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Abstract— We propose a novel framework to solve the problem
of scheduling packets in high-speed input-queued switches with
frame-based control. Our approach is based on the application
of game theory concepts. We define a flexible scheduling policy,
named SSB (Slot Sell and Buy): the existence of a unique Nash
equilibrium for the policy is proved, together with properties of
convergence of these equilibria. These findings allows us to state
that our SSB scheduling policy achieves 100% throughput both in
isolated input-queued switches and in networks of input-queued
switches. Simulation results are used to further validate the
approach and to show its flexibility in dealing with differentiated
QoS guarantees.

I. INTRODUCTION

In the last years a lot of attention has been devoted to
scalability issues in switching architectures, the main reason
being the continuously increasing speed of transmission lines,
and the current trend towards convergence and consolidation
of networking technologies. IQ (Input Queued) and CIOQ
(Combined Input-Output Queued) switches have better intrin-
sic scalability properties with respect to output queued and
shared memory architectures, since they do not require an
internal increase in speed, named speedup, with respect to
input line speed, in both the switching fabric and in the buffer
used to store packets waiting to be forwarded.

However, in IQ and CIOQ switches two problems arise:
first, a rather complex queue architecture (named VOQ, Virtual
Output Queueing) is required to obtain good performance and,
second, the access to the switching fabric must be controlled
by some form of scheduling algorithm which operates on the
state of input queues. The scheduling algorithm is often called
matching algorithm due to the equivalence with matching in
bipartite graphs. This means that control information must
be exchanged among line cards, either through an additional
data path or through the switching fabric itself, and that
intelligence must be devoted to the scheduling algorithm,
either at a centralized scheduler, or at line cards in a distributed
manner. The scheduling algorithm complexity is usually the
main performance limitation, since the time available to run
the scheduling algorithm decreases linearly with the line speed
(at 10Gbit/s a 64-bytes packet lasts about 50ns). Thus, to
achieve good scalability in terms of switch size and port data
rate, it is essential to reduce the computational complexity
of the scheduling algorithm, as already pointed out by other
researchers (e.g., see [1]).

This work was supported by the Italian Ministry for Education, University
and Research, within the TANGO project.

As most researchers, we refer in this paper (i) to the case
of switches operating on fixed-size cells, (ii) to a synchronous
switch operation according to the cell time named slot, and
(iii) to a bufferless switching fabric.

Several slot-by-slot matching algorithms have been pro-
posed in the last years [2], [3], [4], [5], [6], [7], [8]. In all
those schemes, the switching configuration is selected at each
slot with independent decisions based upon the instantaneous
state of input queues. This means that during one time slot
the information about the queue state must be communicated
from the input cards to the scheduler, which runs the algorithm
to compute the matching. This approach does not scale well
when slot times keep reducing due to the increasing data rates.

Two possible approaches can be pursued to control and
reduce the matching complexity. First, cells transmissions can
be organized in a frame, and matching algorithms can be
run once in a time frame [1], [9], [10]. Second, given the
correlation in time of queue occupancies, memory of the
previous frame can be exploited in a differential scheme to
reduce matching complexity [6], [8].

In a frame-based matching scheme, a frame length is
defined in terms of a number of slots, and the scheduler
acts on snapshots of queues taken at frame boundaries. A
matching algorithm is run once in a time frame to obtain the
switch configuration in each time slot inside a frame. Thus,
the matching algorithm can be run on a time-scale largely
independent from the line speed, since the frame length can
be tailored by the designer on the basis of the running time of
the algorithm, and of the required performance figures (delays
tend to increase in frame-based schemes). In other words, this
approach permits a conceptually important decoupling of the
time scale upon which the switch is controlled from the time
scale upon which individual data unit are transmitted, i.e., a
decoupling of the time constraints of the control plane and the
data plane.

Differential matching exploits the queues state correlation
to ease the task of the matching algorithm. This approach was
pursued in [6], [8], where the new matching is obtained by
comparing simple perturbations of the matching selected in
previous slot.

It has been recently shown that schedulers based on MWM
fail to guarantee 100% throughput in networks of intercon-
nected IQ switches. Hence, new policies suited for networks of
interconnected switches were proposed and proved to achieve
100% throughput (see [11], [12], [13]). The significance of
those results, however, is mainly theoretical since the proposed
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policies appear too complex for a practical implementation
in high-speed routers. Moreover, most of the policies defined
in [11], [12], [13] require some form of active coordination
and cooperation among different switches, thus either the
definition of a new signalling protocol among switches, or the
introduction of new fields in the packet format, are required
to support them in real networks. As a consequence, the
definition of an optimal scheduling policy that guarantees
100% throughput for networks of IQ switches and can be
efficiently implemented is an interesting research problem.

In this paper we propose a novel approach based on a
differential frame-based matching scheme, trying to exploit
both the frame-based advantages, and the features of differ-
ential schemes. To achieve good performance, both in terms
of throughput and delay, we design an adaptive scheduling
scheme in which the switch configuration sequence is kept
dynamically matched to the traffic traversing the switch. A
simple closed-loop scheme that is in charge of adapting the
scheduling sequence to traffic dynamics is proposed.

We were able to model our scheme in the game theory
framework. If we see all the possible switch configurations
as possible resource allocations, we will be able to model the
frame-based matching problem as a resource allocation prob-
lem, where each virtual output queue plays the role of an agent
who is trying to buy the switching resources. According to this
model, input cards play a competitive game to decide their
share of the switching fabric bandwidth. We apply the game
theory framework to prove the properties of our scheduling
algorithm. A unique Nash Equilibrium Point (NEP) [14] can
be proved to exist for the game that models the scheduling
algorithm evolution. We further prove the efficiency of the
unique NEP, and the convergence of the algorithm to the NEP.
Using these intermediate results, we are able to prove that
our scheduling policy achieves 100% throughput under a large
class of input traffic patterns, and that this result holds also in
a network of switches. Moreover, we examine the proposed
framework in realistic scenarios by simulation, proving the
system flexibility and good performance.

The contribution of the paper, beyond the particular pro-
posed frame-based scheduler, lies in the general framework
in which such scheduler is presented. Although the stability
properties and the performance of the proposed scheme can
probably be obtained with simpler heuristics, our framework
bears significant flexibility, and enables generalizations to
other interesting performance metrics (i.e., to other cost func-
tions), while preserving the provability of optimality.

II. FRAME-BASED SCHEDULING

Our system is based on a differential frame-based matching
technique. Before providing an overview of the proposed
algorithm, described in detail in Sect. IV, we better motivate
our approach and describe more precisely the frame based
matching environment.

In a frame-based matching scheme, a frame is defined as
a sequence of F consecutive time slots, and the selection of
a set of non conflicting cells is performed at the end of each
frame, typically on the basis of snapshots of queues state taken

at frame boundaries. Thus, the first advantage of frame-based
algorithms is that they do not run at the time slot scale since
they are executed at frame boundaries.

Note that, whereas the maximum number of non conflicting
cells set is equal to N in an N × N switch for slot by
slot algorithms, in the case of frame-based matching the
maximum number is N × F . Thus, in frame-based matching,
a second step, often named scheduling, is required after the
matching procedure, to determine the order in which the set
of non conflicting data are transferred in the sequence of
time slots within the frame. It is known that the asymptotic
sequential complexity of slot-by-slot matching and frame-
based matching are comparable, and varies depending on the
considered algorithm (between O(N3) and O(N2)); however,
the complexity of frame-based matching may depend also on
the frame size F .

For what regards complexity, the best compromise between
complexity and performance has been an open and question-
able issue in the design of schedulers. It is however important
to note that heuristic matching schemes with acceptable com-
plexities were shown to be more robust to traffic scenarios and
provide better performance for frame-based schedulers with
respect to slot-by-slot schedulers (see, e.g., [10]).

The frame length is an important system parameter that
must be chosen with care, jointly with the slot size. Discussing
this issue is beyond the scope of this paper, but typical slot
sizes are around one hundred bytes, and the frame lengths
are around hundreds/thousands of slots. Fixed-size frames are
preferred to variable-size frames since they are best suited to
be implemented (their running time is fixed) and to provide
bandwidth guarantees to flows: indeed, bandwidth requests can
be easily translated in slots per frame. We consider only fixed-
size frames in this paper.

Frame-based matching may entail an increase in cell transfer
delay through the switch with respect to slot-by-slot matching;
the delay is tied to the frame length, and this effect is evident
at low loads. However, given the higher efficiency of frame-
based scheduling with respect to slot-by-slot scheduling (when
the algorithms have similar asymptotic sequential complexity),
it can be shown that they may provide higher throughput,
and thus also lower delays at high loads [10]. Although the
continuously increasing line speed makes the slot time shorter
when measured in seconds, end-to-end delay guarantees must
be satisfied on an absolute basis (e.g., milliseconds), making
easier the task of satisfying delay guarantees within faster
switches.

A final advantage of frame-based matching is the reduction
in the amount of information that must be exchanged through
the switch to run the algorithm. Even if the difference heavily
depends on the considered algorithm, the need to exchange
less information depends directly from the fact that frame-
based matching algorithms need to know the system state
less frequently than slot-by-slot algorithms. Differential ap-
proaches, where successive matchings are computed by small
perturbations of previous matchings, help in further reducing
the amount of information that must be exchanged among line
cards to run matching algorithms.

For all the above reasons, we base our proposal on a
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differential fixed-size frame-based matching algorithm.
We assume that traffic rate estimates are obtained on-line

(i.e. in real time) by using a proper measurement algorithm;
the details of this estimate process are beyond the scope of this
paper, but a standard numeric filter based on an exponential
weighted average can be used. Note that the estimation may
derived relying on a much simpler use of the queue length
information only; this choice, which is very attractive for
implementation, does not permit a theoretical analysis to be
performed, but proves to perform very well in simulation.

We take a differential approach: rather than using the
latest traffic estimates to determine a new matching, we use
this information to modify the matchings determined in the
previous frame, thereby reducing the algorithmic complexity
due to traffic correlation among frames.

The algorithm used to modify the matchings is based on a
negotiation process run among input cards, with the goal of
“purchasing” the right amount of bandwidth. Each input/output
pair minimizes a cost function; this process may increase,
decrease or keep constant the amount of slots assigned to each
input/output pair within the frame. Note that the algorithm uses
traffic rate estimates only to adapt the previous frame to the
modified traffic scenario; thus, it is more suited to a scenario
where traffic rates do not vary dramatically within a frame
time, which however is a reasonable assumption especially
for core routers aggregating thousands of flows. This choice
allows us to control algorithmic complexity at the price of
a reduced system reactivity. However, the system proves to
provide good performance also when loaded with time-variant
traffic, as shown using simulation results.

III. SYSTEM MODEL AND NOTATION

We consider IQ or CIOQ cell-based switches with N input
ports and N output ports, all running at the same cell rate.
The switching fabric is assumed to be non-blocking and
memoryless, i.e., cells are only stored at switch inputs and
outputs. The average cell arrival rate at input i and directed
to output j (with i, j = 0, 1, 2, . . . , N − 1) is denoted by λij ;
the average traffic matrix is Λ = [λij ].

At each input, cells are stored according to the VOQ policy:
one separate queue is maintained at each input for each output.
Thus, the total number of input queues in each switch is
N2. We do not model possible output queues since in this
paper we are mainly interested in studying the transfer of cells
from inputs card to output cards through the switching fabric.
Neither we consider multiple traffic classes. Let qij be the
queue at input i storing cells directed to output j. Lij denotes
the number of cells stored in queue qij .

We consider a synchronous operation, in which the switch
configuration can be changed only at slot boundaries. We call
internal time slot the time necessary to transmit a cell from
an input toward an output. We call instead external time slot
the duration of a cell on input and output lines. The difference
between external and internal time slots is due to the switch
speed-up, and to possibly different cell formats (e.g., due to
additional internal header fields).

We consider crossbar-like switching fabrics, i.e., at each
internal time slot the switching fabric supports up to N parallel

connections among inputs and outputs on which cells are
simultaneously transferred. Let S = [sij ] be an N ×N binary
matrix which represents the switching configuration: sij = 1 if
the switching fabric connects input i with output j; otherwise,
sij = 0. We typically assume that S represent an input/output
permutation, i.e.

∑
k sik = 1 and

∑
k skj = 1 for all i and j.

To avoid overloading any input and output port, the to-
tal average arrival rates in cells per external slot must be
less than 1 for all input and output ports; in this case we
say that the traffic loading the switch is admissible, that is
maxk{

∑
k λik,

∑
k λkj} < 1.

Note that any admissible traffic pattern can be transferred
without losses in an OQ switch with large enough queues.

IV. SCHEDULING POLICY DESCRIPTION

The scheduling policy we propose is called SSB (Slot-Sell-
and-Buy) and operates on a fixed-frame horizon; let F denote
the frame length in slots. At the beginning of each frame, the
scheduling algorithm is in charge of computing the scheduling
plan, i.e., the set S of switching matrices S(k), with 0 ≤ k <
F , for all the F slots within the frame.

The scheduling algorithm works in two phases:
1) Bandwidth-Computation. At the beginning of each

frame, matrix B = [bij ] is evaluated; the element
bij denotes the effective bandwidth allocated in the
current frame to input/output pair (i, j), normalized to
the external line rate.

2) Plan-Scheduling. Given B from the previous phase, the
F switching matrices S(k) of the scheduling plan S
are computed for the current frame, in such a way that∑F−1

k=0 sij(k) = bij × F .
We now describe the two phases in more detail.

A. Bandwidth-Computation Phase

We consider a simple algorithm for the evaluation of band-
widths bij assigned to each input/output pair; this algorithm
is conceptually inspired by game theory concepts.

In our game, a different agent corresponds to each in-
put/output pair. A central scheduler interacts with the agents.
The algorithm is run once per frame, e.g., at the beginning
of the frame. Each agent eventually buys a given amount of
bandwidth xij ; we name X = [xij ] the negotiated bandwidth
matrix. The central scheduler determines matrix B, which is
dependent on X through a bandwidth allocation function.

The agent decision is taken on the basis of bandwidth needs
(possibly determined via some type of measurement in the
previous frame) and bandwidth costs (issued by the central
scheduler). Agents are constrained to limit their bandwidth
increase/decrease requests per frame to increment/decrement
with respect to the bandwidth assigned to each agent in the
previous frame; thus, the scheduler may run a differential
algorithm in the plan-scheduling phase, limiting the scheduling
complexity.

The central scheduler, on the basis of the knowledge of the
negotiated bandwidth matrix X assigns a cost per slot per
frame to each agent. The cost per slot is communicated to
each agent, who will base its next negotiation evaluation on
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the basis of the new costs and of its needs. Note that the
agent has no knowledge of the bandwidth purchased by other
agents; the system is such that an increment (decrement) of
the purchased bandwidth xij will result in a corresponding
increment (decrement) of the bandwidth bij obtained by the
scheduler if the system is not in overload.

We now describe in more detail how the operation of slot ne-
gotiation works for the agent aij associated with input/output
pair (i, j) and with queue qij . We describe the agent behavior
at the beginning of a generic frame; thus, we do not explicitly
indicate the frame index in the notation. In the sequel, when
needed, we will use the notation [n] to indicate that frame with
index n is considered.

Each agent bases its decision on a cost function, which is
minimized by each agent to determine which is the optimal
amount of bandwidth to negotiate. The cost function Cij for
agent aij is composed by adding a performance cost function
Q and a bandwidth cost function P :

Cij = Q(bij) + P (xij , Ii, Oj) (1)

where Ii =
∑

j xij is the total amount of bandwidth purchased
from input i, and Oj =

∑
i xij is the total amount of

bandwidth purchased towards output j.
The term Q(bij) of Eq. (1) corresponds to a performance

cost (penalty), which is a function of the assigned bandwidth
bij . If the performance penalty increases, the agent will be in-
duced to buy bandwidth, in order to improve his performance.
Otherwise, if Q(bij) decreases, the agent interests will be to
sell bandwidth, in order to decrease his final cost.

The term P (xij , Ii, Oj) of Eq. (1) represents the bandwidth
cost, that is, the cost of the purchased bandwidth xij . It is
computed based upon information sent by the scheduler to
the agents (Ii and Oj can be not locally known). This term
has the goal of indirectly inducing the agents to play in a
coordinated fashion: to obtain this goal, the function is set
growing to infinity when the total purchased bandwidth for an
input or an output is close to the saturation. In other words, this
function is infinity when max(Ii, Oj) → 1. We will discuss
in Sect. V-A all the exact conditions that functions Q(·) and
P (·) must satisfy to end up with an efficient and stable SSB
game.

Let us clarify the relation between the cost function and xij .
Let zij[n] be the number of slots negotiated by, and assigned
to agent aij in frame n; clearly, xij [n] = zij [n]/F . During
the operation of slot purchase, zij [n] is computed according
to the following simple “differential” algorithm:

zij [n] = min{F,max{0, zij[n − 1] + ∆ij [n]}}
where ∆ij [n] can assume two values {−1,+1} (corresponding
to actions of slot “selling” and “buying”), according to the
following algorithm:

∆ij [n] =




+1 if λij ≥ bij AND λij > 0
+1 if λij < bij AND ∂Cij

∂xij
< 0

−1 if λij = 0
−1 if λij < bij AND ∂Cij

∂xij
≥ 0

We choose to permit only one-slot variations per frame for
simplicity. If we allow ∆ to assume values up to ±h, the

allocated bandwidth may change up to h/F during each frame,
for each input/output pair. This influences the reactivity of the
system to traffic changes: h should be tailored on the basis of
the maximum allowed traffic changes. However, the important
system parameter is the ratio h/F ; fixing h = 1 imposes
some constraint on the choice of F , but does not prevent the
selection of a correct time constant for the system in operation.
We do not tackle this issue deeply in this paper, whose aim is
to describe a flexible framework for dealing with frame based
scheduling, rather than optimizing system parameters.

Note that the above scheme, being based on independent
choices made by each agent, may create an overload in
overall slot requests; this is a transient phenomenon, given the
assumption that the system is not in overload. A simple ceiling
scheme to make slot requests feasible is used in slot allocation.
Fairness is ensured by a round robin selection among agents.

For the computation of the bandwidth allocation matrix in
the bandwidth computation phase, we consider the following
rule:

bij(X) = xij +
1
N

(1 − max(Ii, Oj)) (2)

In other words, the excess bandwidth is evenly shared among
competing flows. With this scheme, the maximum bandwidth
variation per frame for each input (or output) is N slots. This
constrains the worst case complexity of the plan-scheduling
phase, which is differential in nature.

We consider now some realistic cost functions that could
be reasonably implemented in real switches.

Performance cost:
• Average queue length: Q(bij) = λij/(bij − λij) (derived

from the average length of an M/D/1 queue) for bij >
λij , and Q[bij ] = +∞ when bij ≤ λij . Q(bij) depends
on the average arrival rate λij : if λij is not known a priori,
an on-line estimator of λij is required. This function
satisfies the conditions of Sect. V-A for the existence and
uniqueness of a NEP.

• Average delay: Q(bij) = 1/(bij − λij) (derived from the
average delay of an M/D/1 queue) for bij > λij , and
Q(bij) = ∞ when bij ≤ λij . Also in this case, if λij is
not a priori known, an on-line estimator of λij is required.
This function satisfies the conditions of Sect. V-A for the
existence and uniqueness of a NEP.

• Queue length: ∂Qij/∂bij = −Lij [n]; in this case, the
variation of the performance cost function is evaluated
by just looking at the instantaneous queue length at time
n; the main advantage of this metric is that it does not
require any knowledge or estimation for λij ; thus, it is
an appealing choice for practical implementations. The
intuitive explanation is that, as the queue grows, the
incentive for the agent to buy more bandwidth increases,
since the decrease in the cost function is more sensible
to the bandwidth. More formally, consider the following
performance cost, after setting small ε > 0:

Qij(bij) = −
∫ bij

λij+ε

E[Lij(θ)]dθ +
∫ 1

λij+ε

E[Lij(θ)]dθ

where E[Lij(bij)] is the generic relation between the
average queue length and the service rate. Since bij ≤
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1, then Qij is always finite and positive. Hence,
∂Qij/∂bij = −E[Lij(bij)], that is Qij is a decreasing
function of bij . Now we can check the convexity of the
function: ∂2Qij/∂b

2
ij = −∂E[Lij]/∂bij > 0, since for

any M/G/1 queuing system the average queue length
is decreasing with the service rate. We then approximate
∂Qij/∂bij = −E[Lij(bij)] with the current −Lij [n]. The
main disadvantage of this rough approximation is that
with this cost function we cannot prove the same stability
properties of the other performance cost functions, as
done in Sect. V-D. Nevertheless, in Sect. VI we show by
simulation that the system using this function performs
very similarly to the system based on other, theoretically
stable, functions.

Bandwidth cost:
• Proportional bandwidth cost: P (·) = xij/(1 −

max(Ii, Oj)), being 1/(1 − max(Ii, Oj)) the “cost per
unit of bandwidth”.

• Fixed bandwidth cost: P (·) = 1/(1 − max(Ii, Oj)).
Several combinations of performance and bandwidth cost

functions can be envisioned. For example, if we set the cost
function Cij to the sum of the two following terms:

Q(bij) =
λij

(bij − λij)
, P (xij , Ii, Oj) =

xij

1 − max{Ii, Oj}

when bij > λij , ∆[n] is computed on the basis of:

∂Cij

∂xij
=

∂Q

∂bij

∂bij

∂xij
+

∂P

∂xij
=

=
−λij

(bij − λij)2

(
1 − 1

N

)
+

1 + xij − max{Ii, Oj}
(1 − max{Ii, Oj})2

When the arrival rates {λij} are unknown, some estimators
{λ̂ij} have to be employed, tailored to the traffic character-
istics. For example, if the traffic is stationary, then a simple
integrator can be used:

λ̂ij [n] =
1
n

n∑
t=1

aij [t]

being aij [t] equal to 1 when an arrival is experienced at queue
qij . Otherwise, if the traffic is time-variant, then a first order
filter can be used:

λ̂ij [n] = αλ̂ij [n− 1] + (1 − α)aij [n] (3)

where α, 0 < α < 1, determines the filter reactivity: 1/(1−α)
is the approximate number of frames necessary to correctly
estimate a new arrival rate.

B. Plan-Scheduling Phase

The classic Paull algorithm is used to update the scheduling
plan, on the basis of B[n]−B[n−1], i.e. to increase or decrease
the number of slots given in the frame for each input/output
pair. Paull algorithm was defined to configure rearrangeable

circuit switching three-stage Clos interconnection networks.
The equivalence between frame scheduling and the config-
uration of Clos networks has been deeply discussed in [15].
Paull algorithm, as described in [16], may be simply adapted to
frame scheduling by looking at the identifier of a middle-stage
switching module in a Clos network as time slot position inside
the frame, and at each first/third stage switching module as an
input/output port of an IQ switch. The most interesting feature
of the Paull algorithm is that it can increase and decrease the
bandwidth allocated in a frame with the granularity of a single
slot.

Using the efficient data structure (called “Paull-matrix”)
proposed in [16], the computational complexity can be es-
timated as O(N) for each slot addition, and O(1) for each
slot removal. Paper [15] discusses the implementation details
of the algorithm. Note that the complexity is independent from
the frame size F . Paull algorithm can be parallelized and be
implemented very efficiently in hardware, following the design
ideas of controllers for traditional Clos networks.

V. THE GAME THEORETICAL MODEL OF THE SCHEDULING

POLICY

In this section we will apply basic concepts from game
theory in order to prove properties of our SSB policy.

A. Existence of Nash equilibria

In the following, we neglect the quantization effect of the
bandwidth that each agent can purchase, due to the finiteness
of the frame size F .

Here we briefly summarize the main properties of above
described functions, Cij(xij , Ii, Oj), Q(bij), P (xij , Ii, Oj),
bij(xij , Ii, Oj), which we will exploit in the following proofs1.

• Total cost: Cij(xij , Ii, Oj) = Q(bij) + P (xij , Ii, Oj).
• Performance cost:

1) Q(bij) = +∞ for bij ≤ λij .
2) Q(bij) is continuous and double derivable, strictly

decreasing and strictly convex2 function with re-
spect to bij , where it is finite.

• Bandwidth cost:

1) P (xij , Ii, Oj) is continuous and doubly derivable,
increasing and strictly convex function with respect
to xij .

2) P (xij , Ii, Oj) is weakly increasing and weakly con-
vex with respect to Ii and Oj .

3) limxij→1 P (xij , Ii, Oj) = limIi→1 P (xij , Ii, Oj)
= limOj→1 P (xij , Ii, Oj) = +∞.

• Bandwidth allocation:

1) bij(xij , Ii, Oj) = xij + (1 − max(Ii, Oj))/N is
a strictly-increasing function, weakly-concave with
respect to xij , satisfying the constraint bij ≥ xij ;

1In the sake of readability, we will omit some variables inside the (·) when
they are clear from the context.

2f(x) is weakly convex if ∂2f/∂x2 ≥ 0; f(x) is strictly convex if
∂2f/∂x2 > 0.
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in addition3, ∂bij/∂xij = 1 and dbij/dxij = (1 −
1/N).

2) bij(xij , Ii, Oj) is decreasing and weakly-concave
with respect to max(Ii, Oj); ∂bij/∂ max(Ii, Oj) =
−1/N .

All of the previous properties are of immediate verification in
our scheme.

Theorem 1: For the basic SSB game, in which the strategy
space is:

AX = {X : Ii ≤ 1, Oj ≤ 1, bij(X) ≥ λij , ∀i, ∀j}

at least a finite Nash Equilibrium Point (NEP) exists.
Proof: Q(bij(xij , Ii, Oj)) can be immediately verified

to be weakly-convex with respect to xij , since Q(bij) is
convex, strictly-decreasing and bij(xij , Ii, Oj) is concave.
Since also P (xij , Ii, Oj) is convex with respect to xij , then
Cij(xij , Ii, Oj) is convex with respect to xij . Now, if we prove
that AX is compact and convex, the existence of a NEP is
guaranteed by the Kakutani fixed point theorem [17].

The compactness of AX derives immediately from the fact
that it is a closed and bounded subset of IRN2

. To apply the
Kakutani theorem, it is only necessary to show that AX is
convex, i.e., for any couple of matrices X(1) and X(2) both
belonging to AX , all matrices X(α) = αX(1) + (1 − α)X(2)

for α ∈ [0, 1] lie in AX too. Let B(X) be the instantaneous
bandwidth matrix corresponding to X . For any agent aij , it
holds:

bij(x
(α)
ij ,max(I(α)

i , O
(α)
j )) =

= αbij(x
(1)
ij ,max(I(1)

i , O
(1)
j )) + (1 − α)bij(x

(2)
ij ,

max(I(2)
i , O

(2)
j )) ≥ αλij + (1 − α)λij = λij

Thus it results X(α) ∈ AX .
Corollary 1: For the basic SSB game, all the possible NEPs

are finite. In other words, if X∗ is a NEP with corresponding
B∗, then: b∗ij > λij and max(I∗i , O

∗
j ) < 1.

Proof: Assume by contradiction that an infinite NEP X∗

exists and the corresponding bandwidth is B∗; then two cases
are possible: (i) max(I∗i , O

∗
j ) = 1, or (ii) b∗ij = λij , for some

agent aij . In case (i), say that I∗i = 1; then all agents aik

experience an infinite bandwidth cost; among them there is
at least an agent ail whose performance cost Q(x∗

il) is not
infinite since the traffic is admissible. Thus agent ail would
decrease his own cost by selling bandwidth, and X∗ cannot
be a NEP. The same argument holds in the case O∗

j = 1. In
case (ii), agent aij experiences an infinite performance cost
Q(x∗

ij), then it would reduce his own cost by buying some
extra bandwidth (whose cost is finite since max(I∗i , O

∗
j ) < 1),

and X∗ cannot be a NEP.
In the extended SSB game, the strategy space A′

X include
also vectors X for which the constraint bij ≥ λij is violated:
A′

X = {X : Ii ≤ 1, Oj ≤ 1, ∀i, ∀j}, i.e. some players
can experience an infinite cost function. For this extended

3In the notation, we distinguish between partial and total derivatives, i.e.
df(x, y(x))/dx = ∂f(x, y)/∂x + ∂f(x, y)/∂y × ∂y/∂x.

switching game, the agent should deal with infinite values of
the cost function. We say that

Cij = Q(bij) + P (xij , Ii, Oj) for bij > λij

However, for values bij ≤ λij to which an infinite cost
function corresponds, we postulate that greater values of xij

are strictly preferred by agent aij , since they correspond to
larger values of throughput bij .

Theorem 2: All the possible NEPs for the basic SSB game
are also NEPs for the extended SSB game.

Proof: Consider a point X∗ which is a (finite) NEP for
the basic game. Say that agent aij of the extended game has
bought x∗ and x̃∗ is the vector of all the other elements of X∗.
Consider now the strategy space Ax on agent aij conditioned
on the other agents’ purchased bandwidths x̃∗, i.e. Ax is
the restriction of AX on a segment; note that the minimum
value of Ax is the x′ such that b(x′, x̃∗) = λij . Because of
Corollary 1, x∗ is an internal point of Ax and Cij(x, x̃∗) is
convex with respect to x where it is finite. Hence, x∗ is a
local minimum of Cij(x, x̃∗). Now consider A′

x defined as the
restriction of A′

X on the strategy space of agent aij . Note that
Ax ⊆ A′

x and x = x∗ is still a local minimum of Cij(x, x̃∗),
that is a global minimum, because Cij is still convex on A′

x

where it is finite. Then, the NEP will still remain in X∗.
By following the same reasoning of the proof of Corollary 1,

it can be shown:
Corollary 2: For the extended SSB game, all the possible

NEPs are finite.

B. NEP uniqueness

Theorem 3: The extended SSB game admits a unique NEP.

Proof: By contradiction, assume that two different NEPs
X(1) and X(2) exists. Consider an agent aij . We can have
four different cases.

Case (a). If max(I(1)
i , O

(1)
j ) ≤ max(I(2)

i , O
(2)
j ) then b

(1)
ij ≥

b
(2)
ij . To show this case, we will prove that either the cases

(a.1) b
(1)
ij < b

(2)
ij and x

(1)
ij ≥ x

(2)
ij , or (a.2) b

(1)
ij < b

(2)
ij and

x
(1)
ij < x

(2)
ij , are impossible.

Case (a.1). Suppose b
(1)
ij < b

(2)
ij and x

(1)
ij ≥ x

(2)
ij . bij is

increasing with respect to xij and decreasing with respect
to max(Ii, Oj). Thus b

(1)
ij = b(x(1)

ij ,max(I(1)
i , O

(1)
j )) ≥

b(x(2)
ij ,max(I(1)

i , O
(1)
j )) ≥ b(x(2)

ij ,max(I(2)
i , O

(2)
j )) = b

(2)
ij

which is in contrast with the assumptions.
Case (a.2). Suppose b

(1)
ij < b

(2)
ij and x

(1)
ij < x

(2)
ij . At both

NEPs the Kuhn-Tucker conditions must be satisfied:

∂Cij(X)
∂xij

∣∣∣∣
X(1)

=
∂Cij(X)

∂xij

∣∣∣∣
X(2)

= 0 ∀i, j (4)

with

∂Cij(X)
∂xij

=
∂Q(bij)
∂bij

∂b(xij ,max(Ii, Oj))
∂xij

+

+
∂P (xij , Ii, Oj)

∂xij
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Due to the definition of bij(X), ∂bij/∂xij is a positive
constant and Qij(bij) is strictly convex and decreasing:

∂Qij

∂xij

∣∣∣∣
X(1)

=
∂Qij

∂bij

∣∣∣∣
B(1)

∂bij

∂xij

∣∣∣∣
X(1)

<

<
∂Qij

∂bij

∣∣∣∣
B(2)

∂bij

∂xij

∣∣∣∣
X(2)

=
∂Qij

∂xij

∣∣∣∣
X(2)

To satisfy the Kuhn-Tucker conditions (4), it must be:

∂Pij

∂xij

∣∣∣∣
X(1)

>
∂Pij

∂xij

∣∣∣∣
X(2)

(5)

But the last relation is impossible since P (xij , Ii, Oj) is
convex in both xij and max(Ii, Oj).

As a conclusion of previous arguments, we proved that: (a)
max(I(1)

i , O
(1)
j ) ≤ max(I(2)

i , O
(2)
j ) necessarily entails b

(1)
ij ≥

b
(2)
ij .

Case (b). If max(I(1)
i , O

(1)
j ) ≥ max(I(2)

i , O
(2)
j ), then b

(1)
ij ≤

b
(2)
ij . Indeed, this case can be shown by exchanging the roles

between X(1) and X(2) in case (a).
Case (c). If max(I(1)

i , O
(1)
j ) < max(I(2)

i , O
(2)
j ) and b

(1)
ij =

b
(2)
ij then x

(1)
ij < x

(2)
ij . Indeed, since bij(xij ,max(Ii, Oj)) is

strictly increasing in the first argument, and strictly decreasing
in the second argument.

Case (d). If max(I(1)
i , O

(1)
j ) = max(I(2)

i , O
(2)
j ) then x

(1)
ij =

x
(2)
ij . Indeed, if we assume x

(1)
ij < x

(2)
ij , then b

(1)
ij < b

(2)
ij ,

which is in contradiction with case (a). If we instead assume
x

(1)
ij > x

(2)
ij then would result b(1)ij > b

(2)
ij , thus in contradiction

with case (b).
Now we show that if, X(1) and X(2) are different, then

there exists at least an agent aij for which (a), (b), (c) or (d)
are necessarily violated.

Consider now when maxi max(I(1)
i , O

(1)
i ) �=

maxi max(I(2)
i , O

(2)
i ); without loss of generality, assume:

maxi max(I(1)
i , O

(1)
i ) < maxi max(I(2)

i , O
(2)
i ) = α and

I
(2)
0 = α. Then consider the elements on the first row of

X(1) and X(2); from bij ≥ xij , it results
∑

j b
(2)
0j = 1, since

I
(2)
0 = max(I(2)

0 , O
(2)
j ), while in general

∑
j b

(1)
0j ≤ 1, since

we are not sure that I
(1)
0 = max(I(1)

0 , O
(1)
j ). Then there are

two cases:
Case (i). b

(1)
0j = b

(2)
0j for all j; then by (c) x

(1)
0j < x

(2)
0j for

any j. At the same time,

∂Q0j

∂b0j

∣∣∣∣
B(1)

=
∂Q0j

∂b0j

∣∣∣∣
B(2)

∀j

Being ∂b0j/∂x0j a constant, to satisfy the Kuhn-Tucker con-
ditions, it should be:

∂P0j

∂x0j

∣∣∣∣
X(1)

=
∂P0j

∂x0j

∣∣∣∣
X(2)

∀j

But P (·) is strictly convex with respect to xij and
max(Ii, Oj); since, x

(1)
0j < x

(2)
0j and max(I(1)

0 , O
(1)
j ) <

max(I(2)
0 , O

(2)
j ) for all j, then the final result is a contra-

diction:

∂P0j

∂x0j

∣∣∣∣
X(1)

<
∂P0j

∂x0j

∣∣∣∣
X(2)

∀j

Case (ii). There exist some agents a0j such that b(1)0j �= b
(2)
0j ,

but in this case at least for one j it must hold b
(1)
0j < b

(2)
0j

(otherwise it cannot be 1 =
∑

j b
(2)
0j ≥ ∑

j b
(1)
0j ). Thus (a) is

violated.
Now consider the case in which maxi max(I(1)

i , O
(1)
i ) =

maxi max(I(2)
i , O

(2)
i ) = α, if there exists an input i (or an

output j) such that I
(2)
i = α and I

(1)
i < α (or O

(2)
j = α

and O
(1)
j < α), we can apply the same reasoning as for the

previous case to show that a contradiction necessarily arises.
Otherwise for any maximal row i (or maximal column j),

it must be x
(1)
ik = x

(2)
ik , b

(1)
ik = b

(2)
ik , and ∀k, (x(1)

kj = x
(2)
kj , and

b
(1)
kj = b

(2)
kj ∀k), from (d). In this case we can neglect maximal

rows (columns) and repeat the previous arguments to the sub-
matrices X

(1)
∗ and X

(2)
∗ containing the elements of X(1) and

X(2) respectively, which are not on maximal rows (columns).
Iterating the reasoning, it results that the contradictions are
avoided only if X(1) = X(2).

C. Convergence to the NEP

In this section we discuss the convergence properties of
the iterative algorithms to the unique NEP. We consider the
scenario in which periodically all agents at the same time
update the purchased bandwidth, according to the following
the Jacobi iterative scheme: xij [n + 1] =

=




xij [n] − α
∂Cij

∂xij
[n] if

{
max(Ii[n], Oj [n]) < 1
AND bij [n] > λij

max(0, xij [n] − δ) if max(Ii[n], Oj [n]) = 1

min(1, xij [n] + δ) if

{
max(Ii[n], Oj [n]) < 1
AND bij [n] ≤ λij

where α > 0 and 0 < δ < 1 are two parameters of the
algorithm.

Theorem 4: The extended SSB game, adopting Jacobi iter-
ative scheme, converges to the unique NEP for a small enough
α.

Proof: We only sketch the proof. Let X∗ be the only
NEP to which the matrix B∗ of instantaneous bandwidth
corresponds. Let us consider X [n], the algorithm operational
point at time-instant n. We suppose that there exists an ε > 0
such that both bij [n] > λij + ε and

∑
xij [n] < 1 − ε. In this

case we can suppose that ∂Cij/∂xij is bounded, i.e., there
exists a finite M such that |∂Cij

xij
| < M . This assumption

can be relaxed by observing that in all operational points that
do not satisfy the previous assumptions the cost function is
unbounded. As a consequence, if the system starts from a
point that does not satisfy the previous assumptions, it will
move toward the region that satisfies the previous assumptions,
from which it will never escape if α is sufficiently small.

Under previous assumptions it is immediate to prove
that: (a) if bij [n] ≥ b∗ij along with max(Ii[n], Oj [n]) ≥
max(I∗i , O

∗
j ), then xij [n] ≥ x∗

ij (as already shown in the
proof of Theorem 3) and ∂Cij

∂xij
≥ 0; in a similar way, (b)

if bij [n] ≤ b∗ij along with max(Ii[n], Oj [n]) ≤ max(I∗i , O
∗
j ),

then xij [n] ≤ x∗
ij and ∂Cij

∂xij
≤ 0.

Note that, if X [n] �= X∗, at least one agent aij exists such
that at the same time xij [n]−x∗

ij > 0 and max(Ii[n], Oj [n])−
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max(I∗i , O
∗
j ) ≥ 0 (or xij [n]−x∗

ij < 0 and max(Ii[n], Oj [n])−
max(I∗i , O

∗
j ) ≤ 0).

Thus let us define the following functional of X [n]:

V (X [n]) = max{max
ij

(xij [n] − x∗
ij) ×

× 1I[max(Ii[n], Oj [n])−max(I∗i , O
∗
j )],max

ij
(x∗

ij − xij [n])×
× 1I[max(I∗i , O

∗
j ) − max(Ii[n], Oj [n])]}

where 1I[x] = 1 if x ≥ 0, and 1I[x] = 0 if x < 0.
Since V (X [n]) ≥ 0 and V (X [n]) = 0 only if X [n] =

X∗, V (X [n]) can be interpreted as a Lyapunov function for
the system. Moreover it can be proved that, for each element
(i′, j′) that maximizes xij [n] − x∗

ij > 0 on the matrix rows
and columns (or minimizes xij [n] − x∗

ij < 0), then it results
bi′j′ [n]− b∗i′j′ ≥ 0 (or bi′j′ [n] − b∗i′j′) ≤ 0).

Thus, for all the elements belonging to argmaxij(xij [n]−
x∗

ij) × 1I[max(Ii[n], Oj [n]) − max(I∗i , O
∗
j )], either (a) or (b)

must hold. As a consequence, for small values of α, the
functional V (X [n]) defined below is non increasing with
respect to n, which implies the equilibrium point X∗ to be
stable (i.e., the algorithm converges to the NEP).

D. Maximum achievable throughput

We now prove the stability properties of the SSB game.
Definition 1: A switching architecture achieves 100%

throughput, or it is rate stable, if

lim
n→∞

Lij [n]
n

= 0 w.p.1 ∀i, j
where Lij [n] is the queue length at the beginning of frame
n.

Consider now the case of performance costs given by the
average queue length or the average delay (as defined in
Sec. IV-A). We start to assume an ideal knowledge of the
average traffic matrix Λ, which is admissible.

Theorem 5: Under any admissible traffic pattern that sat-
isfies the strong law of large numbers, an input-queued
switch implementing the extended SSB policy asymptotically
achieves 100% throughput if the frame dimension F is suffi-
ciently large.

Proof: Since bij ≥ λij at the NEP, the switching system
is rate stable, as formally proved in ([13], Theorem 1).

The general assumption that the arrival rates are known is
not practical. When the rates are unknown, a practical scheme
can consider in Q(bij) some rate estimators λ̂ij instead of λij .
Luckily, the stability result continues to hold:

Theorem 6: Under any admissible traffic pattern that satis-
fies the strong law of large numbers, an input-queued switch
implementing the extended SSB policy with online rate esti-
mation asymptotically achieves 100% throughput, if the frame
dimension F is sufficiently large, and the rate estimation
converges to the true arrival rate.

Proof: Under the large F assumption, we can neglect the
quantization effect. In addition, the traffic estimations λ̂ij [n]
tends w.p.1 to λij for n → ∞; thus for each ε > 0, there
exists an n0 such that |λ̂ij [n]− λij | < ε for any n > n0 with
probability one. But since the iterative algorithm converges,

as proved before, to an efficient NEP at which b∗ij > λ̂ij [n]
there exists a time instant n1 such that bij [n] > λ̂ij [n]+δ, for
some δ > 0 and any n > n1. Being ε arbitrary, we can always
set ε < δ thus resulting: bij [n] > λij [n], for any n > n1, i.e.
the bandwidth provided to agent aij is greater than the traffic
arrival rate, which implies the rate stability of the switch as
formally proved in ([13], Theorem 1).

Theorem 7: Under any admissible traffic pattern that sat-
isfies the strong law of large numbers, a network of input-
queued switches all implementing the SSB policy asymptoti-
cally achieves 100% throughput if the frame dimension F is
sufficiently large and the rate estimation referred to entering
flows converges to the true arrival rate.

Proof: The proof immediately comes from the observa-
tion that, if we are able to prove that the traffic estimations
λ̂ij [n] → λij w.p.1 as n → ∞, then repeating the same
argument of the previous proof, we can show that the band-
width provided at each switch to every input-output port traffic
relation is greater than the corresponding average arrival rate,
which implies the rate stability of switch networks, as formally
proved in ([13], Theorem 1). To prove that λ̂ij [n] tends w.p.1
to λij for n → ∞, we can exploit the same arguments of
([13], Theorem 2).

VI. SIMULATION RESULTS

In this section, we analyze by simulation the merits of the
proposed SSB policy under several possible combinations of
performance cost and bandwidth cost functions. When the
knowledge of the arrival rates λij is required by the cost
function, we use the filter estimators λ̂ij given by (3). We
test the SSB policy under i.i.d. Bernoulli arrivals, with both
stationary and time-variant traffic, distributed according to a
given traffic matrix.

We consider a switch with N = 32 input and output
ports, each running at 10 Gbps. We assume a cell size of
64 bytes, that is 512 bits, a common internal cell format used
in switching fabrics. Hence, the slot duration is 51.2 ns. We
set the size of each VOQ equal to 2000 cells, that is 128
KBytes for each VOQ, and 4 MBytes for the whole input
port. The normalized input load ρ ranges between 0.2 and
0.99, equivalent to data rates between 2 and 9.9 Gbps. We
present here only results obtained for frame size F = 128 and
1024 cell slots, equivalent to a frame duration of 6.5 µs and
52 µs respectively, which we consider good representatives of
short and long frame sizes, although several other values of
F were considered.

We define the following traffic matrices:

• Uniform traffic: λij = ρ/N . This is the most classical
scenario considered in the literature. Almost all the pro-
posed algorithms in the literature achieve the maximum
throughput under this traffic.

• Log-diagonal traffic: define λ̄d = ρ(2N−1−d)/(2N − 1),
with d = 0, . . . , N − 1 representing a matrix diagonal
index4, i.e., ai|i+d|N = aij ; then, λij = λ̄d. In this case
the load halves from one diagonal to the other. This traffic

4In the following |.|N is the modulo-N operator.
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matrix is usually very critical to be scheduled, and most
of the non-optimal algorithms are not able to achieve
maximum throughput.

• Lin-diagonal traffic: λ̄d = ρ(N−d)/(N(N +1)/2), with
d = 0, . . . , N − 1, then λij = λ̄d if j = |i + d|N ; the
load decreases linearly from one diagonal to the other.
This traffic matrix is an intermediate case between the
uniform and log-diagonal ones.

In the following subsections, we show that (i) no throughput
limitation is observed even when the cost function does not
theoretically guarantee that an equilibrium is reached, (ii) good
performance in terms of delay are obtained in most scenarios,
even if a delay penalty should be paid with respect to optimal
slot by slot schedulers, (iii) the proposed framework is very
flexible, and permits to obtain differentiated delays by a proper
setting of parameters in the cost function.

A. Performance under stationary traffic

To give insights into the system behavior, before examin-
ing performance results, we introduce an example of agent
behavior in a switch loaded with a log-diagonal matrix. We
discuss the temporal evolution of the number of purchased
slots during a transient period, i.e., starting from a slot
allocation not matched to the log-diagonal traffic: we assume,
at simulation startup, that the number of purchased slots are
null for all queues, i.e. xij = 0, ∀i, j. For simplicity, we
show and describe the behaviour of only 5 among the 32
agents at input port 0: agents playing the game for outputs
0 − 4, i.e. aij , i = 0, j = 0, 1, 2, 3, 4. Since the considered
traffic is log-diagonal, the initial portion of the vector Λ̄ of
arrival rates at input 0, where λ̄j is the traffic toward output
j, is [0.45, 0.225, 0.112, 0.056, 0.028]. Being ρ = 0.9 and
F = 256, the number of purchased slots by each agent at
the NEP is very close to Fλj , whose corresponding vector
is [116, 58, 29, 15, 8]. Thus, the rightmost part of the graph
in Fig. 1 shows that the SSB policy achieves the NEP, given
that the number of purchased slots takes values close to those
derived above. Looking at the leftmost part of the graph
in Fig. 1, when the SSB game starts, all the agents have
bought 0 slots in the frame; hence the received bandwidth
is 1/N = 0.031 for all the agents. This bandwidth is not
sufficient to satisfy the first 4 agents, since their arrival rate
is greater than the service rate; thus, the agents keep buying
slots. The fifth player, whose service rate 0.031 is greater than
the arrival rate 0.028, still buys more bandwidth, since the
bandwidth price at this time is very low (as known from the
bandwidth cost function). As soon as the bandwidth becomes
more expensive, the fifth player gives up and starts selling
bandwidth, as shown in the curve which decreases for the first
agent. All the other agents behave similarly: they buy till they
have excess bandwidth, and then, when the cost per bandwidth
is too high, they start to sell, till they reach their equilibrium.
Note that we did not report in the figure the absolute time
scale, that strongly depends on the absolute values of system
parameters, and that is not significant in this example.

Let us now consider more quantitative simulation results.
All the simulations ran for a fixed number of one million
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Fig. 1. Time evolution of the number of purchased slots by agents of input
0.
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Fig. 2. Average delay for stationary uniform traffic. All SSB versions achieve
the maximum throughput.

time slots, equivalent to 50 ms and to about 6-32 millions of
switched cells, depending on the load. The initial transient
period was estimated and not considered when collecting
performance indices. The filter reactivity α, when needed in
the cost functions, is set to 0.99, such that about 100 frames
are required to “learn” the traffic arrival rates, equivalent to
0.6 ms and 5 ms for F = 128 and F = 1024, respectively.

We considered three versions of the SSB policy, character-
ized by the use of different performance cost functions. We use
the identifier C for “average queue length”, D for “average
delay” and Q for “queue length”, according to the definitions
of Sect. IV.

All the considered versions of SSB achieve 100% through-
put in all traffic scenarios. We simulated also iSLIP [4] (with
32 iterations!) and observed that it achieves 83.1% maximum
throughput under log-diagonal traffic and 96.8% under lin-
diagonal traffic.

Fig. 2 and 3 show the average delay for uniform and lin-
diagonal traffic respectively. The labels in the figures are
composed by an identifier of the performance cost, which
can be C (average queue length), D (average delay) and Q
(queue length), followed by the frame size. When the frame
size increases, at higher loads the delays decrease since the
better granularity permit to better tune the number of services
per frame. On the other hand, at lower loads, the delays
increase, since the system state is updated only at frame
boundaries. With respect to the throughput-optimal MWM slot
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Fig. 3. Average delay for stationary lin-diagonal traffic. All SSB versions
achieve the maximum throughput.

TABLE I

AVERAGE DELAY FOR TWO PERFORMANCE COST FUNCTIONS

Performance Time-variant traffic Stationary traffic
cost function uniform/lin-diagonal uniform lin-diagonal

Average delay 27.1 µs 12.0 µs 10.9 µs
Queue length 12.2 µs 12.5 µs 11.7 µs

by slot scheduler, the performance penalty is evident, although
acceptable in absolute values when considering the real-time
needs of delay sensitive applications.

B. Performance under time-variable traffic

We wish to show that, even if frame scheduling intrinsically
implies slower time dynamics than slot-by-slot scheduling,
still, its reactivity can be considered sufficient to track realistic
changes in time-variant traffic.

We ran fixed simulation runs of about 82 millions of
time slots with load 0.9 (corresponding to 4.2 seconds and
about 2.5 billions of cells). The frame size is set to 1024,
which corresponds to the slowest reactivity. The traffic is non-
stationary, and cycles between two traffic matrices, M (1) and
M (2) with period T . During a period of length T , four phases
can be identified: in the first phase, the arrival rates are kept
fixed according to M (1); in the second phase rates change
linearly from M (1) to M (2); in the third phase, the traffic
matrix is kept fixed and equal to M (2); finally, in the fourth
phase rates change linearly from M (2) to M (1). More formally,
the arrival rates λij(t) are given, for each period of length T ,
by:

λij(t) =




M
(1)
ij for 0 ≤ t < T/4

M
(1)
ij + (t − T/4)/(T/4)(M (2)

ij −M
(1)
ij )

for T/4 ≤ t < T/2
M

(2)
ij for T/2 ≤ t < 3T/4

M
(2)
ij + (t − 3T/4)/(T/4)(M (1)

ij −M
(2)
ij )

for 3T/4 ≤ t < T

We set M (1) to the uniform traffic matrix, M (2) to the
lin-diagonal, and the period T = 42 ms, a value that was
considered reasonable to detect realistic traffic dynamics even
at the TCP level. For the average delay performance cost, we

set α = 0.9 in (3), equivalent to about 10 frames (1 ms)
required to correctly estimate traffic changes.

No throughput losses were observed. In Table I, we show
the average delays for non-stationary traffic under different
performance costs. We report, in the right hand side of the
table, the delays obtained in the case of stationary traffic,
under uniform and lin-diagonal traffic only. It can be seen that
the average delays are very satisfactory when using the queue
length, whereas a small delay increase is experienced when
using the average delay as performance cost. Thus, the SSB
policy appears to be robust also when considering time-variant
traffic.

C. Support of different priorities

Finally, we want to highlight the SSB policy flexibility: in
the same framework, by simply weighting the cost factor of
different agents, we can differentiate the experienced delays.

We ran our simulations for 52 ms, with F = 1024 cells,
corresponding to about 6.4 million switched cells for ρ = 0.2,
and to 28 million cells for ρ = 0.9.

In the first scenario, we define 2 priorities by assigning
two values to a weight factor wij used as a multiplier of the
performance cost function: wij = 1 for i = 0, . . . , N − 1,
d = 0, . . . , N/2−1 and j = |i+d|N , where d is the diagonal
identifier. Otherwise, wij = 10. That is, the first N/2 diagonals
of the traffic matrix correspond to a cost factor which is 10
times lower than the other N/2 diagonals. Traffic of both
priorities exists in all input and all output ports.

In the second scenario, we define N priorities: wij = αd,
with i = 0, . . . , N − 1, d = 0, . . . , N − 1 and j = |i + d|N .
That is, each diagonal has a cost factor which is α times the
cost factor of the next right diagonal. We set α = 0.8619 to
have a ratio of 100 between cost factors corresponding to the
highest and the lowest priority diagonals. All input and output
ports are loaded with the same amount of traffic

Performance results are shown in Fig. 4 for 2 priorities, and
Fig. 5 for the N priorities. A very good control of average
delays is obtained by using the weight coefficients.
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Fig. 4. Average delay for a system with 2 priority levels, as a function of
the diagonal identifier

VII. MAIN FEATURES OF THE POLICY

We previously provided a number of arguments supporting
differential frame-based approaches. We now want to highlight
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Fig. 5. Average delay for a system with N priority levels, as a function of
the diagonal identifier

the reasons why we believe that the described framework con-
stitutes a significant advantage with respect to other proposed
approach relying on differential frame-based matching.

First, the policy is demonstrated to be stable, both for
switches in isolation, and for networks of switches. By con-
trast, even the optimal slot-by-slot MWM algorithm is not
stable in networks of switches. However, it is fairly easy
to devise other, likely simpler, policies that are stable; for
example, simply trying to maintain xij = λ̂ij would be enough
to obtain stability.

A second feature of our proposal is that it works robustly
also with a rough estimation of traffic rates, obtained simply
by looking at queue lengths.

Moreover, the proposed policy shows its most important
advantage when looking at its flexibility. For example, by
properly weighting the cost functions, a control on the relative
delay performance among flows was shown to be easy to
obtain. Several other features related to differentiated QoS
needs may be introduced by properly weighting cost functions;
from a practical point of view, this would require only to set
some system parameters in order to obtain a different behavior
without changing the overall scheduling scheme.

VIII. CONCLUSIONS

We proposed a new frame-based scheduling framework to
solve the contention problem in accessing switching fabrics
in high-speed IQ switches. The scheduling is defined in terms
of a game among queues: a unique NEP is shown to exist.
The NEP is efficient and the algorithm converges to the NEP
when using a well defined set of cost functions. Our scheduling
policy achieves 100% throughput under a large class of input
traffic patterns; the same result holds also in a network of
switches. In terms of performance, we showed by simulation
that no throughput limitation exists, that good performance in
terms of delays is obtained, and that the proposed framework
is very flexible and permits to obtain differentiated delays for
different flows.
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