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,Abstrmt-We analjxe the effects of price estimatinn ermr in n 
dual-E:rddient optimization flou contml scheme, and Characterize 
the perhrmance of the algorithm in this case. By treating 
estimation error as inexactness of the gradient, we utilize suf- 
ficient conditions for cnnvergence subject to hounded error to 
characterize the Inng-term dynamics of the link utilization in 
ternis of a region which the trajectory enters in finite time. 
We explicitly find hounds for this region under a particular 
quantization errnr midel:and pmvidr simulatiirn result7 to verify 
the predided hehavior of the system. Finally. we analyze the 
effects of the stepsize cm the Convergence nf the algnrithrn, 

. and provide analytical and nuniericdl results which suggrst a 
particular choice for this parameter. 

I. IXTRODUCTION 

It has heen shown that internet congestion control protocols 
(e.g.. various versions of ‘ICP) can he interpreted as carrying 
out a distributed algorihn in snlve a network optimization 
problem (see [71. (91. [X I .  1101 2nd references therein). This 
pap& focuses on  the dual-gradient algorithm presented in [Y]. 

-The suucture of the dual prohlcin allows us to solve the 
optimization prohlern with tach so~ircc (link) knowing only 
the sum of the link prices (source rates) coupled to it. I t  
is shown in [91 that under appropriate corrditions the dual- 
gradient method converges to the primal-dual optimal point. 
which is the equilibrium of the network. 

One practical drawback of this dual-gradient method is 
the reliance on explicit communication of price information. 
Schemes such as RED [5].  REM [2], and RAM [I1 use 
a congestion-based queue-management protocol which. in 
the above context. amounts to an implicit price-notification 
scheme. Although this mechanism is more practical than the 
explicit uansmission of price information. it suffers from 
various errors inherent in the implicit price-notification. Our 
aim in this paper is to examine the effects of such errors on 
the performance of the algorithm presented in P I .  

One particular source of error inherent to any physical 
implementation is the limited information available to indi- 
vidual sources. i.e.. the receipt of acknowledgments and the 
round-trip-time (RTT) for each packet transmitted. The prices 
(congestion measures) in these two cases are. respectively. loss 
probability and queueing delay. The exact price is either very 
hard to estimate (loss probability) or very noisy (queueing 
delay). 

The essential idea in the following analysis is to think of 
error as imractness of the gradienr. It is known in opti- 
mization theory that convergence to a region containing the 

optimum can still he achieved in the presence of inexact 
gradient information [31. 

11. BASIC MODEL, ASSUMPTIOXS. A N D  NOTATION 

As in [9] and [IO]. consider a network that consists of a 
set L = {l, . . . : L }  of unidirectional links of capacities CI. 

I E L. The network is shared by a set S = (1 ~. . . ~ S} 
of sources. Source s is characterized by four parameters 
( L ( s ) :  Us) mSr A I s ) .  The path L ( s )  L is a set of links 
that source s uses. Us : R+ + R is a utility function. 
1 7 1 ~  2 0 and ilr, < iyi are lhe minimum and maximum 
transmission rates. respectively. required by source s. Source 
s auains a utility U,(z,) when i t  uansmits at rate zs that 
satisfies nis 5 :zr. 5 M,. 

We make the following assumptions on the utility functions: 

On the interval I, = [ i i i S :  MS]. the utility functions U, 
are increasing. strictly concave. and lwice continuously 
differentiable. For feasibility. assume c,Es(l) ni, 5 CI 
for all 1. 
The curvatures of Us are bounded away from zero on I,: 
-U!(:c3) 2 l/i& > 0 for all zJ E I,. 

For each link I let S(I) = 1s E S 1 I E L[s)} be the 
set of sources that use link 1. Define := Iiiax3;s /L ( s ) l_  
S := maxfEL lS(l)I. and zi := max {z3, s E S}. In words 
L is the length of a longest path used by the sources. 3 is 
the maximum number of sources sharing any particular link. 
and si is the upper hound on all -Ugll(zS). We also will make 
use of the smallest minimum rate. and largest maximum rate. 
which we denote by m = min, i n s  and A i  = mas, A&. 

Our nbjective is to chbose source rates z. to solve the 
following optimization problem: 

C1: 

C2: 

- 
- 

subject to :c8 5 1 = l l . .  . . I , .  ( 2 )  
S t S ( 1 )  

A unique maximizer. called the primal optimal solution. exists 
since the objective function is scrictly concave. and hence 
continuous. and the feasible solution set is compact. 

The dual function can he calculated to be (see P I ) :  
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where 

i ~ t )  -si(t.)i = 

4 1 1 )  = U;-’( 1 PO ( 3 )  
l t L ( s )  

Notice that ( 3 )  defines a source algorithm for the selection of 
a sending rate as a function of the congestion measure p .  

The partial derivatives of the dual function are found to be: 

[u-Wt))  - r t l ( w ) i  
StS(1) 

where 

is the aggregate rate on link 1.  Note that the evaluation 
of the gradient (which occurs at the links) requires only 
knowledge of the aggregate rates at each link. This motivates 
the following link algorithm (which amounts to a gradient- 
projection method) for the solution of the dual optimization 
problem: 

P i ( t + 1 ) = [ P l ( t ) - 7 ( c i  - Y l ( t ) ) l +  (4) 

where [ z l i  = inax{z! 0). 
It is shown in [91 that if 

this algorithm will drive the rates to the optimum of the primal 
problem (l-?), and the prices to the associated Lagrange 
multipliers. 

111. PRICE ESTIMATIOS ERROR AS INEXACT GRADIENT 
As described in the introduction. the above algorithm re- 

quires exact communication of aggregate price information 
to individual sources. This requirement is impractical on a 
real network because i t  cannot be implemented in the TCP 
layer. This has motivated price-based congestion notification 
schemes such as REM and RAM, which allow implicit com- 
munication of price information through packet dropping or 
marking via ECN [4]. These implicit schemes. though more 
practical than explicit communication. suffer from inherent 
error in price notification. 

The convergence analysis in [9] provides no mechanism for 
understanding the effects of inaccurate price information on 
the performance of the algorithm. In particular. i t  is unclear 
that convergence should persist in the case that the source 
algorithm does not set individual sending rates to the exact 
ratrs corresponding to the current price. Such an occurrence 
is inevitable in the case of inexact price communication. 

It is evident from (4) that the price update is dependent on 
the rate update. Thus, an erroneous rate update will result in 
a corresponding error in the price update. In particular. the 
direction of the price update will. in general. not he along the 
gradient direction, but along some perturbed direction. 77llrrs. 

where lice, is the lower bound on the curvature of Ub(:c) 
(see [91) and therefore CL$ is a global Lipschitz constant for 
U, - ’ (p ( t ) )  by the Mean Value Theorem. 

The following is a sufficient condition which guarantees that 
the inexact gradient will still be in a descent direction: 
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~ s l ~ ~ s ( ~ ) l 5 l l l c r - ~ / l ( f . ) ~ ~ ~ ~ .  ( 6 )  
S E S ( I )  

where 0 5 17 < 1 can be thought of as the relative error. This 
condition simply ensures that the error is not large enough to 
completely negate the gradient. and so the dual function can 
still be reduced in the direction of the inexact gradient. 

When inequality ( 6 )  is not satisfied. no conclusion can 
be drawn_ as the above condition is merely sufficient for 
convergence. Nonetheless. we can show that the region where 
(6) fails. i.e.. where the following holds // 

contains an attraction region Fig. 1. 
rszion is reclangdm because of lhe mmpnznr&isz error bound. 

?hc exact p d i r n t  lies within the shadid region. Notice that the 

77reorm I :  The solution set of (7 )  is an attraction region, Since (g:G) = X I  giji. it is easy to see that the minimum 
provided occurs at point 0 where 

'7 b > 9 )  = ( 1  - 17)lIGll' (10) 
0 < i' < ~ ( i  - 

nLS (') and therefore the minimum hound for 7 that guarantees 
descent is &(I - 7). 

h )  Enrn in Finife Sfem: From (9) we see that the minimal F'rwf. The condition in the definition of an attraction repion 
. ,  

will be verified in  two steps: decrease &the dual function in each step is 
. 

1 - -  

a) Clioire ofstepsize: Since VD = g (the exact gradient) 

( is-Lipschitz with a Lipschitz constant &.k? [9], the Descent 
AD 5 5?XSllgl12:t 7 -  -- - Lemma ( [ 3 ]  proposition A.24) implies 

&LS 
D ( p  - -jG) < D ( P )  - -/(g311) + --?'11511' 2 (9) 

where ( g : j )  is the Euclidean inner product and ligll is the 
Euclidean norm. Then we see where 11.i# is strictly positive since (6) holds and 

guaramees that the change in the dual function 

is in general not tnvidly zero, Therefore as ~ o n p  as 
0 < y < &(l - 0) :  the dual functiofl is decreased by a 
finite amount in each iteration. Now since the primal problem 
(1-2) is. by hypothesis. feasible. the dual function is lower 
bounded [31. Therefore the inequality (6) must fail after a 
@ire number of steps. or it would contradict the fact that 
the dual function is lower bounded. In other words. (7) must 
hold after a finite number of steps. i.e.. the trajectory of 
g i ( t )  = cscs(l) z.(t) enters the solution Set of (7) after a 

ai7 := O(p - yrj) - D ( p )  

is strictly less than 0. Therefore when (6) holds, the hest bound 
on 7 that parantees descent is the solution, of the following finite number of steps. 
optimization problem: 

Some comments on the relationship between '1 and y are 
. now in order. First. note that larger values of 17 will result in 

smaller solution sets for (7). Of course. in order to guarantee 
that this is m attraction region. (S) must be satisfied. So. a 
larger 17 corresponds to a tighter attraction region, but demands 
a smaller -/. Conversely. give11 il choice of ;,, (S) constrains 
the maximal 17 consistent with the above analysis. and hence 
the smallest obtainable attraction region. 

min, -~ 2 (0:G) 
nLS lljll' 
IlB -gill 5 7 1 l l j i l I ~ V ~  subject to 

When g and j me two dimensional (i.e.. when there are two 
links in the network). the feasible region is the shaded %ea 
illustrated in Figure 1. 
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The above proof demonstrates that convergence can be H 
guaranteed with any y satisfying (8). but like the convergence 
proof in [9]. it does not suggest a criterion for selecting 
-/ within this range. As is usual in  iterative optimization 
algorithms, there is a tradeoff between taking larger steps at 
each iteration (i.e.. selecting a lxge  y) and ensuring that the 
(inexact) gradient remains a good predictor of local function 
behavior (i.e.. selecting a small T). 

See section VI11 for discussion and numerical verifications 
of these properties. 

With these two theorems in hand, we are ready to under- 
stand the behavior of the optimization flow control algorithm 
in specific cases of error models. - , _  

It turns out that we can obtain a satisl'actory optimality result 
which strongly suggests choosing 

which happens to be half of the bound imposed by the 
convergence criterion. 

Theorern 2: The choice of stepsize yoopt has the following 
properties: 

a) Worst-case optiiiialily: It is the worst-case optimal -j. 
in  the sense that it maximizes the Lipschitz-bounded progress 
in  the dual function at each iteration. 

b) Superioritv Io srncrller 7 :  At each iteration. yopl 
generates a new price with a smaller value of the dual function 
than any smaller choice of 7. 
Prmf. 

a) From (11). the worst-case progress of the dual function 

V. CONSTANT ERROR 
Here we analyze the explicit price-notification scenario. in 

which links directly notify sources of the current price by 
encoding this information in a packet (as'in the experiments 
of [9]). Even this explicit communication scheme suffers from 
the inherent error of finite information transmission, i.e., that 
the packets which convey the price information contain finitely 
many bits. 

Suppose the range of price the users respond to is between 
0 and 1 which is the case when the congestion measure is loss 
probability. Suppose also that the explicit price feedback has n 
bits of data. Then the error has a constant bound 1t>(t)1 5 2-" 
and from (7)  the inequality for an attraction region for each 
link 1 is thus given by c a,?-" > I ] l C t  - yt(t)l 

JtS(1) 
IS 

Figure 2 illustrates the form of these attraction regions when 9 "/ ( I ? )  there :ire rwn l ink<.  nLS 
-Ilj1l2 2 ["? - - I / ) ]  

311acSImrewm 

A simple calculation shows that the minimum of the quadratic , f a r m i l l  

as a function of y occurs when -/ = j lOPt.  

- ( V D ( p  - y j ) , j ) .  The Lipschitz property of VU implies: 
b) Consider the directional derivative & D ( p  - - / j )  = 

i lVD(p - 7 j )  - V D ( p ) / I  5 6LS:tlljJI (13) 2 
Therefore the magnitude of the difference between the direc- -$ 
tional derivatives at p and p - is - 

9 

/ 

h. large7 

l l (VD(p- - j j )  - V D ( p ) : j ) l l  5 &LSy11j112 
Here we have used the Cauchy-Schwarz inequality and the 
Lipschitz hound. This in  turn implies: 

= -(&e) + nLS;,lljil2 case. 

5 [ - ( I  - I ] )  +ntS;]  11j112 
= (y - yop,)fiLSl\jl12 

VI.  (2UANTIZATION ERROR OF MARKING 
When the congestion measure p is loss probability. e.g., 

when routers implement RED or REM_ during each RlT the ' 

In the second last line we have applied ( IO) .  since we are 
only interested in points where the algorithm has not driven 
the system to the attraction region and can hence provably 
decrease the dual function at each iteration. 

Thus. whenever A( is chosen to he smaller than -topt. the 
derivative of the dual function with respect.to y is strictly 
negative. This implies that etopt achieves greater decrease in 
the dual function at each iteration than any smaller -j. 

source sends out one window size .tu of packets and has to 
estimate p by observing how many packets are dropped or 
marked. The fraction of packets lost is an instantaneous esti- 
mator o f p  and is subject to two kinds of errors: quantization 
and probabilistic fluctuation. For example if IU = 4, then 
fi t {0:0.25~0.5~0.75~ 1). So. if the actual price occurs at 
some intermediate value, say p = 3. the closest one could 
estimate would be 6 = 25. We call this an error resulting from 
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quantization. Further. due to the prohahilistic nature of the 
dropping scheme. wc could get (albeit with lower prohahility). 
say ,i = 1 as the estimate of p and incur a larger error in the 
effective gradient. We call this the tluctuation error. 

This quantization error is inevitable under such a price esti- 
mation scheme. Naturally. in a prohahilistic dropping scheme. 
one would also suffer from the fluctuation error. hut in  this 
section we analyze the effects of quantization in isolation. as 
it is the minimal error that could occur. 

The quantization error at each time. l v s ( f ) l .  will he hounded 
hy &. where d, is the R I T  of user s which is assumed 
to he constant. Therefore the condition (7) hecomes 

We will apply this tn  derive the atuaction regions for various 
cases. 

.Sin~I~-.~orirre-.Sin~Ir-LinL 
In this simple case an analytical characterization of an 

attraction region on the link will he derived. The condition 
(7) reduces to 

. .  
Therefore when :I: 2 I:. i t  hcciimss c > :I; - - and when 
3: < c. it  hecomes ,: < .<: + -. In  the first case there is 

always the solution c 5 : I :  < 5 I q. In the second 

case the inequality is solvable il and only i f  c > and 

the solution to the inequality is 0 5 :L' < 4 - f 
qd 

and 5 4- 4 < :c < c:This is illustrated in Figure 3 .  
Notice that the solution set includes a "small window region" 
where the exuemely small rate cm result in very large error 
which overcomes the gradient information. However. it is not 
difficult to show (by realizing that persistence in this region 
will drive the price to zero) that the trajectory will eventually 
escape this region. G u s .  the part of the solution set containing 
capacity (as shown) is indeed an attraction region and is given 

- - v  

c 
. -  7 

by 

Intuitively. the quantity 4% is a measure of the aggres- 
siveness of the protocol. If the capacity is greater than this 
quantity. the analysis shows that the attraction region is given 
by (16). However. when the capacity is not greater than this 
threshold. the attraction reoion loses the lower hound and 
becomes [O: $ - .  + m). which suggests that the system 

can oscillate all the way from 0 to 5. + f m. This 
situation is illustrated in Figure 4. 

aOsori 

Fig. 3. Illustration of the attraction region, 

i-ai,?, 

Fig. 4. Attraction region with capacity below threshold. 

Miiiriplr-.Suiirce-SinnpL- Link 

Suppose there are !V sources sharing one link. Then (7) 
becomes 

Let b = f , /cL, (?)'.then the left hand side of (17) 
hecomes b multiplied by a convex combination of all the 

%erefore (7) implies 

1 and. through simple calculus. is bounded by zm. ( ' l l+, , l )~  A. 

Using the single-source-single-link results. the hounds for 
an atuaction region for y ( t )  are thus 

where. as in  the sinple-source-single-link case, whenever the 
quantity in the square root is negative. the lower hound is 
replaced by 0. These results will he verified hy the simulations 
in section VII. 
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i ~ ~ i l r i p l e - S o u r c e - M ~ ~ l f i p l e - L i n ~  

When there arc multiple links. we can obtain a region (using 
the same manipulations from the previous section) for each 
link and the bounds are 

I d  

where m ( l )  = min,(i) m,, !lJ(L) = niax,(l) MS, and IS(l)l is 
the number of sources sharing link 1. Unfortunately. the proof 
of Theorem I only allows us to guarantee that one of these 
regions will be an attraction region. This is a serious theo- 
retical drawback. hut the simulation results in the upcoming 
section suggest that these regions actually still characterize the 
dynamics of multiple links quite well. 

VII. SIMULATION RESULTS 

In this section. we provide numerical results which corrob- 
orate the previous analysis. Throughout. we set I )  = 0.5. 

We first simulate the single-source-single-link case. The 
utility function is chosen to be U ( z )  = -6 + fi 
where i1.I = 100. nt = 1. and we set d = 1. Note that this 
hnction is strictly concave. and satisfies 0 5 U'(%) 5 1. 
Further. the constant (Y is given by .R.I - m. The simulations 
implement the synchronous version of the protocol proposed 
in [9]. with the addition of the deterministic quantization error 
discussed prior. At each time t the estimated price p ( f )  is given 
by the point closest to p ( f )  in the set {0> i, 2, ...e-: 1). 

Tne simulation results in Figure 5 verify the predicted 
bounds on the attraction region. The capacity is set to 50. The 
results corroborate the above analysis; the system converges 
to within the predicted hounds. and oscillates unpredictably 
thereafter. 

- 

Fia. 6. 
lower bounded and the rate oscillates wildllv 

When capacity is k l o w  threshold. the attraction re@ is no longer 

Figure 7 i s  a "phase-plane" diagram showing several tra- 
jectories of the system. and their convergence to a set that 
resembles a parallelogram. The choice of initial conditions of 
p1 and zs does not affect the inexact gradient argument and 
therefore Theorem 1 implies that all such trajectories enter the 
attraction region. 

Fig. 7. Comrrgsncc with different initial points in the x-p plane 

Figure 8 shows the results from a two-source-one-link 
simulation. The capacity is set to TO and the utility functions 
are such that nil = '7112 = 10. ~1.1, = 50. and .I12 = 
100. The dashed lines show the predicted hounds from the 
above analysis. While we have not derived any hounds on 
the individual source rates. the simulation suggests that the 
vanation in the individual rates is hounded by the variation in 
the aggregate rate. 
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x3 i 
FiS. 9. Three-source-twcAink Network. 

We set m 1  = r n 2  = m3 = 3. AI ,  = A& = A{, = 100. 
CI = BO_ CT = 60_ and illustrate the atuaction regions on each 
link in Figure IO. We also present the individual source rates 
in Figure 11, 

Irn 
I 

i I 
t 

0 *U) 2m M 4m 

Fig. 11. Dynamics of individual source rates. 

VIII. CHOICE OF THE STEPSIZE -j 

The properties guaranteed by Theorem 2 strongly suggest 
the use of yopt in the absence of any additional information 
about the optimization problem (1-2). We can conclusively say 
that no -j below this value should he chosen, and the worst- 
case analysis suggests that we do not choose a larger y if we  
are interested in provable convergence behavior. 

In this section. we present simulation results which explore 
the performance of different choices of -j. and verify the 
aforementioned properties. 

The scenario in [9] (i.e., with no estimation error) is a 
specid case of our formulation. in which (6) always holds 
with I )  = 0. Our stepsire analysis thus suggests that we 
take precisely half of the bound presented in 191. The single- 
source-single-link simulation with a quadratic utility function 
in Figure I ?  verifies the optimality properties of yopt. 

Fig. 12. 
yopt is clearly supenor to o!her choices in this case. 

Convergence behavim with different choices of y without error: 

Note first that. as predicted. all choices of 7 below -jopt are 
outperformed by yopt. Further note that all larger values are 
also outperformed. although this is not guaranteed in general. 
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Fig. 13. 
bound on -i in the ~ D C L T O ~  case. 

Convergence khnvior with different choices of -, when quanumtiun ~ r o r  is present: Notice that since 77 = 0.8. is i$ the allowddc uwsr 

This global superiority holds because. in the case of quadratic 
utility functions without error. the Lipschitz bounds utilized in 
the analysis are in fact tight. 

The simulatinns also show that. as y approaches the bound 
imposed by the convergence criterion. increasingly large oscil- 
lations ensue. It can in fact be shown that the bound imposed 
by the convergence condition. while only sufficient in general. 
is also necessary in this case. 

We now turn our attention to the case with quantization error 
as in the simulations of section VII. As shown in Figure 13. 
we compare the performance of-/,t against that of a range of 
other choices above and below it. Here the atuaction region 
(denoted by the dashed lines in each subgraph) corresponds 
to IT = 0.8. 

Once again. we verify the prediction that -/opt outperforms 
all lower values of “ j .  However. we note in this case that some 
larger values of y outperform yopt. Also note that the transition 
to instability occurs significantly above the bound we provide 
for provable convergence in the presence of error. Nonetheless. 
i t  is still below the bound presented i n  191. 

IX. CONCLUSION AND FUTURE WORK 

We have described an inexact-Tadient approach to analyze 
the effects of price estimation error on the optimization flow 
control scheme in [91. We have examined specific error models 
and derived attraction regions that characterize the oscillation 
of link utilization. In particular. the attraction region seems 
to have characterized the oscillation induced by quantization 
error very well. The results hold for any network topology but 

unfortunately the dual function argument we use in the proof 
of theorem 1 can only guarantee that one of the link rates has 
an attraction region given by (7). However. this seems to be 
the most general result one can get since the analysis does not 
require any assumptions on what the error can he. We hope 
to extend Theorem 1 (possibly with additional assumptions on 
the error process) to cover all links in the multiple-link case 
in the future. 

For more general sources of stochastic error. we do not 
expect this analysis to provide such tight bounds on the 
attraction region. because we have taken a purely deterministic 
worst-case approach. Indeed. the analysis is most appropriate 
for error sources with relatively flat probability distributions. 
as heavy-tail distributions would necessilatc a highly conser- 
vative bound. For example. the aforementioned probabilistic 
fluctuation error would result in essentially trivial bounds since 
the worst-case error could in principle wipe out any useful 
information about the real price. However. we have seen in 
om simulations that if an empirical bound (e.g. three times 
the standard deviation) is taken then the attraction region 
characterizes the fluctuation error case very nicely as well. 

In finding sufficient conditions for convergence subject to  
error. we have derived a modified bound on the stepsize 
presented in [9], which shows a linear tradeoff between 
allowable stepsize and allowable (relative) error. In attempting 
to find a non-heuristic choice for this stepsize parameter. we 
have provided a candidate which demonstrates some optimal- 
ity properties. We have categorically eliminated all smaller 
stepsizes as  sub-optimal, and also shown that this choice gives 
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the hest provable reduction in the dual hnction within the 
scope of our analysis. 
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