the global network.

• The reduced scope of filter-based routing in Kyra can lead
to inefficient network resource usage in unicast
communication in server cliques. However, detailed
simulations showed that the penalty is small compared to
the magnitude of the savings in implementation cost and
routing load. This is because unicast communication is
only used between servers that are close to one another in
the network, i.e. in the same clique. The trade-off between
storage, processing cost and node/link stress on the one
hand and the network resource usage measure on the other
can be managed by configuring Kyra’s main parameters
(clique size and number of routing trees) based on
application-specific preferences.

• Unlike other systems, Kyra is effective in balancing
routing load over all pub-sub servers.

Because of its efficiency and balance along various
resource usage criteria, we expect Kyra to gracefully scale to
large pub-sub systems.

There are many areas of future work. In addition to those
already mentioned in the paper, an interesting direction is to
investigate the possibility of combining our subscription
movement technique with multicast-based routing (rather than
filter-based routing, which we have used within the routing
trees here). We expect that the increased locality of
subscription distributions would improve the quality of the
multicast groups formed; however, the overall network
resource usage may still be less efficient than filter-based
routing.

A key (and complementary) direction of our current work
is in replacing filter-based routing with an approach that
decouples the matching and routing steps in a content-based
pub-sub service network. The idea is to first match event with

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

Node stress

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f n
um

be
r o

f s
er

ve
rs

FBR
MBR
Kyra
Balanced Kyra

max 9248max 4939max 1626max 728

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

global subscriptions at publisher, and obtains a list of
destination servers interested in the event. This destination list
is then attached in the message header as the event is
forwarded; a pub-sub server receiving the event will
dynamically figure out the next hops for the event based on the
destination list. Our preliminary analysis and experimental
results show that this match-early approach offers high routing
efficiency and flexibility: because routing decision is made for
each individual event on the fly, the approach naturally fits the
highly diversified communication pattern in pub-sub systems,
and can easily adjust for network conditions and application
preferences.

REFERENCES
[1] http://mobile.yahoo.com/wireless/alert
[2] M. K. Aguilera, R. E. Strom, D. C. Sturman,

M.Astley, and T. D. Chandra, “Matching events in a
content-based subscription system,” In Eighteenth
ACM Symposium on Principles of Distributed
Computing, 1999.

[3] M. Altinel and M. Franklin, “Efficient Filtering of
XML Documents for Selective Dissemination of
Information,” In VLDB Journal, pp. 53-64, 2000.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S.
Shenker, “Web caching and zipf-like distributions:
Evidence and implications,” In Proc. of IEEE
INFOCOM, 1999.

[5] L. F. Cabrera, M. B. Jones and M. Theimer, “Herald:
Achieving a Global Event Notification Service,” In
Proc. of the Eighth Workshop on Hot Topics in
Operating Systems (HotOS-VIII), May 2001.

[6] K. Calvert, E. Zegura, and S. Bhattacharjee. “How to
Model an Internet-work”. In Proceedings of IEEE
Infocom, 1996.

[7] A. Carzaniga, “Architectures for an Event
Notification Service Scalable to Wide-area
Networks”. PhD Thesis. Politecnico di Milano.
December, 1998.

[8] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design
and evaluation of a wide-area event notification
service,” In ACM Transactions on Computer
Systems, 2001.

[9] M. Castro, P. Druschel, A.M. Kermarrec and A.
Rowstron, “SCRIBE: A large-scale and
decentralized application-level multicast
infrastructure,” IEEE Journal on Selected Areas in
communications (JSAC), 2002.

[10] Y. H. Chu, S. G. Rao and H. Zhang, “A case for end
system multicast,” in ACM SIGMETRICS, 2000.

[11] T. Corman, C. Leiserson, R. Rivest and C. Stein,
“Introduction to Algorithms”, MIT Press, 2001.

[12] G. Cugola, E. Di Nitto, A. Fuggetta, “The JEDI
Event-based Infrastructure and its Application to the
Development of the OPSS WFMS”, in Proc. Of
IEEE Transactions on Software Engineering, 2001

[13] S. Deering, “Multicast routing in internetworks and
extended lans,” in Proceedings of the ACM
SIGCOMM, pp. 55-64, Stanford, CA, August 1988.

[14] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec.
"The Many Faces of Publish/Subscribe," Microsoft
Research Technical Report EPFL, DSC ID, 2000.

[15] L. Fiege, G. Mühl, F. Gärtner. “A Modular Approach
to Building Event-Based Systems”, In ACM
Symposium on Applied Computing, 2002

[16] Z. Ge, M. Adler, J. Kurose, D. Towsley and Steve
Zabele, “Channelization problem in large scale data

dissemination,” Technical report, University of
Massachusetts at Amherst, 2001.

[17] R. Gruber, B. Krishnamurthy, and E. Panagos. “The
architecture of the READY event notification
service”. In Proc. of the19th Middleware Workshop,
1999

[18] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
“Filtering Algorithms and Implementations for Very
Fast Publish/Subscribe Systems,” In Proc. of ACM
SIGMOD, pages 115-126, 2001.

[19] R. v. Hanxleden and L. R. Scott, “Load balancing on
message passing architectures”, In Journal of
Parallel and Distributed Computing, 13 (1991).

[20] B. Hendrickson and R. Leland. “Multidimensional
spectral load balancing.” Technical Report SAND93-
0074, Sandia National Laboratories, January 1993

[21] A.K. Jain, M. N. Murty, and P.J. Flynn, “Data
clustering: a review.” In ACM Computing Surveys
31, 3 (1999), 264--323.

[22] L. Opyrchal, M. Astley, Joshua S. Auerbach, G.
Banavar, R. E. Strom, and D. C. Sturman,
“Exploiting IP Multicast in Content-Based Publish-
Subscribe Systems,” In Proc. of Middleware 2000.

[23] J. Pereira, F. Fabret, F. Llirbat and D. Shasha,
“Efficient matching for web-based publish/subscribe
systems,” In Proc. of the Fifth IFCIS, 2000.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker, “A scalable content-addressable network,”
In Proc. ACM SIGCOMM, pp. 161-172, 2001.

[25] A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang,
“Clustering Algorithms for content-based
publication-subscription systems,” In ICDCS 2002.

[26] A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang,
“New Algorithms for content-based publication-
subscription systems”, In ICDCS 2003.

[27] A. Rowstron and P. Druschel, “Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems,” IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), pp. 329-350, November, 2001.

[28] B. Segall, D. Arnold, J. Boot, M. Henderson and T.
Phelps, “Content Based Routing with Elvin4,”
In Proc. of AUUG2K, 2000.

[29] R. Shah, R. Jain, F. Anjum, “Efficient Dissemination
of Personalized Information Using Content-Based
Multicast,” In IEEE Infocom, 2002.

[30] C. Snoeren, K. Conley, and D. K. Gifford. “Mesh
based content routing using XML,” In SOSP, 2001.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. “Chord: A scalable peer-to-peer
lookup service for internet applications,” In Proc. of
ACM SIGCOMM, 2001.

[32] G. Vanecek, “Brep-index: a multidimensional space
partitioning tree.” In International J. of Computation
Geometry Application, 1(3), 243--261, 1991.

[33] Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson,
and H. Wang, “Subscription Partitioning and
Routing in Content-based Publish/Subscribe
Networks,” In 16th International Symposium on
DIStributed Computing, 2002.

[34] T. Wong, R. Katz, and S. McCanne. “An evaluation
of preference clustering in largescale multicast
applications,” In Proc. IEEE INFOCOM, March,
2000.

[35] H. Yongqiang, G. M. Hector, “Publish/Subscribe in a
Mobile Environment,” MobiDE 2001.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

	INFOCOM 2004
	Return to Previous View

