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Abstract— We analyze the effects of price estimation error in a
dual-pradient optimization flow control scheme, and characterize
the performance of the algorithm in this case. By treating
estimation errvor as inexactness of the gradient, we utilize suf-
ficient conditions for convergence subject to bounded error to
-characterize the long-term dynamics of the link utilization in
terms of a region which the trajectory enters in finite time.
We explicitly find bounds for this region under a particular
quantization error model,-and provide simulation results to verify
the predicted hehavior of the system. Finally, we analyze the
effects of the stepsize on the convergence of the algorithm,

. and provide analytical and numerical results which suggest a
particular choice for this parameter.

[. INTRODUCTION

It has been shown that Internet congestion control protocols
{(e.g.. various versions of TCP) can be interpreted as carrying
out ua distributed algorithm 0 solve a network optimization
problem (see [71. {9]. I8]. [10] and references therein). This
paper focuses on the dual-gradient algorithm presented in [9].
-The structure of the dual problém allows us to solve the
optimization problem with cach source (link) knowing only
the sum of the link prices (source rates} coupled to it It
is shown in [9] that under appropriale conditions the dual-
gradient method converges to the primal-dual optimal point,
which is the equilibrium of the network.

One practical drawback of this dual-gradient method is
the reliance on explicit communication of price information.
Schemes sych as RED [5]. REM [2], and RAM [1] use
a congestion-based queue-management protocol which, in
the above context, amounts to an implicit price-notification
scheme. Although this mechanism is more practical than the
explicit transmission of price information. it sufters from
various errogs inherent in the implicit price-notification. Our
aim in this paper is 1o examine the effects of such errors on
the performance of the algorithm presented in [9].

One particular scurce of error inherent 10 any physical
implementation is the limited information available to indi-
vidual sources, i.e., the receipt of acknowledgments and the
round-trip-time (RTT) for each packet iransmitted. The prices
{congestion measures) in these two cases are. respectively, loss
probability and queueing delay. The exact price is either very
hard to estimate {loss probability) or very noisy (queueing
delay). . ]

The essential idea in the following analvsis is to think of
error as inexaciness of the gradient. It is known in opti-
mization theory that convergence to a region confaining the
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optimum can still be achieved in the presence of inexact
gradient information [3].

II. BaSIC MODEL, ASSUMPTIONS, AND NOTATION

As in [9]) and [10], consider a network that consists of a
set L = {1,...,L} of unidirectional links of capacities ¢;.
! € L. The network is shared by a set S = {1,..., 51
of sources. Source s is characterized by four parameters
(L{(s),Us, mg, M,). The path L(s) C L is a set of links
that source s uses, [y : R, — R is a utility function,
m, = 0 and M, < oo are the minimum and maximum
transmission rates, respectively. required by source s. Source
s attains a utlity U/,(z,) when it transmits at rate @, that
satisfies my < zy < M., ‘

We make the folowing assumptions on the utility functions:

Cl: On the interval J, = [m,, M,]. the utility functions U,
are increasing, strictly concave, and iwice continuously
differentiable. For feasibility. assume > . smMs S @
for all L. )

C2: The curvatures of U, are bounded away from zero on I:

Ul (zs) 2 1/, >0 forall z, € I,.

For each link 7 let S(I} = {s € S |1 € L{s)} be the
sel of sources that use link . Define L = maX,cs|L(s)].
S = max;ep 1SN}, and @ := max {&@,, s € S}. In words
L is the length of a longest path used by the sources, S is
the maximum number of sources sharing any particular link,
and & is the upper bound on all &/ {x,). We also will make
use¢ of the smallest minimum rate, and Jargest maximum rate,
which we denote by m = min,m, and M = max, M,.

Our objective is to choose source rates w, to solve the
following optimization problem;

max,, -z, Z U(zs)
&5

2: ey < oep,

sE5(1)

subject (o

A unique maximizer, called the primal optimal solution, exists
since the objective function is strictly concave, and hence
continuous, and the feasible solution set is compact.

“The dual function can be calculated to be (see [9]):

3 (Usaa(p)) -z p)p") + >
i

&

Dip) =
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where

o= D pis

1EL(s)

US> p) 3)

1eL(s)

zs(p) =

Notice that (3) defines a source algorithm for the selection of

a sending rate as a function of the congestion measure p.
The partial derivatives of the dual function are found to be:
ap

—{p) =

o —ui(p)

where

wiy) =

Z Ts ()

=10

is the aggregate rate on link . Note that the evaluation
of the gradient (which occurs at the links) requires only
knowledge of the aggregate rates at each link. This motivates
the following link algorithm (which amounts to a gradient-
projection method) for the solution of the dual optimization
problem:

[pr(t) ~ (e —w(@))]* {4)

where [z]t = max{z, 0}.
It is shown in [9] that if

p(t+1)=

2
b<y < —= 73 (5)
this algorithm will drive the rates to the optimum of the primal
problem (1-2), and the prices to the associated Lagrange
multipliers.

III. PRICE ESTIMATION ERROR AS INEXACT GRADIENT

As described in the introduction, the above algorithm re-
quires exact communication of aggregate price information
to individual sources. This requirement i impractical on a
real network because it cannot be implemented in the TCP
layer. This has motivated price-based congestion notification
schemes such as REM and RAM, which allow implicit com-
munication of price information through packet dropping or
marking via ECN [4]. These implicit schemes. though more
practical than explicit communication, suffer from inherent
error in price notification.

The convergence analysis in [9] provides ne mechanism for
understanding the eftects of inaccurate price information on
the performance of the algorithm. In particular, it is unclear
that convergence should persist in the case that the source
algorithm does not set individual sending rates to the exact
rates corresponding to the current price. Such an occurrence
is inevitable in the case of inexact price communication.

It is evident from (4) that the price update is dependent on
the rate update. Thus, an erroneous rate update will result in
a corresponding error in the price update. In particular, the
direction of the price update will, in general. not be along the
gradient direction, but along some perturbed direction. Thus,
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the effect of inexact price estimation ar the sources GMounts
te an inexact calculation of the gradient at the links.

The advantage of the inexact gradient viewpoint is that it
ailows us 1o embed the phenomenon of price estimation error
in the optimization flow conirol framework. We will show that
in the presence of error, the above algorithm will still converge
10 a region around the optimum, under a slight modification
of the stepsize bhound,

[V. ATTRACTION UNDER INEXACT GRADIENT

In this section we will characterize the steady-state dynam-
ics of link wilization in terms of an gtiraction region, which
we define as follows:

Definition: A set Ay C Ry is called an attraction region
for link [ if there exists an integer N such that for all initial
conditions (source rates and link prices), y(n) € A; for some
n less than NV,

We remark on two important subtleties. First, thls definition
does not require that the trajectory remain within the attraction
region after entering. It is thus not required to be an invariant
set. Second, this does imply that if the trajectory ever leaves
the attraction region. it will return to the atraction region
within IV steps.

We will show that as long as the relative error is bounded,
the optimization flow control scheme in [9] will still converge
in the sense that it will drive the link utilization to an atiraction
region. The core of the tollowing argument is that reduction
of the dual function can still be achieved in the presence of
ingxact gradient calculation.

At each time ¢, the /th component of the exact gradient is

given by
(W =a— Y. U (p()

s€5(0)

Let v(t) be the estimation error. and define the estimated price
by p{t) = p(t) + »(t). Hence, the rae update is z.(¢) =
I7=1(p(£)). Thus, the inexact gradient link [ actually uses is

Gt) =c — Z rs{t) =cp -~ Z Uﬁl(P
sE5(1) sE5(0)

The error in the {th component of the gradient is therefore
bounded by

3:®) — &) = | 3 (U7 Hp(6) — U ()]
sES()
< Y Hem) - U G)
sE5(1)
< Y )
25(1)

where 1/e, is the lower bound on the curvature of U, (x)
(see [9]) and therefore o is a global Lipschitz constant for
U.~(p(t)) by the Mean Value Theorem.

The following is a sufficient condition which guarantees that
the inexact gradient will still be in a descent direction:
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s s ()] < mler — il (6)

>

sE8(1)

#)]. VL.

where 0 < 5 < } can be thought of as the relative error. This
. condition simply ensures that the error is not large enough to
. completely negate the gradient, and so the dual function can
still be reduced in the direction of the inexact gradient,
When inequality (6) is not satisfied, no conclusion can
be drawn, as the above condition is merely sufficient for
convergence. Nonetheless, we can show that the region where
(6) fails. i.e.. where the following holds

> agles(t)] > nla — w(t)|, for some { (N
s£5(1)

- contains an atiraction region.

Theorem I The solution set of (7) is an attraction region,
provided

3
0 << moefl =y 8
< ;<6LS( ) 8

© Proof. The condition in the definition of an attracuon region
will be verified in two steps:

a} Choice of Stepsize: Since VD = g (the exact gradient)
. is Lipschitz with a Lipschitz constant @L5 [9], the Descent
" Lemma ([3] proposition A.24) implies

Dl - 13) < Dlp) - via.5) + T2

~llgl? (9)

where {g,g}) is the Euclidean inner product and l|g|| is the
Fuclidean norm. Then we see

——

(9.9

0 <y« —
Nl 5112

Ql
hi I
€]

guarantees that the change in the dual function

AD = Dip—~3) = Dip)

is strictly less than 0. Therefore when (6) holds. the best bound
on - that guarantees descent is the solution of the following
; optimization problem:

-) -
min, e (Uf g))
alLs |lgl

subject to i — gl < nlia] Ve

When ¢ and 4 are two dimensionat (i.e.. when there are two
links in the network), the feasible region is the shaded area
illustrated in Figure 1.
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[

Fig. 1. The exact gradient Hes within the shaded region. Notice that the
region 1s rectangular because of the componemwwe error bound.
Since (g,g) = Y, ;. it is easy to see that the minimum

occurs at point O where

(1 —mlil? (10)

and iheretore the minimum bound tor ~ that guarantees
descent is Mb —==(1 =7).

b) Eniry in Finite Steps: From (9) we see that the minimal
decrease of the dual function in each step is

g9} =

1 raps {g.9) 2
< = Iy [y = L
a0 < sl (o~ b azs)
1 vt 2
< gelSlalPy [y - - o
| 2
< LSl}g!IQ[ (1-n) f} (11)

where ||gl|® is strictlv positive since (6) holds and lu(#)|
is in general not trivially zero. Therefore as long as
0 < v < z#=(1 — ), the dual function is decreased by a
Jinite amount in each iteration. Now since the primal problem
(1-2) is. by hypothesis, feasible, the dual function is lower
bounded [3]. Therefore the inequality (6) must fail after a
Jinite number of steps, or it would contradict the fact that
the dual function is lower bounded. In other words, (7) must
hold after a finite number of steps. ie.. the trajectory of
y(t) = ZSESU) 25(t) enters the solution set of (7) after a
finite number of steps. n

Some comments. on the relationship between n and v are

" now in order. First, note that larger values of n will result in

smaller solution sets for {7). Of course. in order o guarantee
that this is an attraction region, (8) must be satisfied. So, a
larger n corresponds to a tighter attraction region, but demands
a smaller ~. Conversely, given a choice of <, {8) constrains
the maximal + consistent with the above analysis, and hence
the smallest obtainable attraction region.
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The above proof demonstraies that convergence can be
guaranteed with any v satisfying {(8), but like the convergence
proof in [9], it does not suggest a criterion for selecting
«v within this range. As is usual in iterative oplimization
algorithms, there is a tradeoff between taking larger steps at
each Heration (i.e., selecting a large ~) and ensuring that the
(inexact) gradient remains a good predictor of local tunction
behavior (i.¢., selecting a small ).

It turns out that we can obtain a satisfactory optimality result
which strongly suggests choosing

(1-n)
aLs
which happens to be half of the bound imposed by the
comnvergence criferion,
Theorem 2: The choice of siepsize v, has the following
properttes:

a} Worst-case optimalitv: 1t is the worst-case optimal -,
in the sense that it maximizes the Lipschitz-bounded progress
in the dual function at each iteration.

b) Superioritv 1o smaller ~v: Al each iteration, o
generates a new price with a smaller value of the dual function
than any smaller choice of .

Proof.
a) From (11). the worst-case progress of the dual function

Yopt =

is
aLS, o[
311 |

¢

- -31(1 ) (12)
als '

A simple calculation shows that the minimum of the quadratic
as a function of v occurs when v = yopr.

b) Consider the directional derivative L D(p — v§) =

—(VD{p — v4),9). The Lipschitz property of V. implies:
IVD(p —va) = VD)l < &LS¥gl  (13)

Therefore the magnitude of the difference between the direc-
tional derivatives at p and p — vg is

(VD — i) = VD(p), | < aLSv]al?

Here we have used the Cauchy-Schwarz inequality and the
Lipschitz bound. This in turn implies:

d

=D =79) < —(VD(p).g) +aLSg)"
I

= g9 +aLSy|a|’

< [=00-m) +aLS) il

= (v — Yop)aLS|gl?

In the second last line we have applied (10), since we are
only interested in points where the algorithm has not driven
the system to the attraction region and can hence provably
decrease the dual function at each iteration.

Thus, whenever + is chosen 10 be smaller than ~op, the
derivative of the dual function with respect.to v is stricily
negative. This implies that v,,, achieves greater decrease in
the dual function at each iteration than any smaller ~.
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See section VIII for discussion and numerical verifications
of these properties.

With these two theorems in hand, we are ready to under-
stand the behavior of the optimization flow control algorithm
in specific cases of error models.

V. CONSTANT ERROR

Here we analyze the explicit price-notification scenario, in
which links directly notity sources of the current price by
encoding this information in a packet (as ‘in the experiments
of [9]). Even this explicit communication scheme suffers from
the inherent error of finite information transmission, i.e., that
the packets which convey the price information contain finitely
many bits.

Suppose the range of price the users respond (o is between
0 and 1 which is the case when the congestion measure is loss
probability. Suppose also that the explicit price feedback has n
bits of data. Then the error has a constant bound |v(t)] < 27"
and from (7) the inequality for an attraction region for each
link ! is thus given by

3 a2 >yl — pit)]
SE5(D

Figure 2 illustrates the form of these attraction regions when
there are fwo links,

atraction ragion
for small y

_

’

L)

[

aggregate rate on link 2

-

\\ attraction region
for targa v

aggregate rate on link 1

Fig. 2.
case.

Attraction regions corresponding to different -y in the constant error

VI, QUANTIZATION ERROR OF MARKING

When the congestion measure p is loss probability. e.g.,
when routers implement RED or REM, during each RTT the
source sends out one window size wv of packets and has to
estimate p by observing how many packets are dropped or
marked. The fraction of packets lost is an instantancous esti-
mator of p and is subject to two kinds of errors: quantization
and probabilistic fluctuation. For example if w = 4, then
# € {0,0.25,05,0.75,1}. So, if the actual price ogours at
some intermediate value, say p = .3, the closest one could
estimate would be p = .25. We call this an error resulting from
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quantization. Further, due to the probabilistic nature of the
dropping scheme, we could get (albeit with lower probability).
say p =1 as the estimate of p and incur a larger error in the
effective gradient. We call this the Hluctuation error.

This quantization error is inevitable under such a price esti-
mation scheme. Naturally. in a probabilistic dropping scheme,
one would also suffer from the fluctuation error, but in this
section we analyze the effects of quantization in isolation. as
it is the minimal error thal could occur.

The quantization error at each time, |vs(#)[. will be bounded
by _71,—1(7) where d, is the RTT of user s which is assumed
to be consiant. Therefore the condition (7) becomes

> im
el (t)

s2.5(1)

a— Y ),V

sE5(1)

(14)

We will apply this to derive the attraction regions for various
cases. :

Single-Source-Single-Link

Tn this simple case an analytical characterization of an

attraction region on the link will be derived. The condition
{7) reduces o
X

— > ¢ — (it 15
Dypebac{1) o = (2] (13)
Thérét’ore when @ > ¢, it hccumcs C> o —

T < ¢ it becomes ¢ < &

_ .
Taie and when
In the first case there is

f‘- 4 =2 < In the second

case the inequality is solvable iff and only if ¢ > ‘/£ and
the solution o the inequality is ¢ < @ < § — ,/¢? — 25

cand § 4 3 — 2¢ <@ < ¢ This is illustrated in Figure 3.
Nouce that [he solution set includes a “‘small window region”
where the extremely small rate can result in very large error

- which overcomes the gradient information. However, it is not
difficult to show (by realizing that persistence in this region
will -drive the price to zero) that the trajectory will eventually
escape this region. Thus, the part of the solution set containing
capacity (as shown) is indeed an atiraction region and is given
by : :

’r fl

always the solution ¢ < @ < 5 4

{16)

Pl
[ e}
+

VN
-<\
(3]
|
;|Iv
= e
Lo} &
-+
T | -
[

(&)
+
dilc
=9 =)
N

Inwitively, the quantity \/E is a measure of the aggres-
siveness of the protocol. If the capacity is greater than this
quantity, the analysis shows thai the attraction region is given
by (16). However, when the capacity is not greater than thig
threshold, the attraction re010n loses the lower bound and

becomes [0, £+ 3, /c? + 22), which suggests that the system
2 2 nd ¥

can oscillate all the way from 0 to £+ },/¢? + 25 This
situation is illustrated in Figure 4. :
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Fig. 3. ustration of the attraction region.

Atrazten
RA=guon

Vi

capanty

Fig. 4. Auraction region with capacity below threshold.

Multiple-Source-Single-Link

Suppose there are N sources sharing one link. Then (7)
becomes

N N
x

Qs
Z Indszs(t) Z o

s=1

{17

2
Letb = 4 vy, (“—) then the left band side of (17)
bec,ornes b multiplied by a convex combination of all the

L 4nd, through simple calculus, is bounded by QlEm)” X

z, . & : IMm y(t)”
Theretore (7) implies

Al 2 BN

N G] (18)

AMm  y(t)

Using the single-source-single-link results, the hounds for

. an attraction region for y(¢} are thus

. . 2
c +l\/cgibN4~(M+m)

) 4Mm

where, as in the single-source-single-link case, whenever the
quantity in the square root is negative, the lower bound is
replaced by 0. These results will be verified by the simulations
in section VIL
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Multiple-Source-Multiple-Link

When there are multiple links, we can obtain a region (using
the same manipulations from the prevmus section) for each
link and the bounds are

+1\/c2:i:bg|5 0P

where m(l} =

(ML) + m{D))?
AM{ym(l)

ol o

minggy ms, M(l) = max.) M, and [S(}] is

the number of sources sharing link {. Unfortunately, the proof

of Theorem 1 only allows us to guarantee that one of these
regions will be an aitraction region. This is a serious theo-
retical drawback, but the simulation results in the upcoming
section suggest that these regions actually still characterize the
dynamics of multple links quite well.

VII. SIMULATION RESULTS

In this section, we provide numerical results which corrob-
orate the previous analysis, Throughout. we set 5 = 0.5.

We first simulate the single-source-single-link case. The
utility function is chosen to be U(x) = m + g
where M = 100, m = 1. and we set = 1, Note that this
function is strictly concave, and satisfies 0 5 Ulz) < 1
Further, the constant « is given by M — m. The simulations
implement the synchronous version of the protocol proposed
in [9], with the addition of the deterministic quantization error
discussed prior. At each time ¢ the estirnated price p(t) is given
by the point closest to p(t) in the set {0, L, 2, ..2=L 1}

The simulation results in Figure 5 veritfy the predicted
hounds on the attraction region. The capacity is set to 50. The
results corroborate the above analysis; the system converges
to within the predicted bounds. and oscillates unpredictably
thereafter.

T T

Pradicied Bound on

/ Anraction Regon

481~ \ Predictad Bound on b
Altraction Rogon

Fig. 5.  When capacity 15 above threshoid. the attraction region is bounded
both from below and from_ above.
Figure 6 shows the behavior of the system when the capacily

is below the threshold. Here, the attraction region is no longer
bounded from below, and indeed the rate drops all the way
to the minimum rate from time to time. Notice that there are
large one-step excursions from the attraction region but the
trajectory always returns to it.
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Fig. 6. When capacity is below threshold. the attraction region is no longer
Jower bounded and the rate oscillates wildly.

Figure 7 is a “phase-plane” diagram showing several tra-
jectories of the system, and their convergence to a set that
resembles a parallelogram. The choice of initial conditons of
o and x, does not affect the inexact gradient argument and
therefore Theorem 1 implies that all such trajectories enter the
attraction region.

1 . : T
~
\
08 \\ {80.0.9) *—"'-—:_—"'
0.1 e
osh o - i
o7H s T
o6fl
05H
p
04K
naf - |
o2l - 1
e 1100.0)
0‘7...""7“0” ‘\u
1 L 1 1 L L 1 1 bl
) 0 20 EENEE % 0 %0 100
Fig. 7. Convergence with different initial points in the x-p plane.

Figure 8 shows the results from a two-source-one-link
simulation. The capacity is set to 70 and the utility functions
are such that my = m9 = 10, M; = 50, and My =
100. The dashed lines show the predicted bounds from the
above analysis, While we have not derived any bounds on
the individual source rates, the simulation suggests that the
variation in the individual rates is bounded by the variation in
the aggregate rate.
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\ Prediied Bound of
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40
0 ]
G AP BRI g g5 L S g stk e PR
ol . -
i 1 1 L i
o S0 100 t 158 200 250
Fig. 8. Bounds on the attraction region in the multiple-source-single-link

case.

-Finally we present simulation results for a multip-le-saurce-
multipie-link network, iflustrated in Figure 9, where link 1 is
shared by &; and x3 and link 2 is shared by @z and xa.

IS (R

o ~ o o

Fig. 9. Three-source-two-link Network.

We set my = my = mg = 3, M| = My = My = 100,
¢y = 99, ¢z = 60, and illustrate the attraction regions on each
link in Figure 10. We also present the individual source rates
in Figure 11.

Auracnon Region tor Link 2

301 4
20} : ~
10 4
0 100 200 300 400 t 500 (L) 700 B0 fonil 100
Fig.-10. Bounds on the z;uraction regions in the multiple-source-multiple-link
case. .
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Fig. 11.  Dymamics of individual source rates.

VII. CHOICE OF THE STEPSIZE vy

The properties guaranteed by Theorem 2 strongly suggest
the use of v,p in the absence of any additional information
about the optimization problem (1-2). We can conclusively say
that no v below this value should be chosen, and the worst-
case analysis suggests that we do not choose a larger v if we
are interested in provable convergence behavior.

In this section, we present simulation results which explore
the performance ot different choices of v, and verify the
aforementioned properties.

The scenario in [9] (i.e., with no estimation error) is a
special case of our formulation, in which (6) always holds
with 5 = 0. Our stepsize analysis thus suggests that we
take precisely half of the bound presented in [9]. The single-
source-single-link simulation with a quadratic wility function
in Figure 2 verifies the optimality properties of vgp,.

1=08%, =i
100 100
| \
a0} | 80
| \
80F + gar
X(t) b B e e X(t) fram £t 4
40 40
20 20
o [
0 1§ 20 30 40 o 0t 20 30
v= I.Z’A(op'
1003
;
80 \
(1 [ :
40} £
2
o
] wit =0 30 a0
. Fig. 12,  Convergence behavior with different choices of v without emror:

Yopt_is cleatly superior to other choices in this case.
Note first that, as predicted, all choices of y below ~ope are

outperformed by ~ap.. Further note that all larger values are
also outperformed, although this is not guaranteed in general.
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¥=0.5"Y

opt

¥ = 0.8, Y= Yop

100 100 100 1
[zl B S0 a0
80 i o
(1) x(t§ x(1§
70 FAtad 70
60 60 60
50 50 50
43 40 40
o] 2t0 40 o] 20 40
y=9 2‘Yop1 ¥=9 5'ant
100 100 100
=le] 80 80
O 0
X lLE
70 x(1§ i
40 feibesallie
60
50 20 20
40 ¢} o]
a 20 40 o 50 100 o 5{) 100
t t

Fig. 13. Convergence behavior with different choices of + when quantization error is present: Notice that since 11 = 0.8, yop: 15 11—0 the allowable upper

bound on + in the no-error case.

This global superiority holds because, in the case of quadratic
utility functions without error. the Lipschitz bounds uiilized in
the analysis are in fact tight.

The simulations also show that. as + approaches the bound
imposed by the convergence criterion, increasingly large oscil-
lations ensue. It can in fact be shown that the bound imposed
by the convergence condition, while only sufficient in general,
is also necessary in this case.

We now turn owr attention to the case with quantization error
as in the simulations of section VII, As shown in Figure 13,
we compare the performance of «v,,; against that of a range of
other choices above and below it. Here the attraction region
(denoted by the dashed lines in each subaraph) corresponds
=038

Omnce again, we verify the prediction that <,y outperforms
all lower values of . However, we note in this case that some
larger values of -y outperform v,,:. Als0 note that the transition
to instability occurs significantly above the bound we provide
tor provable convergence in the presence of error. Nonetheless.
it is still below the bound presented in [9].

IX. CONCLUSION AND FUTURE WORK

We have described an inexact-gradient approach Lo analyze
the effects of price estimation error on the optimization flow
controb scheme in [9]. We have examined specific error models
and derived atiraction regions that characterize the oscillation
of link utilizaition. In particular, the aitraction region seems
to have characterized the oscillation induced by quantization
error very well, The results hold for any network topology but
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unfortunately the dual function argument we use in the proof
of theorem 1 can only guarantee that one of the link rates has
an attraction region given by (7). However, this seems to be
the most general result one can get since the analysis does not
require any assumptions on what the error can be. We hope
to extend Theorem 1 (possibly with additional assumptions on
the error process) to cover all links in the multiple-link case
in the future.

For more general sources of stochastic error, we do not
expect this analysis to provide such tight bounds on the
attraction region, because we have taken a purely deterministic
worst-case approach. Indeed, the analysis is most appropriate
for error sources with relatively {lat probability distributions,
as heavy-tail distributions would necessitate a highly conser-
vative bound. For example, the aforementioned probabilistic
fluctuation error would result in essentially trivial bounds since
the worst-case error could in principle wipe out any usetul
information about the real price. However, we have seen in
our simulations that if an empirical bound (e.g. three times
the standard deviation) is taken then the attraction region
characterizes the fluctuation error case very nicely as well.

In finding sufficient conditions for convergence subject (o
error, we have derived a modified bound on the stepsize
presented in [9], which shows a linear tradeoff between
allowable stepsize and allowable (relative) error. In attempting
to find a mon-heuristic choice for this stepsize parameter, we
have provided a candidate which demonsirates some optimal-
ity properties. We have caiegorically eliminated all smailer
stepsizes as sub-optimal, and also shown that this choice gives



the best provable reduction in the dual function within the
scope of our analysis.
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